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Functional renormalization group for quantized anharmonic oscillator
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Functional renormalization group methods formulated in the real-time formalism are applied to
the O(N) symmetric quantum anharmonic oscillator, considered as a 0 + 1 dimensional quantum
field-theoric model, in the next-to-leading order of the gradient expansion of the one- and two-
particle irreducible effective action. The infrared scaling laws and the sensitivity-matrix analysis
show the existence of only a single, symmetric phase. The field-independent term of the wavefunction
renormalization turned out to be negligible, but its field-dependent piece is noticeable. It is shown
that the infrared limits of the running couplings depend on the renormalization group scheme used,
when the perturbation expansion in the bare quartic coupling is truncated keeping the terms up to
the second order.

PACS numbers: 11.10.Gh,11.10.Hi,03.65.-w

I. INTRODUCTION

Our main goal in this paper is to investigate the role of wave-function renormalization in the quantum properties of
the quartic anharmonic oscillator considering it as a 0(space)+1(time)-dimensional quantum field-theoric model, and
applying various internal space renormalization group (RG) schemes to the one- (1PI) and two-particle irreducible
(2PI) effective actions in the truncated gradient expansion which goes beyond the local potential approximation (LPA)
with the incorporation of wave-function renormalization terms. In that sense it is a continuation of the work presented
in [1]. On the one hand, we apply a Callan-Symanzik (CS) type internal space (IS) RG scheme to the 1PI effective
action, where an imaginary mass parameter serves as the control parameter of the RG evolution. On the other hand,
another IS RG scheme is applied to the 2PI effective action, where the bare quartic coupling gB represents the control
parameter. In both cases, the gradient expansion is used keeping the wavefunction renormalization with, and the
local potential is truncated beyond its quartic term. The results obtained in the framework of various RG schemes in
the second-order perturbation expansion in the coupling gB are also compared.
The quantized anharmonic oscillator is an elementary toy model representing a building block of more sophisticated

and/or realistic models finding several physical applications. Let us mention a few of them without pretending to
completeness. The investigation of quantum properties of nanomechanical oscillators has became of interest in order
to understand the quantum behaviour of nanodevices [2]. The statistical physical properties of chains of anharmonic
oscillators, that of a one-dimensional Ginzburg-Landau system with quartic anharmonicities is of great interest in solid
state physics. 2- and 3-dimensional aggregates of such chains describe anisotropic anharmonic solids (e.g. ultrathin
ferroelectric films). Putting such systems in inhomogeneous external field enables one to manipulate individual
monomers, making such films very attractive for molecular electronics [3]. 1-dimensional Ginzburg -Landau systems
are very often investigated by means of the transfer matrix method in which the evaluation of the free energy of an
N + 1 dimensional classical system is equivalent to the evaluation of the ground state energy of an N -dimensional
quantum system, the so-called dual counterpart of the classical system. In general this dual problem is solved to
understand its classical counterpart [4], [5]. Another field where the anharmonic oscillator model has got application
is the study of the quantum physics of systems showing up chaotic behaviour classically, ie. the study of quantum
chaos [6], [7], [8]. Also the possibility of quantum effects induced chaos has recently been debated on the problem of
the quantized Duffing oscillator [9].
These widespreading possibilities of its applications explain the efforts to understand the quantum physics of the

anharmonic oscillator in all detail and to invent various theoretical tools for its investigation. Already in the pioneering
works [10],[11] it has been pointed out that the Rayleigh-Schrödinger perturbation series for the ground state energy
of the quartic anharmonic oscillator diverges. Since then much efforts have been made to overcome that problem
and determine the eigenvalues and eigenfunctions of the anharmonic oscillator by various methods like the strong-
coupling expansion [12], the integration of operator differential equations [13], multi-scale perturbation theory [14],
variational methods [15], iterative Bogoliubov transformations [16], the eigenvalue moment method [17], the improved
Hill-determinant method [18], the optimized perturbation expansion [19], a particular iterative method based on the
generalized Bloch-equation [20], the auxiliary field method combined with loop expansion [21], as well as the quantum
computational method [22]. A class of non-perturbative approaches is based on various RG methods [23–25] including
functional RG methods [26, 27], [1] which treat the quantum mechanical problem as a 0 + 1 dimensional quantum
field-theoric one.
The RG method has been basically developed for the purposes of describing phase transitions and critical behaviour
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in statistical physics and very soon extended to investigate quantum field-theoric models. The RG strategy has been
aimed to monitor the Green functions of the elementary field variable when the quantum fluctuation modes are turned
on gradually [28]. While in the original version of the RG method a finite fraction of modes are turned on in each
blocking steps and one generally relies on the perturbation expansion in bookkeeping the change of the dynamics, the
functional RG methods [29]-[32] turn on an infinitesimal fraction of modes in the subsequent blocking steps. Such an
approach is accompanied with the usage of infinitely many vertices. The manipulation of a high number of couplings
is carried out through their generating functional for which one obtains an exact RG equation looking like a one-loop
equation. In order to solve that one has to project it to a suitably chosen functional subspace, e.g. by means of
the truncated gradient expansion, but that seems to be a physically better motivated approximation scheme than
the truncation of the perturbation expansion. The functional RG strategy has been developed for the 1PI effective
action [31], [32] with gliding momentum cut-off. According to the original RG idea one organized the quantum
fluctuations according to their wavelengths or momentum, ie. according to their properties in the external space.
A natural generalization came when such an ordering has achieved according to their internal-space characteristics,
the largeness of their amplitudes. That step has been done by developing the functional generalization of the CS
equation [33] where the mass parameter is evolved [34] and the modes of the quantum fluctuations are turned on in
the order of their increasing amplitudes. The CS RG scheme and the functional RG schemes with gliding momentum
cut-off give similar scaling laws in the leading order in the UV scaling regime where the cutoff is the only scale
parameter, but approaching the IR scaling regime the cut-off dependence and the mass-dependence may differ due
to the occurring of additional physical scales. A further generalization of the CS RG strategy is called IS RG [35],
when any of the parameters of the model can be used as control parameter and evolving it gradually one arrives at a
functional RG evolution equation for the 1PI effective action. One should mention that all IS RG schemes including
the CS RG compare various theories belonging to the gradually altering values of the control parameter, while the
RG schemes with gliding momentum cut-off provide true scaling laws for a given theory. So long the suppression
term generating the IS RG evolution is quadratic, the evolution equation contains one-loop integrals. But it can be
rather complicated when the suppression term is not quadratic in the elementary field variable since the excitations
described by the higher-loop integrals appearing in the evolution equation have rather complicated structure in single-
particle terms. That problem can be overcome applying the internal space RG to the generating functional of some
composite operator of the elementary field, in which the suppression term is again quadratic. In particular, in the
case of a suppression term being quartic in the elementary field variable, one may apply the RG method to the 2PI
effective action [35], the generating functional of 2PI 2-particle correlation functions [36, 37]. That method has the
advantage that all expressions are formally ultraviolet (UV) finite until the generally UV divergent loop integrals are
made explicit making an Ansatz for the parametrization of the one-particle Green function in whose terms those are
expressed.
As mentioned above, various functional RG methods have been recently used and proved to be powerful nonper-

turbative tools in treating the problem of the quantum anharmonic oscillator. In [26] the effective average action
RG scheme [31] and in [27] the Wegner-Houghton (WH) RG method [29] have been applied to the one-dimensional
quantum oscillator with quartic anharmonicity in order to determine the energy of the ground state and that of the
gap between the first excited state and the ground state and both have been found to increase strictly monotonically
with increasing bare quartic coupling gB. It has also been thoroughly discussed that even for a symmetric double-well
bare potential there exists a unique ground state, so that the quantum anharmonic oscillator exhibits only a single
phase. In the WH RG approach one integrates out the high-frequency modes of quantum fluctuations in infinitesimal
steps above the gliding sharp momentum cut-off k. The method has the disadvantage that it disables one to go
beyond the lowest order of the gradient expansion, the so-called LPA which has also been used in [27]. Although the
effective average action method allows for taking into account wave-function renormalization terms in the gradient
expansion, it has not been aimed in [26]. In [1] the functional RG method has been applied to the 1PI effective
action for single-particle quantum mechanics using the sharp gliding momentum cut-off as control parameter of the
evolution. Truncating the expansion of the 1PI effective action at quartic terms, RG flow equations for the 1PI two-
and four-point vertex functions have been derived. As an example of applications, the energy of the ground state and
that of the first excited state have been determined numerically. The momentum-dependence of the proper self-energy
has been taken with, but the role of wave-function renormalization has not been analysed directly. The authors found
in accordance with the finding in [27] that the Lehman-expansion of the propagator is dominated by the single pole
corresponding to the first excited state that hints on the negligible role of the wavefunction renormalization. Our pur-
pose is to analyse the role of wavefunction renormalization more thoroughly in terms of two different IS RG schemes,
the CS type one (CSi) with the imaginary mass as control parameter and another one (ISg) with the quartic coupling
as control parameter.
First, we shall apply the CSi RG scheme to the O(N)-symmetric generalization of the one-dimensional quartic

oscillator considering the oscillator coordinate q = (q1, . . . , qN ) an O(N) vector in the internal space. Due to O(N)

symmetry the anharmonic potential can only depend on powers of the O(N) scalar q2 =
∑N

a=1 q
2
a = qaqa. O(N)
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symmetry couples any one-dimensional oscillator qa (a = 1, 2, . . . , N) of the system to all of the others in a rather
particular manner even if we restrict ourselves to a quartic potential, as we shall do throughout this work. We shall
derive the functional CSi RG equation for the 1PI effective action, Γ[q] being the generating functional of the 1PI
Green functions of the elementary field variable q. In the right-hand side of the evolution equation the inverse matrix
under the trace shall be Neumann-expanded in its off-diagonal piece and the terms up to the quadratic ones in the
latter only kept. The solution of that truncated evolution equation shall be looked for in the next-to-leading order of
the gradient expansion, including field-dependent wavefunction renormalization besides the local potential. In the case
of quartic self-interaction the field-independent wavefunction renormalization emerges as a two-loop effect, therefore
the way to generate it by an essentially one-loop evolution equation opens via including field-dependent wavefunction
renormalization terms, as well. We shall take with only the quartic ones of those. The RG evolution of the couplings
and their IR values are then numerically investigated in the function of the dimension N of the oscillator. One should
notice that the truncations used may lead to erroneous results for sufficiently large dimension N and bare coupling
gB [38]. We shall conclude that the O(N) symmetric anharmonic oscillator with any dimension N exhibits a single
phase and the IR couplings including those of the wavefunction renormalization depend smoothly of the dimension
N .
At second, we apply the ISg RG scheme to the second Legendre-transform of the generating functional of connected

Green-functions of the bi-local composite operator qtqt′ , to the 2PI effective action Γ[G] that is the functional of
the single-particle propagator G. According to our results obtained in the CSi RG scheme no qualitative changes
occur with increasing dimension N in the trivial phase structure and the IR scaling laws of the anharmonic oscillator.
Therefore we shall restrict our further discussion to the simple anharmonic oscillator with a single degree of freedom
in the internal space, ie. with N = 1. The 2PI effective action Γ[G] takes its minimum at the propagator for the
ground state and its value at that minimum determines the energy of the ground state. Parameters of the wave-
function renormalization and the excitation energy of the first excited state can be read of from the propagator of the
ground state. The renormalized coupling of the quartic term of the potential is determined via the second functional
derivative of the effective action Γ[G] at the ground state, the two-particle propagator of the vacuum in quantum
field-theoric terms. The RG evolution equation for the 2PI effective action shall be derived and solved with an Ansatz
keeping the terms up to the quadratic ones in the 2-particle propagator, called expansion in the 2-particle channel
(E2PC). Finally we shall compare the results obtained in second order of the bare coupling gB by means of the CSi
and the ISg RG schemes, as well as with other results taken from the literature. The dependence of the contributions
of the order O

(

g2B
)

on the RG schemes used shall be demonstrated.
The structure of the paper is as follows. Sect. II contains the derivation of the CSi RG evolution equation for the

1PI effective action for the O(N) symmetric anharmonic oscillator, the derivation of the coupled set of RG equations
for the running couplings present in the truncated gradient expansion of the effective action, and the comparison of
the numerical solutions obtained in the independent mode approximation (IMA), the LPA, and the approximation
including wavefunction renormalization (AWF). The existence of only a single phase is stressed by discussing the
sensitivity of the IR couplings to their bare values, as well. Sect. III starts with the derivation of the RG evolution
equation for the 2PI effective action for the one-component (N = 1) quartic anharmonic oscillator, that is followed
by the solutions first in the IMA, and afterwards in the truncated E2PC. Finally, the results for the various couplings
are determined keeping the terms up to the order O

(

g2B
)

and compared with the results obtained in the CSi RG
scheme in second order perturbation expansion, as described in Appendix A3, with the WH RG scheme in the same
approximation shortly outlined in Appendix B and the well-known results of the Rayleigh-Schrödinger perturbation
expansion (RS PE). In Sect. IV the conclusions are drawn. The details of the derivation of CSi RG evolution equations
are given in Appendix A1, the loop integrals needed in both schemes are given in Appendix A 2. Appendix B presents
a short derivation of the WH RG equation for a one-dimensional quantum mechanical system and its application to
the anharmonic oscillator in the second order of the perturbation expansion.

