
ar
X

iv
:1

00
9.

31
18

v1
  [

ph
ys

ic
s.

op
tic

s]
  1

6 
Se

p 
20

10

Optical cooling and trapping of tripod-type atoms with rectified radiation forces.
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A new scheme of three-dimensional (3D) all-optical (nonmagnetic) cooling and trapping of reso-
nant atoms, based on using of so-called rectified radiation forces in non-monochromatic light fields
is presented. It can be applied to the atoms with a tripod-type configuration of levels: atoms (ions)
with the quantum transition F = 1 → F = 0.

The scheme proposed provides a long-term trapping of such atoms in deep light-induced potential
wells. Moreover, the atom temperature can continuously be changed by varying field parameters in
quite a large range (from super-Doppler to sub-Doppler values) without violating the localization
stability.
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I. INTRODUCTION

The problem of optical cooling and trapping of atoms
plays one of the central roles in studying resonant light
pressure. [1–3]. The most famous useful solutions of this
problem are the 3D confinement and cooling of atoms
in a magneto-optical trap (MOT) [4] and optical mo-
lasses (OM) [5]. An indispensable element of MOT is
a nonuniform magnetic field allowing one to “circum-
vent” the optical Earnshaw theorem (OET) [6]. In OM
the principle of the 3D all-optical (nonmagnetic) viscous
confinement of particles is manifested and, as contrasted
to MOT, any confining space-dependent restoring force
towards the center of OM is absent. In OM the vis-
cous damping force acts upon the atoms and the damp-
ing both of chaotic (resulting from laser cooling) and di-
rected (macroscopic) atom movement occurs. Therefore,
the time of diffusion escape of the atoms from the OM
area may be quite long as compared to the time of free
expansion of the atom cloud. Note that OM is an exam-
ple of an all-optical (nonmagnetic) device, allowing one
to perform 3D cooling of the atoms to ultralow temper-
atures - below the so-called Doppler limit [3].
The number of efficient all-optical methods of cooling

and trapping of atoms can significantly be increased when
using rectified radiation forces (RRFs), induced by non-
monochromatic (particularly, biharmonic ) nonuniform
fields such as standing waves. RRFs were discovered and
described in [7, 8], and experimentally demonstrated for
the first time in [9]. Later, the idea of RRF was devel-
oped in many other studies, see, for example, [10] and
the references given there.
RRFs appear as the consequence of the nonlinear in-

terference phenomena exhibited under the interaction of
an atom with polychromatic electromagnetic field [8]. To
explain their appearance physical mechanism we consider
a simple model of the gradient force rectification, based
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on the results of the original works [7, 8]. Let a two-level
atom moves with a velocity v in a strong bichromatic
standing wave field. Local Rabi frequency has the form

(

V0(x) + V1(x)e
−i∆1t

)

e−i∆0t,

where V0(x) = V0 cos(kx), V1(x) = V1 cos[(k + δk)x +
ϕ], ∆0, ∆1 + ∆0 are the detunings from resonance and
we assume the following hierarchy of the characteristic
frequencies (γ is the spontaneous relaxation rate).

∆1 ≫ V1 ≫ ∆0, V0,
V 2
1

∆1
∼ V 2

0

∆0
≫ kv, γ.

Then, for weak saturation V 2
1 /∆1∆0, V

2
0 /∆

2
0 ≪ 1 and

δk = ∆1/c ≪ k, the mean dipole force F (acting upon
the atom) can be written as (more details see in [7, 8]):

F = −Π1
dUg

dx
+Π2

dUg

dx
= Q

dUg

dx
,

where Π1 and Π2 are the populations of the adiabatic
(dressed) atom states, Q = Π2 − Π1 is the population
difference, Ug = V 2

0 (x)/∆0 + V 2
1 (x)/∆1 is potential of

gradient force Fg = −dUg/dx determined by Stark (light)
shifts of the atomic energy levels. This expression has a
clear physical meaning: the atom in adiabatic state |1〉
moves in the force field with the potential Ug and atom in
state |2〉moves in the force field with the potential (−Ug).
Spontaneous transitions cause the incoherent mixing of
the adiabatic states, moreover the transition rates be-
tween the adiabatic states depend on the saturation pa-
rameter V 2

0 (x)/∆
2
0 [1, 7, 8].

The result of this dependence is the spatial modula-
tion (with the period ∼ λ/2 = π/k) of the population
difference Q = Q(x). In the adiabatic limit: kv/γ → 0,
Q and the force F can be presented as (see [1, 8])

Q = −1 +Q1(x), Q1 =
2V 4

0 (x)

∆4
0

,

F = −dÛg

dx
+ Fi, Ûg(x) = Ug(x) −

2

3

V 6
0 (x)

∆5
0

,

http://arxiv.org/abs/1009.3118v1
mailto:krasn@icm.krasn.ru


2

where the term Fi = Q1(x)dV
2
1 (x)/dx one can interpret

as the interference (nonadditive) contribution to the ra-
diation force F (Fi = 0 if V1 = 0 or V0 = 0). Evidently,

that the gradient force F̂g = −(dÛg/dx) does disappear
(after averaging over the spatial oscillations with micro-
scopic periods ∼ 1/k), but the force Fi does not disap-
pear (as the change in sign of the gradient of the V 2

1 (x)
can be compensated by the change in sign of the oscillat-
ing component of the Q1 due to phase shift Ψ between
the two standing waves, Ψ = δkx+ ϕ):

〈

F̂g

〉

s
= 0, 〈Fi〉s = FR = −dUR

dx
,

UR = U0 cos 2Ψ, U0 = −~

4

k

δk

V 4
0

∆4
0

V 2
1

∆1
, |U0| ≫ |Ûg|,

where 〈· · · 〉s denotes the averaging over the microscopic
spatial oscillations with the period of the order of light
wavelength. The force FR is rectified gradient force by
the terminology of [7, 8] as it has the order of magnitude
of the gradient force, and it is constant-sign on macro-
scopic spatial scales L ∼ 1/δk much greater than the
light wavelength λ.
Very similar physical scenarios of gradient force recti-

fication where some frequency components of the optical
field induce nonuniform redistribution of atoms over the
quantum states and other frequency components form
gradient forces (dependent on atomic state) can be orga-
nized for polychromatic fields of the 3D spatial configu-
ration. In particular, this is demonstrated in the present
paper. In this scenarios, the presence of the spatial mi-
crooscillations (of quantum state populations and gradi-
ent force potentials) with close frequencies or with phase
shift each other is a necessary condition for the gradient
force rectification.
So, the simple model described here and more general

results of works [7-10] show that RRFs possess the follow-
ing remarkable properties which allow one to use them
to create 3D dissipative all-optical traps performing cool-
ing and trapping of the particles. These forces are sign-
constant at macroscopic spatial scales L greatly exceed-
ing the light wavelength λ (L ≫ λ), and in strong fields
they have an order of magnitude of the induced light
pressure force (gradient force [1]) and are not saturated
with increasing field intensity (thus, RRFs can signifi-
cantly exceed the spontaneous light pressure force). The
other useful property (which manifests both in strong
and weak fields and which is not paid due attention to)
is the controllability of the spatial structure of RRFs. In
particular, choosing properly the configuration of the in-
terfering light beams and their parameters it is possible to
create the purely potential RRF (completely suppressing
its vortex component). Such a RRF forms the system of
deep potential wells [11] with a depth exceeding the char-
acteristic value of the light (Stark) shifts of the atomic
energy levels ~∆s by a large factor L/λ≫ 1.
Moreover, in the general case, RRF contains a dissipa-

tive component — friction force [8].

