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Abstract—Mapping an error syndrome to the error operator is the 

core of quantum decoding network and is also the key step of recovery. 
The definitions of the bit-flip error syndrome matrix and the 
phase-flip error syndrome matrix were presented, and then the error 
syndromes of quantum errors were expressed in terms of the columns 
of the bit-flip error syndrome matrix and the phase-flip error 
syndrome matrix. It also showed that the error syndrome matrices of 
a stabilizer code are determined by its check matrix, which is similar 
to the classical case. So, the error-detection and recovery techniques 
of classical linear codes can be applied to quantum stabilizer codes 
after some modifications. Some necessary and/or sufficient conditions 
for the stabilizer code over GF(2) is degenerate or nondegenerate for 
Pauli channel based on the relationship between the error syndrome 
matrices and the check matrix was presented. A new way to find the 
minimum distance of the quantum stabilizer codes based on their 
check matrices was presented, and followed from which we proved 
that the performance of degenerate quantum code outperform (at 
least have the same performance) nondegenerate quantum code for 
Pauli channel . 

Index Terms—stabilizer codes, CSS codes, degenerate codes, Pauli 
channel 

I. INTRODUCTION 
Quantum information can be protected by encoding it into a 

quantum error-correcting code. Quantum error-correcting codes are 
quite similar to classical codes in many respects, for example, an error 
is identified by measuring the error syndrome, and then corrected as 
appropriate, just as in the classical case. However, there is an 
interesting class of quantum codes known as degenerate codes 
[1],[2],[3],[4] possessing a string property unknown in classical codes. 
For classical error-correcting codes errors on different bits necessarily 
lead to different corrupted codewords. But for a degenerate quantum 
code, the error syndrome is not unique, and error syndromes are only 
repeated when †E F  belongs to the stabilizer S, implying that E and F 
act the same way on the codewords. So they can sometimes be used to 
correct more errors than they can identify. The phenomenon of 
degenerate quantum codes is a sort of good news-bad news situation 
for quantum codes. The bad news is that some of the proof techniques 
used classically to prove bounds on error-correction fall down because 
they can’t be applied to degenerate quantum codes, for example, the 
quantum Hamming bound. The good news is that degenerate quantum 
codes seem to be among the most interesting quantum codes. They are 
known to outperform all nondegenerate  quantum codes for very noisy 
quantum channel (for example, Pauli channel)[5],[6],[7] and have 
important applications in purifying quantum states[8] and proving the 
security of quantum communication protocols[9],]10]. It is possible 
that they are able to store quantum information more efficiently than 
any nondegenerate code, because distinct errors do not necessarily 
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have to take the code space to orthogonal space. 
The decoding network of quantum code contains three parts, 

namely, error detection, error correction, decoding. Mapping error 
syndromes to error operators is the core of quantum decoding network 
and is also the key step to realize quantum error correction. In the third 
section, we presented the definitions of the bit-flip error syndrome 
matrix and the phase-flip error syndrome matrix, and then expressed 
the error syndromes of all quantum errors in terms of the columns of 
the bit-flip error syndrome matrix and the phase-flip error syndrome 
matrix. In the fourth section, it showed that the error syndrome 
matrices of a stabilizer code are determined by its check matrix, which 
is similar to the classical case. So, the error detection and correction 
techniques of classical linear codes can be applied to quantum 
stabilizer codes after some modifications. 

Until now, no technique has been developed to determine whether 
or not a stabilizer code is degenerate or nondegenerate other than 
exhaustive search. In the fifth section, based on the relationship 
between the error syndrome matrices and the check matrix of quantum 
stabilizer code some necessary and/or sufficient conditions for the 
stabilizer code over GF(2) is degenerate or nondegenerate were 
presented for Pauli channel. A new way to find the minimum distance 
of quantum stabilizer codes based on their check matrices was also 
presented, and followed from which we proved that the performance 
of degenerate quantum code are outperform (at least have the same 
performance as) nondegenerate quantum code for Pauli channel. We 
hope that these results will helpful for design quantum degenerate 
codes [11],[12] with good performance. 

II. PRELIMINARY 
The commutator and anti-commutator[1] of the operator A and the 

operator B are [A,B] =AB-BA and {A, B} =AB+BA respectively. If [A, 
B] =0, then the operator A and the operator B are said to commute. If 
{A, B} =0, then A and B are said to anticommute. 

