
ar
X

iv
:1

00
9.

58
09

v1
  [

m
at

h.
O

A
] 

 2
9 

Se
p 

20
10

A completely positive map associated with a

positive map

Erling Størmer

21-9-2010

Abstract

We show that each positive map from B(K) to B(H) is a scalar mul-
tiple of a map of the form Tr − ψ with ψ completely positive. This is
used to give necessary and sufficient conditions for maps to be C-positive
for a large class of mapping cones; in particular we apply the results to
k-positive maps.

Introduction

In [6] we studied several norms on positive maps from B(K) into B(H), where
K and H are finite dimensional Hilbert spaces. These norms were very useful
in the study of maps of the form Tr − λψ, where Tr is the usual trace on
B(K), λ > 0, and ψ a completely positive map of B(K) into B(H). In the
present paper we shall see that every positive map is a positive scalar multiple
of a map of the above form with λ = 1, hence the results in [6] are applicable to
all positive maps. In particular they yield a simple criterion for some maps to
be k-positive but not k+1-positive. As an illustration we give a new proof that
the Choi map of B(C3) into itself is atomic, i.e. not the sum of a 2-positive and
a 2-copositive map.

C-positive maps

LetK andH be finite dimensional Hilbert spaces. We denote byB(B(K), B(H))
(resp.B(B(K), B(H))+) the linear (resp. positive linear) maps of B(K) into
B(H). In the case K = H we denote by P (H) = B(B(H), B(H))+. Following
[8] we say a closed cone C ⊂ P (H) is a mapping cone if α ◦ φ ◦ β ∈ C for all
φ ∈ C and α, β ∈ CP - the completely positive maps in P (H). A map φ in
B(B(K), B(H)) defines a linear functional φ̃ on B(K)⊗B(H), identified with
B(K ⊗H) in the sequel, by φ̃(a⊗ b) = Tr(φ(a)bt), where Tr is the usual trace
on B(H) and t denotes the transpose. Let P (B(K), C) denote the closed cone

P (B(K), C) = {a ∈ B(K ⊗H) : ι⊗ α(a) ≥ 0 ∀ α ∈ C},
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where ι denotes the identity map on B(K). Then a map φ ∈ B((B(K), B(H))
is said to be C-positive if φ̃ is positive on P (B(K), C). We denote by PC the
cone of C-positive maps.

If (eij) is a complete set of matrix units for B(K) then the Choi matrix for
a map φ is

Cφ =
∑

eij ⊗ φ(eij) ∈ B(K ⊗H).

By [10] and [11] the transpose Ctφ of Cφ is the density operator for φ̃, and by

[1] φ is completely positive if and only if Cφ ≥ 0 if and only if φ̃ ≥ 0 as a linear
functional on B(K ⊗H). In the case C = CP , P (CP,B(K)) = B(K ⊗H)+, so
φ is CP-positive if and only if φ is completely positive.

If C1 ⊂ C2 are two mapping cones onB(H), then P (B(K), C1) ⊃ P (B(K), C2),
because if ι ⊗ α(a) ≥ 0 for all α ∈ C2, then the same inequality holds for
all α ∈ C1. Thus φ̃ ≥ 0 on P (B(K), C1) implies φ̃ ≥ 0 on P (B(K), C2), so
PC1

⊂ PC2
.

Let C be a mapping cone on B(H). Let PoC denote the dual cone of PC

defined as

PoC = {φ ∈ B(B(K), B(H)) : Tr(CφCψ) ≥ 0 ∀ψ ∈ PC}.

Thus if C1 ⊂ C2 then PoC1
⊃ PoC2

. In the particular case when C ⊃ CP we thus
get PoC ⊂ PoCP = CP (K,H) - the completely positive maps of B(K) into B(H).

Following [6] C defines a norm on B(B(K), B(H)) by

‖ φ ‖C= sup{| Tr(CφCψ) |: ψ ∈ PoC , T r(Cψ) = 1}.