II. CSI RG FOR THE N-DIMENSIONAL OSCILLATOR

A. RG equations

In the Euclidean formulation of the quantum field-theoric models the CS RG scheme is realized by evolving the mass
as a control parameter from above the UV momentum cut-off Λ towards its physical value continuously. The evolution
accounts for the quantum fluctuations gradually according to their increasing amplitude. Here we realize the similar
RG procedure in the real-time formulation by introducing an evolving imaginary mass as control parameter which
vanishes in the IR limit. Euclidean flow equations being easier to manage numerically are then obtained by analytic
continuation of the control parameter. The advantage of the real-time approach is that the path integral remains
well-defined even for a quantum system with double-well potential, ie. for negative values of the bare parameter
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ω2
0 . Nevertheless one does not expect any phase transition with analytic continuation of the ω2

0 parameter to the
negative real axis, since there emerges no spontaneous symmetry breaking in quantum mechanics. The large amplitude
quantum fluctuations fill up the potential wells and make it convex in the IR limit (c.f. with the findings in Refs.
[26, 27]).
The basic idea is that we introduce an imaginary part 1

2 iµ
2
∫

t q
2
t
into the quadratic term of the bare action SB[q],

in order to suppress the quantum fluctuations in the path integral for µ2 ≈ Λ2. The real control parameter µ2 is then
continuously decreased to zero. The imaginary quadratic part ensures the convergence of the path integral during the
whole evolution. The generator functional of the connected Green-functions of the elementary ‘field variable’ q

t
, the

time-dependent coordinate of the linear O(N) symmetric anharmonic oscillator is given as

SB[q] =

∫

t

(

1

2
q̇2 − 1

2
(ω2

0 − iµ2)q2 − gB
24

(q2)2
)

. (1)

For µ2 = µ2
B ≈ Λ2, the quantum fluctuations are frozen and they can be gradually ‘melted out’ when the control

parameter is decreased towards µ2 → 0. For the sake of simplicity the mass m of the oscillator is set to unity.

Throughout the paper we shall use the notations and conventions
∫

t =
∫ T/2

−T/2 dt, (T → ∞),
∫

ω =
∫ Λ

−Λ
dω
2π , (Λ →

∞),
∑N

a=1

∫

t
fa,tga,t = f · g, fa,ω =

∫

t
eiωtfa,t, Ī(a,t),(b,t′) = δa,bδt,t′ = δa,bδ(t − t′), Ī(a,ω),(b,ω′) = δa,bδω+ω′,0 =

δa,b
∫

t,t′ e
iωt+iω′t′δt,t′ , δω=0,0 = T , trA =

∑N
a=1

∫

t,t′ δt,t′A(a,t),(a,t′) = T
∑N

a=1

∫

ω A(a,ω),(a,−ω), and identical Latin

indices denote summation like faga =
∑N

a=1 faga. The generating functional of the connected Green-functions of the
elementary variable q

t
is defined via the path integral

e
i
~
W [j] =

∫

Dqe
i
~
SB [q]+ i

~
j·q (2)

in the presence of the time-local external source j
t
. The generating functional of the 1PI Green functions, the 1PI

effective action as the functional of the ground-state expectation value of the coordinate, qa,t = δW [j]/δja,t is defined
by the Legendre-transform

−Γ[q] = −W [j] + j · q (3)

for which ja,t = −δΓ[q]/δqa,t, and Γ(2) ·W (2) = −Ī where W (2) and Γ(2) stand for the second functional derivatives
of the functionals W [j] and Γ[q], respectively. In order to find the CS-type functional evolution equation, we evaluate

the partial derivative of the effective action with respect to the control parameter µ2,

∂µ2Γ[q] = +∂µ2W [j] = +e−
i
~
W [j]

∫

Dq

∫

t

1

2
iq2e

i
~
S[q]+ i

~
jq = +e−

i
~
W [j] 1

2
i

∫

t

δ2

δ i
~
ja,tδ

i
~
ja,t

e
i
~
W [j]

= +
1

2
i

∫

t

(

~

i

δ2W [j]

δja,tδja,t
+

δW [j]

δja,t

δW [j]

δja,t

)

= +
~

2

(

−trΓ(2) −1 +
i

~
q · q

)

. (4)

Now we introduce the reduced effective action Γ̄[q] with the relation Γ[q] = Γ̄[q]+1
2 iµ

2q · q in terms of which the
evolution equation takes the following form,

∂µ2 Γ̄[q] = −~

2
tr(Γ̄(2)[q]+iµ2)−1. (5)

We shall look for the solution of the evolution equation in the truncated gradient expansion by making use of the
Ansatz

Γ̄[q] = −Tγµ2 +
1

2

∫

ω

(xµ2ω2 − Ω2
µ2)q

ω
q
−ω

−
∫

ω1,...,ω4

vµ2 (ω1, ω2)δω1+...+ω4,0qa,ω1qa,ω2qb,ω3qb,ω4 (6)

with xµ2 for field-independent wave-function renormalization and

vµ2(ω1, ω2) =
1

2
ȳµ2ω1ω2 +

1

4
Ȳµ2(ω2

1 + ω2
2) +

g

24
= vµ2(ω2, ω1) = vµ2(−ω1,−ω2), (7)

where the first two terms stand for the field-dependent, quadratic wavefunction renormalization,

−
∫

t

(

1

2
ȳµ2q2q̇2 +

1

2
Ȳµ2q2(q̈q)

)

, (8)
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and the third term for the quartic self-interaction. Integrating by parts one finds

−
∫

t

q̈a,tqa,tqb,tqb,t =

∫

t

[q̇a,tq̇a,tqb,tqb,t + 2q̇a,tqa,tq̇b,tqb,t], (9)

so that one can perform the replacement ω2
1 ⇔ (ω1ω2+2ω1ω3) in the kernel of the last integral term in the right-hand

side of Eq. (6) and write

−
∫

t

(

1

2
ȳµ2q2q̇2 +

1

2
Ȳµ2q2(q̈q)

)

= −
∫

t

(

1

2
yµ2q2q̇2 +

1

2
Yµ2(q̇q)2

)

(10)

yµ2 = ȳµ2 − Ȳµ2 and Yµ2 = −2Ȳµ2 .
Let us separate off the diagonal piece Ḡ−1 and the off-diagonal piece A of the matrix

Γ̄(2)[q]+iµ2 = Ḡ−1 +A, (11)

where Ḡ(c,ω),(d,ω′) = Gωδc,dδω+ω′,0 with Gω = [xµ2ω2 − Ω2
µ2+iµ2]−1 and

A(c,ω),(d,ω′) = − δ2

δqc,−ωδqd,−ω′

∫

ω1,...,ω4

δω1+...+ω4,0vµ2(ω3, ω4)qa,ω1qa,ω2qb,ω3qb,ω4 = δc,dBω,ω′ + C̄(c,ω),(d,ω′) (12)

with

Bω,ω′ = −2

∫

ω1,ω2

δ−ω−ω′+ω1+ω2,0[vµ2(ω1, ω2) + vµ2(ω, ω′)]qa,ω1qa,ω2 = Bω′,ω,

C̄(c,ω),(d,ω′) = −4

∫

ω1,ω2

δ−ω−ω′+ω1+ω2,0[vµ2(ω1,−ω) + vµ2 (ω2,−ω′)]qc,ω1qd,ω2 = C̄(d,ω′),(c,ω). (13)

As to the next we Neumann-expand the inverse matrix in the right-hand side of the evolution equation (5), keeping
the terms up to the second order in the off-diagonal piece,

−~

2
tr[Ḡ−1 +A]−1 = −~

2
tr[Ḡ− ḠAḠ+ ḠAḠAḠ−+ . . .]

= −N~

2

∫

ω

Gω +
~

2

∫

ω

G2
ωA(a,ω),(a,−ω) −

~

2

∫

ω,ω′

G2
ωA(c,ω),(d,ω′)Gω′A(d,−ω′),(c,−ω) −+ . . . (14)

It is worthwhile noticing here that for N = 1 the terms for field-dependent wavefunction renormalization given in
Eqs. (8) or (10) merge into a single one,

−
∫

ω1,...,ω4

δω1+...+ω4,0
1

2
Υµ2ω1ω2qω1qω2qω3qω4 (15)

with Υµ2 = ȳµ2 − 3Ȳµ2 . It is illuminating to give the graphical representation of the first few terms of the Neumann-
expansion in the functional CSi equation (5) for the case N = 1, shown in Fig. 1.
The details of the evaluation of the integrals in the right-hand side of Eq. (5) are given in Appendix A1. In addition

to the truncation of the Neumann-expansion we have expanded each term of the Neumann-series in powers of the
Fourier-transform qa,ω of the field variable as well as in powers of its frequency index ω and neglected the higher-order
terms absent in Ansatz (6). In order to perform the expansion in the frequency (i.e. in the time-derivative of the field
variable) we used the expansion of the propagator,

Gω+α = Gω − 2xµ2ωG2
ωα− [1− 4xµ2ω2Gω]xµ2G2

ωα
2 +O

(

α3
)

. (16)

Furthermore, we have to make use of identity (9) in order to transform all derivative terms into one of the forms present
in Ansatz (6). The truncation the Neumann-expansion and that of the gradient expansion may lead to erroneous
results in the IR scaling regime for sufficiently strong coupling gB and/or large number N of dimensions. The steps
described above enable one to express the trace in the right-hand side of the evolution equation (5) in terms of the
loop integrals

In,s(µ
2,Ω2

µ2) = ~

∫ Λ

−Λ

dω

2π
Gn

ωω
s (17)
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∫

qdω =
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FIG. 1: Feynman diagrams for the vertices and the right-hand side of the evolution equation in CSi RG for the N = 1
dimensional oscillator.

and find the evolution equation

−T∂µ2γµ2 +
1

2

∫

ω1

(∂µ2xµ2ω2
1 − ∂µ2Ω2

µ2)qa,ω1qa,−ω1

−
∫

ω1,...,ω4

δω1+...+ω4,0

(

1

2
∂µ2 ȳµ2ω1ω2 +

1

2
∂µ2 Ȳµ2ω2

1 +
1

24
∂µ2g

)

qa,ω1qa,ω2qb,ω3qb,ω4

= −TN

2
I1,0 +

1

2
[Nȳµ2 − (N + 2)Ȳµ2 ]I2,0

∫

ω1

ω2
1qa,ω1qa,−ω1

+
1

2

(

[Nȳµ2 − (N + 2)Ȳµ2 ]I2,2 −
(N + 2)gµ2

6
I2,0

)
∫

ω1

qa,ω1qa,−ω1 + T1 + T2 + T3 (18)

where the purely quartic terms Ti (i = 1, 2, 3) are given by Eqs. (A9)-(A11). In the limit Λ → ∞ the loop-integrals
can be taken analytically, and all expressed in terms of a few ones, In,0 with n = 1, 2, 3, 4, (see Appendix A2).
Comparing the coefficients of the corresponding terms of the gradient expansion in both sides of Eq. (18), one arrives
at the RG evolution equations for the couplings in the our approximation, called previously AWF,

∂µ2γ =
N

2
I1,0, (19)
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∂µ2Ω2 = −[Nȳ − (N + 2)Ȳ ]I2,2 +
(N + 2)g

6
I2,0, (20)

∂µ2g = 12[Nȳ2 + 2(N + 2)ȳȲ + (N + 8)Ȳ 2]I3,4 − 4g[(N + 2)ȳ − (N + 8)Ȳ ]I3,2 +
(N + 8)g2

3
I3,0, (21)

∂µ2x = [Nȳ − (N + 2)Ȳ ]I2,0, (22)

