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Abstract

Fiber guided optical signal, propagating in a Erbium doped resonant medium, is known to produce

cleaner solitonic pulse described by the self induced transparency (SIT) coupled to the nonlinear

Schrödinger equation. We discover hidden possibilities in such a set up, for amplifying solitonic pulse

and controlling its shape and dynamics, regulated by the initial population inversion of the dopant

atoms. The effects can be enhanced by a novel arrangement of going from single to a hierarchy of

coupled SIT system. These theoretical predictions are workable exactly, due to the integrability of the

system.

Optical communication through fiber has achieved phenomenal development over the last two decades

OptCom¸ . To counter dissipation and dispersion in the media, which are the main hindrance of signal

transmission through optical fibers, the emphasis is focused presently more on the dispersion manage-

ment techniques and devices OptCom,dismang¸ . However apart from the involvement of costly repetitive

devices and other adversities like the lack of stability in such arrangements, it suffers from the loss of

analytic methods, bringing in theoretical disadvantages agarwal¸ . On the other hand, there are proposals

for fiber optic communication, mediated by the solitonic modes of the nonlinear Schrödinger equation

(NLS), advocated in earlier days nlssolit¸ , where the group velocity dispersion in the light pulse wave

guide can be balanced by the self phase modulation in the nonlinear fiber medium agarwal¸ . Though the

integrability of this system is an added advantage, experiments revealed the insufficiency of such models

for efficient practical application nlsdrab¸ . Among other proposals of theoretical and practical importance

with improved signal transmission was the soliton solution due to the self-induced transparency (SIT),

created by a coherent response of the medium to an ultra short optical pulse SIT,lamb¸ . Finally a pioneer-

ing idea was put forward, combining the benefits of both the NLS and the SIT systems Maimitsov¸ , where

stable signal propagation can be achieved by transmitting an optical pulse through Erbium (Er3+) doped

nonlinear resonant medium, described by the soliton solution in a coupled NLS-SIT system nakazawa1¸ .

However, in spite of the theoretical and experimental success, optical communication by the solitonic

mode, governed by the NLS-SIT nakazawa1,nakazawa2,kakei¸ or the Hirota-SIT porsezian¸ equations, un-

fortunately, could not receive the needed response to become a leading method in fiber communication.
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One of the reasons for the waning interest in soliton mediated communication, is perhaps, the lack of

exciting proposals and failure to explore new opportunities in the existing theory.

Our aim here is to explore new possibilities, hidden in the NLS-SIT system, through exact analytic

treatment, to put forward a proposal for the amplification and control of the solitonic signal by regulating

the population inversion in the laser-active dopant atoms. We have detected serious lapses in the well

known result on the NLS-SIT soliton nakazawa1,nakazawa2¸ and rectified them, bringing out unexplored

details. We also propose, within the framework of integrable systems, a novel arrangement of replacing

the single SIT system coupled to the NLS, by its hierarchy, for further amplification and control of the

soliton pulse.

Propagation of a stable optical pulse through a fiber medium, serving as a dispersive and nonlinear

wave guide with Kerr nonlinearity, may be described by the solitonic form lamb,soliton¸

E = ηsechζeiθ, ζ = η(t− vz), θ = ωz + kt. (1)

With inverse soliton velocity v = vnls, phase wave length ω = ωnls and soliton width (ηvnls)
−1, having

constant values, (1) is an exact solution of the NLS iEz = Ett + 2|E|2E, where the role of space and

time variables has been interchanged, as customary in nonlinear optics agarwal¸ . Soliton parameters:

vnls = −2k and ωnls = k2 − η2, (2)

can be linked to the complex discrete spectral parameter λ1 = k + iη, arising in the inverse scattering

method (ISM) for extracting exact solution of the integrable NLS soliton¸ .

On the other hand, coupling to the SIT system, generates a deformed NLS equation given by

iEz = Ett + 2|E|2E + s < p >, (3)

where s is a combination of different physical parameters of the system and averaged induced polar-

ization < p >=< p(z, t;w) >=
∫
p(z, t;w)g(w)dw, is related to the frequency spread in the energy

level: g(w);
∫
g(w)dw = 1 of the resonant atoms nakazawa1,nakazawa2¸ . Assuming sharp resonance with

g(w) = δ(w−w0), we replace < p >= p(z, t;w0) ≡ p in equation (3) and take s = 1, for simplicity. Equa-

tions closing this system are given by the rate of change of p and population inversion N , represented by

the SIT system

pt = i(2NE − w0p), Nt = −i(Ep∗ − E∗p). (4)

The induced polarization due to two level atoms given by the matrix element p = ν1ν
∗

2 , and the population

inversion N = |ν2|
2 − |ν1|

2, −1 ≤ N ≤ 1, are described by normalized wave functions ν1 and ν2 of the

ground and the excited states, respectively.

