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Antiferromagnetism in a bosonic mixture of rubidium (87Rb) and potassium (41K)
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LENS, Università di Firenze, via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy

We simulate the experimental possibility of observing the antiferromagnetic (AF) order in the
bosonic mixtures of rubidium (87Rb) and potassium (41K) in a two-dimensional optical lattice in
the presence of harmonic confinement. By tuning the interspecies interactions and the lattice heights
we have found the ground states, within the mean-field approximation, that interpolate from the
phase separation to the AF order. For a moderate lattice height the coexistence of the Mott and
AF phase is possible for the Rb atoms while the K atoms remain in the AF-superfluid phase. This
observation may provide an experimental feasibility to hitherto unobserved AF order for 87Rb - 41K
mixture.

PACS numbers: 03.75.Hh, 67.60.Bc, 05.30.Jp, 73.43.Nq

The field of ultracold atoms has set a new era for its
outstanding achievements for simulating many quantum
phenomena related with correlated interacting particles
in a strong periodic potential [1]. Such systems have been
successfully implemented to realize nonmagnetic phases
such as Mott, superfluid and vortex states. However,
realizing quantum magnetism (QM) [2] within current
experimental framework is still a challenging task due to
an extremely low value of the exchange coupling [3, 4],
though there have been conscientious theoretical efforts
and proposals in this direction [5–10]. The possible mile-
stone would be the experimental realization of an anti-
ferromagentic (AF) order in a two-component system.

Two-component boson system with tunable inter-
species interactions [11] has been a fruitful laboratory
for studying many intriguing phenomena ranging from
phase separation [12] and topological structures [13] to
the exotic states of matter such as supersolid [9] (su-
perflow with broken translation symmetry) and counter-
superfluid [5]. Current trends and publications for im-
plementing such system in the regime where QM can be
perceived are mostly theoretical, and are limited to the
subspace of integer filling and to the hardcore bosons
only [7–9]. Besides, the experimental realizations of ul-
tracold atoms are always accompanied by the additional
trapping potential that may modify the possible phase
diagram.

In this paper we explore the ground states of a sys-
tem consisting of mixture of interacting bosons in a two-
dimensional (2D) optical lattice in an external trapping
potential. In particular, we focus on the recent experi-
mental realizations of a degenerate mixture of rubidium
(87Rb) and potassium (41K) atoms [14] where one can
exploit the inherent asymmetry of the tunneling ampli-
tudes and interaction energies. In general, this asymme-
try is a necessary criterion for observing the AF order
in the two-component system [7, 9]. For a moderate lat-
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FIG. 1: (Color online) Density plot of 87Rb (bot-
tom row) and 41K (top row) for URb−K = 0.28 with
sRb = 14.0 for different number of atoms [NRb, NK ] =
[705, 110], [381, 441], [304, 548], and [288, 610] for the columns
(a), (b), (c), and (d). The axes represent the lattice of size
41× 41.

tice potential the heavier atoms (Rb) can be in the Mott
phase while the lighter atoms (K) will remain in the su-
perfluid phase if the interspecies interactions are weak.
For stronger interspecies interactions, in place of a sim-
ple phase-separation, the lattice discreteness may trigger
magnetic order such as AF phase.

The two-component antiferromagnetism referring here
is the state in which the site population alternates be-
tween two species analogous to the 2D checkerboard
solid. By tuning the interspecies (Rb-K) interactions and
the number of atoms of each species we have found the
ground state where the density of each species alternate
between adjacent sites with Rb atoms in the Mott phase
while K atoms are in the superfluid phase. The domain
of this checkerboard pattern extends over the size of the
cloud when the number of atoms of each species are com-
parable (Fig. 1 (b)). For imbalanced mixtures the density
distributions reflect the symmetry of the trapping poten-
tial with the ring like structure of Rb atoms around the
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densely packed K atoms as a signature of the phase sep-
aration.
Our formulation starts with the model Hamilto-

nian [15],

Ĥ =
∑

〈i,j〉,σ

[

− Jσ(â
†
i,σâj,σ + h.c.) +

Uσ,σ

2
n̂i,σ(n̂i,σ − 1)

−µσn̂i,σ + ǫi,σn̂i,σ

]

