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1.Introduction.

It is well known that the Laplace operator appears in many places of physical as
well as of mathematical problems. Especially in quantum mechanics the dynamics
of any physical system is described by the three dimensional Schrodinger
equation [1,2]

Ap(r)+2mE-V(r)l(F)=0 (1)

In the most interesting physical problems the central potential V(F) =V (F|) =V (r)

is frequently encountered, therefore reduction to the one-dimensional (radial)
equation is the wide-spread procedure.

The traditional way is the application of the substitution (F')=R(r)Y,"(6,¢),

where Y,"(6,¢) is the spherical harmonics and because of the continuity and
uniqueness, orbital quantum numbers I are integers,

@ Corresponding author. Phone: 011+995-98-54-47 ; E-mail address:
teimuraz.nadareishvili@tsu.ge


mailto:teimuraz.nadareishvili@tsu.ge
mailto:teimuraz.nadareishvili@tsu.ge

| =0,2,..., whereasm=|l|,...,|. After this substitution angular variables are
separated and we are left to the equation for the full radial function R(r)

d’R 2dR 0+1) o _
= +?E+2m[E—V(r)]R—r—2R—O (2)

It is traditional trick in quantum mechanics to avoid the first derivative term
from this equation by substitution

R(F) = @ @3)

after which a naive calculation gives the equation for the new radial wave function
u(r)in the form
2
D) D) amfe v btr) =0 @

Just this equation plays an important role in quantum mechanics since its birth.
However, as is clarified in recent years, there is an ambiguity in derivation of
boundary condition for u(r) at the originr =0, especially in case of singular
potentials [3-5].

According to this reason many authors content themselves by consideration only
a square integrability of radial function and do not pay attention to its behavior at
the origin. Of course, this is permissible mathematically and the strong theory of
linear differential operators allows for such approach [6-8]. There appears so-
called Self-Adjoint Extended (SAE) physics [9], in the framework of which
among physically reasonable solutions one encounters also many curious results,
such as bound states in case of repulsive potential [10] and so on. We think that
these highly unphysical results are caused by the fact that without suitable
boundary condition at the origin a functional domain for radial Schrodinger
Hamiltonian is not restricted correctly [11].

Careful investigation, performed below, shows that the validity of radial
equation (4) is not correctly established. Indeed, it is physically (and
mathematically, of course) warranted that the equation obtained after separation of
variables, must be compatible with the primary equation. It is necessary condition
for the correctness of a separation procedure.

2. Rigorousderivation of radial equation.

In case of reduction of Laplace operator the transition from Cartesian to
spherical coordinates is not unambiguous, because the Jacobean of this
transformation [12] J=r’sing IS singular at r=>0
and @ = n;z(n: 0,1,2,...) Angular part is fixed by the requirement of continuity and

uniqueness. This gives the unique spherical harmonics Y,”‘(G, (0) mentioned above.

Note that in the reduction of Laplace operator usually is pointed out that r > 0.
However 1 =0is an ordinary point in full Schrodinger equation (1), but it is a
point of singularity in the reduction of variables. Thus, the knowledge of specific
boundary behavior is necessary. We underline that the equation (2) is correct, but
the substitution (3) enhances singularity at r=0 and may cause some
misunderstandings.

Indeed, let us rewrite the full radial equation (2) after this substitution
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dr dr

We write equation in this form deliberately, indicating action of radial part of
Laplacian on relevant factors explicitly. It seems that the first derivatives of u(r)
cancelled and we are faced to the following equation

%(dzlﬁjw[iiij[r} '('”) + 2m(E V(1)) =0 (6)

dr dr? rdr r?

Now if we differentiate the second term “naively”, we’ll derive zero. But it is true
only in case, when r = 0. However, below we show that in general this term is
proportional to the 3-dimensional delta function. Indeed, taking into account

that,

2

d 2d ii(rzijzAr (7)
dr r dr dr dr

is the radial part of the Laplace operator and therefore [13]

A, Gj = A(Ej = —475%)(F) (8)

r r

we obtain the equation for u(r)

2
1{_ dufr) , 10 tl)u(r)}+47z5(3)(F) u(r)-2mE-vr]) o ()
r dr r r

We see that there appears the extra delta-function term. It’s presence in the
radial equation is physically nonsense and must be eliminated. Note that when
r =0, this extra term vanishes owing to the property of the delta function and if,
in this case, we multiply this equation on r, we’ll obtain the ordinary radial
equation (4).

However if r =0, multiplication on r is not permissible and this extra term
remains in Eq. (9). Therefore one has to investigate this term separately and find
another ways to abandon it.

