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Hausdorff dimension of a particle path in a quantum manifold
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After recalling the concept of Hausdorff dimension, we study the fractal properties of a quantum
particle path. As a novelty we consider the possibility for the space where the particle propagates, to
be endowed with a quantum gravity induced minimal length. We show that the Hausdorff dimension
accounts for both the quantum mechanics uncertainty and manifold fluctuations. In addition the
presence of a minimal length breaks the self similarity property of the erratic path of the quantum
particle. Finally we establish a universal property of the Hausdorff dimension as well as the spectral
dimension: they both depend on the amount of resolution loss which affects both the path and the
manifold when quantum gravity fluctuations occur.
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Fractals are often employed to describe the nature of a
quantum manifold. Indeed one of the widely expected
features in quantum gravity is the appearance of space-
time fluctuations as far as distances comparable with the
Planck length are probed. Fluctuations of this kind im-
ply a loss of resolution: distances smaller than the Planck
length cannot be resolved and one often speaks of mini-
mal length effects when the spacetime passes from a low
energy differential manifold to its Planck energy quan-
tum configuration. Fractals nicely encode the idea of
quantum fluctuations and loss of resolution. Another at-
tractive property of fractals is self similarity, namely the
property of being exactly similar to a part of itself. This
feature is connected to the concept of scale invariance,
which seems to be supported by recent non perturbative
string theory developments like AdS/CFT and M-theory.
To investigate the properties of a quantum spacetime one
can employ technical tools which belong to the theory of
fractals. As an example an important issue is the cal-
culation of the spectral dimension, i.e. the manifold di-
mension perceived by a diffusion process. The way one
formulates the presence of quantum fluctuations of the
manifold is crucial and gives rise to a variety of expres-
sions for the spectral dimension [1–10]. As soon as the
diffusion starts, small length scales of the manifold are
probed and strong fluctuations emerge. The diffusion
process is therefore subjected to a loss of resolution and
the spectral dimension turns out to be smaller than the
actual topological dimension of the manifold. In the case
of a four dimensional manifold, one of the crucial features
is that at the Planck length the spectral dimension equals
two, supporting the idea of a renormalizable character of
the gravitational interaction as recently shown in [11].

Another measure of the fractal nature of a manifold is
provided by the Hausdorff dimension. One of the essen-
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tial features of a fractal is that its Hausdorff dimension
strictly exceeds its topological dimension [12]. As an ex-
ample a quantum particle proceeds along an erratic path
whose Hausdorff dimension is two, i.e. exceeding the di-
mension of a classical trajectory [13]. For the stringy
analogue, it has been shown that the world sheet makes
a transition to an excited configuration as far as length
scales of order (α′)1/2 are concerned. In this case the
world sheet becomes a fractal surface of dimension three,
since the energy in the excited state lets the string ex-
plore an additional dimension [14–16]. While the spectral
dimension accounts for the fractal character of the space
where the diffusion takes place, the Hausdorff dimension
for a quantum particle is just an indicator of the amount
of uncertainty of a quantum path. Nothing is said about
the intrinsic uncertainty, which any model of quantum
spacetime should be endowed with. In other words in
[13] the background space where the particle propagates
is still a classical manifold. In this paper we want to do a
step forward, by implementing the presence of a minimal
length in the background space where a quantum particle
propagates. Therefore this paper has three main goals

1. to provide an example where the Hausdorff dimen-
sion can be employed as an indicator of the amount
of fluctuations of the manifold rather than of the
particle path;

2. to disclose further properties of our method of im-
plementing an effective minimal length in the man-
ifold other than those we found by studying the
spectral dimension in [11];

3. to understand whether universal properties exist as
a result of the study of both indicators of quantum
fluctuations, i.e. the spectral dimension and the
Hausdorff dimension.