In this coupled NLS-SIT system (3-4), the optical pulse signal entering the fiber with sufficient inten-

sity and propagating through the Erbium doped resonant medium, adjusts itself to the stable solitonic

form givan again as (1), but with soliton parameters modified due to the interaction, with contribution

from both NLS and SIT parts:

v = vnls + vsit, ω = ωnls + ωsit, k → k̃ = k − w0. (5)

Note that, in the absence of the SIT system we must have vsit = ωsit = w0 = 0, recovering the well known

NLS soliton, as presented in (2). Pure SIT soliton can be similarly obtained also as (1), by switching

off the NLS influence by setting vnls = ωnls = 0 in (5). The soliton solution in the coupled NLS-SIT

system on the other hand, gets contribution from both the parts as in (5). The coupled NLS-SIT system
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exhibits also an intriguing property that, it allows only the moving soliton to exist, since vsit can not

vanish due to its specific form (6). Such a soliton can only be stopped dynamically, by fine tuning vsit to

compensate for the other velocity parameter vnls.

This rich interaction pattern of the NLS-SIT system is however misinterpreted, as we have detected,

in a well known earlier work nakazawa1,nakazawa2¸ , due to the loss of some crucial terms in their soliton

solution, giving incorrect assumption for the pulse delay as v = vsit and phase rotation as ω = ωnls,

which becomes evident when compared with our exact result (1,5). This error appeared because of

the improper comparison of the NLS and the SIT solutions made by the authors, without considering

additional contribution due to their interaction, which led in turn to fundamentally wrong conclusion

that, pulse delay (and hence the inverse velocity) of the soliton is determined due to the SIT effect alone

and similarly, the z dependence of the phase rotation ω for both the dipole and the input field is determined

solely due to the NLS soliton nakazawa1,nakazawa2¸ . Our exact soliton solutions for the input optical

field (1) and the dipole (7) in the NLS-SIT system, which include the effect of interaction with correct

expressions (5), rectifies it to get the valid conclusion that, only a part of the pulse delay, e.g. vsit is

determined by the SIT effect, while an additional delay vnls comes from the NLS part. Similarly, the

phase rotation is contributed from both NLS and SIT parts as ω = ωnls + ωsit.

While solitonic parameters related to the NLS are expressed as (2), those linked to the SIT part are

usually given by vsit = −1

ρ
, ωsit = − k̃

ρ
, where ρ = |λ1 − w0|

2 = k̃2 + η2, nakazawa1,nakazawa2,kakei¸ .

However, we find that, these solitonic parameters related to the SIT system may be given in a more

general form involving a z-dependent arbitrary function c(z) 6= 0 as

vsit =
1

zρ

∫ z

c(z′)dz′, ωsit = k̃vsit, (6)

defined through the initial profile of the population inversion. We show below that, our generalization (6),

which reduces for c(z) = −1 to the known expressions, can play important role in soliton management.

The solution for dipole p in the coupled NLS-SIT equations, derived from (3) using soliton solution (1)

with (5) and (6), takes also solitonic form

p =
η

ρ
c(z)sechζ(k̃ − iηtanhζ)eiθ, (7)

with explicit appearance of c(z) 6= 0. Similarly, the population inversion can be derived exactly from the

set of equations (3-4), using the soliton solutions (1) and (7), as

N(z, t) = c(z)(1 −
η2

ρ
sech2ζ), (8)

where arbitrary nonzero function c(z) = N |t→−∞ appears as an integration constant. Therefore, at the

initial moment the occupancy for the excited state would be |ν2|
2 = 1

2
(1 + c(z)) and that for the ground

state |ν1|
2 = 1

2
(1 − c(z)). It shows that, for nonzero c(z) > −1 the dopant atoms could be prepared

initially in the excited state, e.g., by optical pumping, resulting a laser-active amplifying medium, with

intensity determined by c(z). Note that, only in such a case when more active dopant atoms are in

the excited state, the optical soliton can gain net energy. This important fact, though known and used

for amplifying optical pulses in fiber media OptCom¸ , was surprisingly ignored so far in the theoretical

description of the soliton in the coupled NLS-SIT system, by restricting to c(z) = −1, by assuming atoms

to be initially in their ground states: |ν1|
2 = 1, |ν2|

2 = 0.

However, at the initial moment with population inversion N = c(z) = const. > −1, all dopant atoms

will be excited equally, while in the general case when c(z) varies with z, the excitation population will
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have a distribution profile along the fiber. Optical solitonic pulse during the first half of its propagation

through a resonant medium with initially populated excited state would make the excited state more

populated, while during the second half, the coherent stimulated emission would return the energy back

to the light pulse, in addition to the prepumped energy stored initially in the excited atoms. The

induced polarization p, which mediates in this process, would also change continuously as (7), following

the dynamics of SIT.