The term with 3-dimensional delta-function must be comprehended as being

integrated over d®r =r2dr sin &déde . On the other hand [13]
57(e)= 5 o6)le) (10)

Taking into account all the above mentioned relations, one is convinced that
extra term still survives, but now in the one-dimensional form

u(r)s®(F) > u(r)s(r) (11)

Its appearance as a point-like source breaks many fundamental principles of
physics, which is not desirable. The only reasonable way to remove this term



without modifying Laplace operator or including compensating delta function
term in the potential V(r), IS to impose the requirement

u(0)=0 (12)

(note, that multiplication of Eqg. (9) on r and then elimination this extra term
owing the property r5(r)= 0 is not legitimated procedure, because effectively it
is equivalent to multiplication on zero).

Therefore we conclude that the radial equation (4) for u(r) is compatible with

the full Schrodinger equation (1) if and only if the condition u(0)= 0 is fulfilled.

The radial equation (4) supplemented by the condition (12) is equivalent to the
full Schrodinger equation (1). It is in accordance with the Dirac requirement [2],
that the solutions of the radial equation must be compatible with the full
Schrodinger equation. It is remarkable to see that the supplementary condition
(12) has a form of boundary condition at the origin.

3. Comments, some applications and conclusions

Some comments are in order here: equation for R(r) = u(r)/r has its usual
form (2). Derivation of boundary behavior from this equation is as problematic as
for u(r) from Eq. (4). Problem with delta function arises only in the course of
elimination of the first derivative. Now, after the condition (12) is established, it
follows that the full wave function R(r) is less singular at the origin thanr™.
Though, this conclusion could be hasty because the transition to Eq. (4) for R(r)
IS not necessary. It is also remarkable to note that the boundary condition (12) is
valid whether potential is regular or singular. It is only consequence of particular
transformation of Laplacian. Different potentials can only determine the specific
way of u(r) tending to zero at the origin and the delta function arises in the

reduction of the Laplace operator every time. All of these statements can easily be
verified also by explicit integration of Eq. (9) over a small sphere with radius a
tending it to zero at the end of calculations.

It seems very curious that this fact was unnoticed up by physicists till now in
spite of numerous discussions [14].

Apparently mathematicians knew about singular behavior of Laplace operator
for a long time. But their results did not find a relevant representation in physical
literature, while the delta function became popular after Dirac. Therefore the fact,
described above, seems to us as being very curious.

We discuss another important point with regard to radial Laplacian. It is well
known from some books on special functions that there is the following operator

relation [13]
1d(,d 1d?
A =——|r2 = |==—"—(r- 13

' rzdr( drj rdrz() (13)

Here the dot denotes the action of this expression on some function. The validity of
this relation is easily verified by direct calculation. But this equality fails at point
r =0. Indeed, let us act by both sides on the full radial function R(r):

1d(,drR) 1d° 1d?
S e =22 (IR)= - — 14
r? dr(r dr j r dr? (R) rdr? ur) (14)



Exactly this relation is used in mathematical literature for special functions [15].
If it will be true everywhere then there does not appear any problem in derivation of
the radial equation. But now we know that after substitution of R(r)=u(r)/r on

the left-hand side it follows

1 d(,du) 1d° .

——|r—=\|== —475(r u 15

rzdr[ drrj r dr? 7o (r) (1)
Therefore previous operator equality must be modified perhaps as follows

1d(,d) 1d° (3)(+

——| = |==—r )= 4z (r)r - 16

rzdr[ dr) rdrz( )= 4757 (7) (16)

This relation is correct at every point including the origin. Validity of this relation
may be checked by acting on R(r) and using substitution (3).

The relation u(O): 0 is not only the boundary condition for the radial equation,
but it is relation which must be necessarily fulfilled in order to have the radial
equation in its usual form compatible to the full Schrodinger equation.
Accidentally it has a boundary condition form. Without this condition the radial
equation is not valid.

Now, that this condition has been established, many problems can be considered
rigorously by taking it into account. Remarkably, all the results obtained earlier for
regular potentials with the boundary condition (12) remain unchanged. In the most
textbooks on quantum mechanics r — 0 behavior is obtained from Eqg. (4) in case
of regular potentials. When equation like (4) is known, the derivation of boundary
behavior from it is almost trivial procedure. It depends on the behavior of potential
under consideration.