+
∑

i

Uσ,σ′

2
n̂i,σn̂i,σ′ , (1)

where the indices σ 6= σ′ refer to Rb or K, and 〈i, j〉 are
the nearest neighbor sites. Here â†i,σ and âi,σ are the
creation and annihilation operators at the lattice site i

whereas n̂i,σ = â†i,σâi,σ is the number operator for the σ
species. The parameters Jσ and Uσ,σ(σ′) are respectively
the tunneling amplitudes and the onsite atom-atom in-
teractions between σ and σ(σ′). The magnitude of the in-
terspecies interactions Uσ,σ′ can be varied experimentally
by using Feshbach resonance. The chemical potentials µσ

are adjusted to fix the number of atoms of each species.
The effect of the external harmonic confinement is rep-
resented by the energy offset term ǫi in the Hamiltonian.
In principle, Rb and K atoms may experience different
trapping potentials due to their difference in masses.
For the optical lattice deep enough to validate the

model (1) the parameters can be approximately writ-
ten in terms of the lattice heights and atomic scatter-
ing lengths as [16] Jσ ≃ 1.4sσ exp(−2.07

√
sσ)Er,σ and

Uσ,σ ≃ 5.97(aσ,σ/λ)(sσ)
0.88Er,σ , where Er,σ is the recoil

energy and sσ is the lattice height of the σ species. In the
limit Jσ ≪ Uσ,σ and in the absence of external trapping
potential (ǫi = 0), the Hamiltonian (1) can, within the
second order perturbation theory, be mapped onto effec-
tive spin-1/2 Heisenberg Hamiltonian [5]. In the simplest
case when the total filling of one atom per site the effec-
tive Hamiltonian can be written as [5, 7]

Heff = tz
∑

〈i,j〉

Sz
i S

z
j − t⊥

∑

〈i,j〉

(Sx
i S

x
j + Sy

i S
y
j ) , (2)

where the exchange couplings scale as tz, t⊥ ∼ J2
σ/Uσ.

This spin model is strictly valid when the system is in
deep Mott regime so that the Hilbert space is spanned
by states |ni,σ;ni,σ′〉 with ni,σ(σ′) = 0, 1. For the tunnel-
ing amplitude close to the superfluid-Mott transition the
model of isospin representation breaks down. However,
this gives some hints for the parameter values where one
should expect the magnetic order. Since the exchange
couplings scale as tz ∼ J2, a large tunneling would be
beneficial for providing a large exchange coupling.
In this study we use the decoupling mean-field (DMF)

approximation [17] which has been a successful model
in obtaining the phase diagram of a single component
system. In this approach, one can approximate the

off-diagonal terms in the Hamiltonian as â†〈i,j〉,σâj,σ ≈
〈â†i 〉âj,σ + â†i,σ〈âj,σ〉 − 〈â†i,σ〉〈âj,σ〉 , where 〈âi,σ〉 ≡ φi,σ

is the so-called superfluid order parameter. Within this
approximation the mean-field Hamiltonian can be writ-
ten as the sum of the on-site Hamiltonians ĤMF =
∑

i Ĥi, which can be diagonalized self-consistently us-
ing the truncated number basis. In our simulations we
choose the initial order parameter φi,σ as real random
variables in the interval {0, 1}, and iterate the solu-
tion self-consistently until it converges to a desired ac-
curacy (10−8). In each realizations of the simulation we
readjusted the chemical potentials for a given set of pa-
rameters, and the number of atoms are fixed accordingly.
We have picked the converged number of atoms in the
range NRb +NK ≈ 800 to 900 when the solution relaxes
to the ground state. In all calculations the size of the
lattice is fixed to L2 = 41× 41.

As mentioned earlier, our study concentrates on the
mixtures of 87Rb and 41K in a two-dimensional optical
lattice. For the parameters in the simulations we take
the masses of Rb and K atoms as mRb = 87.0 u and
mK = 41.0 u with u = 1.67×10−27 kg, and the scattering
lengths as aRb = 98.0 a0 and aK = 63.0 a0 with a0 =
0.529 × 10−10m. We fix the lattice height for the Rb
atoms sRb = 14Er,Rb assuming that the lattice height
for the K atoms can be adjusted independently.