∂µ2 ȳ = 8x2[Nȳ2 − 2(N + 2)ȳȲ + (N + 2)Ȳ 2]I5,6 −
8(N + 2)g

3
x2(ȳ − Ȳ )I5,4 +

2(N + 2)g2

9
x2I5,2

−10x[Nȳ2 − 2(N + 2)ȳȲ + (N + 2)Ȳ 2]I4,4 + 2(N + 2)gx(ȳ − Ȳ )I4,2 −
(N + 2)g2

18
xI4,0

+4[−2ȳ2 − (N + 2)ȳȲ + (N + 2)Ȳ 2]I3,2 +
(N + 2)g

3
(ȳ + Ȳ )I3,0, (23)

∂µ2 Ȳ = 8x2[Nȳ2 − 2(N + 2)ȳȲ + (N + 6)Ȳ 2]I5,6 −
8g

3
x2[(N + 2)ȳ − (N + 6)Ȳ ]I5,4 +

2(N + 6)g2

9
x2I5,2

−10x[Nȳ2 − 2(N + 2)ȳȲ + (N + 6)Ȳ 2]I4,4 + 2gx[(N + 2)ȳ − (N + 6)Ȳ ]I4,2 −
(N + 6)g2

18
xI4,0

+[2Nȳ2 − 8(N + 3)ȳȲ + (6N + 40)Ȳ 2]I3,2 −
2g

3
[2ȳ − (N + 7)Ȳ ]I3,0. (24)

For the sake of simplicity, we have suppressed the lower index µ2 of the running couplings. The loop-integrals
occurring in these equations are UV finite except of I1,0, so that the IR limits of all couplings can be determined
for Λ → ∞ with exception of the constant term of the 1PI effective action determining the energy of the ground
state. The x-dependence of the right-hand sides of the evolution equations is partly explicit, partly implicit occurring
via the propagators in the loop-integrals. The evolution of the field-independent wavefunction renormalization x is
generated via the evolution of the field-dependent wavefunction renormalization parametrized by ȳ and Ȳ (c.f. Eq.
(22)) because those start to evolve already at the UV scales due to the terms containing the loop-integrals I5,2 and
I4,0 in the right-hand sides of Eqs. (23) and (24) even for vanishing bare values ȳB = ȲB = 0. The evolution equations
for the LPA can easily be obtained by setting x = 1 and ȳ = Ȳ = 0 identically. It is worthwhile noticing that the
analytic continuation of the RG equations to Euclidean space via the replacement −iµ2 → λ for real λ decreasing
from λB ≈ Λ2 towards the IR limit λ → 0 is rather suitable for the numerical treatment since the Euclidean RG flow
does not develop imaginary parts for the couplings.
For N = 1 only the single coupling Υ = ȳ − 3Ȳ for field-dependent wavefunction renormalization occurs and the

RG equations (19)-(24) reduce to the following ones,

∂µ2γ =
1

2
I1,0, (25)

∂µ2Ω2 = −ΥI2,2 +
1

2
gI2,0, (26)

∂µ2g = 12Υ2I3,4 − 12gΥI3,2 + 3g2I3,0, (27)

∂µ2x = ΥI2,0, (28)

∂µ2Υ = −16x2Υ2I5,6 + 16gx2ΥI5,4 − 4g2x2I5,2 + 20Υ2xI4,4 − 12gxΥI4,2 + g2xI4,0 − 14Υ2I3,2 + 5gΥI3,0. (29)

We see now for N = 1 that the parameter x starts to evolve in the UV scaling regime because of the parameter Υ
does due to the nonvanishing terms −4g2x2I5,2 + g2xI4,0 in the right-hand side of Eq. (29).
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B. Solution of the CSi RG equations

1. IMA

The IMA corresponds to the replacement of the running couplings by their bare values Ω2
B = ω2

0, gB, xB = 1,
ȳB = ȲB = 0 into the right-hand sides of the evolution equations (25)-(29). Making use of the loop integrals
of Appendix A2 in the limit Λ → ∞ and the analytic continuation to the Euclidean space via the replacement
λ = −iµ2, one can easily integrate Eqs. (25)-(29) from the initial scale λB → ∞ down to the gliding scale λ. The

UV divergence of the ground-state energy can be removed by the choice γB = 1
2N~[ω2

0 + λB]
1
2 . The UV scaling laws

obtained in that manner can then be extrapolated to the IR limit λ → 0:

γ0 =
1

2
N~ω0, Ω2

0 = ω2
0

[

1 +
4(N + 2)ξ

3

]

, g0 = gB

[

1− 2(N + 8)ξ

3

]

,

x0 = 1, ~ȳ0 = −4(N + 2)ω0ξ
2

9
, ~Ȳ0 = −4(N + 6)ω0ξ

2

9
, (30)

where the dimensionless parameter ξ = gB~

16ω3
0
of the Rayleigh-Schrödinger perturbation expansion [39] has been in-

troduced. We see that the one-loop corrections of the couplings depend linearly on the dimension N . The en-
ergy of the ground state E0 = γ0 = 1

2N~ω0 is just the sum of the zero-point energies of the number N of in-
dependent harmonic oscillators in this approximation, the one-loop result. The energy gap between the first ex-
cited state and the ground state, i.e. in field-theoric terms the minimum energy of the one-particle excitations,
E1 − E0 = ~

√

Ω2
0/x0 = ~ω0

√

1 + 4(N + 2)(ξ/3) increases with increasing bare coupling strength gB and number of
dimension N . The extrapolated IR value of the quartic coupling g0 decreases with its increasing gB and N in the
IMA. Although there occurs a field-dependent wavefunction renormalization of the order O

(

g2B
)

in the IMA, the
field-independent wavefunction renormalization is absent since it is a two-loop effect in the lowest nonvanishing order
of the loop expansion. The beta-functions do not change sign, so that one can conclude that the extrapolation of
the UV scaling laws to the IR region seems to predict only a single phase of the quantum oscillator independently of
its dimension N . However, restricting ourselves to that approximation, we would get in trouble with the change of
sign of g0 for sufficiently large gB and N , as well as with a continuation of these formulae to negative values of ω2

0

corresponding to a symmetric double-well bare potential.

2. Numerical integration of the CSi RG equations

The numerical integration of the RG equations (20)-(24) obtained in the CSi RG scheme in the AWF and analytically
continued to the Euclidean space has been performed by means of a fourth-order Runge-Kutta algorithm. In Figs.
2 and 3 the RG flow obtained in AWF is compared to RG flows obtained in the IMA and the LPA. (The latter is
obtained by setting x = 1, ȳ = Ȳ = 0 identically.) One can see, that the flows in the various approximations are
qualitatively the same, i.e. after the UV scaling region both the dimensionful frequency Ω2 and the quartic coupling
g saturate at constant values in the IR region. The UV scaling is described properly by all approximations, but they
give different values in the IR limit. The IMA corresponding to the one-loop approximation gives the largest value for
Ω2 and the smallest one for g. More reliable results are obtained in the LPA and AWF which resum infinitely many
Feynman diagrams. Both of the Figs. 2 and 3 clearly show that the inclusion of the wavefunction renormalization
modifies only slightly the evolution as compared to the LPA. This is a consequence of the fact that the pole of the
propagator, corresponding to the first excited state of the oscillator dominates in its Lehman-expansion, as discussed
in [27].
The flows in the AWF have common features that can be recognized from Figs. 2-5. Since the couplings ȳ and Ȳ

scale quite similarly, we have plotted their combination Υ into which they merge in the case of the one-dimensional
oscillator. After an UV scaling region extending roughly over three orders of magnitude of the scale parameter λ, the
flow saturates in the IR region for any of the dimensionful couplings, so that all couplings are IR relevant. Namely,
they tend to nonvanishing constant values in the IR limit and only a single phase is detected. The latter corresponds
to the general expectation because there is no room for spontaneous symmetry breaking in the 0 + 1 dimensional
quantum system.
It has been found that the flows for any of the couplings do not alter qualitatively with increasing N . That is

illustrated in Figs. 4 and 5 for the parameters of the wavefunction renormalization. The N -dependence of the various
couplings in the IR limit is depicted in Fig. 6 for the various parameters. In this respect the IMA turned out to be
misleading. According to the IMA the quantum fluctuations in the IR limit result in additive contributions to the
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FIG. 2: The flow of the frequency parameter Ω2 in different approximations, for Ω2
B = 0.00102, gB = 0.0001, xB = 1,

ȳB = ȲB = 0, and N = 1.
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FIG. 3: The flow of the quartic coupling g in different approximations, for Ω2
B = 0.00102, gB = 0.00001, xB = 1, ȳB = ȲB = 0,

and N = 1.

bare values of the couplings, which are linear in the dimension N , but the AWF gives completely different behavior.
We see in Fig. 6 that the parameter Ω2

0 shows up a powerlike dependence on N for sufficiently large dimensions,
Ω2

0 ∝ N bΩ with bΩ ≈ 0.58. In field-theoric terms the oscillator gets more ‘massive’ with increasing dimension N .
The coupling g0 depends rather weakly on N having a maximum at around N ≈ 30. The slow decrease for large N
values may be the consequence of the truncations used. The neglection of higher-order monomials in the gradient
expansion can cause a failure when one or both of the dimension N and the bare quartic coupling gB are too large.
It is easy to notice from the explicit form of the RG evolution equations in the IMA that the loop-expansion goes
effectively with NgB~ for large N , so that the higher-order terms of the local potential can grow up to the same order
of magnitude as the quadratic and quartic terms are when the flow reaches the border of the UV scaling region and
that may result in their saturation in the IR scaling region at values of the same order of magnitude, too. In Refs.
[26, 27] the authors take with the higher-order monoms of the local potential, as well. They have found that the
renormalized coupling g0 increases strictly monotonically with increasing bare parameter gB for the one-dimensional
oscillator. Similarly, g0 should increase with the dimension N of the oscillator also strictly monotonically, because
the the loop-expansion goes effectively with NgB for large N . As one can see in the inset of Fig. 6, the deviation
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FIG. 4: The scale dependence of x for Ω2

B = 0.001, gB = 0.01, and ȳ = Ȳ = 0. The order of the curves from the top correspond
to the various values N = 2, 10, 20, 50, 100, 200, respectively.
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B = 0.001, gB = 0.01, and ȳ = Ȳ = 0. The order of the curves from the top correspond
to the various values N = 1, 10, 20, 50, 100, 200, respectively.

x0 − 1 of the field-independent wavefunction renormalization parameter x0 from its bare value as well as the coupling
Υ0 of the field-dependent wavefunction renormalization go to zero according to the power laws, x0 − 1 ∼ N−bx and
Υ0 ∼ N−bΥ with bx ≈ 0.55 and bΥ ≈ 0.45, respectively for increasing N . Therefore the wavefunction renormalization
effects seem to be washed out in the limit N → ∞ because of the increment of the mass gap.
The dependence of the IR parameters on the bare ones can be characterized by the sensitivity matrix, which is

defined by

Ss1,s2(r) =
∂s1
∂s2

, (31)

where s1 = Ω2, g, x, Υ are the running couplings and s2 = Ω2
B, gB, xB , ΥB, and N are the bare parameters

and the dimension, respectively. The elements of the sensitivity matrix integrate the infinitesimal changes of the
infinitesimal blocking steps during the RG flow when the ratio r = λ/λB of the moving scale to the UV scale glides
from r = 1 to the IR limit r = 0. Therefore, their values in the IR limit, Ss1,s2(0) as characteristics of the global
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RG flow may show up singular dependences on the bare parameters, which may reveal themselves in qualitatively
different scale-dependences Ss1,s2(r) along the various RG trajectories started in various regions of the space of the
bare couplings [41]. Since the model in our case has a single symmetric phase, no such singularities are expected to
occur in the sensitivity matrix. This is demonstrated in Figs. 7 and 8, where the matrix elements SΩ2,N and SΩ2,Ω2

B

are shown to vary monotonically with decreasing scale λ. The flow of these matrix elements do not alter its character
with increasing N (illustrated in Fig. 7). The UV and the IR scaling regions are again clearly distinguishable and the
flow saturates in the IR region. The larger is the dimension N , the weaker is the sensitivity of the IR parameter Ω2

0

to the same small increment ∆N of the dimension.
Quite similarly, the character of the scale-dependences of SΩ2,N (r) and SΩ2,Ω2

B
(r) do not alter starting the RG

flow with various bare values Ω2
B (see Fig. 8), including also its negative values corresponding to a double-well bare

potential. This is another signal that the anharmonic oscillator exhibits only a single, symmetric phase. As it was
thoroughly discussed in [26, 27] the large-amplitude, low-momentum quantum fluctuations fill up the minima of the
double-well potential and one ends up with a convex potential and a unique ground state in the IR limit. It was also
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discussed that for sufficiently small bare quartic coupling the RG evolution equations show up singularities and one
has to take into account time-dependent saddle point configurations for evaluating the path integral, that has been
achieved by turning to an instanton gas approximation. In Fig. 9 we illustrate that the RG flow started with negative
parameter values Ω2

B < 0 ends up with some positive values Ω2
0 in the IR limit. We note that in our case the evolution

gets wrong for too large negative UV values of Ω2
B due to the strong truncation of the local potential in the ansatz (6).