In the special case when C ⊃ CP it follows from the above that

‖ φ ‖C= sup | ρ(Cφ) |,

where the sup is taken over all states ρ on B(K ⊗H) with density operator Cψ
with ψ ∈ PoC . Let φ ∈ B(B(K), B(H)) be a self-adjoint map, i.e. φ(a) is self-
adjoint for a self-adjoint. Then Cφ is a self-adjoint operator, so is a difference
C+
φ − C−

φ of two positive operators with orthogonal supports. Let c ≥ 0 be

the smallest positive number such that c1 ≥ Cφ. Then c =‖ C+
φ ‖. Hence, if

c 6= 0 there exists a map φcp ∈ B(B(K), B(H)) such that the Choi matrix for
φcp equals 1 − c−1Cφ, which is a positive operator. Thus, if we let Tr denote
the map x 7→ Tr(x)1, φcp is completely positive, and c−1φ = Tr − φcp, since
CTr = 1, as is easily shown. Combining the above discussion with [6], Prop. 2,
we thus have.

Theorem 1 Let φ be a self-adjoint map of B(K) into B(H). Then if −φ is
not completely positive, we have

(i) There exists a completely positive map φcp ∈ B(B(K), B(H)) such that

‖ C+
φ ‖−1 φ = Tr − φcp.

(ii) If C is a mapping cone on B(H) containing CP then φ is C-positive if and

only if
1 ≥‖ φ ‖C= sup ρ(Cφcp

),
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where the sup is taken over all states ρ on B(K ⊗H) with density operator Cψ
with ψ ∈ PoC.

Note that we did not need to take the absolute value of ρ(Cφcp
) because

Cφcp
≥ 0 and ψ ∈ PoC ⊂ CP .

We next spell out the theorem for some well known mapping cones. Recall
that a map φ is decomposable if φ = φ1+φ2 with φ1 completely positive and φ2
copositive, i.e. φ2 = t ◦ ψ with ψ completely positive. Also recall that a state ρ
on B(K ⊗H) is a PPT -state if ρ ◦ (ι⊗ t) is also a state.

Corollary 2 Let φ ∈ B(B(K), B(H)) be a self-adjoint map. Then we have.

(i) φ is positive if and only if ρ(Cφcp
) ≤ 1 for all separable states ρ on B(K⊗H).

(ii) φ is decomposable if and only if ρ(Cφcp
) ≤ 1 for all PPT-states ρ on B(K⊗

H).

(iii)φ is completely positive if and only if ρ(Cφcp
) ≤ 1 for all states ρ on B(K⊗

H).

Proof. (i) That φ is positive is the same as saying that φ is P (H)−positive.
Since the dual cone of P (H) is the cone of separable states (i) follows.

(ii) A state ρ is PPT if and only if its density operator is of the form Cψ
with ψ a map which is both positive copositive, see e.g. [10],Prop.4. But the
dual of those maps is the cone of decomposable maps, see e.g. [7]. Thus (ii)
follows from the theorem.

(iii) This follows since the dual cone of the completely positive maps is the
cone of completely positive maps, and that the density operator for a state is
positive, hence the corresponding map ψ is completely positive.

k-positive maps

A map φ ∈ B(B(K), B(H)) is said to be k-positive if φ⊗ι ∈ B(B(K⊗L), B(H⊗
L))+ whenever L is a k-dimensional Hilbert space. The k-positive maps in P (H)
form a mapping cone Pk containing CP . Denote by Pk(K,H) the cone of k-
positive maps in B(B(K), B(H)). Then we have ,

Lemma 3 With the above notation we have PPk
= Pk(K,H).

Proof. We have P ok = SPk, the k-superpositive maps in P (H), which is the
mapping cone generated by maps of the form AdV defined by AdV (a) = V aV ∗,
where V ∈ B(H), rankV ≤ k, see e.g. [7]. By [11] the dual cone of PP o

k
is given

by

PoP o
k
= {φ ∈ B(B(K), B(H)) : AdV ◦ φ ∈ CP (K,H) ∀V ∈ B(H), rankV ≤ k}.

By [5],Theorem 3, or [6],Theorem 2, it follows that PoP o
k
= Pk(K,H). By[8],

Theorem 3.6, PPk
is generated by maps of the form α ◦ β with α ∈ Pk, β ∈
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CP (K,H). Let AdV ◦ γ,AdV ∈ SPk, γ ∈ CP (K,H) be a generator for PP o
k
.

Then
Tr(Cα◦βCAdV ◦γ) = Tr(CAdV ∗◦α◦βCγ) ≥ 0,

since AdV ∗ ◦ α is completely positive since α ∈ Pk and rankV ≤ k. Since
the above inequality holds for the generators of the two cones, it follows that
PPk

= PoP o
k
= Pk(K,H), completing the proof of the lemma.