Figure 1 represents an example plot of the density
of K (top row) and Rb (bottom row) atoms for a set
of four pairs of atom numbers. We have considered
the lattice height sRb = 14.0 for the Rb and the cor-
responding Hubbard parameters are URb = 0.30 and
JRb = 0.008, whereas for the K atoms we have taken
UK = 0.092, and JK = 0.049 respectively. For con-
venience, we have taken the same trapping potentials
for both the Rb and K atoms, the frequency of the Rb
atoms being ω = 2π × 60

√

sRb/60Hz. The frequency
for the K atoms can be found by setting the condition
mRbω

2
Rb = mKω

2
K. All the energies are expressed in

terms of the recoil energy of the Rb atoms. In our ob-
servations the phase separation is likely scenario if the
number of atoms is large and if URb−K >

√
URbUK.

For a non-lattice system the critical value of the Rb-K
scattering length for the onset of the phase separation
is 2

√
aRbmRbaKmK/(mRb +mK) [18]. It should also be

noted that the critical value for the superfluid-Mott insu-
lator transition in a homogeneous system with unit filling
is (Uσ/zJσ)c = 5.8 [19]. If we neglect the effect of the
trapping potentials the Rb atoms remain in the Mott in-
sulating (if the integer filling prevails) while the K atoms
remain in the superfluid phase.

The density distribution in Fig. 1 form a ring of Rb
atoms around the dense K atoms at the center of the trap.
It is expected since Rb atoms are interacting stronger
than K atoms and are pushed outward from the center
of the trap. For small number of K atoms a small patch
of AF order is formed near the center of the cloud sur-
rounded by an extended Mott plateau of Rb atoms. As
the number of K atoms increases the AF order extends
over the whole lattice, and the correlator 〈a†σaσ′〉 shows
minimum when NRb ≈ NK. For large number of K atoms
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FIG. 2: (Color online) Atom distribution for the Rb (square)
and K (triangle) atoms along the line x = 0. The data is
extracted from the Fig. 1.

the overlap region shrinks in the form of ring near the
periphery while the central region is void of Rb atoms.
In both extreme cases we have signs of phase separation
along with the existence of the magnetic order.
In Fig. 2 we plot the cut of the density profile along

the line x = 0 for the same parameters as in Fig. 1. The
Mott plateau of Rb and superfluid profile of the K atoms
exist along with the AF order in the overlapped region.
In order to detect the hidden order in the lattice exper-

imentally a number of proposals have been put forward.
Two prominent techniques are the noise correlation [20–
22] and the lattice modulation spectroscopy [23]. Here we
emphasize the noise correlation by analyzing the images
of the density distribution during the ballastic expansion
of the cloud in the far field regime [21, 22].
We define the normalized correlation function in the

momentum space

C(~k) =

∫

d~q 〈n̂(~q)n̂(~q + ~k)〉
∫

d~q 〈n̂(~q)〉〈n̂(~q + ~k)〉
. (3)

If the state of the system is known, the expectation
values that appeared in the integrals can be found easily.
In particular, if the state is defined by the product of the
number state |φ0〉 = Πi|ni〉 , which is a valid assumption
for Rb atoms, the correlation function turns out to be

CRb(~k) =

∑

i n
2
i,Rb

N2
Rb

− 1

N2
Rb

+
n2
~k,Rb

N2
Rb

. (4)

Here we have neglected the term containing the delta
function.
In Fig. 3 we show the density plot of the correlation

function CRb(~k) in the kx − ky plane corresponding to
the parameters of Fig. 1 (b). In addition to the Mott
peaks for integer values of (kx, ky) the correlation func-
tion develops additional peaks. It should be noted that
for the checker-board solid the size of the unit cell in

FIG. 3: Noise correlation function CRb(k) for Rb for the pa-
rameters of Fig. 1 (b). Mott peaks of the original lattice are

spanned by the vector ~k = l(nx̂,mŷ) whereas the additional

peaks are at the position ~k = l/
√
2(−nx̂,mŷ) where n and m

are integers and l = 2π/|d|, d being the lattice constant.

the real space gets doubled and rotated by π/2 with re-
spect to the original lattice. It can be easily verified that
the length of the unit vector in the reciprocal lattice is
1/