Given this background we briefly recall the definition
of the Hausdorff dimension. We start by considering the
Koch curve in Fig. 1. It is an example of an everywhere
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FIG. 1: Construction of the Koch curve. At each step, the
middle third of each interval is replaced by the other two sides
of an equilateral triangle.

continuous but nowhere differentiable curve. We can con-
struct the Koch curve as a final product of an infinite
sequence of steps. At each step, the middle third of each
interval is replaced by the other two sides of an equilateral
triangle. As a result at each step the length of the curve
increases by a factor 4/3, so the final curve is infinitely
long. However if we assume viewing the curve with a
finite resolution ∆x, many wiggles smaller than ∆x are
neglected. Here the resolution ∆x has only a mathemat-
ical meaning related to diameter of spheres covering the
curve [17]. As a result the observed length of the curve
turns out to be finite, becoming infinite only in the limit
∆x → 0. Let l be the length of the curve when the
resolution is ∆x 6= 0. Improving the resolution so that
∆x′ = (1/3)∆x, we proceed along the next step of the
curve and new wiggles become visible. As a consequence
we will measure a new length l′ = (4/3)l. The length of
the curve depends on the resolution at which the curve
is examined. Therefore we cannot uniquely define the
length of the curve in this way. To solve this problem
Hausdorff proposed a new definition of length given by

LH = l(∆x)DH−1. (1)

Here l is the usual length when the resolution is ∆x and
DH is a real number chosen so that LH will be indepen-
dent of ∆x, at least in the limit ∆x→ 0. The parameter
DH is called Hausdorff dimension. When the Hausdorff
length LH coincides with the usual length l, the Haus-
dorff dimension equals the topological dimension dtop = 1
of the curve. For the Koch curve we can calculate the
Hausdorff dimension by requiring LH = L′

H namely

l′(∆x′)DH−1 = l(∆x)DH−1. (2)

This implies that DH = ln 4/ ln 3. The fact that DH 6= 1
identifies the curve as a fractal.

We now switch from mathematics to physics. To do
this we need to connect our “mathematical” resolution
∆x with a physically meaningful quantity. Along the
lines of [13] we consider the natural case of quantum me-
chanics. Typical paths of a quantum mechanical par-
ticle are highly irregular on a fine scale. According to
the Heisenberg uncertainty principle the more precisely
the particle is located in space, the more its path will
become increasingly erratic. If the localization of the
particle is within a region of size ∆x, an uncertainty
will affect the momentum of order ~/∆x. In the lan-
guage of fractals, this is equivalent to say that paths for
a quantum mechanical particle are not those which ad-
mit a definite slope (velocity and therefore momentum)
everywhere. For this reason in quantum mechanics we
cannot properly speak of a particle path unless in the
statistical sense. Suppose now to measure the position of
a quantum particle at a sequence of times t0, t1 = t0+∆t,
..., tN = t0 +N∆t, with T = tN − t0 = N∆t. Then the
length of the path will be

〈l〉 = N 〈∆l〉 (3)

where

〈∆l〉 = 〈ψ|Û †(∆t)|x|Û(∆t)|ψ〉 (4)

is the average distance which the particle travels in a
time ∆t, with Û(t) = exp(−ip̂2/2m~) the free particle
time evolution operator. Here the wave function of the
particle ψ(x) = 〈x|ψ〉 takes into account the fact that a
position measurement only localizes the particle within
a region of size ∆x. If we consider the case where the
average momentum of the particle is zero, we will obtain

〈∆l〉 ∝ ~∆t/m∆x (5)

a fact supported by the uncertainty principle. As a result

〈l〉 ∝ ~T/m∆x (6)

a length which is ill defined since it depends on the de-
tection resolution ∆x and diverges in the limit ∆x → 0.
This is a sign which confirms the fractal character of the
path. Along Hausdorff’s lines we can define a new length
as

〈LH〉 = 〈l〉 (∆x)DH−1 (7)

which turns out to be independent of ∆x if DH = 2.
The path of a quantum particle is therefore a fractal of
dimension two. We can check the other interesting prop-
erty of fractals: self similarity. In the case of the Koch
curve self similarity is evident by increasing the resolu-
tion ∆x′ = (1/3)∆x. In analogy the path of a quantum
particle is self similar if 〈∆l〉 ∝ ∆x. This relation implies