Four extremely useful matrices called Pauli matrices with their 
corresponding notations are described following: 

1 0 0 1 1 0 0
, , ,

0 1 1 0 0 1 0
　

i
I X Z Y

i

−
= = = =

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

from which we see that [X, Y] =2iZ, [Y, Z] =2iX, [Z, X] =2iY. 
The Pauli group 1G  on 1 qubit is the matrix group consisting all of 

the Pauli matrices I, X, Y, Z, together with multiplicative 
factors 1, i± ± , i.e.,  

1 { , , , , , , , }G I iI X iX Y iY Z iZ= ± ± ± ± ± ± ± ±  

The Pauli group nG on n-qubit is the group generated by the 

operators described above applied to each of n qubits in the tensor 

product Hilbert space 2n

C ,  
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{ } { }
1 2 ,
, , , , 0,1,2,3n

c
n

j

G g
g i g g g
g I X Z Y c

=
⎧ ⎫= ⊗ ⊗ ⊗⎪ ⎪
⎨ ⎬

∈ ∈⎪ ⎪⎩ ⎭
, 

where 1i = − . 
It follows from the definition of the Pauli group that if , nA B G∈ ，

then [ , ] 0A B = or { , } 0A B = . Since Y= iZX, so any element of 

nG can be denoted as ( )
1

j j
n

a bc

j
g i X Z

=
= ⊗ ⋅ , where 2,i ja b F∈ . 

A homomorphism from nG onto 2
2

nF  defined as 

                                2
2: n

nG Fϕ                            (1) 

that is, ( ) ( ) ( ) ( )( )X Z
g g gϕ α β ϕ ϕ= , where 

( )
1

j j
n

a bc
n

j
g i X Z G

=
= ⊗ ⋅ ∈ , { }0,1, 2,3c ∈ ， 

1 2( , , , )na a aα = and 1 2 2( , , , ) n
nb b b Fβ = ∈ . 

It follows from the above definition that the Pauli matrices I, X, Y, Z 
can be mapped to the following binary 
vectors:

( ) (0 | 0), ( ) (1 | 0), ( ) (0 |1), ( ) (1 |1)I X Z Yϕ ϕ ϕ ϕ= = = = . 

An isomorphism from 2
2

nF onto nG  define as: 

               { }
2

2: , 1,
n nn n

GF G G iϕ′ = ± ±             (2) 

that is, ( )( ) ( )
1

j j
n

a b

j
X Zϕ α β

=
′ = ⊗ ⋅ . 

For example, ( ) (1001101 0011011)iXIZYXZYϕ = and 

(1001101 0011011) XIZYXZYϕ′ = . 

Let ng G∈ , such that 

( )( ) ( ) | ( )X Zg g gϕ ϕ ϕ= , then the quantum weight of g, 

written ( )Qw g , is the number of components that is not I, that is 

( ) ( ( ) ) ( ( ) ) ( ( ) ( ) )Q X Z X Zw g w g w g w g gϕ ϕ ϕ ϕ= + − ⋅  

where w(u) is the Hamming weight of u and“.”is the inner product. 

The symplectic weight of a vector ( )1 2|v v v= , where 

1 2 2, nv v F∈ , written ( )sw v , is  

1 2 1 2( ) ( ) ( ) ( )sw v w v w v w v v= + − ⋅ . 

As a result, ( )( )( )Q sw g w gϕ= . 

Let { }
1 2
, , ,

n k
M M M

−
are the generators of the stabilizer S, 

where i nM G∈  (1 )i n k≤ ≤ − , H is an ( ) 2n k n− ×  matrix 

over GF(2) whose rows contains the vectors 
( ) ( ) ( )1 2, , , n kM M Mϕ ϕ ϕ − , that is, 

                    

( )

( )
[ ]

1

 X Z

n k

M

H H H

M

ϕ

ϕ −

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                (3) 

H is called the check matrix[1] of S. 

III. ERROR SYNDROME 

Suppose 1 2, , , n kS M M M −=  is the stabilizer of a 

quantum stabilizer code ( )C S .  Let the encoded state φ  was 

suffered from some inference denoted nE G∈  during transmitting 

on a noisy channel which transmitted the encoded state to 

Eφ φ′ = (say). The error detection can be done by simply 

measure the generators of the stabilizer, as shown in    Figure 1 [1]. It 
will give us a list of eigenvalues, the error syndrome, which will tell us 
whether the error E commutes or anticommutes with each of the 
generators. 

From figure 1 we see that if [ ], 0iE M = , then 0is = ; if 

{ }, 0iE M = , then 1is = . 

  The vector ( )1 2
2, , , n k n k

E E E Es s s s F− −= ∈  represents the 

error syndrome of the error nE G∈ , where if , 0jE M⎡ ⎤ =⎣ ⎦ , 

then 0j
Es = ; if{ }, 0jE M = , then 1j

Es =  where, 1, 2, ,j n k= − . 

The operator ( 1) ( )i n iI X I⊗ − ⊗ −⊗ ⊗  denotes the bit-flip error on 

the i-th qubit, written iX , i.e., ( 1) ( )i n i
iX I X I⊗ − ⊗ −= ⊗ ⊗ , then 

the error syndrome of iX  is ( )1 2
2, , ,

i i i i

n k n k
X X X Xs s s s F− −= ∈ . 