The RRFs properties mentioned guarantee the possi-
bility of complete overcoming OET constraints and re-
veal the perspective of their use to create new all-optical
schemes of cooling and trapping of atoms.
However, certain solutions significantly depend on the

structure of atomic transitions. The 3D atom localiza-
tion 85Rb in an optical superlattice (induced by RRF)
was demonstrated by experiment in [12]. This paper
notes an interesting possibility of applying such meth-
ods of the atom localization in quantum computing op-
erations. In [13] the authors investigate the possibility of
using RRFs for 3D all-optical trapping and cooling of the
atoms with the quantum transition Fb = 1/2 → Fa = 3/2
(where Fb and Fa are the total angular momenta in the
ground and excited states, respectively).
Based on the performed 3D semiclassical Monte-Carlo

simulations of the atom motion in the biharmonic field
(3D configuration), it was shown that in the case consid-
ered the stable atom localization in the 3D superlattice
can be combined with their sub-Doppler cooling.
In [14–16] the three-dimensional rectification of a radi-

ation force in weak and strong non-monochromatic fields
in the case of the atoms with the quantum transition
Fb = 0 → Fa = 1 was investigated, certain all-optical
schemes of the 3D stable confinement of such atoms were
suggested. The temperature of the trapped atoms in the
cases considered in [14–16] can not exceed the value of
the order of Doppler cooling limit.
In the present work the problem of all-optical 3D trap-

ping and cooling of resonant particles is studied using
RRFs for the cases of the atoms (ions) with the tripod-
type configuration of the working levels: for the atoms
(ions) with the quantum transition Fb = 1 → Fa = 0.
The case considered is significantly different from that of
the atoms with the quantum transition Fb = 0 → Fa = 1
due to the degeneracy of the ground state. This im-
portant factor predetermines the possibility of the sub-
Doppler cooling. On the other hand (as we shall see
later) the tripod-type atom is convenient for the theoret-
ical analysis of the 3D problems.
It was shown that RRFs, induced by non-

monochromatic optical fields are able to provide the sta-
ble deep 3D localization of tripod-type atomic particles
and efficient control of their temperature.
In the proposed 3D dissipative optical trap the tem-

perature of the localized atoms can be varied in a very
wide range of values including both super-Doppler and
sub-Doppler temperatures.
The desired effect (trapping and cooling of atoms) can

be achieved using the 3D scheme for rectifying a gradient
force based on employing the partially coherent optical
field involving (besides the coherent components) compo-
nents with fluctuating phases (the same idea for the case
of atoms with the quantum transition Fb = 0 → Fa = 1
was considered in [15])
A distinctive peculiarity of the investigation conducted

is the approximate analytical description of the 3D effects
of the RRF action on the tripod-type atoms in terms of
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the kinetic quasi-classical theory of the radiation forces
based on the Wigner density matrix formalism, allow-
ing one to correctly take into consideration the quantum
fluctuations of the radiation forces. Note that in most
works devoted to RRFs (see [10]) the 1D problems are
usually analyzed and RRFs are determined using the con-
ventional optical Bloch equations (the exception from the
papers cited is the article [14]).
The paper is organized as follows. Section II describes

the kinetic quasi-classical model of the mechanical action
of non-monochromatic light on the tripod-type atoms
and procedure of averaging equations for the Wigner den-
sity matrix, resulting in their significant simplification.
Section III describes in detail the 3D configuration of

the optical fields which provides the desired effect of the
stable localization and cooling of atoms.
In Section IV the Fokker-Plank equation for the

Wigner distribution function of the atoms f(r,v, t) is ob-
tained, and based on the analysis of its coefficients from
the governing parameters different characteristic regimes
of the mechanical action of optical fields on the tripod-
type atoms are described.
In Section V an asymptotic velocity distribution of the

atoms is found and the Smoluchowsky equation for the
configuration space distribution function n = n(r, t), de-
scribing the slow (diffusion) stage of the evolution of an
atom ensemble is obtained. The possibility of the long-
term spatial localization of the atoms in deep potential
wells is shown and the dependence of temperature of the
trapped atoms on the field parameters is analyzed. Par-
ticularly, the possibility of the stable long-term trapping
of atoms both with Super-Doppler and Sub-Doppler tem-
peratures is demonstrated.

II. MODEL

Consider an ensemble of atoms in the light field

E(r, t)e−iω0t + c.c.,

with the carrier frequency ω0, tuned resonant to |Fb =
1,Mb = 0,±1〉 → |Fa = 0,Ma = 0〉 closed (cycling)
atomic transition, where Fα, Mα is the full angular mo-
mentum and its projections for the ground α = b and
excited α = a states. The field is a superposition of the
coherent quasi-resonant components (with three different
frequencies), polarized in mutually perpendicular direc-
tions and partially coherent (fluctuating) resonant field
E′ with the bandwidth ∼ Γ:

E (r, t) =
∑

j=x,y,z

Ej1(r)ej exp[−i∆jt] +E′(r, t), (1)

where ej denotes the unit basis vectors of the Cartesian
coordinate system and ∆j is detuning from the resonant
frequency ω0. According to the original conception of the
effect of the radiation force rectification [7, 8] (compare

also with [15]) one can assume the following hierarchy of
the characteristic frequencies:

∆j , |∆j −∆l| ≫ |Vj1|,

Γ ≫ |Uj|,
|Vj1|2
∆j

,
|Uj |2
Γ

, γ, ks, (2)

γ

∣

∣

∣

∣

Vj1
∆j

∣

∣

∣

∣

2

≪ |Uj|2
Γ

, (3)

where l and j 6= l denote the indices x, y or z, Vj1 =
dE∗

j1/~, Uj = d(ej · E′∗)/~ are the Rabi frequencies,

d = ‖d‖/
√
3, ‖d‖ is the reduced dipole transition matrix

element, k = ω0/c is the wave number, s is the ther-
mal velocity of atoms (characteristic width of the veloc-
ity distribution of atoms), γ = γ′/3, γ′ is the rate of the
spontaneous decay of the excited state. The relations be-
tween the frequencies in the right part of inequality (2)
can be arbitrary. Inequalities (2)–(3) imply that the co-
herent components of the field are “quasi-resonant”, and
the fluctuating component E′ is “resonant”. Therefore,
(as it will be seen later) the coherent components of the
field, ∝ Ej1(r)ej , form the spatially non-uniform light
(Stark) shifts of the atomic energy levels, and the fluctu-
ating field component E′(r, t) provides incoherent excita-
tion of the atoms (their redistribution over the quantum
states). In the scheme of the gradient force rectification
in the bichromatic field considered in [7, 8] this effect is
achieved due to the presence of the coherent field com-
ponent with a relatively low frequency detuning.
The state of the atoms interacting with the optical

field will be described using the Wigner density matrix
ρ̂(r,v, t) [1, 2]. In the quasi-classical limit, when the
photon momentum is much lower than the characteristic
atomic momentum distribution width, ~k ≪ ms (where
m is the atomic mass), and in the interaction represen-
tation, this density matrix satisfies the quantum kinetic
equation [17, 18]

dρ̂

dt
+ γ̂ρ̂ = −i

[

V̂ ρ̂
]

+
1

2m

{

∂V̂

∂r

∂ρ̂

∂v

}

, (4)

d

dt
=

∂

∂t
+ v · ∂

∂r
,

where ~V̂ is the dipole atom-field interaction Hamilto-
nian, γ̂ is the relaxation operator that includes the recoil
effect during spontaneous transition [1, 2], and the square
brackets and braces denote the commutator and anticom-
mutator, respectively. The second term in the right part
of Eq.(4) takes into account the recoil effect in induced
transitions. Further, it is convenient for our analysis to
consider ρ̂ in the Cartesian representation (compare with
[14, 15, 19]) i.e. in the representation of the basis wave
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functions (of intra-atomic motion) for the excited |a〉 and
ground states |bi〉:

|a〉 = |0, 0〉, |bz〉 = |1, 0〉,

|bx〉 = |1,−1〉 − |1, 1〉√
2

, |by〉 = i
|1,−1〉+ |1, 1〉√

2
,

In this representation the matrix elements of the dipole

moment d̂ are directed along the unit vectors of the
Cartesian coordinate system,

〈bi|d̂|a〉 = eid, i = x, y, z,

and the Hamiltonian ~V̂ in the rotating-wave approxi-
mation (|∆j |, Γ ≪ ω0) has the following form:

~V̂ = −~

∑

j=x,y,z

[(Vj1(r) exp(i∆jt)

+Uj(r, t))|bj〉〈a|+H.c.] (5)

For the density matrix elements in the Cartesian repre-
sentation the following notations will be used: 〈bi|ρ̂|bi〉 =

ρii(r,v, t), 〈a|ρ̂|a〉 = ρ(r,v, t), 〈bi|ρ̂|bj〉 = qij(r,v, t) with
i 6= j, 〈bi|ρ̂|a〉 = ρi(r,v, t). Thus, ρii, ρ are the Wigner
distribution functions for the atoms in the states |bi〉 and
|a〉 , respectively, the functions ρi determine the projec-
tions of the induced dipole moment onto the axes of the
Cartesian coordinate system, qij characterizes the coher-
ence between |bi〉 and |a〉 states.
From Eq.(5) it follows that the coefficients of the equa-

tions for the density matrix elements (see Eq.(4)) os-
cillate with the frequencies ∆j(j = x, y, z) and, more-
over, contain fluctuating (stochastic) components. Tak-
ing into account inequalities (2),(3) we average succes-
sively Eq.(4) — at first, over the high-frequency oscilla-
tions with the frequencies ∆j (as is usually done in the
RRFs theory (see [7, 8, 20]), then, over the fluctuations
of the field E′. At the first stage one obtains the system
of equations (using the same notation for the averaged
quantities):

i

(

d

dt
+ γ⊥ − i∆̂i(r)

)

ρi =
∑

j=x,y,z

qijUj + Λi, (6)

i

(

d

dt
− i∆̂ij(r)

)

qij + iγδij
∑

l=x,y,z

qll = iγfδij + (ρiU
∗
j − Uiρ

∗
j ) + δij

∑

l=x,y,z

(ρlU
∗
l − c.c.) +Bij , (7)

df

dt
+

~

m

∑

i=x,y,z

(

∂ρi
∂v

· ∇U∗
i + c.c.