√
2 times that of the original lattice. Therefore, the

secondary peaks in the correlation function do not ap-
pear at the position half integral multiple of kx or ky,
but at the center of the unit cell spanned by the orig-
inal reciprocal lattice vector. For this particular set of
parameters in Fig. 3 the ratio of the amplitudes of the

secondary (~k = 1/2) to the primary (~k = 0) peaks in the
correlation function is 0.45.
Another possibility to observe the AF order in the two

component system is to create an excitation by means
of lattice shake or by modulating the intensity of the
lattice height periodically. The AF order can be revealed
with an additional peak of URb−K in the lowest excitation
spectrum [23]. This is because the lattice modulation
transfer a Rb atom to the nearest occupied lattice site
and the gain in energy will be URb−K if the nearest site is
occupied by the K atom. This approach can be suitable
for a strong lattice confinement with both components
forming Mott insulating states. But for the parameters
we are dealing in this paper the number of K atoms in
a given site is not well defined due to the atom number
fluctuations and the lattice modulation may give a broad
peak in the excitation spectrum.
In order to refine our analysis we have also varied the

trapping potentials for the Rb and K separately. In this
case we have not observed a clear signature of the AF
order but the phase separation only. This may be due
to the fact that the difference in local chemical poten-
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FIG. 4: (Color online) Density plot of 87Rb (bottom row) and
41K (top row) for URb−K = 0.45 with sRb = 20.0. The num-
ber of atoms are [NRb, NK ] = [188, 640], [354, 458], [580, 200],
and [665, 100] for columns (a), (b), (c), and (d). The axes
represent the lattice of size L2 = 41× 41.

tials between Rb and K atoms greatly exceed the tiny
exchange interaction needed to stabilize the AF order.
In the experimental situation the equal trapping poten-
tial may not be a problem as the frequencies can be tuned
by setting the condition mRbω

2
Rb = mKω

2
K.

To be more concrete with our speculation that the
large hopping amplitude could be a regime conducive for
the AF order we consider a deeper optical lattice with
sRb = 20 for the Rb. In Fig. 4 we show the density plot
for the typical atom numbers of each species when the in-
terspecies interactions is URb−K = 0.45. The simulation
parameters are URb = 0.41, UK = 0.13, JRb = 0.0025,
and JK = 0.026. The trapping frequency for the Rb
atoms is ω = 2π × 60

√

sRb/60Hz while the frequency of
the K atoms is found by the equal potential conditions.
The Mott plateau of the Rb atoms and the superfluid pro-
file of the K atoms still persist but the AF order washes
away. There are few patches of the AF order in the region
where two species overlap.
From the theoretical point of view when both species

are in deep Mott regime there could be an AF order but
the corresponding exchange couplings are extremely low.
In the deep Mott regime atom tunneling is exponentially

suppressed, and a tiny perturbation such as thermal and
quantum fluctuations are sufficient to destroy the fragile
AF order. Our observation is also consistent with the
previous phase diagram [9] of two-component bosons on
a square lattice at half-integer filling of each species. For
the parameters of Fig. 1 we have 2zJRb/URb−K = 0.22
and 2zJK/URb−K = 1.4, which lies in the 2CB-phase of
Fig. 1 in Ref. [9].

In [14] it is reported that the minor fraction of the K
atoms reduces the visibility of the interference pattern of
the Rb atoms, we speculate that this impurity-induced
loss of coherence [14, 24] may be accounted for the pres-
ence of the AF order, and the detail experimental findings
in the regime of comparable atom number of each species
would reveal more information.

Unlike in a single component system where the chemi-
cal potential fixes the total number of atoms, the two-
component system allows number fluctuations for the
same set of chemical potentials when the interspecies in-
teractions are switched on. The asymmetry observed in
the density distribution in Fig. 4 may be due to the de-
generacy present in the ground state since a set of chemi-
cal potentials may give the different set of atom numbers.
It is interesting to compare the quantum results shown
in Fig. 4 with the experimental demonstration of simul-
taneous existence of superfluidity and magnetism in the
spinor Bose-Einstein condensate [25].

In summary, we have simulated a typical scenario of a
degenerate bosonic mixtures of the Rb and K atoms in
a 2D optical lattice in the presence of external trapping
potential. By tuning the interspecies interactions we find
that the AF order is possible if the Rb atoms are in the
Mott phase while K atoms are in the superfluid phase.
This ordered phase can be reflected in the density distri-
bution as well as in the noise-correlation signal. In our
view there has not been any study (at least to our knowl-
edge) on the AF order in the two-component system
when one species remain in the superfluid phase while
the other in the Mott phase, this observation may pro-
vide the novel regime for studying quantum magnetism
in ultracold system.
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