Set the rows of Xs to be
1 2
, , ,

nX X Xs s s , then 

the ( )n n k× − matrix 

( )

1 1 1 1

2 2 2 2

1 2

1 2

2

1 2
n n n n

n k
X X X X

n k
X X X X n n k

X

n k
X X X X

s s s s
s s s s

s F

s s s s

−

−
× −

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ∈⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

is called the bit-flip error syndrome matrix(BSM). 
More generally, if the bit-flip errors happen to multiple qubits, 

written
1

vX

n
ac

X v
v

E i X
=

= ∏ , where { }0,1, 2,3Xc ∈ , 2va F∈ . 

Suppose [ ]1 2 2, , , n
na a a a F= ∈ , if 1va = , then a bit-flip error 

happens to the v-th qubit; if 0va = , then no error happens to the v-th 

qubit. Since  

0

0

0

φ′ φ′

1s

2s

n ks −

}
n

Fig. 1.  Syndrome measurement. 
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( )

( )

( )

1

1

1

1

1

1

            ( 1)

            ( 1)

            ( 1)

vX

j
n Xn v nX

n
j

u Xu
u vX

n
j

u Xu
u

n
ac

X j v j
v

na s a ac
v j n

v

na s
ac

j v
v

a s

j X

E M i X M

i X M X

M i X

M E

=

=

=

−⋅

=

⋅

=

⋅

⋅ = ⋅

= − ⋅ ⋅

∑
= − ⋅

∑
= − ⋅

∏

∏

∏
 

Let
1 2 2, , ,

n

Tj j j j n
X X X Xs s s s F⎡ ⎤= ∈⎣ ⎦ , then 

( )
1

X u

n
j j j

E u X X
u

s a s a s
=

= ⋅ = ⋅∑  

Therefore, the error syndrome of
1

vX

n
ac

X v
v

E i X
=

= ∏ is 

1 2, , ,
X

n k
E X X X Xs a s a s a s a s−⎡ ⎤= ⋅ ⋅ ⋅ = ⋅⎣ ⎦              (4) 

It follows from Eq (4) that the error syndrome 
XEs of any 

error
1

vX

n
ac

X v
v

E i X
=

= ∏  can be expressed as a linear combination of 

the error syndrome
vXs of ( 1, 2, , )vX v n= . 

The operator ( 1) ( ) (1 )i n i
iZ I Z I i n⊗ − ⊗ −= ⊗ ⊗ ≤ ≤  denotes 

the phase-flip error on the i-th qubit. Similarly, the matrix 

( )

1 1 1

2 2 2

1 2

1 2

2

1 2
n n n

n k
Z Z Z

n k
Z Z Z n n k

Z

n k
Z Z Z

s s s

s s s
s F

s s s

−

−
× −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where if , 0i jZ M⎡ ⎤ =⎣ ⎦  then 0
i

j
Zs = and if { }, 0i jZ M =  

then 1
i

j
Zs = , 1, 2, ,i n= , 1, 2, ,j n k= − , is called the 

phase-flip error syndrome matrix (PSM). 
If the phase-flip errors happen to multiple qubits, that 

is
1

lZ

n
bc

Z l
l

E i Z
=

= ∏ , where { }2 , 0,1,2,3l Zb F c∈ ∈ . 

Let [ ]1 2 2, , , n
nb b b b F= ∈ , Similarly, the error syndrome of 

1

lZ

n
bc

Z l
l

E i Z
=

= ∏ is 

1 2, , ,
Z

n k
E Z Z Z Zs b s b s b s b s−⎡ ⎤= ⋅ ⋅ ⋅ = ⋅⎣ ⎦  

From which we see that the error syndrome 
ZEs of any 

error
1

lZ

n
bc

Z l
l

E i Z
=

= ∏ can be expressed as a linear combination of 

the error syndrome
lZs of ( 1, 2, , )lZ l n= . 

Suppose ( 1) ( )m n m
mY I Y I⊗ − ⊗ −= ⊗ ⊗ (1 m n≤ ≤ ) which is 

the case of that two kinds of errors (bit-flip and phase-flip) happened 
contemporarily on the m-th qubit. Since Y=iZX, so 

                            m m mY iZ X= ⋅                             (5) 

It follows from Eq (5) that an arbitrary error P nE G∈  can be 

expressed as 

1 1

v lP

n n
a bc

P v l
v l

E i X Z
= =

= ⋅∏ ∏  

where { }2, , 0,1, 2,3v l Pa b F c∈ ∈ . Let [ ]1 2, , , na a a a=  

and [ ]1 2 2, , , n
nb b b b F= ∈ , such that 

1 1

1 1

1 1

           ( 1)

           ( 1)