)

− ~

m

∑

i=x,y,z

∂qii
∂v

· ∇|Vi1|2
∆i

= D̂s



f −
∑

i=x,y,z

qii,



 (8)

where f(r,v, t) = Sp(ρ̂) = ρ+
∑

i ρii is the Wigner par-
ticle distribution function (DF) in the phase space (r,v),
qii = ρii − ρ denotes the densities of the distribution of
the population difference,

∆̂i(r) = −





2|Vi1(r)|2
∆i

+
∑

l 6=i

|Vl1(r)|2
∆l





are the effective spatially nonuniform (in case of the non-
homogeneous fields) detunings due to the light-induced

Stark shifts, ∆̂ij(r) = ∆̂i(r)− ∆̂j(r),

D̂s =

(

~k

m

)2
γ

8

(

∂

∂v

)2

(9)

is the operator describing the recoil effect at spontaneous
transitions [21]. The terms Λi and Bij in the right part
of Eqs. (6), (7) describe the influence of the recoil effect
on the induced transitions and coherence between |bi〉
and |a〉 states. Explicit expressions for them are given
in Appendix, as well as some comments on the effects
described in Eqs.(6)–(8).

Next, Eqs. (6), (7) are averaged over the fluctuations of
the field E′ [22]. These equations are the system of mul-
tiplicative stochastic linear equations and the standard
procedure described in [23] was used to average them.
In the problem under consideration it is based on the
expansion of the solution of Eqs. (6), (7), (8) in terms
of ζ ≪ 1, which is proportional to the correlation time
τc ∼ Γ−1:

|Uj |τc, |∆̂j |τc, ksτc, γτc ≤ ζ ≪ 1.

The smallness of the parameter ζ is due to the original as-
sumptions: the right part of inequality (2), i.e. due to the
conditions which determine the value of the bandwidth
Γ of the field Ê′. Moreover, one makes the following
additional assumptions on the properties of the random
processes Uj , j = x, y, z:

〈〈Uj〉〉 = 0, 〈〈Uj(r, t)Ui(r
′, t+ τ)〉〉 = Ci(|τ |, r, r′)δji, (10)

where the double angular brackets denote averaging over
the fluctuations.
Thus, suppose that Uj is treated as a stationary ran-

dom process with zero-mean, and the E′ components
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with different polarization fluctuate independently. As
a result, the following closed system of the reduced equa-
tions describing the kinetics of the tripod-type atoms in
the light field was obtained (without changing notations
for the averaged DF):

[

d

dt
+ 2Ri(r) + γ

]

qi +
∑

j 6=i

[Rj(r) + γ]qj

= γf +Bi, i = x, y, z, (11)

df

dt
+
∑

i

∂

∂vm

(

Fi −∇~|Vi1|2
∆i

)

qi

= D̂s



f −
∑

j

qj



+ Ŝ{Q}, (12)

Ŝ{Q} =
∑

i,j,j′

∂2Qi

∂vj∂vj′
Ai

jj′ , (13)

where qi = 〈〈qii〉〉, Qi = 〈〈Qii〉〉, Qii is determined by
the expression (A.1), vj = v · ej, and Ri, Fi, A

i
jj′ are

determined by the correlators

Ri(r) = 2ℜe
0
∫

−∞

〈〈Ui(r, t)U
∗
i (r, t+ τ)〉〉dτ, (14)

Fi = −2~ℑm
0
∫

−∞

〈〈∇Ui(r, t)U
∗
i (r, t+ τ)〉〉dτ, (15)

Ai
jj′ =

~
2

2m2
ℜe

0
∫

−∞

〈〈

∂U∗
i (r, t)

∂rj

∂Ui(r, t+ τ)

∂rj′

〉〉

dτ,

∂

∂rj
= (ej · ∇). (16)

The coefficients Ri(r) have the meaning of the rates of
the transitions between the low-lying |bi〉 and excited |a〉
atomic states induced by the field E′, the value Fi has the
dimension of force and is proportional to the energy flux
density of the E′ field component, polarized along ei, the
coefficients Ai

jj′ have the dimension of velocity diffusion

coefficient and the order of magnitude (~k/m)2Ri. The
last term in the right part of equation (11) Bi = −i〈〈Bii〉〉
(where Bii is determined by Eq. (A.4) and has the fol-
lowing explicit representation

Bi =
1

4m

∑

j 6=i

∂

∂v

[

(Qj − 2qj)∇
~|Vj1|2
∆j

+ (Qj + 2qj)Fj

]

+
1

2m

∂Qi

∂v
·
[

∇~|Vi1|2
∆i

+ Fi

]

. (17)

The system of four equations (11)–(12) is much more
simple than the system of sixteen ones (6)–(8) for the ele-
ments of the density matrix. Such a simplification results
from the original assumptions on the relations between
the parameters of the optical field and the properties of
the field component correlators: i.e. from inequalities
(2) (3) and Eqs. (10). Following the generally accepted
approach of the quasi-classical theory of the mechani-
cal action of light on atoms [1, 2], later (in the Section
IV) one obtains from Eqs. (11), (12) the Fokker-Planck
equation (FPE) for DF f(r,v, t); however, to obtain the
explicit FPE representation it is necessary to specify the
spatial configuration of the optical fields. In the next
Section, in accordance with the aims of this work, such
a field configuration will be taken where the 3D kinetics
of the atoms is completely determined by RRFs.

III. OPTICAL FIELD CONFIGURATION

Let the optical field be formed by a special superposi-
tion of the plane light waves, where the Rabi frequencies
Vi1 and Ui (i = x, y, z) are the following:

Vi1(r) =
Vi
2
[exp(iqi · r+ iη1) + exp(iq′

ir)] , (18)

Ui(r) =

4
∑

α=1

Uiα(r) exp (iϕα(t)) , (19)

Ui1(r) =
U

2
[exp(iki1 · r) + a exp(ik′

i1 · r)] ,

Ui3(r) =

√
a′U

2
[exp(iki3 · r+ iζ1) + exp(ik′

i3 · r)] ,
Ui2(r) = U∗

i1(r), Ui4(r) = U∗
i3(r), (20)

where the index i = x, y, z, η1, and ζ1 are the fixed phase
shifts, the positive parameters a, a′ ≪ 1, U and Vi are the
real amplitudes (which in the considered model do not de-
pend on r), ϕiα(t) are independently fluctuating phases
(with delta-correlated zero-mean derivatives), which de-
termine the correlators of the E′ components by the re-
lations

〈〈exp i(ϕjα(t)− ϕlβ(t+ τ))〉〉 = δjlδαβ exp(−Γ|τ |). (21)

Thus, the field E′ is described by the so-called phase-
diffusion model [17, 24, 25] and has a Lorentzian spectral
profile J(ω) with bandwidth Γ:

J(ω) ∝ Γ

(ω − ω0)2 + Γ2
.