It follows from the above description of PoPk
that the states with density

operators Cψ, ψ ∈ PoPk
, are the same as the vector states generated by vectors

in the Schmidt class S(k), i.e. the vectors y =
∑k

i=1 xi ⊗ yi, xi ∈ K, yi ∈ H ,
where the xi and yi are not necessarily all 6= 0.

Theorem 4 Let φ ∈ B(B(K), B(H))+. Then we have.

(i) φ is k-positive if and only if supx∈S(k),‖x‖=1(Cφcp
x, x) ≤ 1.

(ii) Suppose k < min(dimK, dimH), and that there exists a unit vector y =
∑k
i=1 xi ⊗ yi ∈ S(k) such that y ⊥ Cφy /∈ X ⊗ Y , where X = span(xi), Y =

span(yi). Then φ is not k+1-positive.

. In order to prove the theorem we first prove a lemma.

Lemma 5 Let A be a self-adjoint operator in B(K⊗H). Suppose y =
∑k
i=1 xi⊗

yi satisfies (Ay, y) = 1, and Ay /∈ X ⊗ Y with X,Y as in Theorem 4. Then

there exist a unit product vector x ⊥ X ⊗ Y and s ∈ (0, 1) such that (A(sx +
(1− s2)1/2)y), sx+ (1− s2)1/2y) > 1.

Proof. Since Ay /∈ X ⊗ Y there exists a product vector x ⊥ X ⊗ Y such that
Re(x,Ay) > 0. Let s ∈ (−1, 1) and t = t(s) = (1− s2)1/2, and let f denote the
function

f(s) = (A(sx + ty), st+ ty) = s2(Ax, x) + t2(Ay, y) + 2stRe(Ax, y).

Since (Ay, y) = 1 we get

f ′(0) = 2(1− s2)1/2Re(Ax, y) > 0.

Therefore, for s > 0 and near 0 we have (A(sx+ty), st+ty) > f(0) = 1, proving
the lemma.

Proof of Theorem 4.
(i) is a direct consequence of Theorem 1, since, as noted in the proof of

Lemma 3, the vector states ωx with x ∈ S(k) generate the set of states with
density operators Cψ with ψ ∈ PoPk

.

(ii) By Theorem 1 Cφcp
= 1− ‖ C+

φ ‖−1 Cφ, so that (Cφcp
y, y) = 1, using

the assumption that Cφy ⊥ y. Furthermore Cφcp
y = y− ‖ C+

φ ‖−1 Cφy. Since
Cφy /∈ X⊗Y Cφcp

y /∈ X⊗Y . Thus by Lemma 5 there exist a unit product vector

x ∈ X⊗Y and s, t = (1−s2)1/2 > 0 such that (Cφcp
(sx+ty), sx+ty) > 1. Since
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sx+ ty is a unit vector in S(k+1), φ is not k+1-positive by part (i), completing
the proof of the theorem.

Example We illustrate the above results by an application to the Choi map
φ ∈ B(B(C3), B(C3)) defined by

φ((xij)) =





x11 + x33 −x12 −x13
−x21 x11 + x22 −x23
−x31 −x32 x22 + x33





We have Ct◦φ = (ι⊗ t)Cφ. So if y = x⊗x with x = 3−1/2(1, 1, 1) ∈ C3, then
(Cφy, y) = (Ct◦φy, y) = 0, and Cφy 6= 0 6= Ct◦φy. Hence, by Theorem 4, neither
φ nor t ◦ φ is 2-positive, i.e. φ is neither 2-positive nor 2-copositive. Since φ
is an extremal positive map of B(C3) into itself by [2], φ cannot be the sum
of a 2-positive and a 2-copositive map, hence φ is atomic, a result first proved
by Tanahashi and Tomiyama [12], and then extended to more general maps by
others, see [3] for references.

φ can also be shown to be a positive map by a straightforward argument
using Corollary 2.

It should be remarked that the Choi map φ also yields an example of a
PPT-state on B(C3) ⊗ B(C3) which is not separable. Indeed, in [9] we gave
an example of a positive matrix in A in B(C3) ⊗ B(C3) such that its partial
transpose t ⊗ ι(A) is also positive, and that φ ⊗ ι(A) is not positive. Then
A cannot be of the form

∑

Ai ⊗ Bi with Ai and Bi positive, hence the state
ρ(x) = Tr(A)−1Tr(Ax) is PPT but not separable. An example of a PPT state
on B(C3) ⊗ B(C3) which is not separable was later exhibited by P. Horodecki
[4].
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