As N is increased we get larger and larger IR frequency values Ω2
0 according to the power-law established previously.

Closing the discussion of the numerical results obtained in the CSi RG scheme, we can make an estimate of the
spatial extension of the ground-state wavefunction. As shown in the Appendix A4, the variance of the coordinate
operator q can be estimated by making use of the Thomas-Reiche-Kuhn sum rule [40] and the dominance of the first
pole in the Lehmann-expansion of the single-particle propagator [27]. With the help of the scaling of the renormalized
coupling with increasing dimension N established above, we get from (A37) that the variance scales as

〈0|q2|0〉 ≈ Nx3/2
~

2Ω
∼ N1− 1

2 bΩ ∼ N0.71. (32)
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This means that with increasing dimension N the quantum oscillator becomes more and more delocalized because of
the increasing the number of degrees of freedom faster than that of the ‘mass’, ie. the frequency Ω0 of the oscillator.

III. ISG RG FOR THE ONE-DIMENSIONAL OSCILLATOR

A. Evolution equations

Further on we shall restrict ourselves to the study of the one-dimensional anharmonic oscillator, since the scaling laws
for the N -dimensional anharmonic oscillator do not show up any significant qualitative modification in dependence
on the number of dimensions N according to our findings in the framework of the CSi RG scheme. Now we choose an
IS RG scheme in that the bare coupling gB of the anharmonic quartic interaction term acts as control parameter and
it is evolved from zero towards a final positive value. For the sake of simplicity, below we shall suppress its index and
denote the control parameter of the evolution simply by g. Here we apply the ISg RG scheme to the so-called second
Legendre-transform, the Legendre-transform of the generating functional W [J ] of the connected Green-functions of
the bilocal operator qtqt′ defined via the path integral

e
i
~
W [J] =

∫

Dqe
i
~

∫
t
[ 12 q̇

2− 1
2 (ω

2
0−iǫ)q2− g

24 q
4]+ i

~

1
2

∫
t,t′

qtJt,t′qt′ (33)

with the symmetric external bi-local source Jt,t′ = Jt′,t [35]. We have introduced the infinitesimal imaginary piece of
the quadratic term of the potential by the replacement ω2

0 → ω2
0 − iǫ in order to make the path integral convergent.

In the presence of the external source J the propagator G is given as

W
(1)
t,t′ =

δW [J ]

δ 1
2Jt,t′

= 〈T (qtqt′)〉 = Gt,t′ , W
(1)
ω,ω′ =

δW [J ]

δ 1
2J−ω,−ω′

= Gω,ω′ . (34)

The vanishing source J = 0 corresponds to the ground state with the propagator 〈T (qtqt′)〉J=0 = Ggr t,t′ . The second
Legendre-transform, the 2PI effective action Γ[G] is defined as

Γ[G] = −W [J ] +
1

2
tr(Gtr · J), (35)

and the relations

δΓ[G]

δGt,t′
=

1

2
Jt,t′ ,

δΓ[G]

δGω,ω′

=
1

2
J−ω,−ω′ (36)

hold. The symmetry of the source J implies the symmetry Gt,t′ = Gt′,t of the propagator. The second functional
derivatives satisfy the identity

I = W (2) : Γ(2), W (2) = Γ(2)−1I = Γ(2)−1 : I (37)

in shorthand notations with A : B =
∫

t,t′
A(.,.),(t,t′)B(t,t′),(.,.) =

∫

ω,ω′
A(.,.),(ω,ω′)B(−ω,−ω′),(.,.). For later convenience

we introduce the matrices I, L, and 11,

I(t3,t4),(t1,t2) =
1

2
(δt1,t3δt2,t4 + δt1,t4δt2,t3), I(ω3,ω4),(ω1,ω2) =

1

2
(δω1+ω3,0δω2+ω4,0 + δω1+ω4,0δω2+ω3,0),

L(t3,t4),(t1,t2) = δt1,t2δt1,t3δt1,t4 , L(ω3,ω4),(ω1,ω2) = δω1+ω2+ω3+ω4,0,

11(t3,t4),(t1,t2) = δt1,t3δt2,t4 , 11(ω3,ω4),(ω1,ω2) = δω1+ω3,0δω2+ω4,0. (38)

The matrix I acts over the two-particle (in field-theoric sense) subspace as the projector on the symmetrical subspace
(that of the two-particle states being symmetric under the exchange of the particles) and plays the role of the identity
operator in that subspace and L : I = L holds, while 11 represents the usual identity operator over the entire two-
particle subspace. The inverse A−1 of an arbitrary two-particle matrix A satisfies A−1 : A = 11, while for the inverse
A−1I = A−1 : I of the same matrix in the symmetrical subspace A−1I : A = I holds. Further on let us denote the
trace of an arbitrary two-particle matrix by TrA =

∫

t,t′
A(t,t′),(t,t′) =

∫

ω,ω′
A(ω,ω′),(−ω,−ω′).

The bare coupling g is turned on gradually from zero to some finite value in order to control the evolution of the
2PI effective action satisfying the following RG evolution equation,

∂gΓ[G] = −∂gW [J ] =
1

24
e−

i
~
W [J]

∫

Dq

∫

t

q4t e
i
~

∫
t
( 1
2 q̇

2− 1
2 (ω

2
0−iǫ)q2− g

24 q
4)+ i

~

1
2 q·J·q

=
1

24

(

~

i

)2[
i

~
Tr(L : W (2)) +

(

i

~

)2

W (1) : L : W (1)

]

=
1

24

~

i

[

Tr(L : Γ(2)−1I) +
i

~
G : L : G

]

. (39)
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Separating off the trivial term controlling the RG evolution, one can introduce the reduced 2PI effective action Γ̄[G]
via the relation

Γ[G] = Γ̄[G] +
g

24
G : L : G (40)

and recast Eq. (39) in the form

∂gΓ̄[G] =
1

24

~

i
Tr

[(

Γ̄(2)[G] +
g

12
L

)−1I

: L

]

. (41)

B. Solution of the evolution equation

1. IMA

In order to make a guess on the functional form of the reduced 2PI effective action Γ̄[G] for the linear quartic
oscillator, we evaluate it first in the tree-approximation, and solve the RG equation in the IMA. The tree-level
approximation corresponds to the vanishing value of the control parameter, g = 0, ie. the case of the linear harmonic
oscillator, for which the Gaussian path integral can be evaluated in a straightforward manner, yielding

W tree[J ] =
i~

2
tr ln[(ω2 − ω2

0 + iǫ)Ī + J ] (42)

and

Γtree[G] =
i~

2
tr lnG− 1

2
tr[(ω2 − ω2

0 + iǫ)Ī ·G] + const. = Γ̄tree[G] (43)

up to an UV divergent additive constant (being independent of the bare parameters). The necessary condition of
the extremum of the 2PI effective action in the tree-approximation, δΓ̄IMA[G]/δG = 0 provides the propagator in the
ground state of the linear harmonic oscillator,

Gtree
gr = +i~[(ω2 − ω2

0 + iǫ)]−1Ī (44)

as expected. The inverse of the noninteracting two-particle propagator is given via

Gtree−1I
(−ω3,−ω4),(−ω1,ω2)

[G] = Γ̄
tree(2)
(−ω1,−ω2),(−ω3,−ω4)

[G] = − i~

4
[G−1

−ω3,−ω1
G−1

−ω2,−ω4
+G−1

−ω3,−ω2
G−1

−ω1,−ω4
]. (45)

Hence one finds

Gtree
(ω3,ω4),(ω1,ω2)

[G] =
i

~
(Gω3,ω1Gω4,ω2 +Gω4,ω1Gω3,ω2) (46)

that we write as Gtree = i
~
(GG)I introducing the shorthand notations (AB)I(c,d),(a,b) =

1
2 (Ac,aBd,b + Ad,aBc,b), and

for later use α :: β =
∫

a,...,d
α[...],[(c,d),(a,b)]β[(−c,−d),(−a,−b)],[...] where Latin indices stand for frequency indices. For

later use we also evaluate the first and second functional derivatives of Gtree[G],

δGtree
(ω3,ω4),(ω1,ω2)

[G]

δG−ω,−ω′

=
i

~

1

2

(

[δω3+ω,0δω1+ω′,0Gω4,ω2 + δω4+ω,0δω2+ω′,0Gω3,ω1 + (ω4 ⇔ ω3)] + (ω ⇔ ω′)

)

, (47)

δ2Gtree
(ω3,ω4),(ω1,ω2)

[G]

δG−ω,−ω′δG−ω′′,−ω′′′

=
i

4~

[(

[δω3+ω,0δω1+ω′,0δω4+ω′′,0δω2+ω′′′,0 + δω4+ω,0δω2+ω′,0δω3+ω′′,0δω1+ω′′′,0

+(ω4 ⇔ ω3)] + (ω ⇔ ω′)

)

+ (ω′′ ⇔ ω′′′)

]

. (48)

In order to obtain the 2PI effective action in the IMA, we have to insert the tree-level expression Γ̄tree[G] into the
right-hand side of the evolution equation (41) and integrate it over the control parameter from the initial value g = 0
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to some finite value g. Then we get

Γ̄IMA[G] = Γ̄tree[G] +
1

24

~

i

∫ g

0

dḡTr

[(

Γ̄tree(2)[G] +
ḡ

12
L

)−1I

: L

]

= Γ̄tree[G]− i~

2
Tr

[

I : ln

(

11 +
g

12
L : Gtree[G]

)]

= Γ̄tree[G] +
i~

2

∞
∑

n=1

(−1)n

n

(

g

12

)n

tr

(

L : Gtree[G]

)n]

. (49)

The inverse propagator of the ground state in the IMA is given through the necessary condition of the extremum of
the 2PI effective action ΓIMA[G], ie. δΓIMA[G]/δG = 0, that yields the equation for the propagator of the ground
state in the IMA, GIMA

gr ,

GIMA −1
gr = Gtree−1

gr +
g

12
Tr

[

L :
δGtree[G]

δG
:

(

11 +
g

12
L : Gtree[G]

)−1]

G=GIMA
gr

+
ig

6~
(L : GIMA

gr ), (50)

ie.

GIMA −1
gr ω,ω′ = Gtree−1

gr ω,ω′ +

[

ig

2~

∫

ω1,ω2

δω+ω′+ω1+ω2,0Gω1,ω2

+
g2

18~2

∫

ω1,ω2,...,ω6

δω+ω1+ω3+ω4,0δω′+ω2+ω5+ω6,0Gω1,ω2Gω3,ω5Gω4,ω6 +O
(

g3
)

]

G=GIMA
gr

(51)

when the terms up to the order O
(

g2
)

are only kept. Multiplying both sides of this equation by GIMA
gr from the

left and Gtree
gr from the right, one would obtain the Schwinger-Dyson equation in the IMA for the propagator of the

ground state, but for our later purposes it is more convenient to retain the present form of the equation. The solution
of Eq. (51), the propagator of the ground state can be used to determine the energy of the ground state,

E0 = lim
T→∞

1

T
ΓIMA[GIMA

gr ], (52)

and the 2PI 4-point vertex function,

γ
[2] IMA
(ω3,ω4),(ω1,ω2)

= GIMA−1I
(ω3,ω4),(ω1,ω2)

[GIMA
gr ]− Gtree−1I

(ω3,ω4),(ω1,ω2)
[GIMA

gr ]

=
g

4
δω1+ω2+ω3+ω4,0 −

ig2

24~

∫

ω′

1,ω
′

2,ω
′

3,ω
′

4

[δω1+ω3+ω′

1+ω′

3,0
δω2+ω4+ω′

2+ω′

4,0
+ (ω1 ⇔ ω2)]G

IMA
gr ω′

1,ω
′

2
GIMA

gr ω′

3,ω
′

4
+O

(

g3
)

(53)

with GIMA−1I[G] = ΓIMA (2)[G].
The evolution equation (41) allows for a simple diagrammatic picture, shown in Fig. 10. The single vertex without

the factor g (empty circle) present in each of the diagrams for ∂gΓ̄ occurs due to the partial derivative with respect to g.
The result of the IMA is the resummation of the ring diagrams shown for Γ[G]−Γtree[G] in the fourth and fifth lines in
Fig. 10. In the fourth line we depicted the expansion of the 2PI effective action in powers of the tree-level two-particle
propagator Gtree, each diagram consists of double-line sections for Gtree’s joined via the vertex functions γ[2] tree to a
closed loop. As one can see from the expansion in powers of the propagator G shown in the fifth line, the 2PI vertex
function is taken at the tree-level, γ[2] tree = gL/12. The proper self-energy insertion ΣIMA = G−1 IMA−G−1 tree and
the 2PI 4-point vertex function γ[2] IMA in the IMA are depicted in Fig. 11.