Here, all the assumptions on the properties of the random
processes Uj are implemented (see Eqs.(10)).
It is worth noting that the representation (19) for

Ui(r, t) is valid only if the coherence length lc = cτc = c/Γ
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1ik

id ¢

3ik

id

iq

b

1ik
¢

id ¢

3ik
¢

iq
¢

je

le

b

id

iDq

FIG. 1. The wave vectors of the light field components po-
larized along ei and determining the Rabi frequencies in Eqs.
(18–20), the ordered index triplets (ijl) are: (xyz), (zxy) and
(yzx), δi and δ′i being small angular detunings. The bold
arrows are the wave vectors corresponding to the coherent
field components. The vectors ki2 = −ki1, k′

i2 = −k′

i1,
ki4 = −ki3, k

′

i4 = −k′

i3 determining Ui2(r) and Ui4(r) are
not presented in the Figure. Thus, each component E′

iei of
the field E′ is a sum of four pairs of the counter-propagating
waves.

is much greater than the characteristic atomic cloud size
D (see detailed discussion in [24])

lc ≫ D. (22)

Specifying the configuration of the optical field, one
determines the wave vectors in Eqs.(18) as follows (see
Fig.1):

ki1 = k(ej cosβ + el sinβ),

k′
i1 = k(−ej cosβ + el sinβ),

qi = qi(ej cosβi + el sinβi),

q′
i = qi(−ej cosβi + el sinβi),

ki3 = k(ej cosβ
′
i + e′l sinβ

′
i),

k′
i3 = k(−ej cosβ

′
i + e′l sinβ

′
i), (23)

where β is an angle determining the dominant direc-
tions of the propagation of the waves polarized along ei,
βi = β+δi, β

′
i = β+δ′i, δi and δ

′
i are small angular detun-

ings (|δi|, |δ′i| ≪ 1), and the ordered index combinations
(ijl) are: (xyz), (zxy), (yzx). The angular detunings δi
and δ′i are free parameters allowing one to control the
macroscopic spatial structure of the field (compare with
[8]), we choose them in such a way that the following
conditions are satisfied for the difference of the wave vec-
tors:

∆qi = qi − q′
i = ki3 − k′

i3 = k′
i4 − ki4, (24)

∆Ki = ∆qi−∆ki = 2kαiξi cosβej =
2π

Li

sgn(ξiαi) cosβej ,

where αi = (∆i/ω0) ≪ 1, ∆ki = ki1 − k′
i1 = k′

i2 − ki2,
the vectors ki2 = −ki1, k′

i2 = −k′
i1, ki4 = −ki3,

k′
i4 = −k′

i3 determine Ui2(r) and Ui4(r) in the super-
position (19) (in accordance with Eqs. (20)), the pa-
rameters ξi = (1 − δ2i /2αi − δi tanβ) determine the
macroscopic spatial scales of the problem Li (i.e. as
one will see, the period of the spatial RRFs modulation):
Li = πc/|∆iξi| ≫ λ = 2π/k. Further, we will restrict
ourselves to the case of the configurations of the optical
fields and values of the angles β close to π/2 or 0, for
which the following relations hold

Li = L, i = x, y, z, β1 = | sin 2β| ≪ 1. (25)

Then, given the values ∆i and L ≫ λ and not very
small values of β (tanβ ≫

√

|αiξi|), the necessary (to
fulfill Eq.(24) and the first one from Eqs.(25)) values of
the governing parameters δi and δ

′
i are described by the

simple formulae:

δi ≃
(1− ξi)αi

tanβ
, δ′i ≃ − αiξi

tanβ
, (26)

where |ξi| = πc/|∆i|L, and the sign ξi may be taken
arbitrarily.
So the following conclusions can be drawn: each group

of light waves polarized along i-axis can produce an in-
terference pattern along j-axis (where index j = y for
i = x; j = x for i = z; j = z for i = y). Spa-
tial frequencies of this interference patterns ∆qi and
∆ki are close to each other (due to smallness of angu-
lar detunings δi, δ

′
i) and determine microscopic spatial

scale of the problem λM ≃ λ/2 cosβ ∼ 1/|∆ki|, 1/|∆qi|
while their difference ∆Ki determines macroscopic spa-
tial scale: L ∼ (1/|∆Ki|) ≫ λM .
In the field configuration considered the explicit ex-

pressions for the transition rates Ri(r) and the term Ŝ(Q)
in the right part of equation (12) for DF f(r,v, t) are the
following

Ri(r) = R(1 + a1Pi(r)), R =
U2

Γ
(1 + a2 + 2a′),

Pi(r) =
1

1 + b
[cos(∆ki · r) + b cos(∆qi · r+ ξ1)] , (27)

Ŝ{Q} ≈ ~
2k2

4m2
R
∑

i=x,y,z

(

cos2 β
∂2

∂v2j
+ sin2 β

∂

∂v2l

)

Qi,

(28)
where a1 = 2(a+a′)/(1+a2+a′), b = a′/a and in Eq.(28)
the ordered index triplets (ijl) are: (xyz), (zxy), (yzx).
The most important peculiarity of the field configuration
determined by Eqs.(18)–(20) is vanishing of the forces of
the resonant light pressure, conditioned only by the fluc-
tuating field E′. This results from the accurate mutual
compensation of independent (due to Eqs.(21)) contri-
butions into Fi (see Eqs.(15), proportional to the energy
flux density of the field components with the Rabi fre-
quencies Uiα, α = 1− 4:

Fi = 0. (29)
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Eqs. (29) hold in case when Eqs. (20)are satisfied.
Now one can clearly see the final distribution of the

”roles“ of the coherentE1 and partially coherent E′ fields
in the considered model of the mechanical action of light
on the tripod-type atoms, see Eqs. (11), (12). The fluc-
tuating field E′ is responsible for incoherent mixing of
the atomic states (or in other words for the redistri-
bution of the atoms over the quantum states), and the
quasi-resonant coherent field induces the effective poten-
tials (due to the light-induced Stark shift of the energy
levels), which determine the motion of the atoms: the
unexcited atoms (in the state |bi〉) move in the field of
the gradient force with the potential (oscillating with a
period of the order of the light wave length λ)

~|Vi1r|2
∆i

, i = x, y, z,

the excited atoms (in the state |a〉) in the field of the
gradient force with the potential

−
∑

i=x,y,z

~|Vi1(r)|2
∆i

.

In order to better understand the above-described
physical picture, it is sufficient to pay attention on the
fact that Eqs. (11), (12) (at condition Eq. (29)) are equiv-
alent to the following equations for Wigner distribu-
tion functions ρii and ρ for the atoms in the states |bi〉
(i = x, y, z) and |a〉 (ρ = (f −∑ qii)/4, ρii = ρ+ qii)

dρii
dt

−∇~|Vi1|2
∆i

∂ρii
∂v

= γρ−Ri(r)(ρii−ρ)+Si, i = x, y, z,

dρ

dt
+

(

∑

i

∇~|Vi1|2
∆i

)

∂ρ

∂v
= −3γρ+

∑

i

Ri(r)(ρii−ρ)+S,

where Si and S are second-order terms in the quasi-
classicality parameter ~k/ms responsible for the veloc-
ity diffusion (conditional on spontaneous transitions and
fluctuating field E′ influence). These equations clearly
demonstrate four-potential nature of atomic kinetics and
a factor of the incoherent redistribution of population of
quantum states (relevant to these four potentials). The
mean gradient force is obviously, a sum of gradient forces
weighted by the probabilities of occupation Πi = ρi/f
(i = x, y, z), Π = ρ/f of atom states.
Therefore, the physical model proposed is a general-

ization of the simple model of the mechanical action of
bichromatic standing wave on two-level atom, which is
described in the Introduction. The only difference is the
number of atomic states, more complicated spatial struc-
ture of gradient force potentials and much more complex
nature of atomic population redistribution among quan-
tum states.
Taking into consideration this analogy it is possible to

assume that the necessary condition of the gradient force

rectification in our problem (cf [15]) is the spatial modu-
lation (with the period ∼ λ) of the transition rates Ri(r),
and hence the spatial modulation of the relative popula-
tion differences q̂i = qi/f , which is possible only if the
field E′ has mutually interfering components, i.e. when
a, a′ 6= 0. Though we consider the weakly nonuniform
fluctuating field E′, a, a′ ≪ 1, the effect of the RRF ac-
tion on the atoms can be strong, particularly, due to the
ability of RRF to retain the sign on macroscopic spatial
scales L ≫ λ. In the next section we will see in more
detail how the rectified gradient force is calculated and
how the RRFs act on the tripod-type atoms.