           ( 1)

v lP

j
v lZ P

j j
v lZ X P

j j
Z X

n n
a bc

P j v l j
v l

n n
b s a bc

v j l
v l

n n
b s a s a bc

j v l
v l

b s a s
j P

E M i X Z M

i X M Z

M i X Z

M E

= =

⋅

= =

⋅ + ⋅

= =

⋅ + ⋅

⋅ = ⋅ ⋅

= − ⋅ ⋅

⎛ ⎞
= − ⋅ ⋅⎜ ⎟

⎝ ⎠

= − ⋅

∏ ∏

∏ ∏

∏ ∏
 

Then 

P

j j j
E X Zs a s b s= ⋅ + ⋅  

Therefore，the error syndrome of 
1 1

v lP

n n
a bc

P v l
v l

E i X Z
= =

= ⋅∏ ∏  is 

( )
( ) ( )

1 1 2 2

1 2 1 2

, , ,

, , , , , ,
P

n k n k
E X Z X Z X Z

n k n k
X X X Z Z Z

X Z

s a s b s a s b s a s b s

a s a s a s b s b s b s

a s b s

− −

− −

= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

= ⋅ + ⋅

     (6) 

It follows from Eq (6) that the error syndrome 
PEs of any 

error P nE G∈  can be expressed as a linear combination of the error 

syndrome
lZs of ( 1, 2, , )lZ l n= and the error syndrome

vXs of 

( 1, 2, , )vX v n= . 

Remarkably, suitable error syndrome measurements would 
collapse an arbitrary error (including coherent superpositions of 
bit-flip and phase-flip errors) into the discrete set of only bit-flip 
and/or phase-flip errors, because it can be expressed as a superposition 
of basis operations—the error basis (which is here given by the Pauli 
matrices). And these discrete Pauli errors can be easily reversed to 
recover the original state. So, it only has to find out the error 
syndromes of the bit-flip error (1 )vX v n≤ ≤ and the phase-flip 

error (1 )lZ l n≤ ≤  on 1-qubit, and then the error syndrome of an 

arbitrary error can be expressed in terms of the columns of the bit-flip 
error syndrome matrix and the phase-flip error syndrome matrix 
according to Eq (6). 

From previous analysis we knew that the errors in the 
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set { },s sE iE± ± can be mapped to the same error 

syndrome 2
n ks F −∈ , since from an observational point of view the 

quantum states corrupted by the errors with different global phase 
factor are identical. For this reason we may ignore the global phase 
factors as being irrelevant to the observed properties of the physical 
system and having no affect to the recovery. In the rest of the article 

we will only consider the errors in nG . 

IV. ANALYZE THE ERROR SYNDROME OF STABILIZER CODES 

Suppose ( )C S is a stabilizer code with 

stabilizer 1 2, , , n kS M M M −=  whose check matrix 

is ( ) 2 X Zn k nH H H− × = ⎡ ⎤⎣ ⎦ . Whether a bit-flip error iX commutes 

with or anticommutes with jM dependent on whether or not the i-th 

component of jM is Z or Y. If jiM Z= or Y, then{ }, 0i jX M = , 

otherwise , 0i jX M⎡ ⎤ =⎣ ⎦ . It follows from Eq (3) that the syndrome 

of the bit-flip error in the i-th qubit, (1 )iX i n≤ ≤ , corresponds to 

the n+i-th column of H which is also the i-th column of the 
sub-matrix ZH . Similarly, the syndrome of the phase-flip error in the 

i-th qubit, (1 )iZ i n≤ ≤ , corresponds to the i-th column of H which 

is also the i-th column of the sub-matrix XH . That is, 

,( )( 1) ( 1)j n i j n iM H
i j j i j iX M M X M Xϕ + += − = −             (7) 

     
( )( 1) ( 1)j i jiM H

i j j i j iZ M M Z M Zϕ= − = −                (8) 

where ( )j i
Mϕ is the i-th component of the 2n-dimentional binary 

vector ( )jMϕ  and jiH  is the element at row j, column i of matrix 

H,1 ,1 2j n k i n≤ ≤ − ≤ ≤ . It follows from (7) and (8) that, for a 

stabilizer code ( )C S the error syndromes of iX  and iZ are 

         ( )1, 2, ,, , ,
iX n i n i n k n is H H H+ + − +=  

                 ( )1 2 ,, , ,
iZ i i n k is H H H −=  

where ,i

j
X j n is H += and

i

j
Z jis H= . 

Let

( ) ( )1 2 1 2|    |    n n
X Z X X X Z Z ZH H H H H H H H H= =  

where (1 )i
XH i n≤ ≤  is the i-th column of XH and 

(1 )i
ZH i n≤ ≤ is the i-th column of ZH . Then 

( )
i

Ti
X Zs H= , ( )

i

Ti
Z Xs H=  

The following theorem now follows easily after the discussion 
above. 
Theorem 1. If the check matrix of a stabilizer code ( )C S  is 

( )|X ZH H , then T
X Zs H=  and T

Z Xs H= . 