2. Expansion in the 2-particle channel (E2PC)

The functional dependence of the reduced 2PI effective action Γ̄IMA[G] on the tree-level 2-particle propagator Gtree

in the IMA brings one to the idea to look for a better approximation of the effective action as an expansion in powers
of the tree-level 2-particle propagator Gtree = 2 i

~
(GG)I making the Ansatz

Γ̄E2PC[G] = Γtree[G] +
1

2
γ̄[2] :: (GG)I +

1

24
(GG)I :: γ[4] :: (GG)I + . . . , (54)
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FIG. 10: Feynman diagrams for the RG evolution of the 2PI effective action in the IMA.
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FIG. 11: Feynman diagrams for the proper self-energy insertion Σ = G−1 IMA
−G−1 tree and the 2PI vertex function γ[2] IMA.

where the symmetry properties

γ̄
[2]
(a,b),(c,d) = γ̄

[2]
(b,a),(c,d) = γ̄

[2]
(c,d),(a,b),

γ
[4]
[(a,b),(c,d)],[(a′,b′),(c′,d′)] = γ

[4]
[(b,a),(c,d)],[(a′,b′),(c′,d′)] = γ

[4]
[(c,d),(a,b)],[(a′,b′),(c′,d′)] = γ

[4]
[(a′,b′),(c′,d′)],[(a,b),(c,d)] (55)

are required (Latin indices stand for frequency indices) for the 2PI vertex functions, γ̄[2] and γ[4]. We shall solve
the evolution equation (41) inserting the Ansatz (54) into it, expanding its right-hand side in Neumann-series, and
keeping the terms up to the quartic ones in G, ie. those of the order O

(

[(GG)I ]2
)

in its both sides. The approximation

with the E2PC goes beyond the IMA when the inverse of the 2-particle propagator, Γ̄(2) has been replaced by
Γtree(2) = Gtree−1[G] in the right-hand side of the RG equation (41). Now the Ansatz (54) in powers of Gtree[G]
implies

Γ̄E2PC (2)[G] = Gtree−1[G] + γ̄[2] +O
(

(GG)I
)

. (56)

Having expanded the inverse matrix, ie. 2-particle propagator in the right-hand side of (41) in Neumann-series as

GE2PC[G] = ΓE2PC(2) −1[G] =

(

Γ̄E2PC (2)[G] +
g

12
L

)−1

= Gtree[G]− Gtree[G] : γ[2] : Gtree[G] +O
(

[(GG)I ]3
)

(57)

with the 2PI 4-point vertex function,

γ[2] = Γ(2)[G]− Gtree−1[G] = γ̄[2] +
g

12
L, (58)
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we obtained the following coupled set of RG evolution equations for the 2PI 4-point and 8-point vertex functions,

∂gγ̄
[2]
(ω1,ω2),(ω3,ω4)

=
1

6
L(ω3,ω4),(ω1,ω2),

∂gγ
[4]
[(ω1,ω2),(ω3,ω4)],[(ω′

1,ω
′

2),(ω
′

3,ω
′

4)]
= − i

~

[(

(I : γ[2] : I)(ω3,ω4),(ω′

3,ω
′

4)
L(ω1,ω2),(ω′

1,ω
′

2)

+L(ω3,ω4),(ω′

3,ω
′

4)
(I : γ[2] : I)(ω1,ω2),(ω′

1,ω
′

2)

)

+ (ω1, ω2) ⇔ (ω3, ω4)

]

. (59)

Those can be integrated straightforwardly for the initial conditions γ̄
[2]
g=0 = 0, γ

[4]
g=0 = 0, and one gets

γ̄
[2]
(ω1,ω2),(ω3,ω4)

=
g

6
L(ω1,ω2),(ω3,ω4),

γ
[4]
[(ω1,ω2),(ω3,ω4)],[(ω′

1,ω
′

2),(ω
′

3,ω
′

4)]
= − ig2

4~
[δω1+ω2+ω′

1+ω′

2,0
δω3+ω4+ω′

3+ω′

4,0
+ δω3+ω4+ω′

3+ω′

4,0
δω1+ω2+ω′

3+ω′

4,0
] (60)

and hence γ[2] = g
4L. Since we have kept only the contribution of O (g) to the reduced 2PI 4-point vertex function γ̄[2],

the expansion (54) of the functional Γ̄E2PC[G] in powers of the free 2-particle propagator Gtree ∼ (GG)I corresponds
to its expansion in powers of g. The 2PI effective action takes now the form

ΓE2PC[G] = Γtree[G] +
g

8

∫

ω1,...,ω4

δω1+ω2+ω3+ω4,0Gω1,ω2Gω3,ω4

− ig2

48~

∫

ω1,...,ω4,ω′

1...,ω
′

4

δω1+ω2+ω′

1+ω′

2,0
δω3+ω4+ω′

3+ω′

4,0
Gω1,ω3Gω2,ω4Gω′

1,ω
′

3
Gω′

2,ω
′

4
+O

(

G6
)

. (61)

In this approximation based on the E2PC there occurs an additional contribution of the order O
(

g2
)

in the 2PI
effective action which was not included in the IMA: in the right-hand side of Eq. (61) there occurs an additional
factor 3 in the term of the order O

(

g2
)

as compared to the corresponding term in the IMA. This is because of the
improvement of the 2-particle propagator,

GE2PC[G] = Gtree[G] +
g

4
Gtree[G] : L : Gtree[G] +O

(

g2
)

(62)

(c.f. Eq. (57)) as compared to the free one used in the IMA. Putting it in another way, in the approximation base on
the E2PC we use the 2PI 4-point vertex function γ[2] = γ̄[2] + γ[2] tree = (g/4)L instead of γ[2] tree = (g/12)L used in
the IMA. The diagrammatic form of RG the evolution equation remains the same as that in the IMA (see Fig. 10)
except of replacing the vertices γ[2] tree by γ[2] of the present approximation.
The necessary condition of the extremum of the 2PI effective action, δΓE2PC[G]/δG = 0 provides again the

Schwinger-Dyson equation for the propagator of the ground state,

GE2PC −1
gr ω1,ω2

= Gtree−1
gr ω1,ω2

+

[

ig

2~

∫

ω′

1,ω
′

2

δω1+ω2+ω′

1+ω′

2,0
Gω′

1,ω
′

2

+
g2

6~2

∫

ω′

1,...,ω
′

4,ω3,ω4

δω1+ω3+ω′

1+ω′

2,0
δω2+ω4+ω′

3+ω′

4,0
Gω3,ω4Gω′

1,ω
′

3
Gω′

2,ω
′

4

]

G=GE2PC
gr

(63)

and a straightforward but lengthy calculation yields

γ
[2] E2PC
(ω3,ω4),(ω1,ω2)

= GE2PC −1I
(ω3,ω4),(ω1,ω2)

[GE2PC
gr ]− Gtree −1I

(ω3,ω4),(ω1,ω2)
[GE2PC

gr ]

=
g

4
δω1+ω2+ω3+ω4,0 −

ig2

8~

∫

ω′

1,ω
′

2,ω
′

3,ω
′

4

[δω1+ω3+ω′

1+ω′

3,0
δω2+ω4+ω′

2+ω′

4,0
+ (ω1 ⇔ ω2)][Gω′

1,ω
′

2
Gω′

3,ω
′

4
]G=GE2PC

gr
(64)

for the value of the 2PI 4-point vertex in the ground state. The O
(

g2
)

term of the propagator as well as that of the
2PI vertex function exhibit the additional factor 3 as compared to the corresponding terms in the IMA.

C. Determination of the renormalized couplings

We shall obtain the renormalized quantities in the IS RG scheme in the IMA and in the truncated E2PC, as
described previously in Sections III B 1 and III B 2, respectively, in both cases keeping the terms up to the second
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order O
(

g2
)

of the bare coupling g that has been used as the control parameter. We shall make use of the diagonal
form of the propagator, Gω,ω′ = Gωδω,ω′ . First, we determine the propagator Ggr ω of the ground state by solving
the Schwinger-Dyson equation with the precision O

(

g2
)

, and afterwards the energy of the ground state via

E0 = lim
T→∞

1

T
Γ[Ggr], (65)

and the renormalized coupling g0 from the 2PI 4-point vertex function taken at the symmetric point ωi = 0 (i =
1, 2, 3, 4) via

g0 = lim
T→∞,ωi→0

4

T
γ
[2]
(ω3,ω4),(ω1,ω2)

. (66)

Finally, we compare these results with those obtained at the same order of the perturbation expansion in the CS
RG scheme given in Appendix A3, in the WH RG scheme given in Appendix B 2b, as well as by the results of the
well-known Rayleigh-Schrödinger perturbation expansion in quantum mechanics.
First, let us present the results obtained in the framework of the IS RG in the IMA. For diagonal propagator the

Schwinger-Dyson equation (51) can be rewritten as

GIMA −1
gr ω = Gtree −1

gr ω +

[

ig

2~

∫

ω1

Gω1 +
g2

18~2

∫

ω1,ω2,ω3

δω+ω1+ω2+ω3,0Gω1Gω2Gω3 +O
(

g3
)

]

G=GIMA
gr

. (67)

Let us insert into Eq. (67) the perturbation expansion

G−1 = G−1
0 + gA+ g2B +O

(

g3
)

, G = G0 − gG0 ·A ·G0 − g2G0 · C ·G0 +O
(

g3
)

(68)

where A and B are symmetric matrices to be determined, C = B − A · G0 · A and we wrote G0 = Gtree
gr for the

sake of simplicity. Comparing the terms of identical powers of the coupling g in both sides of Eq. (67), one finds
Aω,ω′ = Aωδω+ω′,0 and Bω,ω′ = Bωδω+ω′,0 with

Aω =
i

2~

∫

ω1

G0 ω1 , Bω =
1

4~2

∫

ω1

G2
0 ω1

∫

ω2

G0 ω2 +
1

18~2

∫

ω1,ω2

G0 ω1+ω2−ωG0 ω1G0 ω2 . (69)

The loop integrals can be taken explicitly making use of the residuum theorem,

∫

ω

G0 ω =
~

2ω0
,

∫

ω

G2
0 ω =

−i~2

4ω3
0

,

∫

ω1,ω2

G0 ω1+ω2−ωG0 ω1G0 ω2 =
3i~3

4ω2
0

1

ω2 − 9ω2
0 + 18iǫ

. (70)

Expanding the last loop integral in powers of ω2 − ω2
0 and keeping the terms up to the order O

(

ω2 − ω2
0

)

, one finds
for the inverse of the propagator of the ground state

GIMA −1
gr ω = − i

~
(x0ω

2 − Ω2
0 + iǫ) (71)

with

Ω2
0 = ω2

0

[

1 + 4ξ − 55

6
ξ2
]

+O
(

g3
)

, x0 = 1 +
1

3
ξ2 +O

(

g3
)

(72)

in terms of the dimensionless parameter ξ = g~
16ω3

0
, introduced previously. For diagonal propagator G the 2PI effective

action given by Eqs. (40) and (49) and the 2PI 4-point vertex function (53) reduce to

ΓIMA[G] = Γ̄tree[G] +
g

8
T

(
∫

ω

Gω

)2

− ig2

144~
T

∫

ω1,ω2,ω3

Gω1Gω2Gω3Gω1+ω2+ω3 +O
(

G6
)

(73)

and

γ
[2] IMA
(ω3,ω4),(ω1,ω2)

=

[

g

4
− ig2

24~

∫

ω

Gω(G−ω1−ω3−ω +G−ω2−ω3−ω)

]

δω1+ω2+ω3+ω4,0, (74)
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respectively. Inserting G = GIMA
gr into the expression (73) one finds for the energy of the ground state

E0 =
1

2
~ω0

[

1 + ξ − 55

9
ξ2 +O

(

g3
)

]

. (75)

According to Eqs. (66) and (74), one obtains for the renormalized quartic coupling,

g0 = g − ig2

3~

∫

ω

G2
0 ω +O

(

g3
)