IV. FOKKER-PLANCK EQUATION (FPE)

One obtains first of all the kinetic equation FPE, de-
scribing the DF f evolution at times

t & τr ∼ ω−1
r =

(

~k2

m

)−1

≫ R−1
1 , R1 =

R

cosβ
. (30)

Use is made of the procedure of the adiabatic elimina-
tion of the internal degrees of freedom of the atom which
is well-developed in the theory of the resonant light pres-
sure [1–3], i.e. in our case, the elimination of the variables
qi, included in Eqs. (11), (12). In fact, it implies the sep-
aration of the fast processes of the redistribution of the
tripod-type atom over the quantum states (occurring at
times t ∼ R−1) from the slow processes associated with
the translational motion (occurring at times t≫ R−1).
One should take into account the smallness of the pa-

rameter a1 = 2(a + a′)/(1 + a2 + a′) (according to the
assumption on the weak non-homogeneity of the field E′,
at a, a′ ≪ 1, see Eqs. (20), (27)) and quasi-classicality
parameter ε = (~k/ms) ≪ 1. Moreover, we restrict our-
selves to the case of the slow atoms:

s2 < v2c , (31)

where vc ∼ R1/k has the meaning of a so-called cap-
ture velocity, i.e. of the characteristic velocity, which
determines the area of the most efficient RRFs action
in the problem under consideration: |v| ≪ vc. It can
be shown that outside this region the rectified gradient
force (RGF) and coefficient of the light-induced friction
fall rapidly proportional to (vc/v)

2. The physical mean-
ing of formula vc ∼ R1/k = R/k cosβ is very simple: vc
is a typical velocity at which the atom travels a distance
of the order of microscopic spatial scale λM = λ/2 cosβ
during the characteristic time ∼ R−1, i.e. vc ∼ λMR;
the slow atoms travels a small distance (compared with
the λM ) during this time. That is why vc value can be
adjusted by geometric parameter changing: cosβ (this
effect is described in the paper [20], Section 2.3 for two-
level atoms and bichromatic field). It is worth noticing
that in the case of the rectification schemes considered in
[8, 15, 20] vc is determined only by the spontaneous re-
laxation rate and does not depend on the field intensity:
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vc ∼ γ/k. The quasi-stationary solution of Eqs. (11), de-
termining the relation between qi and f at t≫ γ−1, R−1

is presented as an expansion over the small parameters
of the problem (ε, a1, (v/vc)):

qi = q̂
(0)
i f + q̂

(1)
i f + ..., (32)

where q̂
(n)
i are linear operators.

Using linear approximation over the velocity v and pa-
rameters ε, a1 (i.e. taking into account in expansion
(32)only the dominant terms, proportional to the small
parameters to the power not exceeding the first power)
the following expression for qi was obtained:

qi ≃
f

4χ+ 3
+

3
∑

α=0

q̂iαf, (33)

q̂i0 = − a1f

4χ+ 3
[2(2χ+ 1)Pi(r) − Pl(r) − Pj(r)],

q̂i1 =
a1f

(4χ+ 3)2R
[2(6χ2 + 8χ+ 3)Ṗi(r)

−(4χ2 + 8χ+ 3)(Ṗl(r) + Ṗj(r))],

q̂i2 = N · ∂

m∂v

1

(4χ+ 3)2R
, q̂i3 = − 1

γ(4χ+ 3)

d

dt
,

N = (4χ2 + 5χ+ 2)
~∇|Vi1(r)|2

∆i

−(2χ+ 1)∇
(

~|Vl1(r)|2
∆l

+
~|Vj1(r)|2

∆j

)

,

where l 6= j 6= i, Ṗi(r) = v · ∇Pi(r), χ = R/γ. The
second term in Eq. (33) describes the effect of the non-
homogeneous distribution of the atoms over the quan-
tum states due to the spatial modulation (with the pe-
riod ∼ λ) of the transition rates Ri(r) and light shifts
|Vi1(r)|/∆i. It is important that non-local effects (the
effects on non-adiabaticity in the atom response to the
action of external fields) are taken into account, since the
terms q̂iαf (α = 1 − 3) in Eq. (33) are determined by
the field intensity gradients and are connected with the
atom motion and recoil effect.
Substituting expression (33) for qi in Eq. (12), re-

taining terms up to the second order in the parameter
ε = ~k/ms and averaging the equation for DF over the
small-scale spatial oscillations with a period of the or-
der of the light wave-length ∼ λ, one obtains after some
transformations the following FPE for the Wigner distri-
bution function averaged over the microoscillations, f̄ :

df̄

dt
+

∂

m∂v
(FR + FR1)f̄ = D

(

∂

∂v

)2

f̄ +
∑

i

DRi

∂2f̄

∂v2i
,

(34)

where FR does not depend on the atom velocity and has
the meaning of the rectified gradient force (RGF),

FR = −
∑

i=x,y,z

〈

~∇|Vi1(r)|2
∆i

q̂i0(r)

〉

s

,

FR1 is linear-in-velocity RRF (the retarded gradient force
by the terminology of [1], which appearance is associated
with hysteresis in the response of the moving atom on
external field):

FR1 = −
∑

i=x,y,z

〈

~∇|Vi1(r)|2
∆i

q̂i1(r,v)

〉

s

,

D, DRi are the diffusion coefficients (determined by the
terms q̂i2f and q̂i3f in the expansion (33) and also by
terms of the right side of the Eq. (12)). Note, that in our
approximation (33) we neglect small additives to RRFs,
which have the order of magnitude a31 and (v/vc)

2a1.
The coefficients of Eq. (34) do not contain components
oscillating (in space) on microscopic spatial scales and
can change only on macroscopic scales & L. This is ex-
plained by the fact that relative differences of population
q̂i = qi/f (See Eqs. (27), (33)) contain oscillating compo-
nents with spatial frequencies close to spatial frequencies
of gradient force oscillations ∝ ∇|Vi1(r)|2. The condition
of the correctness of the implemented procedure of av-
eraging over the small-scale spatial oscillation (which is
quite similar to the case of the two-level atoms [20]) is
the following:

ms2

2
∼ T ≫ ~|V1i(r)|2

∆i(4χ+ 3)
, (35)

and implies that the effective temperature T (in energy
units) of the atoms is considerably higher than the depth
of the macroscopic potential wells produced by the os-
cillating (with a period of ∼ λ) gradient force with the
potential

Ug(r) =
∑

i=x,y,z

~|V1i(r)|2
∆i(4χ+ 3)

.

In the situations considered here the condition is al-
ways satisfied and the rapidly oscillating component f̃ of
DF is a small correction to f̄ : (f̃ /f̄ ∼ a1 ≪ 1).
Given all the detunings ∆i > 0, the parameters ξi < 0

(i = x, y, z) and the Stark shifts of the energy levels in-
duced by the coherent fields with mutually orthogonal
polarization directions are equal, i.e the the following re-
lations hold:

V 2
i

∆i

= γ

√

I

Is
g, g =

(

Vx
∆x

)2

,
I

Is
=
V 2
x

γ2
, (36)

where I = Ix is the intensity of the light waves forming
the field component Ex1ex, Is = ~ω0k

2γ/6π is the in-
tensity of the optical radiation saturating the quantum
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transition. In this case the explicit expressions for the
forces included in Eq. (34), have the following compact
form:

FR = −∇UR+FR0, FR1 = −m
∑

i=x,y,z

κ(ri)viei, (37)

UR = U0

∑

i=x,y,z

cos

(

2π

L1
ri − η1

)

,

U0 = ~γ
kL1

2π

a1G

(1 + b)
A(χ), G =

√

I

Is
g cosβ, (38)

FR0 = −~kγ
a1bG

(1 + b)
sin(η1 − ζ1)A(χ)

∑

i=x,y,z

ei, (39)

κ(ri) =
2(6χ2 + 8χ+ 3)

(4χ+ 3)3χ

a1G cosβ

(1 + b)
ωR

×
[

b cos(η1 − ζ1) + cos

(

2π

L1
ri − η1

)]

, (40)

where ri = (r · ei), vi = (v · ei), L1 = L/ cosβ, A(χ) =
(2χ+ 1/(4χ+ 3)2.
One can see from Eqs. (37)–(39) that RGF FR con-

tains in the general case (η1 6= ζ1) the component FR0

which does not depend on the spatial coordinates r.
This is the manifestation of the total rectification effect
appearing due to a special choice of the wave vectors
(see Eq.(24) and Fig. 1). Another component of RGF,
−∇UR, gives rise to an optical superlattice, a system of
periodically (with a period L1 ≫ λ) distributed poten-
tial wells for the atoms. Though the force FR0 is likely to
have special practical applications; here, one is interested
in a certain problem of the 3D localization and cooling
of the atoms, and, therefore, should restrict oneself to a
special case of choosing the phases of the fields η1 and ζ1
and the parameter b = a′/a in Eq. (40):

η1 = ζ1 = π, b > 1. (41)

Thus, FR0 = 0, and FR1 is a linear-in-velocity friction
force, determined by the spatially nonuniform strictly
positive friction coefficients