But we have shown that this equation takes place only together with boundary
condition (12). On the other hand, for singular potentials this condition will have
far-reaching implications. Many authors neglected boundary condition entirely and
were satisfied only by square integrability. But this treatment, after leakage into the
forbidden regions and through a self-adjoint extension procedure, sometimes yields
curious unphysical results. Below we consider some simple consequences, showing
the differences, which arise with and without above mentioned condition:

(i) Regular potentials at the origin:
limr2V(r)=0 (17)

r—0

In this case, after substitution at the origin  u~r?, it follows from indicial

equation, that a(a—1)=I( +1), which gives two solutions u ~c;r'™ +c,r (see,
r—0

any textbooks on quantum mechanics). For non-zero | -s the second solution is not

square integrable and is ignored usually. But for | =0, many authors discuss how to

deal with this solution [16], which is also square integrable at origin. According to

condition (12), this solution must be ignored. It is in accordance with the suggestion

of A.Messiah [17].
(i) Transitive attractive singular potentials at the origin:

Iingrzv(r)z -V, =congt; V,>0 (18)

In this case, the indicial equation takes form  a(a-1)=I(1 +1)—2mV,, which has
two solutions: a=1/2+ /(1 +1/2)° — 2mV,, . Therefore
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1+P E*P 1 2
U ~cr2 +cyr2 ; P= (|+—j —2mV, (19)
r—0 2

It seems, that both solutions are square integrable at originas longas 0 < P <1.
Exactly this range is studied in most papers (see for example [10]), whereas
according to boundary condition (12) we have 0<P<1/2. The difference is
essential. Indeed, the radial equation has form
2
u”—Pr—21/4u+2mEu:O (20)

Depending on whether P exceeds 1/2 or not, the sing in front of the fraction
changes and one can derive attraction in case of repulsive potential and vice versa.
Boundary condition (12) avoids this unphysical region 1/2 <P <1.

Lastly, we note that the same holds for radial reduction of the Klein-Gordon
equation, because in three dimensions it has the following form

(a+m l(F)=[E-V(r )Py () (21)

and the reduction of variables in spherical coordinates will proceed to absolutely
same direction as in Schrodinger equation. Interesting enough, that something like
was considered in classical electrodynamics [18, 19].

k ko

We want to thank Profs. John Chkareuli, Sasha Kvinikhidze and Parmen
Margvelashvili for valuable discussions. One of us (A.Kh.) is indebted to thank
Prof. Boris Arbuzov for reading the manuscript.

REFERENCES

1. SCHIFF L., Quantum Mechanics. Third Edition, (MC.Graw-Hill Book Company,

New York-Toronto-London)1968.

2. DIRAC P.A.M., The Principles of Quantum Mechanics. Fourth Edition, (Univ.

Press, Oxford) 1958.

3. CASE K., Phys. Rev, 80 (1950) 797.

4. FRANK W.M ., LAND D.J. and SPECTOR R.M., Rev. Mod. Phys,43 (1971) 36.

5.NEWTON R., Scattering Theory of Waves and Particles.Second Edition,
(Springer-Verlag, New York, Heidelberg and Berlin) 1982, p.391.

6. AKHIEZER N. and GLAZMAN I., Theory of Linear Operators in the Hilbert Space.

(Dover Publications,Inc., 31 East 2™ Street Mineola N.Y. USA) 1993.

7. KATO T., Perturbation Theory for Linear Operators. Second Edition. (Springer-

Verlag, Berlin and Heidelberg ) 1995.

8. KATO T., Trans. Am.Math.Soc,70 (1951) 195.

9.GIRI P., GUPTA K., MELJANAC S. and SAMSAROV A., Phys. Lett. A, 372 (2008)

2967.

10.FALOMIR H., MUSCHIETTI M.A. and PISANI P.A., J.Math. Phys. 45 (2004) 4560.

11. NADAREISHVILI T. and KHELASHVILI A., arXiv:0903.0234 (2009).

12. COURANT R., Partial Differential Equations .(New York-London) 1962.

13.JACSON J.D., Classical Electrodynamics.Third Edition.(John Wiley &Sons. Inc, New

York-London) 1999, p.120.

14. See, any textbook on quantum mechanics.

15. NIKIFOROV A.F. and UVAROV V.B. Secial functions of mathematical physics. a

unified introduction with applications. (Boston: Birkhauser) 1988.

6



16. JORDAN T.F., Am.J.Phys. 44 (1976) 567.

17. MESSIAH A, Quantum mechanics. Two Volumes Bound as One.(Dover
Publications) 1999.

18. GSPONER A., Eur.J.Phys. 28 (2007) 267.

19. TANGHERLINI F.R ., Nuovo Cim.26 (1962) 497.