Therefore, the error syndrome of an arbitrary error nE G∈  can be 
expressed in terms of the columns of the check matrix, i.e.,  

( )
( )

( )

   ( ) ( )

   ( ) ( )

T

E Z X

T

X Z Z X

T T
X Z Z X

s E H H

E E H H

E H E H

ϕ

ϕ ϕ

ϕ ϕ

= Λ ⎡ ⎤⎣ ⎦

= ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= +

 

where
0

0
n

n

I
I

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦
and ( ) ( ) ( )X ZE E Eϕ ϕ ϕ= ⎡ ⎤⎣ ⎦ . 

It has come to light that the error-detection and recovery of the 
classical codes are totally dependent on their parity check matrices. 
Theorem 1 makes a connection between the error syndrome matrices 
(BSM and PSM) and the check matrix of the stabilizer code. Thereby, 
expressing the error syndrome as a linearly combination of the 
columns of BSM and PSM is transformed into expressing it as a 
linearly combination of the columns of the check matrix. So, the 
error-detection and recovery of the quantum stabilizer codes are also 
totally dependent on their check matrices, which is similar to the 
classical case. Therefore, the error-detection and recovery schemes 
and techniques of the classical codes can be applied to quantum 
stabilizer codes easily. 

V. IS A STABILIZER CODE DEGENERATE OR NONDEGENERATE? 
In this section we describe some necessary and/or sufficient 

conditions for a stabilizer code over GF(2) is degenerate or 
nondegenerate based on its check matrix for Pauli channel which can 
also be applied to depolarization channel.  

Strictly speaking, degeneracy is not a property of a quantum code 
alone, but a property of a code together with a family of errors it is 
designed to correct [5]. Here we will show a definition of degenerate 
and nondegenerate stabilizer codes for Pauli channel.  

Let ( ){ }| |n t n QG g G w g t= ∈ ≤ , consider a mapping 

from |n tG to 2
2

nF : 

| 2: n k
n tf G F −  

that is, for |n tg G∀ ∈ , ( )1 2 2( ) , , n k
n kf g v v v F −

−= ∈, . If 

[ ], 0ig M = then 0iv = , if { }, 0ig M = then 1iv = . If f is 

nonsingular ， we say that the stabilizer codes with parameters 

, , 2 1n k t +  and , , 2 2n k t +  are nondegenerate, otherwise, 

they are degenerate. 
In the rest of this section we only discuss the stabilizer codes with 

parameters , , 2 1n k t + , and all the conclusions can also be 

applied to stabilizer codes with parameters , , 2 1n k t + .  

Lemma 1.  If the set of vectors { }1 2 2, , , mv a a a=  is linearly 

independent, then the sum of any set of m vectors of v are different 
from each other. 

Proof: suppose the vectors
21

, , ,
mi i ia a a and the 

vectors
1 2
, , ,

mj j ja a a , where 
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{ } { }1 2 1 2, , , , , ,m mi i i j j j m∩ < , satisfy 

1 1
k l

m m

k i l j
k l

c a c a
= =

′=∑ ∑ , with 1pc = and { }, 0,1k lc c′ ∈  

Then, we have
1 1

0
k l

m m

k i l j
k l

c a c b
= =

′+ =∑ ∑ . Thus v is fails to be 

linearly independent. Therefore, we produce a contradiction.  
□ 

Theorem 2. Let [ ] 2( )
|X Z n n k

H H
× −

be a check matrix such that any 

4t columns linearly independent, then the stabilizer code 

C(S)=[[n,k,2t+1]] with check matrix[ ]|X ZH H is nondegenerate. 

Proof: Since C(S) is nondegenerate if (and only if) for 

arbitrary |1 2, n tE E G∈ and 1 2E E≠ , they satisfy 
1 2E Es s≠ . We 

will perform two steps in order to prove the theorem. 
(i) Let us assume as before that 

( ) ( )1 2 1 2|    |    n n
X Z X X X Z Z ZH H H H H H H H= , 

assume further that ,m pv is the sum of the 1 2th, th, , thmi i i  

columns of XH and the 1 2th, th, , thpj j j columns of ZH . 

That is , 2
1 1

a b

pm
i j n k

m p X Z
a b

v H H F −

= =

= + ∈∑ ∑ . Since any 4t  

columns of [ ]|X ZH H  are linearly independent, it follows from 

lemma 1 that if m and p satisfy1 2m p t≤ + ≤ , then we will get 

different ,m pv  with respect to different 

sets{ }1 2, , , mi i i and{ }1 2, , , pj j j .  