κi = κ(ri) > 0. (42)

Interestingly, in this case expressions (37)–(40) coin-
cide with the expressions for RRFs, obtained for the
tripod-type ion by another method in [26].
Thus, under the conditions considered RRFs induce

the 3D dissipative cubic superlattice, capable of simul-
taneously cooling and trapping atoms. However, the ki-
netics of the atom cooling and trapping considerably de-
pends on the values of the velocity diffusion coefficients
D and DRj (determining the process of the atom heating

competing with the atom cooling). Here, the following
explicit expressions were obtained:

D = Ds1 +D1,

Ds1 ≃
(

~k

m

)2
γχ

(4χ+ 3)2
, D1 ≃

(

~k

m

)2

γ
χ(4χ+ 2)

(4χ+ 3)4
,

DRj =

(

~k

m

)2

γ
8χ3 + 16χ2 + 11χ+ 3

(4χ+ 3)3χ
G2 = DR, (43)

where j = x, y, z, Ds1 is the diffusion coefficient condi-
tioned by the recoil at spontaneous transitions, D1 is the
coefficient of the induced diffusion connected with the
action (on the atoms) of the fluctuating field E′[27] ( its
order of magnitude coincides with that of the diffusion
coefficient in the case of the two-level atoms in the field of
the standing wave with the fluctuating phase [17]), DR is
the coefficient of the induced diffusion connected with the
quantum fluctuations of the gradient force. When writ-
ing Eqs. (43) we neglect small corrections of the diffusion
coefficient ∼ a21, (s/vc)a

2
1.

The distinct feature of the considered 3D scheme of the
mechanical action of the light on the tripod-type parti-
cles is the simultaneous presence of several independent
governing parameters: χ, G, L1, cosβ, a1, b, ζ1, η1. The
specific choice of these parameters determines the values
of the force and diffusion coefficients of FPE, and, con-
sequently, various regimes of the atom localization and
cooling. Now we shall describe some characteristic situ-
ations, considering Eq. (41) to be true and using Eqs.
(37), (38), (40) and (43).

A. Strong fields: G ≫ 1, χ ≫ 1

In this case RGF FR ∼ FsGa1/χ and can considerably
exceed the maximum value of the so-called spontaneous
light pressure force Fs = ~kγ/2 [1], if G ≫ χ/a1. The
capture velocity vc can exceed the characteristic value
vc0 = γ/k by a large factor (χ/ cosβ) ≫ 1. The friction
coefficient can exceed the characteristic value ωR: κ ∼
ωRa1 cosβG/χ

2 ≫ ωR, if G≫ χ2/a1 cosβ. The depth of
the macroscopic potential wells ∆U = 2U0 considerably
exceeds the depth of the microscopic potential wells Ug:
∆U ∼ Ug(Ga1L/λχ) ≫ Ug, in case (a1L/λ) ≫ χ/G.
Thus, high values of RGF and capture velocity vc can

be achieved as well as super-fast cooling rates, if G≫ χ2.
However, in this regime the atom heating rate is also
high. Really, comparing the velocity diffusion coefficient
D̄ = D + DR (determining the heating rate) with the
characteristic value of the diffusion coefficient in a trav-
eling plane wave [1–3], D0 = (~k/m)2γ, one obtains:

D̄ = D0

(

G2

8χ
+ χ

)

≫ D0.
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B. Strong coherent field and not very strong
partially coherent field: G ≫ 1, χ . 1

One has the following relations: FR ∼ FsGa1 ≫ Fs (if
Ga1 ≫ 1), ∆U ∼ Ug(La1/λ) ≫ Ug (if L ≫ λ/a1), κ ∼
ωRGa1 cosβ/χ ≫ ωR (if G ≫ χ/a1 cosβ), vc = vc0 (if
χ ∼ 1 cosβ ≈ 1) and vc ≫ vc0 (if χ ∼ 1 and cosβ ≪ 1),
D̄ ∼ D0G

2/χ≫ D0.
This implies that in this case it is also possible to reach

super-high values of RGF, high values of the capture ve-
locity vc (but only by means of the proper choice of the
geometric factor: cosβ ≪ 1), super-high cooling rates
and intensive diffusion in the velocity space. The rela-
tively small intensities of the fluctuating field E′ make it
significantly different from the case A.
A similar regime of the mechanical action of the co-

herent bichromatic light on the two-level atoms is de-
scribed, for example, in: [8, 20], however, these descrip-
tions cannot be applied directly for the case of the 3D

configuration (considered here) of the optical fields and
tripod-type atoms.

C. Weak fields: G ∼ χ ≪ 1

There exist the following estimates: FR ∼ Fsa1G,
∆U ∼ Uga1L/λ, vc = vcoχ/ cosβ, κ ∼ ωRa1 cosβ,
D̄ ∼ D0G.
The most significant peculiarity of this case is that the

friction coefficient does not change with the decreasing
intensity of the fields, but the coefficient of the velocity
diffusion decreases. In other words, it appears possible
to considerably suppress the radiation force fluctuations
when maintaining the high cooling rate. A similar phys-
ical situation appears in the famous 1D model of the po-
larization gradient cooling (see [28] and references) and
it is a prerequisite of achieving the Sub-Doppler temper-
atures.

V. COOLING, SPATIAL DIFFUSION AND
LOCALIZATION OF ATOMS.

An important feature of the Brownian motion of
atoms, described by FPE (34) for κ > 0 is the over-
damped character of this motion:

s

κ
∼ λr ≪ L1, (44)

where λr has the meaning of the effective free-path length
of the atoms in viscous ”fluids” of photons. A similar si-
tuation occurs in OM [5], if L1 denotes its dimensions. In
the problem considered κ & ωRa1 (see section IV), there-
fore, assuming k ≃ 105 cm−1, γ ∼ 10−8 s−1, m ∼ 100
amu, s ∼

√

~γ/m, a1 = 0.2, one has the following:
λr . 10−3 cm. Thus, condition (44) of the strong dissi-
pativity of the optical superlattice is well satisfied, if the
period is L1 & 0.01 cm.
Assuming inequality (44) to be satisfied let us con-

sider the evolution of the atom ensemble at times t >
τd ∼ κ

−1(L1/λr)
2 ≫ τ0 ∼ κ

−1, where (according to

the general properties of FPE [29]) τ0 is the time nec-
essary for the local quasi-stationary velocity distribution
to be achieved, τd is the characteristic time of developing
a much slower (diffusion) process of changing the atom
density, n(r, t), in the configuration space (r).
Then, it appears possible to present the solution of

FPE (34) in the following form (using instead of the vari-
ables (r,v) the variables (r, c = v−u(r, t)), where u(r, t)
is the macroscopic (directed) velocity of the atom mo-
tion):

f = nf0 + f1, (45)

〈f1〉c, 〈f1c〉 = 0, f1 ≪ nf0, (46)

where the angular brackets 〈· · · 〉c denote the integration
over the velocities of the chaotic motion c,

f0 =
∏

i=x,y,z

fi, fi =

(

m

2πTi

)
1

2

exp

[

−mc
2
i

2Ti

]

, (47)

Ti = T (ri) = m(D +DR)/κ(ri) = T0T̂i has the meaning
of the effective local atom temperature (in energy units),
characterizing the chaotic atom motion along the axis
i (i = x, y, z), T0 is the space averaged effective atom

temperature, T̂i = T̂ (ri) is the function describing the
effective temperature dependence Ti on the correspond-
ing spatial coordinate ri. Explicit expressions for them
are obtained from Eqs. (40), (43), taking into account
Eq. (41):

T̂ (ri) =
b1

b− cos
(

2πri
L1

) , b1 =
√

b2 − 1,

T0 =
m(D +DR)

κ0
, κ0 =

2(6χ2 + 8χ+ 3)a1b1G cosβ

(4χ+ 3)3χ(1 + b)
ωR.