∆t ∝ m(∆x)2/~ (8)

which naturally arises in the derivation of 〈∆l〉 as a
consequence of the uncertainty principle in the energy-
momentum relation E = p2/2m. The whole description
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FIG. 2: Schematic view of the geometrical structure of the particle path. In (a) we have the classical regime and in (b) the
quantum-mechanical regime. Upon further magnification in (c), the path exhibits the same structure.

of the path of a quantum particle can be generalized to
the case when the particle has some nonzero average mo-
mentum pav. In this case the Hausdorff dimension is
DH = 1 when the distances being resolved are much
larger than the particle’s wavelength, i.e., ∆x≫ ~/|pav|.
Conversely it is DH = 2 when the distances being re-
solved are much smaller than the particle’s wavelength
∆x ≪ ~/|pav|. In the region between these limits the
Hausdorff dimension DH is not well defined, since there
is a “phase transition” from the classical to the quantum
mechanical path (see Fig 2).
We are now ready to switch from quantum mechanics

to quantum gravity. One of the most important features
of quantum gravity is the appearance of an additional
kind of uncertainty which prevents one from measuring
positions to better accuracies than the Planck length.
Indeed the momentum and the energy required to make
such a measurement will itself modify the spacetime ge-
ometry at these scales [18]. This long held idea has been
corroborated by the noncommutative character of open
string end points on D-branes [19]. The specific feature of
the presence of a minimal length in a spacetime manifold
can be taken into account by means of effective theories
too. Though they are not the full theory of quantum
gravity, these effective formulations are particularly use-
ful for getting reliable phenomenological scenarios in spe-
cific physical contexts [20]. For instance an effective min-
imal length has efficiently been included in the physics
of evaporating black holes, by smearing out the curva-
ture singularity at the origin and regularizing the termi-
nal phase of the Hawking emission [21] (for reviews see
[22, 23] and the references therein). At the basis of these
approaches there is the possibility of providing a delocal-
ization of point like objects by the action of a nonlocal

operator eℓ
2∆x [24]. Here ℓ is the minimal length and ∆x

is the Laplacian operator acting on a d-dimensional Eu-
clidean manifold. As an example we consider the Dirac
delta δ(x) as a standard distribution for a point like ob-
ject. By applying the nonlocal operator one finds

δ(x) → eℓ
2∆xδ(x) = ρℓ(x) (9)

where ρℓ is the modified distribution due to the presence
of the minimal length ℓ. It turns out that the modified
distribution is

ρℓ(x) =
1

(4πℓ2)d/2
e−x2/4ℓ2 (10)

which is nothing but a Gaussian distribution whose width
equals ℓ. Indeed this is the most narrow distribution
which is admissible on a manifold endowed with a min-
imal length. In [11] it has been shown that the primary
effect of the presence of a minimal length in the dynam-
ics of a diffusion process lies in a smearing of point like
initial conditions as in (9). We recall that a diffusion pro-
cess is nothing but a Wick rotated quantum mechanical
probability evolution. It is therefore natural to extend
the method we employed in [11] for the spectral dimen-
sion to the case of the Hausdorff dimension too. In the
latter case, the action of the nonlocal operator eθ∆x de-
termines a modification of the integration measure of the
momentum space representation of the wave function

〈x|ψ〉 =

∫

dVℓ(p) 〈p|ψ〉e
i

~
px (11)

where

dVℓ(p) =
ddp

(2π~)
d

2

e−
ℓ
2

~2 p2

(12)

turns out to be squeezed for large momenta only, i.e.,
|p| & ~/ℓ.
We now have all the ingredients to investigate the frac-

tal properties of the path of a quantum particle which
propagates in a d-dimensional manifold endowed with a
minimal length ℓ. We start from the case where the av-
erage momentum of the particle is zero. The path will be
affected both by the quantum mechanics uncertainty en-
coded in ~ and the quantum gravity uncertainty encoded
in ℓ. As a result the “mathematical” resolution ∆x will
be related to both ~ and ℓ. For later convenience we in-
troduce the following dimensionless quantities y ≡ x/∆x
and k ≡ p∆x/~. The crucial quantity is 〈∆l〉, i.e., the
expectation value for travelled path length in time lapse
∆t. From (4) we need to calculate