(ii) Let 

 ( ) ( ) 2
1 2 1 2 1 2 2{ , , , } |{ , , , } n

p mu u u j j j i i i F= = ∈ , 

where 1u  and 2 2
nu F∈ , { }1 2, , , mi i i  and { }1 2, , , pj j j  

are supports of 1u and 2u respectively. Therefore 

( )( )
( ) ( )

,
1 1

1 2 2      

a b

pm TTi j
m p X Z Z X

a b
T n kT T

Z X

v H H u H H

u H u H F

= =

−

= + =

= + ∈

∑ ∑
 

It follows from Eq (2) that, the operator corresponding to u is 

2 1

1 1 1 1

( ) k l

a b

pn n m
u u
k l i j

k l a b

E u Z X Z Xϕ
= = = =

′= = ⋅ = ⋅∏ ∏ ∏ ∏  

So, the error syndrome of E , Es , is ( ),

T

m pv . 

If the sets { }1 2, , , mi i i and { }1 2, , , nj j j satisfy the 

following conditions: 
0 , ,1 2m p t m p t≤ ≤ ≤ + ≤ and 

{ } { }1 2 1 2, , , , , ,m pi i i j j j t∪ ≤  

then, 1 20 ( ), ( )w u w u t≤ ≤ and 1 21 ( )w u u t≤ ⋅ ≤ . 

Therefore, 1 2 1 2( ) ( ) ( ) ( )Qw E w u w u w u u t= + − ⋅ ≤ . 

It follows from Eq (2) that, if we pick different columns from 

[ ]|X ZH H which corresponds to different sets { }1 2, , , mi i i  

and { }1 2, , , pj j j , then they will correspond to different 

error |n tE G∈ . 
Finally, combining (i) and (ii) we get that the stabilizer code C(S) is 

nondegenerate.                                 □ 
Note that the reverse of theorem 2 is generally not true. That is, 

there would exist a set of 4t linearly dependent columns of 

[ ] 2( )
|X Z n n k

H H
× −

 even if the stabilizer code with parameters 

[[n,k,2t+1]] is nondegenerate. Because if the 4t linearly dependent 
columns satisfy the following conditions: 

0 , 4m p t≤ ≤ , { } { }1 2 1 2, , , , , , 4m pi i i j j j t+ = and

{ } { }1 1, , , , 2m pt i i j j t< ∩ < . 

Then, at least one of the two corresponding errors that have the 
same error syndrome has quantum weight lager than t, which does not 
violate the definition of nondegenerate code. 

We have the following corollary. 
Corollary 1. if the stabilizer code C(S)=[[n,k,2t+1]] is nondegenerate, 

then any 2t columns of its check matrix [ ]|X ZH H are linearly 

independent. 
Proof: Suppose the 1 2th, th, , thmi i i columns of XH and the 

1 2th, th, , thpj j j columns of ZH are linearly dependent, 

where 1 2, , , mi i i and { }1 2, , , 1,2, ,pj j j n∈  and they 

satisfy the conditions 0 , 2m p t≤ ≤  and 

{ } { }1 2 1 2, , , , , , 2m pi i i j j j t+ = . Then  

                  ,
1 1

0a b

pm
i j

m p X Z
a b

v H H
= =

= + =∑ ∑              (9) 

Pick a subset{ }1 2
, , ,

ak k ki i i from { }1 2, , , mi i i with a elements 

and a subset { }1 2
, , ,

bl l lj j j from { }1 2, , , pj j j with b 

elements, where a+b=t. Let 

,
1 1

l kc d

b a

a b j i
c d

E X Z
= =

= ⋅∏ ∏  

{ } { } { } { }1 2 1 21 2 1 2

,
, , , , , , , , , , , ,p l l l m k k kb a

m a p b c d
c j j j j j j d i i i i i i

E X Z− −
∈ − ∈ −

= ⋅∏ ∏  

Then, ( ),Q a bw E t≤ , ( ),Q m a p bw E t− − ≤  

It follows from Eq (9) that, ,a bE and ,m a p bE − − possess the same 

error syndrome. Therefore, we produce a contradiction. 
□ 

The theorem 2 and corollary 1 are the sufficient condition and 
necessary condition for stabilizer codes to be nondegenerate 
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respectively. We have the following theorem that describes a 
necessary and sufficient condition for a stabilizer code to be 
nondegenerate.  
Theorem 3.  A stabilizer code C=[[n,k,2t+1]] is nondegenernate if and 
only if the number of elements in the set  

( ) { }
{ } { }

1 2 1 21 1

1 2 1 2

0 ,0
, , , , , , , 1, 2, ,

0 , , , , , ,

a b
m pi j

X Z m pa b

m p

m t p t
H H i i i j j j n

i i i j j j t
= =

⎧ ⎫
≤ ≤ ≤ ≤⎪ ⎪

⎪ ⎪+ ∈⎨ ⎬
⎪ ⎪

< ∪ ≤⎪ ⎪⎩ ⎭

∑ ∑

is
1

3
t

i

i

n
i=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ or
0 1

2 2t jt

j l

n n j
j l

−

= =

⎛ − ⎞⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ . 