(48)
In the considered approximation, λr ≪ L1 the density

n(r, t) and macroscopic velocity u(r, t) are governed by
the equations (continuity equation and the force balance
equation):

∂n

∂t
+ div(nu) = 0, (49)

∂(nTi)

∂ri
+
∂UR

∂ri
+mκiui = 0, (50)

where κi = κ(ri), ui = (ei · u). It can easily be proved
that f0 satisfies the equation (ci = (ei · c)):

L̂f0 = 0, L̂ =
∑

i

∂

∂ci

[

κi

(

ci +
Ti
m

∂

∂ci

)]

,

and a small correction f1 to nf0 in the first approxima-
tion satisfies the equation
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L̂f1 = f0n





∑

i6=j

mcicj
Tj

∂uj
∂ri

+
∑

i

(

mc2i
Ti

− 1

)(

∂ui
∂ri

+ ui
∂Ti

2Ti∂ri

)

+
∑

i

∂Ti
2Ti∂ri

ci

(

mc2i
Ti

− 3

)



 . (51)

Expanding the solution of Eq. (51) into the eigenfunc-

tions of the Fokker-Plank operator L̂ and taking into ac-
count Eq. (49), (50) one can obtain a quite strict estimate

f1
nf0

∼ ∂uj
∂riκ0

,
∂Ti

Ti∂riκ0
ui ∼

(

λr
L1

)2

≪ 1.

Thus, it is seen from Eq. (47), (48), that at t ≫ κ
−1

and condition (44) the atom distribution over the ve-
locities (of the chaotic motion) is, generally speaking,
spatially nonuniform and anisotropic (with the excep-
tion of the points r′ located on the bisectors of the unit
cells of the optical superlattice, in which cos(2πr′i/L1) =

cos(2πr′j/L1)). However, within the limit b ≫ 1, T̂ ≈ 1
and Ti ≃ T0, DF f0 is the equilibrium Maxwell distribu-
tion with the temperature T0.
Further, combining Eqs. (49)–(50) one obtains the

Smoluchowski equation (SE), describing the atom diffu-
sion in the field RGF

∂n

∂t
=

∑

i=x,y,z

∂

∂ri

1

mκi

[

Ti
∂n

∂ri
+ n

∂

∂ri
(Ui + Ti)

]

, (52)

where Ui = −U0 cos(2πri/L1).
The difference of SE (52) from the classical SE (well-

known in the theory of the Brownian motion [30]) is the
spatial non-uniformity of the friction coefficients κi =
κ(ri) and effective temperatures Ti = T (ri).
Taking into account the form of the obtained SE (52)

a very significant and interesting circumstance appears:
in the model considered the macroscopic (diffusion) par-
ticle motions along the axes of the Cartesian coordinate
system can entirely be separated (i.e. they can be inde-
pendent from each other). This is revealed in the station-
ary solution of SE (52) being the product of the quasi-
Boltzmann distributions:

n =
∏

i=x,y,z

ψi

T̂ (ri)
exp

[

−Ueff(ri)

T0

]

, (53)

where ψi - are the constants, and the effective potential
Ueff is determined by the expression

Ueff (r) = −U0

b1

(

b cos

[

2πr

L1

]

− 1

2
cos2

[

2πr

L1

])

, (54)

and describes the potential wells with the depth ∆U =
2U0b/b1.
The condition of the deep particle localization has the

form:

Γ = exp

[

∆U

T0

]

≫ 1. (55)

A prerequisite of satisfying condition (55) is the pres-
ence of the large multiplier L1/λ & 104 (at L1 ∼ 1 cm)
in the expression for U0 (38). However, stationary lo-
calized solutions of SE (52) are strong idealizations due
to the irreversible diffusion particle escape from the in-
terception area of the real laser beams with the finite
transverse dimensions. Consider a more realistic model
allowing one to take this effect into account and to show
the existence of the spatially localized quasi-stationary
(long-lived) states of the atom ensemble. Considering,
for cirtainty, a single cubic cell of the superlattice (de-
scribed by equation (38) at η1 = ζ1 = π) with the centre
in the point r = 0 as the dissipative optical trap (DOT)
for the atoms, we assume that the absorbing boundary
condition is satisfied: nΣ = 0 [29] on the boundaries Σ
of this cell. It means that the particles are removed from
the DOT as soon as they reach its boundaries.

Then, the long-lived localized states of the atom en-
semble (corresponding to the lowest (the slowest) dif-
fusion mode), can still be presented as (53), assuming
that the multipliers Ψi = Ψ̄(ri) exp[−t/τ1], where Ψ̄(r)
is the eigenfunction, corresponding to the lowest eigen-
value λ1 = 1/τ1 of the Sturm-Liouville boundary problem
(SLP)

(

Ĥ +
1

τ1

Φ

T̂ (r)

)

Ψ̄(r) = 0, Ψ̄

(

±L1

2

)

= 0,

Ĥ =
d

dr

(

T0
mκ

Φ
d

dr

)

, Φ = exp

[

−Ueff(r)

T0

]

. (56)

Using (with slight modifications) the results of the
analysis of a similar SLP (in the case of Γ ≫ 1), made in
[26], one obtains the following expression for the lifetime
τ = τ1/3 of the atoms in DOT

τ ≃ τd

3πT̂ (0) ln Γ
exp

[

∆U

T0

]

, (57)

where τd ≃ (b + 1)L2
1mκ0/T0b1 is the characteristic dif-

fusion time in DOT in the absence of RGF. Thus, condi-
tion (55) is simultaneously the condition of the long-term
atom confinement in DOT (for a time considerably longer
than the diffusion time τd). Note here that at ln Γ ≫ 1,
Ψ̄(r) ≈ const almost everywhere except for the narrow

regions (with the width of ∼ L1/
√
ln Γ) near the bound-

aries Σ of the trap.

Consider a number of characteristic properties of the
spatially localized states of the atom ensemble resulting
from the constructed model.
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A limitation for the effective mean temperature T0 of
the localized particles results from Eqs. (43), (48)

T0 >
~γ

2a1b1

b+ 1

cosβ
G. (58)

This inequality, on the one hand, pre-determines sat-
isfying important condition (35) due to the smallness of
the parameter a1: (2a1/3) ≪ 1. On the other hand,
from inequality (58) it follows that reaching Sub-Doppler
temperatures T0 ≪ TD ∼ ~γ is possible only at rather
small values of the coherent field intensities (i.e. at
G < (2a1b1/b + 1) ≪ 1). It seems quite natural since
in the limit G≪ 1 and χ≪ 1:

T0 = BTD

(

G+
3χ2

G

)

> 2
√
3BχTD = Tm, (59)

where TD = ~γ is the characteristic temperature, de-
termining the Doppler limit of the atom cooling [1–3],
B = (b + 1)/2a1b1 cosβ and the equality is achieved at

G =
√
3χ. Thus, the Sub-Doppler cooling regime can

be implemented at χ < a1b1 cosβ/(b + 1)
√
3. On the

other hand, the parameter χ (at G =
√
3χ) should be

limited by lower bound: χ > ωR

√
3b1/γa1(b + 1), to sa-

tisfy condition (31), s2 < v2c = R2/k2 cos2 β. Regarding
this circumstance and Eq. (59) one obtains the estimate
of the lower limit T ′

m of the effective mean temperature
of the described localized states of the atom ensemble

T ′
m

TD
∼ 3ωR

γa21
. (60)

It follows from Eq. (60) that T ′
m/TD ≪ 1, if (ωR/γ) ≪

a21. Note, that the typical values of ωR/γ are . 10−3.
Reaching Sub-Doppler temperatures easily corresponds
to the condition of the long-term deep spatial atom lo-
calization (55) making the proper choice of the period L1

of the optical super-lattice (induced by RGF):

ln Γ =
4a21b cosβ

9(b+ 1)2
· L1

λ
> 1. (61)

Now let G≫ 1 and χ . 0.1. This case corresponds to
Super-Doppler temperatures of the localized atoms:

T0 = TDBG≫ TD. (62)

Moreover, the condition of the long-term deep localiza-
tion is also expressed by inequality (61). It is necessary to
take into account that the values of the parameter G are
limited by condition (31): G < χ2γ/ωRB cos2 β. Then,
from Eq. (62) one can obtain the estimate (at χ ∼ 0.1)
of the maximum temperatures maxT0:

maxT0
TD

≃ 0.01γ

ωR cos2 β
, (63)

which can be reached in this regime of the optical field
influence on the tripod-type atoms.