〈y|Û(∆t)|ψ〉 =

∫

ddk

(2π)
d

2

e
− ℓ

2
k
2

(∆x)2 〈k|ψ〉 eikye
i~∆tk

2

2m(∆x)2

(13)
where 〈k|ψ〉 is the momentum space wave function rep-
resentation. The actual profile of 〈k|ψ〉 is instrumental.
We need to assume it in order to localize the particle to
a region of “size” ∆x. Therefore the correct profile is

〈k|ψ〉 =

(

2

π

)d/4

e−k2

(14)
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FIG. 3: Hausdorff dimension of a particle path depending on
∆x/ℓ for different number of spacetime dimensions.

which suppresses momenta higher than ~/∆x and con-
fines positions within ∆x. From (3) we obtain the length
the path

〈l〉 ∝
~T

m∆x

(

1 +
ℓ2

(∆x)2

)− d+1
2

×

√

1 +

(

1 +
ℓ2

(∆x)2

)2
4m2(∆x)4

~2(∆t)2
. (15)

As far as we consider length scales ∆x≫ ℓ, the actual
length of the path is an ill defined quantity which depends
on the choice of the resolution parameter ∆x, i.e., 〈l〉 ∝
~T/m∆x which matches the conventional result in (6).
However (15) presents an important new feature. The
quantity 〈l〉 can never be infinite. Indeed in the limit
∆x≪ ℓ, by keeping ∆t fixed one finds

〈l〉 ∝
~T

mℓ

(

∆x

ℓ

)d

. (16)

This is due to the presence of ℓ which nicely works as a
natural cut off in agreement with all the existing litera-
ture based on this formulation [22]. The problem is that
ℓ is actually a minimal length, beyond which we loose
the definition of position. In other words for ∆x≪ ℓ we
are probing the microstructure of the manifold, which is
affected by huge quantum geometry fluctuations. As a
result the very concept of length is no longer meaningful,
a fact which is confirmed by the vanishing value of 〈l〉.
Again we are left with the only possibility of invoking
the Hausdorff length to have some reliable information
about the length of the path. By using (7), we obtain

LH ∝ (∆x)DH−2

(

1 +
ℓ2

(∆x)2

)− d+1
2

. (17)

In the regime ∆x ≫ ℓ we find the conventional result
DH = 2. Conversely for ∆x ≪ ℓ we find DH = 1 −
d. This means that the Hausdorff dimension is either

vanishing or negative. In fractal geometry this is the
case of an empty set, which physically we could interpret
as a “dissolution” of the path as far as transplanckian
scales are probed. By requiring ∂LH/∂(∆x) = 0 we can
calculate the general form of the Hausdorff dimension
which reads

DH = 2−
d+ 1

1 + (∆x)2/ℓ2
. (18)

Some comments are in order. First, the Hausdorff di-
mension is always smaller than the usual value 2. This
is reminiscent of what we found when studying the spec-
tral dimension in [11]. We recall that in a D-dimensional
Euclidean geometry the heat equation reads

∆K (x, y; s) =
∂

∂s
K (x, y; s) (19)

where s is a fictitious diffusion time of dimension of a
length squared, ∆ is the Laplace operator, andK (x, y; s)
is the heat kernel, representing the probability density of
diffusion from x to y. We showed that the minimal length
ℓ, by introducing quantum gravity fuzziness prevents the
diffusion process to access to all the D topological dimen-
sions of the spacetime manifold. More specifically from
(19) the spectral dimension for the flat space case turns
out to be

D =
s

s+ ℓ2
D. (20)

i.e. it is smaller than the topological dimension of space-
time D < D = d+1. In other words, while the uncertan-
ity in quantum mechanics provides an erratic character
to the path and a consequent increase of the Hausdorff
dimension, the uncertainty in quantum gravity is respon-
sible for resolution loss, whose amount is encoded in the
difference D − D. This fact becomes even more clear if
we Wick rotate back the diffusion equation (19) and we
identify the diffusion time with (∆x)2 by means of the
relation (8). As a result one finds