= g

[

1− 4

3
ξ +O

(

g2
)

]

. (76)

At second, we turn to the approximation based on the E2PC. Making use of Eqs. (61), (63), and (64), one can
proceed like in the case of the IMA and obtain results with slightly different factors for the second-order terms,

Ω2
0 = ω2

0

[

1 + 4ξ − 71

8
ξ2 +O

(

ξ3
)

]

, x0 = 1 +
1

8
ξ2 +O

(

ξ3
)

, (77)

E0 =
1

2
~ω0

[

1 + ξ − 16

3
ξ2 +O

(

ξ3
)

]

, (78)

g0 = g

(

1− 4ξ +O
(

ξ2
)

)

. (79)

Finally, in Table I we compare the results obtained in the various approximation schemes. The various observables
are given keeping the terms up to the order O

(

g2B
)

of the bare coupling. We compare here the renormalized values,
ie. the IR limits of them obtained in the CSi RG scheme in second order of the perturbation expansion as given in
Appendix A 3, the renormalized values obtained in the ISg RG scheme in IMA and in the approximation based on
the E2PC when the evolution has been ended up and the control parameter reached the same bare value gB that used
in the CSi RG scheme. We also present the results obtained in the framework of the WH RG scheme as outlined in
Appendix B 2b, and the results of the Rayleigh-Schrödinger perturbation expansion (RSPE) [39]. In the RSPE one
finds for the energy of the n-th energy niveau (n = 0, 1, 2, . . .) of the one-dimensional anharmonic oscillator with the
bare Hamiltonian H = 1

2p
2 + 1

2ω
2
0x

2 + gB
24 x

4,

En = ~ω0

[

n+
1

2
+ e(1)n + e(2)n +O

(

ξ3
)

]

(80)

with

e(1)n = (1 + 2n+ 2n2)ξ,

e(2)n = − 1

18
ξ2

∑

n′ 6=n

1

n′ − n
[4(2n− 1)2n(n− 1)δn′,n−2 + n(n− 1)(n− 2)(n− 3)δn′,n−4

+4(2n+ 3)2(n+ 1)(n+ 2)δn′,n+2 + (n+ 1)(n+ 2)(n+ 3)(n+ 4)δn′,n+4]. (81)

This yields for the first two energy levels

E0 =
1

2
~ω0

(

1 + ξ − 7

3
ξ2 +O

(

ξ3
)

)

,

E1 =
1

2
~ω0

(

3 + 5ξ − 55

3
ξ2 +O

(

ξ3
)

)

(82)

and

(~Ω0)
2 = (E1 − E0)

2 = (~ω0)
2(1 + 4ξ − 12ξ2). (83)

The same expression for the energy E0 of the ground-state has been found in Ref. [37] by path-integral method.
There are no asymptotically free states of the particle moving in the quartic anharmonic oscillator potential, therefore
the definition of scattering amplitudes and through those a renormalized quartic coupling is problematic in the RSPE
approach.
All the RG schemes reproduce the first-order corrections in accord with the RSPE. This is because these corrections

are one-loop corrections according to the loop expansion and the essentially one-loop RG equations describe the
quantum effects at the one-loop order exactly, independently of the approximation schemes additionally used. We
see that all the RG schemes have it common that the second-order corrections deepen the energy levels, tend to
decrease the quartic coupling and result in a field-independent wavefunction renormalization x0 ≥ 1. Nevertheless,
the truncation of the perturbation expansion causes a strong dependence of the quantitative results on the RG scheme
used.
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Observable ISg RG IMA ISg RG E2PC CSi RG WH RG RSPE

E0 −
1
2
~ω0 − ξ −

55
9
ξ2 −

16
3
ξ2 −

71
30
ξ2 −18ξ2 −

7
3
ξ2

Ω2
0−ω2

0

ω2
0

− 4ξ −

55
6
ξ2 −

71
8
ξ2 −11ξ2 −32ξ2 −12ξ2

g0−gB
gB

−

4
3
ξ −4ξ −6ξ −6ξ 0

x0 − 1 1
3
ξ2 1

8
ξ2 2

3
ξ2 0 0

TABLE I: Comparison of the observables obtained in the framework of various RG schemes. The expansion in the dimensionless
parameter ξ = gB~

16ω3
0

is truncated keeping the terms up to the second order.

IV. CONCLUSIONS

The role of wavefunction renormalization and dependence of the observables on the RG scheme in the second order
perturbation expansion has been investigated on the example of the anharmonic oscillator. The functional CSi RG
scheme with the imaginary mass and the ISg RG with the bare quartic coupling as control parameters have been
applied to the 1PI and 2PI effective actions, respectively. The CSi RG evolution equation derived for theN -dimensional
O(N) symmetric oscillator has been solved by making a quartic Ansatz for the 1PI effective action including terms for
field-dependent wavefunction renormalization, since that is the only way to generate field-independent wavefunction
renormalization by means of a one-loop evolution equation. The evolution equation has been solved keeping the
terms of the Neumann-expansion of the inverse matrix in the right-hand side of the evolution equation only up to the
second order in the renormalized propagator and those up to the quartic ones in the oscillator coordinate. It has been
shown that the O(N) symmetric anharmonic oscillator exhibits only a single phase, independently of its dimension
N . Furthermore, the inclusion of next-to-leading order of the gradient expansion, the wavefunction renormalization
does not modify qualitatively neither the IR scaling laws nor the phase structure. It has also been established that
the effect of wavefunction renormalization decreases with increasing dimension N of the oscillator according to a
power-law.
The ISg RG has been applied to the 2PI effective action, in order to obtain a one-looplike RG evolution equation

again. Our study was restricted to the one-dimensional oscillator in that case. An approximation scheme based on
the E2PC, going beyond the IMA, has been put forward that corresponds the expansion of the 2PI effective action
into the powers of the free 2-particle propagator Gtree. The RG evolution equation for the 2PI effective action has
been rewritten as a coupled set of evolution equations for the 2PI 4-point and 8-point vertex functions by keeping
the terms up to those of the order O

(

(Gtree)4
)

in the effective action and those of the order O
(

(Gtree)2
)

in the
Neumann-expansion of the inverse of the full-particle propagator. The solutions for the vertex functions have been
inserted into the Schwinger-Dyson equation for the propagator of the ground state that has been solved by making an
Ansatz for the latter assuming the dominance of a single pole. The advantages of that ISg RG method as compared
to the CSi RG scheme are that it enables one to read off the field-independent wavefunction renormalization directly
and it provides an UV finite result for the ground-state energy.
Finally we compared the results obtained for the ground-state energy, the ‘mass’ (in field-theoric term), the renor-

malized quartic coupling, and the field-independent wavefunction renormalization in the various RG schemes (ISg
RG, CSi RG, WH RG) and the Rayleigh-Schrödinger perturbation expansion (RSPE) restricting ourselves to the
second-order perturbation expansion in powers of the bare quartic coupling gB. While the first-order contributions
and the sign of the second-order ones are reproduced by all of these approximations there has been found a remarkable
scheme-dependence of the weights of the second-order terms.
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[16] R. Jáuregui, J. Récamier, Phys. Rev. A46, 2240 (1992).
[17] C.R. Handy,Phys. Rev. A46, 1663 (1992).
[18] R.N. Chaudhuri, M. Mondal,Phys. Rev. A43, 3241 (1991); R.K. Agrawal, V.S. Varma, Phys. Rev. A49, 5089 (1994).
[19] T. Hatsuda, T. Kunihiro, T. Tanaka, Phys. Rev. Lett. 78, 3229 (1997).
[20] H. Meißner, E.O. Steinborn, Phys. Rev. A56, 1189 (1997).
[21] T. Kashiwa, Phys. Rev. D 59, 085002 (1999).
[22] Sangchul Oh, Phys. Rev. A77, 012326 (2008).
[23] T. Kunihiro, Phys. Rev. D57, R2035 (1998); I.L. Egusquiza, M.A.V. Basagoiti, Phys. Rev. A57, 1586 (1998).
[24] V. I. Yukalov, E. P. Yukalova, and S. Gluzman, Phys. Rev. A58, 96 (1998).
[25] M. Frasca, Nuovo Cim. B117, 867 (2002).
[26] A.S. Kapoyannis, N. Tetradis, Phys. Lett. A276, 225 (2000).
[27] K-I Aoki, A. Horikoshi, M. Taniguchi, H. Terao, Prog. Theor. Phys., 108, 571 (2002).
[28] K.G. Wilson, J. Kogut,Phys. Rep. C12, 77 (1974); K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975); ibid. Rev. Mod. Phys.

55, 583 (1983).
[29] F.J. Wegner, A. Houghton, Phys. Rev. A8, 401 (1973).
[30] J. Polchinski, Nucl. Phys. B231, 269 (1984).
[31] C. Wetterich, Phys. Lett. B301, 90 (1993).
[32] T. Morris, Int. J. Mod. Phys. A9, 2411 (1994).
[33] C.G. Callan, Phys. Rev. D2, 1541 (1970); K. Symanzik, Comm. Math. Phys. 18, 227 (1970).
[34] M. Simionato, Int. J. Mod. Phys. A15, 2121 (2000); J. Alexandre, J. Polonyi, Ann. Phys. 288, 37 (2001).
[35] J. Polonyi, K. Sailer, Phys. Rev. D71, 025010 (2005).
[36] C.De Dominicis, P.C. Martin, J. Math. Phys. 5, 14 (1964); J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D10, 2428

(1974).
[37] R.W. Haymaker, Nuovo Cim., 14, 1 (1991).
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Appendix A: CSi RG scheme for the N-dimensional anharmonic oscillator in real-time formalism

1. Neumann-expansion

For later use let us introduce the matrices

Cω,ω′ = C̄(c,ω),(c,ω′) = Cω′,ω, (A1)

and

Bω,−ω = −2

∫

ω1

[v(ω1,−ω1) + v(ω,−ω)]qa,ω1qa,−ω1 = −2

∫

ω1

(

−1

2
y(ω2

1 + ω2) +
g

12

)

qa,ω1qa,−ω1 ,

Cω,−ω = −4

∫

ω1

[v(ω1,−ω) + v(−ω1, ω)]qa,ω1qa,−ω1 = −8

∫

ω1

(

−1

2
ȳω1ω +

1

4
Ȳ (ω2

1 + ω2) +
g

24

)

qa,ω1qa,−ω1 .

(A2)

The first two terms in the expansion (14) are quadratic in the field variable qa,ω and can be expressed in terms of the
loop integrals In,s defined in Eq. (17) in a straightforward manner,

−N~

2

∫

ω

Gω = −N

2
I1,0, (A3)

~

2

∫

ω

G2
ωA(a,ω),(a,−ω) =

N~

2

∫

ω

G2
ωBω,−ω +

~

2

∫

ω

G2
ωCω,−ω

=
1

2
[Nȳ − (N + 2)Ȳ ]I2,0

∫

ω1

ω2
1qa,ω1qa,−ω1

+
1

2

(

[Nȳ − (N + 2)Ȳ ]I2,2 −
(N + 2)g

6
I2,0

)
∫

ω1

qa,ω1qa,−ω1 . (A4)

The third term of the series (14) can be rewritten as

−~

2

∫

ω,ω′

G2
ωA(c,ω),(d,ω′)Gω′A(d,−ω′),(c,−ω)

= −~

2

∫

ω,ω′

G2
ωGω′ [NBω,ω′B−ω,−ω′ + 2B−ω,−ω′Cω,ω′ + C̄(c,ω),(d,ω′)C̄(c,−ω),(d,−ω′)]

= T1 + T2 + T3, (A5)

where all terms are quartic in the Fourier-transform of the field variable,

T1 = −N~

2

∫

ω,ω′

G2
ωGω′Bω,ω′B−ω,−ω′

= −2N~

∫

ω,ω′

G2
ωGω′

∫

ω1,...,ω4

δω1+ω2+ω3+ω4,0δω+ω′+ω1+ω2,0

(

v(ω1, ω2)v(ω3, ω4)

+2v(ω, ω′)v(ω1, ω2) + v2(ω, ω′)

)

qa,ω1qa,ω2qb,ω3qb,ω4 , (A6)

T2 = −~

∫

ω,ω′

G2
ωGω′B−ω,−ω′Cω,ω′

= −8~

∫

ω,ω′,ω1,ω2,ω3,ω4

G2
ωGω′δω1+ω2+ω3+ω4,0δ−ω−ω′+ω1+ω2,0

(

v(ω1, ω2)[v(ω3, ω) + v(ω3, ω
′)]