By smooth and slow variation of the saturation param-
eters χ and G (proportional to the intensities of the fluc-
tuating and coherent field components) it is possible to
implement a continuous transition from “Super-Doppler
spatially localized states” of the atom ensemble (with the
temperatures T0 ∼ Tsup ≫ TD) to “Sub-Doppler states”
(with the temperatures T0 ∼ Tsub ≪ TD)) or to any “in-
termediate” state with the necessary temperature value
from the interval [TsubTsup]: Tsub < T0 < Tsup.
However, the changes of the parametersG and χ are to

be matched (for example, by means of setting a certain
relation between them, G = G(χ)), in order not to violate
the conditions of the stable spatial atom localization (55)
and (31), at any values of the parameters mentioned. Let
us give an example demonstrating the possibility of the
continuous monotonic temperature change of the trapped
atoms from Tsup up to Tsub without violating the condi-
tions of the stable localization.
Let TD = 10−3 K (γ ≈ 1.31·108 s−1), the wave number

k ≈ 105 cm−1, m ≈ 200 amu, L1 = 1.2 cm, a21 ≈ 0.1,
cosβ = 0.1, b = 1.5, and the matching law is

G =
√
3δ
(

exp
[χ

δ

]

− 1
)

, (64)

where δ = 0.015. Thus, at χ ≫ δ the parameter G > 1,
and at χ ≪ δ, the parameter G ≈

√
3χ (which cor-

responds to the optimal relation between G and χ for
reaching Sub-Doppler temperatures).
Given in Fig. 2 are the dependencies (in a logarithmic

scale) of the three main characteristics for the localized
states of the atoms on the governing parameter χ: the
temperature, ln(T0/TD), capture velocity, ln(mv2c/TD)
and localization parameter, ln Γ (See Eq. (48), comments
to inequality (31) and Eq. (55)). One can see that when
decreasing the governing parameter χ from the value χ ≈
0.07 (G ≈ 2.57) to the value χ ∼ 0.001 the temperature
is monotonely decreased from the value Tsup ≈ 100TD ≈
0.1 K to the value Tsub ∼ 0.1TD ≈ 100 µK (i.e. is
decreased approximately by 1000 times, “running over”
all the intermediate values between Tsup and Tsub). The
conditions of stable localizations (55) and (31) are well
satisfied. This, in particular, is revealed in the decay
time of the localized states τ (see Eq. (57)) in the given
example exceeding the characteristic diffusion time τd ∼
1 s not less than by two orders of magnitude for any value
χ from the indicated range: τ > 300τd. Attention should
also be paid to a rather high temperature value Tc ∼ 1
K, corresponding to the value of the capture velocity
vc on the right boundary of the χ change interval. This
may have important practical significance for the effective
solution of the problem of initial atom loading into the
optical trap under consideration.

VI. CONCLUSION

We have developed a 3D kinetic model, describing the
mechanical action of non-monochromatic optical fields
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FIG. 2. The dependence of the characteristics of the localized
states of the atom ensemble on the governing parameter χ
at continuous transition from “Super-Doppler states” (T0 ≫

TD) to “Sub-Doppler states” (T0 ≪ TD) and according to
the matching law (64): curve 1 — ln(T0(χ)/TD); curve 2 —
0.2 × ln Γ(χ); curve 3 — ln(mv2c (χ)/TD); TD is the Doppler
cooling limit, γ ≈ 1.31·108 s−1, k ≈ 105 cm−1, m = 200 amu,
L1 = 1.2 cm, a2

1 ≈ 0.1, cosβ = 0.1, b = 1.5, T0(χA) = TD,
χA ≈ 0.01. Inset — the details of the same curves in the Sub-
Doppler temperature region (χ ≪ χA); T0(χB) = mv2c (χB),
χB ∼ 10−4.

on tripod-type atoms. A distinctive feature of the pro-
posed model is that light induced 3D atom kinetics is
completely determined by the rectified radiation forces.
Moreover, (under the conditions considered) the light in-
duced atom motions in the three mutually orthogonal
directions prove to be independent, which allows one to
reduce the analysis of the 3D problem to the study of
much more simple 1D problems and to obtain approxi-
mate analytical solutions of the kinetic equation for the
Wigner distribution function of atoms f(r,v, t).
Another important peculiarity of the considered

scheme of the mechanical action of light on the tripod-
type atoms is the presence of several independent govern-
ing parameters. In particular, these are the parametersG
and χ, proportional to the intensities of the coherent and
partially coherent optical field components, phase shifts
ζ1 and η1, geometrical parameters (angular detunings δi,
δ′i and the angle β (see Fig. 1)) determining the optical
field configuration. A purposeful choice of their values
or relations between them makes it possible to set con-
siderably different (desirable) regimes of the mechanical
action of light on the atom motion.
Note that, selection of the required controlling param-

eter combination is getting significantly easier due to
obtaining of explicit analytical expressions in the pro-
posed model (for the RRFs and the distribution func-
tion), which are convenient for analysis performance.

Particularly, the developed theoretical model has been
applied to analyze the problem of 3D optical cooling and
trapping of the tripod-type atoms. We have made a de-
scription of the long-lived spatially localized atom ensem-
bles (trapped into deep light-induced potential wells) and
demonstrated the possibility of obtaining both “Super-
Doppler stable localized states” (with the effective tem-
peratures Tsup considerably exceeding the Doppler cool-
ing limit TD (Tsup ≫ TD) and high values of the capture
velocity vc and “Sub-Doppler stable states” (with the
temperatures Tsub considerably lower than the Doppler
cooling limit (Tsub ≪ TD)). We have also shown the
possibility of continuous transition between these states
or reaching any other intermediate state with the effec-
tive temperature Tsub < TD < Tsup without violating the
localization stability.
Finally, it is worth noting that the tripod-type quan-

tum transitions (which have already been used in the
experiments on laser cooling and trapping) are character-
istic, in particular, of the atoms Na [31] (and the similar
ones), as well as the ions 171Y b+ and 199Hg+ [32, 33].
Interestingly, for the transitions mentioned (in Na-like
atoms) the usually accepted MOT model does not work;
thus, in order to explain its work one should take into
account the effects connected with the existence of ad-
ditional energy levels: magnetically induced level-mixing
effects [31]. One can see that the considered scheme of
all-optical cooling and trapping of the atoms does not
require similar effects to be taken into account.
Regarding the above-mentioned tripod-type ions at-

tention is to be paid to the fact that recently there
has been some interest in the development of all-optical
methods of ion trapping [34]. Besides, such methods can
be used for the solution of a new interesting problem, that
of obtaining ultra-cold electron-ion plasma with resonant
ions and its long-term confinement [26, 35].
Certainly, the application of the developed theoreti-

cal model to certain real atoms and ions may require
additional analysis which would take into account, for
example (if necessary) additional repumping laser fields.

Appendix: Explicit expressions for the terms of
equations (6) and (7), describing the recoil effect

Let us introduce an auxiliary function Qii(r,v, t) and
consider the relations between the function ρ(r,v, t) and
f(r,v, t) qii(r,v, t) (where i = x, y, z):

Qii = f + qii −
∑

l 6=i

qll, (A.1)

ρ =



f −
∑

j

qjj



 /4. (A.2)

Then, the explicit expressions for the terms Λi, Bij in
Eqs. (6), (7) can be written in the following form:
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Λi = − ~i

2m





∂ρi
∂v

·
∑

l 6=i

∇|Ve1|2
∆l

−
∑

l 6=i

∂qil
∂v

· ∇Ul −
1

2

∂Qii

∂v
· ∇Ui



 , (A.3)

Bii =
~i

2m





∑

l 6=i

(

∂ρl
∂v

· ∇U∗
l + c.c.

)

+
∂Qii

∂v
· ∇|Vi1|2

∆i

+ 2
∑

l 6=i

∂ρ

∂v
· ∇|Vl1|2

∆l



 , (A.4)

Bij =
~i

2m

[

∂qij
∂v

· ∇
( |Vi1|2

∆i

+
|Vj1|2
∆j

)

−
(

∂ρi
∂v

· ∇U∗
j +

∂ρ∗j
∂v

· ∇Ui

)]

, i 6= j. (A.5)

Thus, from Eqs. (6), (7), taking into account Eqs.
(A.3)–(A.5), one can see that the induced dipole moment
and the functions qij(r,v, t) (characterizing the coher-
ence between |bi〉 and |a〉 states) are determined not only
by the magnitude of the fields in a given point but also
by their gradients (compare with the well-studied case of
the two-level atom [1]); moreover, the contributions into
this effect, connected with the coherent part of the op-
tical field, are proportional to the gradients of the light

(Stark) shifts of the energy levels. Note that in a particu-
lar case when the field is polarized along one of the axes
of the Cartesian coordinate system, for example, along
ex: Uj = δxjU , Vj = δxjV , and γ → 0 Eqs.(6)–(8) are
transformed into the averaged (over high frequency oscil-
lations) generalized Bloch equations of the kinetic theory
of RRFs for the two-level atoms in the bihromatic field
[20].
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