Our proposed general initial condition with nontrivial c(z) > −1 for the NLS-SIT, as we see below,

can play also a crucial role in controlling the shape and dynamics of the optical soliton (1), in addition

to the soliton pulse amplification, discussed above. Consequently, it opens up an important possibility

to address the pulse broadening problem by regulating the initial population inversion of the dopant

atoms, and achieve path-dependent accelerated motion of the soliton, aided by the energy available from

the optical pumping, For example, a solitonic pulse governed by the NLS equation alone, subjected to a

perturbative term −iΓ
2
E, Γ << 1, would suffer attenuation by a factor η(z) and broadening by an inverse

factor (2kη(z))−1, which can be worked out through the perturbation theory as η(z) = η e−Γzagarwal¸ .

Though an attenuation results intensity loss, the broadening leads to more serious problem of information

loss and bandwidth limitation. Therefore transforming the field E → η(z)−1E, we concentrate here only

on the broadening problem of the NLS soliton, due to the increasing solitonic width 1

2kη
eΓz along z, as

shown in Fig 1.

Transmitting this solitonic pulse with increasing width through a doped resonant medium, described

by an interacting NLS-SIT system (3-4), it is possible to control the pulse broadening, by suitably

preparing the initial population inversion as required by function c(z). Fig 2a shows this controlling

effect, where the broadening of solitonic pulse suffered in Fig 1, is countered by the narrowing of the

pulse due to variable width v(z) = (vnls +
η
ρ
c(z))−1, by taking c(z) ∼ η(z)−1. The soliton dynamics

is also changed to a variable velocity v(z) with accelerated motion, possible due to the energy sup-

plied by optical pumping from outside. These hidden possibilities remained unexplored in earlier work

nakazawa1,nakazawa2,kakei,porsezian¸ , due to the restriction to c(z) = −1.

Another promising opportunity in managing soliton in fiber optic communication, involving the NLS-

SIT system, that has been missed completely in all earlier investigations, is the proposal of recursively

enhancing the effect of amplification and control of the optical soliton, by replacing the single SIT, the

only case considered so far in the literature, by a hierarchy of the SIT system. To show that, such a

system retains its integrability, we construct the associated linear system Φt = UΦ, Φz = V Φ, with

Lax pair U(λ), V (λ) UV̧, the compatibility condition of which Uz − Vt + [U, V ] = 0, yields the the same

deformed NLS (3), coupled to a hierarchy of the SIT system:

pt = i(2NE − w0p+ e), Nt = −i(Ep∗ − E∗p),

et = i(2ME − w0e), Mt = −i(Ee∗ − E∗e). (9)

Here we consider only two coupled SIT systems, with e as induced polarization and M as population

inversion linked to the second SIT system. This process can be continued to a hierarchy of SIT equations

without spoiling the integrability. The exact soliton solution of the optical pulse for this more general

NLS-SIT system, interestingly, can be expressed again in the form (1), where the soliton parameters are

modified with contributions from all interacting parts as v = vnls + vsit1 + vsit2, ω = ωnls + ωsit1 +

ωsit2. where vnls, ωnls and vsit1, ωsit1 are the same expressions as (2) and (6), while the additional SIT

contribution is given by vsit2 = 2 k̃
zρ2

∫ z c2(z
′)dz′, and ωsit2 =

1

2k̃
(k̃2 − η2)vsit2, . Therefore the soliton

width and dynamics can be regulated now by an additional control provided by the second SIT system,

as shown in Fig. 2b.
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In this letter we have shown a novel possibility of amplification by prepumping energy and control of

the solitonic pulses in the coupled NLS-SIT system, by adjusting initial population inversion of dopant

atoms in the resonant medium, given by a more general function c(z), in place of the traditional restriction

c(z) = −1. We have also presented an innovative scheme to enhance these effects, particularly for

addressing the pulse broadening problem, by introducing a novel multiple SIT system, coupled to the

NLS equation in a hierarchal way. This arrangement should be realizable through multiple doping,

where one set of dopant atoms in the resonant medium would be coupled to another set by coherent

induced stimulated emission, with all atoms interacting in turn with the soliton pulse of the input field

via induced polarization. In this multi-doped medium requiring more intense threshold pulse intensity for

the formation of solitonic pulse, one could possibly use also multi-level dopant like neodymium (Nd3+). In

such atoms with more than two available levels, unlike two levels, the energy can be pumped throughout

the process resulting to higher gain OptCom¸ . Both these theoretical proposals with applicable potentials

can be worked out analytically in minute details through ISM, due to the integrability of the underlying

system.
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Figure 1: Broadening of the perturbed NLS soliton |E(z, t)| along the fiber, moving with velocity − 1

2k
,

for the choice of parameters k = 0.25, η = 1.0, Γ = 0.3

Figure 2: a) Broadening soliton pulse of NLS is controlled by coupling to a SIT system with c(z) = 0.2e0.3z

and w0 = 1.5. The soliton motion changes also to a variable velocity, evident from the bending of the

pulse in the (z, t)- plane. b) Additional control by a coupled second SIT system with c2(z) = −e0.3z,

showing distinctly the efficient restoration of the soliton width and a more prominent change in the

soliton velocity.
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