Proof: (a) For Pauli channel, a stabilizer code C is nondegenerate if 
(and only if) the different errors in its correctible error set 

{ }|n tG I− are mapped to different error syndromes. Since the 

number of elements in { }|n tG I−  is { }|
1

3
t

i
n t

i

n
G I

i=

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
∑ . 

Let E is an arbitrary operator of { }|n tG I−  and suppose 

( ) ( )1 2 1 2( ) | |n nE u v u u u v v vϕ = =  with 

1 2
1

mi i iu u u= = = =  and
1 2

1
pj j jv v v= = = = , 

where { }1 1, , , , , 1, 2, ,m pi i j j n∈ . Then, 1 2, , , mi i i  

and 1 2, , , pj j j satisfy the following conditions 

0 ,m p t≤ ≤ , { } { }1 2 1 20 , , , , , ,m pi i i j j j t< ∪ ≤ . 

Thus 

{ } ( )
{ }

( ) { } { }( )
( )( )

1 1

|

1 1

0 , 0

, , , , , 1, 2, ,
( | )

| , , , ,

1 |

m p

n t

p m

s

m t p t

i i j j n
G I u v

u v j j i i

w u v t

ϕ

≤ ≤ ≤ ≤

∈
′− =

=

≤ ≤

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

The error syndrome of E is T T
E Z Xs uH vH= + . Then, the error 

syndromes of the errors in { }|n tG I−  are 

( ) { }
{ } { }

1 2 1 21 1

1 2 1 2

0 , 0

, , , , , , , 1, 2, ,

0 , , , , , ,

a b

Tm pi j

X Z m pa b

m p

m t p t

A H H i i i j j j n

i i i j j j t
= =

≤ ≤ ≤ ≤

= + ∈

< ∪ ≤

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

∑ ∑  

The number of elements in A satisfies 

            
0 1

2 2t jt

A
j l

n n j
n

j l

−

= =

⎛ − ⎞⎛ ⎞ ⎛ ⎞
≤ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑                  (10) 

If the different errors in { }|n tG I− are mapped to different error 

syndromes, then  

{ }|
0 1

2 2t jt

n t A
j l

n n j
G I n

j l

−

= =

⎛ − ⎞⎛ ⎞ ⎛ ⎞
− = = ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑  

(b) Conversely, it follows from Eq (10) that, if the number of elements 

in A is 
0 1

2 2t jt

j l

n n j
j l

−

= =

⎛ − ⎞⎛ ⎞ ⎛ ⎞
⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ , then for any element v A∈ , 

we can find a unique pair of 1 2, , , mi i i  and 1 2, , , pj j j  such 

that 
1 1

a b
m pi jT

X Za b
v H H

= =
= +∑ ∑ . So the error mapped to the 

error syndrome v is { } { }( )( )1 2 1 2, , , , , ,p mE j j j i i iϕ′= . 

Because the set A contains all the vectors that corresponding to pairs 
of 1 2, , , mi i i  and 1 2, , , pj j j  which satisfy 

{ }( ) { }( )( )1 2 1 21 , , , , , ,s m mw j j j i i i t≤ ≤ . Thereby, the 

collection of the errors E that corresponding to pairs of 1 2, , , mi i i  

and 1 2, , , pj j j is { }|n tG I− . Finally, C is a nondegenerate code.                   

□ 
By theorem 2, we have the following corollary. 

Corollary 2. Let H be a check matrix such that any 4t columns are 
linearly independent, but there exists a set of 4t linearly dependent 
columns, then the stabilizer code C(S) defined by H has the minimum 
distance 2 1d t≥ + . If C(S) is nondegenerate, then its minimum 
distance satisfies 2 1 4 1t d t+ ≤ ≤ + . 

Proof: The minimum distance of C(S) is the quantum weight of the 
element in N(S)-S with the minimum quantum weight, where N(S) is 
the normalizer of S. Without lost of generality, suppose the 

1 2th, th, , thmi i i columns of XH and the 

1 2th, th, , thpj j j columns of ZH are linearly dependent, 

i.e., ,
1 1

0a b

pm
i j

m p X Z
a b

v H H
= =

= + =∑ ∑ . Then, we have , 0m p ≥  

and 4 1m p t+ ≥ + . Let us assume as before 

that { } { }( )( )1 2 1 2, , , , , ,p mE j j j i i iϕ′= , 

then ( )E N S∈ and 

( ) { } { }( )( )1 2 1 2, , , , , , 2 1Q s p mw E w j j j i i i t= ≥ +  

Let us consider the case with m + p = 4t+1: 

Case (i): If { } { }1 2 1 2, , , , , , 2p mj j j i i i t∩ = , then 

( ) 2 1Qw E t= + ; 

 if { } { }1 2 1 2, , , , , , 2p mj j j i i i t∩ < , then 

( ) 2 1Qw E t> + . 