+v(ω, ω′)[v(ω3, ω) + v(ω3, ω
′)]

)

qa,ω1qa,ω2qb,ω3qb,ω4 , (A7)
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T3 = −~

2

∫

ω,ω′

G2
ωGω′C̄(c,ω),(d,ω′)C̄(c,−ω),(d,−ω′)

= −8~

∫

ω1,...,ω4,ω,ω′

G2
ωGω′δω1+...+ω4,0δω1+ω3+ω+ω′,0

×[v(ω1, ω)v(ω2,−ω) + v(ω1, ω)v(ω4,−ω′) + v(ω3, ω
′)v(ω2,−ω) + v(ω3, ω

′)v(ω4,−ω′)]

×qa,ω1qa,ω2qb,ω3qb,ω4 . (A8)

Evaluating T1, T2, and T3 we keep only the terms corresponding to the interaction vertices included in the Ansatz (6)
for the effective action in the truncated gradient expansion, ie. we keep self-interaction terms up to the quartic ones
and quadratic gradient terms with wave-function renormalization truncated at the quadratic field-dependent term.
By making use of the Dirac-deltas expressing energy conservation in the vertices, Gω′ can be changed to Gω+α with
α = ±(ω1 +ω2). In order to reveal the terms of the gradient expansion explicitly, we have to expand the propagators
with shifted frequency Gω+α in the Taylor series (16) at α = 0. Furthermore, we also make use of the identity (9),
in order to transform all gradient terms in one of those of the Ansatz (6). A rather lengthy but straightforward
calculation yields finally,

T1 = −2N

∫

ω1,...,ω4

δω1+ω2+ω3+ω4,0

{

1

4
y2I3,4 − 2

g

24
yI3,2 + 4

g2

242
I3,0

+

[

2y2x2I5,6 − 16
g

24
yx2I5,4 + 32

g2

242
x2I5,2

−5

2
xy2I4,4 + 12

g

24
xyI4,2 − 8

g2

242
xI4,0

+
1

2
ȳ2I3,2 − 2ȳȲ I3,2 +

3

2
Ȳ 2I3,2 + 4

g

24
Ȳ I3,0

]

ω2
1

+

[

2y2x2I5,6 − 16
g

24
yx2I5,4 + 32

g2

242
x2I5,2

−5

2
xy2I4,4 + 12

g

24
yxI4,2 − 8

g2

242
xI4,0

−ȳȲ I3,2 + Ȳ 2I3,2 + 2
g

24
ȳI3,0 + 2

g

24
Ȳ I3,0

]

ω1ω2

}

qa,ω1qa,ω2qb,ω3qb,ω4 , (A9)

T2 = −8

∫

ω1,ω2,ω3,ω4

δω1+ω2+ω3+ω4,0

×
{

−1

4
yȲ I3,4 + 2

g

24
Ȳ I3,2 −

g

24
ȳI3,2 + 4

g2

242
I3,0

+

[

−2x2yȲ I5,6 − 8
g

24
x2ȳI5,4 + 16

g

24
x2Ȳ I5,4 + 32

g2

242
x2I5,2

+
5

2
xyȲ I4,4 + 6

g

24
xȳI4,2 − 12

g

24
xȲ I4,2 − 8

g2

242
xI4,0

+
1

4
ȳ2I3,2 − 5

1

4
ȳȲ I3,2 +

3

2
Ȳ 2I3,2 + 4

g

24
Ȳ I3,0 −

g

24
ȳI3,0

]

ω2
1

+

[

−2x2yȲ I5,6 − 8
g

24
x2ȳI5,4 + 16

g

24
x2Ȳ I5,4 + 32

g2

242
x2I5,2

+
5

2
xyȲ I4,4 + 6

g

24
xȳI4,2 − 12

g

24
xȲ I4,2 − 8

g2

242
xI4,0

+
1

4
ȳ2I3,2 − 3

1

4
ȳȲ I3,2 + Ȳ 2I3,2 + 2

g

24
Ȳµ2I3,0

]

ω1ω2

}

×qa,ω1qa,ω2qb,ω3qb,ω4 , (A10)
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and

T3 = −8~

∫

ω1,...,ω4,ω

δω1+...+ω4,0

×
[

Ȳ 2

4
I3,4 +

gȲ

12
I3,2 + 4

g2

242
I3,0

+

(

Ȳ 2x2I5,6 + 8
gȲ

24
x2I5,4 + 16

g2

242
x2I5,2

−20
Ȳ 2

16
xI4,4 − 6

gȲ

24
xI4,2 − 4

g2

242
xI4,0

+Ȳ 2I3,2 −
1

4
ȳ2I3,2 −

ȳȲ

4
I3,2 −

gȳ

24
I3,0 + 3

gȲ

24
I3,0

)

ω2
1

+

(

−Ȳ 2x2I5,6 − 8
gȲ

24
x2I5,4 − 16

g2

242
x2I5,2

+5
Ȳ 2

4
xI4,4 + 6

gȲ

24
xI4,2 + 4

g2

242
xI4,0

−3

4
ȳ2I3,2 −

1

2
Ȳ 2I3,2 +

ȳȲ

4
I3,2 +

gȳ

24
I3,0 −

gȲ

24
I3,0

)

ω1ω2

]

×qa,ω1qa,ω2qb,ω3qb,ω4 . (A11)

2. Loop integrals

In order to get the explicit forms of the RG equations (19)-(24) one has to perform the loop integrals (17),

In,s ∼
∫ ∞

−∞

dω

2π
Gn

ωω
s =

∫ ∞

−∞

dω

2πxn

ωs

(ω − a)n(ω + b)n

∣

∣

∣

∣

a=b=
√

(Ω2
−iµ2)/x

. (A12)

For the limit Λ → ∞ and for s− 2n < −1, like in our case, this can be done analytically. Since Re a > 0, Im a > 0,
we can close the path of integration with a half-circle of infinite radius on the upper half of the complex ω-plane
encircling the multiple pole at ω = a and apply the residuum theorem,

1

2π

∮

f(z)

(z − a)n
=

i

(n− 1)!

dn−1

dan−1
f(a), f(a) =

as

(a+ b)n
. (A13)

Thus one finds

I1,0 =
i

2x
1
2 (Ω2

−iµ2)
1
2

, In,s =
i[s− (2n− 3)] · (s− 1)

(n− 1)!2nx
s+1
2 (Ω−iµ2)n−

s+1
2

for n > 1, (A14)

which yield the relations

I2,2 =
1

2x
I1,0, I3,2 =

1

4x
I2,0, I3,4 =

3

8x2
I1,0, I4,2 =

1

6x
I3,0, I4,4 =

1

8x2
I2,0,

I5,2 =
1

8x
I4,0, I5,4 =

1

16x2
I3,0, I5,6 =

5

64x3
I2,0 (A15)

with

I2,0 =
−i

4x
1
2 (Ω−iµ2)

3
2

, I3,0 =
3i

16x
1
2 (Ω−iµ2)

5
2

, I4,0 =
−5i

32x
1
2 (Ω−iµ2)

7
2

. (A16)

3. Perturbation expansion

Here we outline the solution of the evolution equations (25)-(29) for the N = 1 dimensional oscillator in the second
order of the perturbation expansion in the bare coupling gB after the analytic continuation −iµ2 → λ to the Euclidean
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space. Making use of the result of the IMA, one can write the perturbation expansion of the couplings as,

γ = δ + gBα+ g2Bβ + . . . ,

δΩ2 = gBρ+ g2Bσ + . . . ,

x− 1 = g2Bζ + . . . ,

Υ = g2Bη,

g = gB + g2Bν (A17)

with δΩ2 = Ω2 − ω2
0 , and using x− 1 ∼ O (Υ) ∼ O

(

g2B
)

. For the sake of simplicity, we shall set ~ = 1 in this section.
In order to make explicit the dependence on the bare coupling gB in the right-hand sides of Eqs. (25)-(29), one has
to expand the denominators of the loop integrals given by Eq. (A14),

1

(Ω2 + λ)a
=

1

(ω2
0 + λ)a

− a
gBρ

(ω2
0 + λ)a+1

+ g2B

(

1

2
a(a+ 1)

ρ2

(ω2
0 + λ)a+2

− aσ

(ω2
0 + λ)a+1

)

,

xa ≈ 1 + ag2Bζ + . . . , (A18)

where the relation

1

(1 + x)a
≈ 1− ax+

1

2
a(a+ 1)x2 + . . . (A19)

has been used. The comparison of the coefficients of the corresponding powers of gB in both sides of the Eqs. (25)-(29)
yields the following set of coupled ordinary first-order differential equations for the running couplings,

∂λδ =
1

4(ω2
0 + λ)

1
2

, (A20)

∂λα = −1

8

ρ

(ω2
0 + λ)

3
2

, (A21)

∂λβ =
3

32

ρ2

(ω2
0 + λ)

5
2

+
1

8

σ

(ω2
0 + λ)

3
2

+
1

8

ζ

(ω2
0 + λ)

1
2

, (A22)

∂λζ = − η

4(ω2
0 + λ)

3
2

, (A23)

∂λη = − 5

64(ω2
0 + λ)

7
2

, (A24)

∂λρ = − 1

8(ω2
0 + λ)

3
2

, (A25)

∂λσ = − η

4(ω2
0 + λ)

1
2

− ν

8(ω2
0 + λ)

3
2

+
3

16

ρ

(ω2
0 + λ)

5
2

, (A26)

∂λν =
9

16(ω2
0 + λ)

5
2

. (A27)
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The solutions belonging to the initial conditions δB = − 1
2 (ω

2
0 + λB)

1
2 , αB = βB = ζB = ηB = ρB = σB = νB = 0 at

λB → ∞ and their IR limits λ → 0 have been found analytically,

δ =
1

2
(ω2

0 + λ)
1
2 → 1

2
ω0,

η =
1

32(ω2
0 + λ)

5
2

→ 1

32ω5
0

,

ρ =
1

4(ω2
0 + λ)

1
2

→ 1

4ω0
,

ν = − 3

8(ω2
0 + λ)

3
2

→ − 3

8ω3
0

,

σ = − 11

256(ω2
0 + λ)2

→ − 11

256ω4
0

,

α =
1

32(ω2
0 + λ)

→ 1

32ω2
0

,

ζ =
1

3 · 128(ω2
0 + λ)3

→ 1

3 · 128ω6
0

,

β = − 71

3 · 5 · 1024(ω2
0 + λ)

5
2

→ − 71

3 · 5 · 1024ω5
0

. (A28)

Then one obtains for the energy of the ground state

E0 = γ0 =
1

2
ω0

[

1 + ξ − 71

30
ξ2
]

, (A29)

for the frequency parameter

Ω2
0 = ω2

0(1 + 4ξ − 11ξ2), (A30)

the renormalized quartic coupling

g0 = gB(1− 6ξ), (A31)

and the couplings for the wavefunction renormalization

x0 = 1 +
2

3
ξ2, ~Υ0 = 8ω0ξ

2, (A32)

where we reestablished the powers of ~.