DH = 2− (D − D). (21)

In the special case D = 2, there is just one spatial di-
mension and the two indicators coincide DH = D.
Second, one might ask whether the Hausdorff dimen-

sion assumes the classical value DH = 1. From (18) this
condition is met when d = (∆x)2/ℓ2. As a result we have

〈LH〉 = 〈l〉 ∝
dd/2

(d+ 1)
d+1
2

~T

mℓ
(22)

which enjoys the desired feature of being independent
of the resolution parameter ∆x. However we cannot in-
terpret this result as a restoration of the classical char-
acter of the path. We should better say that we have
another example in which ℓ provides a finite value for
the proper length 〈l〉 of a fractal. Indeed the Hausdorff
dimension can even descend below the value DH = 1
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FIG. 4: Schematic view of the geometrical structure of the quantum particle path in (a) the classical regime, (b) the quantum-
mechanical regime, (c), (d) the Planckian regime and (e) the transplanckian regime.

and beyond. For scales (d − 1)/2 = (∆x)2/ℓ2 we have
DH = 0. The Haussdorff dimension reaches negative val-
ues corresponding to the case of empty sets. The full
behavior of DH can be seen in Fig. 3.
Third, there is the issue of self similarity. The fact that

the Hausdorff dimension actually can descend below the
topological value 1 is a sort of “red flag”. This happens
when we are probing the path with resolution comparable
with the size of the minimal length ∆x ∼ ℓ. In other
words quantum gravity must introduce a length scale.
At such a scale the manifold fluctuations are so strong
that the path starts dissolving. As a result we have a
breaking of the self similarity/scale invariance property
of the path. To check this result we just need to study
the self similarity condition 〈∆l〉 ∝ ∆x. For ∆x ≫ ℓ we
just recover the conventional result as in (8). Conversely
for ∆x . ℓ we get

〈∆l〉 ∝ ℓ

(

∆x

ℓ

)d+2

(23)

which is different from (8) unless one fixes ∆x = ℓ. This
implies a breaking of scale invariance in the transition
from one to the other regime.
We are now ready to draw conclusions. In reference to

the three main goals we can say that

1. the Hausdorff dimension we calculated in (18) ac-
counts for both the quantum mechanics uncertainty
and the amount of fluctuations of the manifold
through the term ∆x/ℓ. In addition DH depends
also on the number of dimensions d of the manifold
where the particle propagates;

2. the new feature we discovered through the study of
DH is the expected scale invariance breaking as far
as one introduces a length scale ℓ in the formalism;

3. the universal property we discovered in both indi-
cators, i.e. DH and D, is the amount of resolution

lossD−D which affects both the path and the man-
ifold when quantum gravity fluctuations occur.

We could generalize our calculation to the case of nonva-
nishing average momentum pav. However one can prove
that there is no additional physical information coming
from it. Essentially the conclusions we have just drawn
are confirmed.
As a final point we can summarize our results for

the character of a quantum path in the presence of a
minimal length with the following scenario: as long as
∆x ≫

√

~∆t/m there exists a classical regime in which
the path is represented by a smooth differential curve,
whose Hausdorff dimension coincides with the topological
dimension of the curve, i.e. DH = 1; for ∆x ∼

√

~∆t/m
there is the quantum mechanics regime, in which the path
of the particle becomes strongly erratic and self similar,
approaching the configuration of a DH = 2 fractal; for
smaller length scales, i.e. ∆x ∼ ℓ there is the Planck-

ian regime, which is characterized by a loss of resolution
of the path with consequent decrease of the Hausdorff
dimension and breaking of the self similarity property;
finally in the transplanckian regime, i.e. ∆x ≪ ℓ, the
path is disintegrated by huge fluctuations of the man-
ifold and the Hausdorff dimension can be vanishing or
even negative, corresponding to the case of an empty set
(see Fig 4).
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