Case (ii): If { } { }1 2 1 2, , , , , , 0m pi i i j j j∩ = , then 

( ) 4 1Qw E t= + ;  

if { } { }1 2 1 2, , , , , , 0m pi i i j j j∩ > , then 

( ) 4 1Qw E t< + . 
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It follows from case (i) that ( ) 2 1Qw E t> + . Then we 

have 2 1d t≥ + . 
If C(S) is nondegenerate, then  

{ } { }min ( ) | ( ) min ( ) |Q Qw e e N S S w e e S′∈ − ≤ ∈ . 

From which we see that 4 1d t≤ + . Combining case (i) and case (ii), 
we get 2 1 4 1t d t+ ≤ ≤ + .                                     □ 

It is easy to see that some sequence of elementary row 
transformations and column permutation will transform the check 
matrix H into the following standard form [3]: 

                                  - -                     - -         

1 2        { I A A B 0 C
{ 0 0 0 D I E

r n k r k r n k r k

r

X Z
n r k

R R R
− −

⎡ ⎤
= = ⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦
 

From which we see that the stabilizer code RC with check matrix R 

is isomorphic to the stabilizer code , , 2 1HC n k t= + with check 

matrix H. Therefore, HC is nondegenerate if (and only if) RC is 

nondegenerate. Thus, to demonstrate that RC  is nondegenerate it 

only has to show that HC is nondegenerate.  

Theorem 4. If r = n - k and there exists a column of B with Hamming 
weight less than or equal to t-1, then RC is degenerate. 

Proof: Follows from theorem 2.                                             □ 
CSS codes are a special kind of stabilizer codes with the check 

matrix of the following form:  

0
0X Z

A
H H H

B
⎡ ⎤

= ⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎣ ⎦

 

It is easy to see that, none of the columns of XH can be expressed 

as a linear combination of the columns of ZH . Therefore, by theorem 

2, we have the following corollary. 
Corollary 3.  The CSS code C= [[n,k,2t+1]] is nondegenerate if and 
only if any 2t columns of XH and ZH are linearly independent 

respectively. 
Proof: The condition is clearly sufficient. Then we will prove that it 

is necessary. Without lost of generality, suppose the 

1 2 1 2th, th, , th, th, th, , tht ti i i j j j  columns of XH  are 

linearly dependent, then we have
1 1

0a b
t ti j

X Xa b
H H

= =
+ =∑ ∑ . 

Let the errors 1E and 2E  be define as 

1
1

k

t

i
k

E Z
=

= ∏ and 2
1

k

t

j
k

E Z
=

= ∏  respectively. 

Thus, ( ) ( )1 2Q Qw E w E t= = . It is easy to see that 

1 1
a

t iT
E Xa

s H
=

= ∑ and
2 1

b
t jT

E Xb
s H

=
= ∑ . Thus, 1E and 2E  have 

the same error syndrome. Therefore, we produce a contradiction.                                                                          
□ 
Corollary 4. Let H be a check matrix such that any 2t columns are 
linearly independent, but there exist a set of 2t linearly dependent 
columns, then the CSS code C defined by H has the minimum 

distance 2 1d t≥ + . If C is nondegenerate, then its minimum 
distance is d = 2t +1. 

Proof: Our corollary follows from theorem 2 and corollary 3. 
□ 

The above assertion is similar to the classical case that the 
minimum distance of a classical linear code is determined by its parity 
check matrix, since that the CSS codes detect and correct quantum 
errors by making use of the error-correcting properties of the classical 
codes. 

We know from corollary 2 and corollary 4 that the degenerate 
quantum stabilizer codes outperform the nondegenerate quantum 
stabilizer codes which had proved in reference [5]. 

VI. CONCLUSION 
We have presented some necessary and/or sufficient conditions for 

a stabilizer code over GF(2) is degenerate or nondegenerate for Pauli 
channel. It would be interesting to investigate the necessary and/or 
sufficient conditions for a stabilizer code over GF(q) is degenerate or 
nondegenerate. It would be also interesting to investigate the 
necessary and/or sufficient conditions for a stabilizer code over GF(q) 
is degenerate or nondegenerate for other quantum channels. It already 
proved that all CSS codes with alphabet size q>4, where q is a prime 
power, must obey the Hamming bound [13]. Some special cases of 
interest are stabilizer codes and CSS codes over a nonprime power 
alphabet and small alphabet q <5. We hope our work will helpful for 
solving this problem and for design quantum degenerate codes with 
good performance.  
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