4. Localization

The localization of the ground state wavefunction can be characterized by its momenta. We can make an estimate
of the dependence of the variance of the coordinate operator on the dimension N of the oscillator. Let us write for it
with the help of the Lehmann-expansion of the propagator,

〈0|q2|0〉 =

N
∑

a=1

〈0|q2a|0〉 = lim
t→0+

N
∑

a=1

∑

n,α

〈0|qa(t)|n, α〉〈0, α|qa(0)|0〉

= lim
t→0+

N
∑

a=1

∑

n,α

ei(E0−En)t/~|〈0|qa|n, α〉|2

=

N
∑

a=1

∑

n,α

lim
t→0+

∫

ω

eiωt 2(En − E0)/~

ω2 + [(En − E0)/~]2
|〈0|qa|n, α〉|2 (A33)

where H |n, α〉 = En|n, α〉 for the exact eigenstates |n, α〉 and energy levels En of the Hamiltonian, |0〉 and E0 stand
for the ground state and its energy, α are additional quantum numbers for counting states belonging to the same
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degenerate energy level. Operators without and with the time argument stand for those in the Schrödinger and the
Heisenberg representations, respectively. Making use of the dominance of the pole of the integrand corresponding to
the first excited state [27], one finds the estimate

〈0|q2|0〉 ≈ lim
t→0+

∫

ω

eiωt

ω2 + (Ω2/x)

N
∑

a=1

1

~

∑

n,α

2(En − E0)|〈0|qa|n, α〉|2

=
x

1
2

2Ω

N
∑

a=1

1

~

∑

n,α

2(En − E0)|〈0|qa|n, α〉|2. (A34)

Making use of the Thomas-Reiche-Kuhn sum rule [40], valid for any self-adjoint operator A,

1

2
〈0|[[M,H ],M ]|0〉 =

∑

n,α

(En − E0)|〈0|M |n, α〉|2 (A35)

and the form of the renormalized Hamilton-operator H = 1
2xp

2 +V (q) where we neglected the less important higher-

momentum terms in respect to the small values of ȳ and Ȳ , we get

∑

n,α

(En − E0)|〈0|qa|n, α〉|2 =
1

2
〈0|[[qa, H ], qa]|0〉 =

x

4
〈0|[[qa, p2a], qa]|0〉 =

1

2
x~2 (A36)

where there is no summation over the index a. With the help of this relation we obtain

〈0|q2|0〉 ≈ x
1
2

2Ω

2

~

N
∑

a=1

1

2
x~2 =

Nx3/2
~

2Ω
. (A37)

Appendix B: WH RG flow of the Wilsonian action in Euclidean space

1. Blocking via mode-by-mode integration

The WH RG method [29] has been applied to simple quantum mechanical systems with success in the literature
[27]. The simplicity of the 0 + 1 dimensional model of the single quantized anharmonic oscillator enables one to
perform the blocking by integrating out the high-frequency quantum fluctuations mode-by-mode. Let us prescribe
periodic boundary conditions in time, qt=0 = qt=T , ξt=0 = ξt=T both for the coordinate qt and the mode ξt integrated
out in a single blocking step, where T stand for the time interval the action is integrated over and taken to infinity at
the end. The Matsubara frequencies are given as ωn = n2π/T , the gliding cut-off is at ωN = N2π/T . The periodic
coordinate can be Fourier expanded as

qt =
a0
2

+

NΛ
∑

n=1

an cos(ωnt) +

NΛ
∑

n=1

bn sin(ωnt) = q̄ + ηt (B1)

where ωNΛ = NΛ2π/T = Λ is the UV cut-off. Integrating out all the quantum fluctuations ηt around the constant
mode q̄ = 1

2a0 leads to the effective action S0(q̄) given by

e−
1
~
S0(q̄) =

∫

Dηe−
1
~
SΛ[q̄+η]

∼
(NΛ
∏

n=1

∫ ∞

−∞

dan

∫ ∞

−∞

dbn

)

e−
1
~
SΛ[q̄+η] (B2)

up to an irrelevant constant being independent of q̄ and the potential (see [42]). The blocking relation for integrating
out the single mode with frequency ωN , ie. the mode ξt = aN cos(ωN t) + bN sin(ωN t) is given by

e−
1
~
SN−1[q̄] =

∫

Dξe−
1
~
SN [q̄+ξ] ∼

∫ ∞

−∞

daN

∫ ∞

−∞

dbNe−
1
~
SN [q̄+ξ] (B3)
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in the LPA. Here the LPA enables one to replace the time-dependent background by the constant mode q̄. The kinetic
term of the action gives

∫ T

0

dt
1

2
(q̇0 + ξ̇t)

2 =
T

4
ω2
N [a2N + b2N ]. (B4)

With the notation aσ=1 = aN , aσ=−1 = bN , we can write for the blocked potential

UN [q̄ + ξ] =

∫

t

UN(q̄ + ξt) = TUN(q̄) +
1

2

∑

σ,σ′=±1

aσaσ′U (2)
N σ,σ′(q̄) +O

(

ξ3
)

, (B5)

where

U (2)
N σ,σ′(q̄) =

δ2

δa′σδaσ

∫

t

UN (q̄ + ξt)

∣

∣

∣

∣

ξ=0

= T
1

2
U

(2)
N (q̄)[δσ,1δσ′,1 + δσ,−1δσ′,−1], (B6)

so that one gets

UN [q̄ + ξ] = TUN(q̄) + T
1

4
U

(2)
N (q̄)[a2N + b2N ] +O

(

ξ3
)

. (B7)

The non-Gaussian higher-order terms are suppressed with some powers of 1/T in the path-integral and can be
neglected. Then the Gaussian path integral can be performed,

e−
1
~
TUN−1(q̄) ∼ e−

1
~
TUN (q̄)

∫ ∞

−∞

daN

∫ ∞

−∞

dbNe−
1
~
T 1

4 [ω
2
N+U

(2)
N

(q̄)][a2
N+b2N ]

∼ e−
1
~
TUN (q̄)

(

√

8π~

T [ω2
N + U

(2)
N (q̄)]

)2

, (B8)

yielding the finite difference equation

UN (q̄)− UN−1(q̄)

2π/T
=

UωN
(q̄ − UωN−∆ω(q̄)

∆ω
= − ~/T

2π/T
ln[ω2

N + U
(2)
N (q̄)] (B9)

for the blocked potential at the scale ωN . In the limit T → ∞, ie. ∆ω → 0 one finds the WH RG equation

∂ωUω(q̄) = −~α ln[ω2 + U (2)
ω (q̄)], α =

1

2π
(B10)

for the blocked potential Uω, where the discrete gliding frequency cut-off ωN has been changed to the continuous one,
denoted by ω.

2. Approximation schemes

a. IMA

In the IMA one has to replace the blocked potential in the right-hand side by the bare one. Then one can perform
the integration over the scale ω in a straightforward manner,

U IMA
ω (q̄) = UΛ(q̄) + ~α

∫ Λ

ω

dk ln[k2 + a2], a2 = U
(2)
Λ (q̄). (B11)

The bare potential is convex at least in the neighbourhood of its minimum (minima) at some q0. Then for q̄ sufficiently
close to q0, one can make use of the integral

∫ Λ

ω

dk ln[k2 + a2] =

[

k ln[k2 + a2]− 2k + 2a arc tan
k

a

]Λ

ω

Λ→∞, ω→0−→ 2Λ(lnΛ− 1) + aπ (B12)
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and find for the effective potential

U IMA
0 (q̄) = UΛ(q̄) + ~π

√

U
(2)
Λ (q̄). (B13)

This expression is valid in the neighbourhood of the minimum q0 of the bare potential, and the UV divergent piece
is removed by the renormalization condition that the effective potential of a free particle (UΛ(q̄) = 0, a = 0) were
identically vanishing.
The minimum at q0 of the bare potential would be displaced to qIMA

0 = q0 + δq with

δq = − ~πU
(3)
Λ (q0)

2[U
(2)
Λ (q0)]3/2

(B14)

so that for a potential with the symmetry q̄ → −q̄ and its minimum at q0 = 0 the minimum is not displaced in the
one-loop order. Then one finds for the ground state energy

EIMA
0 = ~απ

√

U
(2)
Λ (0) (B15)

in the IMA, ie. in the one-loop approximation. For the free motion of a particle the bare potential vanishes and it
remains vanishing after the blocking as well. For the case of a linear harmonic oscillator this reproduces the correct

ground state energy EIMA, lho.
0 = 1

2~ω0. For an arbitrary polynomial bare potential UΛ(q̄) =
1
2ω

2
0 q̄

2 + 1
24gB q̄

4 + . . . we
get

U IMA, aho.
0 (q̄) = UΛ(q̄) +

1

2
~ω0(1 +

gB q̄
2

4ω2
0

+ . . .) =
1

2
~ω0 +

1

2

(

ω2
0 +

gB~

4ω0

)

q̄2 +
1

24
gB q̄

4 + . . . (B16)

This means that the energy of the ground state of the anharmonic oscillator remains the same as that of the harmonic
oscillator, but the excitation energy of the first excited state is increased with increasing coupling gB,

∆EIMA = ~

√

ω2
0 +

gB~

4ω0
≈ ~ω0

(

1 +
gB~

8ω3
0

+O
(

g2B
)

)

, (B17)

in the IMA. The same result has been obtained in the CSi RG scheme in the IMA.

b. Perturbation expansion in powers of the bare coupling gB

Let us introduce the blocked interaction potential Vω(q̄) via

Uω(q̄) = uω +
1

2
ω2
0 q̄

2 + Vω(q̄), (B18)

for which the WH-RG equation (B10) can be rewritten as

∂ωuω + ∂ωVω(q̄) = −~α ln[ω2 + ω2
0 + V ′′

ω (q̄)] = −~α ln(ω2 + ω2
0)− ~α

∞
∑

n=1

−(−1)n

n
[G0 ωV

′′
ω (q̄)]n. (B19)

In the last equation we performed the perturbation expansion of the right hand side into the interaction, G0 denotes
the propagator of the harmonic oscillator in the ground state. Further on let us Taylor-expand the blocked interaction
potential into the powers of q̄ and truncate it at the quartic terms,

Vω(q̄) = gBαω + g2Bβω +
1

2
(gBρω + g2Bσω)q̄

2 +
1

24
(gB + g2Bνω)q̄

4 + . . . , (B20)

and Taylor-expand each running coupling into the powers of the bare coupling gB and truncate their perturbation
serii at the second order terms. Inserting this ansatz into Eq. (B19) and keeping all the terms up to the order q̄4

and g2B, one finds the following set of coupled ordinary differential equations for the RG flow of the various couplings
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(˙ = d/dω),

u̇ω = −~α ln(ω2 + ω2
0),

α̇ω = −~α
ρω

ω2 + ω2
0

,

β̇ω = −~α
σω

ω2 + ω2
0

+
1

2
~α

ρ2ω
(ω2 + ω2

0)
2
,

ρ̇ω = −~α
1

ω2 + ω2
0

,

σ̇ω = −~α
νω

ω2 + ω2
0

+ ~α
ρω

(ω2 + ω2
0)

2
,

ν̇ω = 3~α
1

(ω2 + ω2
0)

2
(B21)

with the initial conditions αB = βB = ρB = σB = νB = 0 at the UV cut-off ω = Λ. Here the equations for
uω, ρω, νω, αω can be integrated straightforwardly,

uω = uΛ + ~α

∫ Λ

ω

dk ln(k2 + ω2
0)

Λ→∞, ω→0−→ UV div. terms +
1

2
~ω0, (B22)

ρω =
~

2π

∫ Λ

ω

dk

k2 + ω2
0

=
~

2πω0

[

arc tan
k

ω0

]Λ

ω

Λ→∞, ω→0−→ ~

4ω0
, (B23)

νω = − 3~

2π

∫ Λ

ω

dk

(k2 + ω2
0)

2
= − 3~

2π

[

k

2ω2
0(k

2 + ω2
0)

+
1

2ω3
0

arc tan
k

ω0

]Λ

ω

Λ→∞, ω→0−→ − 3~

8ω3
0

, (B24)

αω =
~
2α2

ω0

∫ Λ

ω

dk
arc tan Λ

ω0
− arc tan k

ω0

k2 + ω2
0

=
~
2α2

ω0

[

1

ω0
arc tan

Λ

ω0

(

arc tan
k

ω0

)Λ

ω

− 1

2ω0

∫ Λ

ω

dk 2

(

arc tan
k

ω0

)′

arc tan
k

ω0

]

=
~
2α2

ω0

[

1

ω0
arc tan

Λ

ω0

(

arc tan
k

ω0

)Λ

ω

− 1

2ω0

(

arc tan2
k

ω0

)Λ

ω

]

Λ→∞, ω→0−→ ~
2

32ω2
0

. (B25)

The rest of the equations cannot be integrated straightforwardly, but their solutions can be approximated by inserting
the IR limits of the couplings ρω, νω into their right hand sides,

σω ≈ − 3~2

16πω3
0

∫ Λ

ω

dk

k2 + ω2
0

− ~
2

8πω0

∫ Λ

ω

dk

(k2 + ω2
0)

2

Λ→∞, k→0−→ − ~
2

8ω4
0

, (B26)

βω ≈ ~

2π

−~
2

8ω4
0

∫ Λ

ω

dk

k2 + ω2
0

− ~

4π

~
2

16ω2
0

∫ Λ

ω

dk

(k2 + ω2
0)

2

Λ→∞, k→0−→ − 9~3

256ω5
0

. (B27)

Finally one finds

E0 = u0 + gBα0 + g2Bβ0 =
1

2
~ω0(1 + ξ − 18ξ2 + . . .),

Ω2
0 = ω2

0 + gBρ0 + g2Bσ0 = ω2
0(1 + 4ξ − 32ξ2 + . . .),

g0 = gB + g2Bν0 = gB(1− 6ξ + . . .) (B28)

in terms of the dimensionless parameter ξ = gB~/(16ω
3
0). One should mention that the gradient expansion cannot be

improved going beyond the LPA in the framework of the WH RG scheme.


