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We consider a system of two coupled Tomonaga-Luttinger liquids (TLL) on parallel chains and
study the Rényi entanglement entropy Sn between the two chains. The limit n → 1 corresponds
to the von Neumann entanglement entropy. The system is effectively described by two-component
bosonic field theory with different TLL parameters in the symmetric/antisymmetric channels. We
argue that in this system, Sn is a linear function of the length of the chains followed by a universal
subleading constant γn determined by the ratio of the two TLL parameters. We derive the formulae
of γn for integer n ≥ 2 using (a) ground-state wave functionals of TLLs and (b) conformal boundary
states, which lead to the same result. These predictions are checked in a numerical diagonalization
analysis of a hard-core bosonic model on a ladder. Although our formulae of γn are not analytic in
the limit n → 1, our numerical result suggests that the subleading constant in the von Neumann
entropy is also universal.

PACS numbers: 03.67.Mn, 11.25.Hf, 75.10.Pm

I. INTRODUCTION

The concept of Tomonaga-Luttinger liquid (TLL) pro-
vides a universal framework for studying various one-
dimensional (1D) interacting systems.1 The low-lying ex-
citations of such a system, either fermionic2 or bosonic,3

are essentially collective, and can be recast into a bosonic
field theory describing the density and phase fluctua-
tions. A spinless TLL is characterized by a continuously
varying parameter K (so-called TLL parameter), which
appears in the exponents of correlation functions in the
ground state and experimentally in the power-law tem-
perature dependence of response functions. When two
spinless TLLs are coupled (or when an interaction is in-
troduced in a 1D gas of spin- 12 particles), the bosonic
fields are reorganized into symmetric and antisymmet-
ric channels, which can independently form TLLs. This
is the mechanism underlying the spin-charge separation
in a 1D electron gas. Interestingly, this idea has been
generalized to a two-dimensional (2D) array of coupled
TLLs, predicting a novel non-Fermi liquid phase, called
sliding Luttinger liquid, which shows highly anisotropic
correlations.4–6 A fundamental question related to these
studies is in what way the system of coupled TLLs are
distinguished from the conventional phases such as Fermi
liquids or from the uncoupled TLLs. Stimulated by the
recent advances in applying quantum information tools
to many-body systems, we here address this question in
terms of the entanglement entropy in the ground-state
wave function.

By partitioning the system into a subregion A and its
complement Ā, the entanglement entropy is defined as
the von Neumann entropy SA = −TrρA ln ρA of the re-
duced density matrix ρA = TrĀ|Ψ〉〈Ψ|, where |Ψ〉 is the
ground state of the system. When the system contains
only short-range correlations, A and Ā correlate only
in the vicinity of the boundary, and the entanglement
entropy scales with the size of the boundary (bound-

ary law).7,8 Deviation from the boundary law signals the
presence of certain non-trivial correlations, and further-
more can contain universal numbers characterizing the
system. In one-dimensional critical systems, for exam-
ple, the entanglement entropy SA for an interval embed-
ded in the system shows a logarithmic scaling, whose
coefficient reveals the central charge c of the underlying
conformal field theory (CFT).9–12 Possible further infor-
mation of CFT such as the TLL parameter K is encoded
in a multi-interval entanglement entropy.13–15 In topo-
logically ordered systems16–18 and in some 2D critical
systems,19–24 the entanglement entropy obeys a bound-
ary law, but there appears a subleading universal con-
stant which is determined from the basic properties of
the ground state.

In this paper, we aim to characterize the quantum en-
tanglement arising from the coupling of TLLs. We con-
sider, as the simplest situation, a system of two coupled
spinless TLLs defined on parallel periodic chains (rings),
and study the entanglement entropy between the two
chains. The system is effectively described by a two-
component bosonic field theory with different TLL pa-
rameters K± in the symmetric and antisymmetric chan-
nels. If we identify the two chains with the spin- 12 degrees
of freedom, these channels correspond to the charge and
spin modes, respectively. For 1D systems, the entangle-
ment entropy has so far been studied mostly for an inter-
val embedded in the chain, which can count the central
charge in critical systems. We here instead partition the
system into two rings. We expect that this partitioning
is more useful to observe the effects of the coupling of
the two TLLs. Furthermore, we expect that this setting
provides a good starting point for understanding possi-
bly highly anisotropic characters of entanglement in a 2D
sliding Luttinger liquid.

Specifically, we construct the reduced density matrix
ρA for one of the chains by tracing out the other, and
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compute the Rényi entanglement entropy:

Sn =
−1

n− 1
log(Tr ρnA). (1)

The limit n → 1 corresponds to the von Neumann entan-
glement entropy:

S1 ≡ lim
n→1

Sn = −Tr ρA log ρA. (2)

The limit n → ∞ corresponds to the so-called single-copy
entanglement:

S∞ = − logλmax, (3)

where λmax is the largest eigenvalue of ρA. When there
is no coupling between the chains, Sn is simply equal to
zero. The entropy Sn increases as the coupling increases.
We will see that Sn (with n = 1, 2, . . . ,∞) obeys a

linear function of the chain length L:

Sn = αnL+ γn + . . . , (4)

where the ellipsis represents terms which are negligible
in the limit L → ∞. The first term αnL can be viewed
as a boundary contribution, and the coefficient αn de-
pends on microscopic details. Our main interest lies in
the subleading constant γn. We argue that this constant
is universal and is determined by the ratio of two TLL
parameters, K+/K−.
Recently, Poilblanc25 studied the entanglement en-

tropy for a similar partitioning in gapped phases of a spin
ladder model. In his results, the entanglement entropy
shows a similar linear scaling, but a subleading constant
was not identified. We expect that the linear scaling is a
generic feature of this type of partitioning, and that the
appearance of the subleading constant is characteristic of
critical systems.
The paper is organized as follows. In Sec. II, we set up

the problem which we consider in this paper, and present
path integral representations of the reduced density ma-
trix moments Tr ρnA (with integer n ≥ 2). Based on these
representations, in Secs. III and IV, we calculate the mo-
ments using two different approaches. In Sec. III, we use
the field theoretical representations of the TLL ground-
state wave functions. In Sec. IV, we use a modern tech-
nique in boundary CFT based on boundary states and
compactification lattices. The two approaches are com-
plementary: while the derivation is simpler in the former,
the latter provides a more systematic treatment which
does not require any regularization procedure. Both the
approaches lead to the linear scaling of Sn and the same
formulae for the subleading constant γn. The expres-
sions of γn (as a function of K+/K−) are summarized
in Sec. III C, together with a discussion on their analytic
properties. In particular, it is found that the formulae
of γn (obtained for integer n ≥ 2) are not analytic in
the limit n → 1+. In Sec. V, we check our predictions
on Sn (n ≥ 2) in a numerical diagonalization analysis
of a hard-core bosonic model on a ladder. While we do

not have any analytic prediction on the von Neumann
entropy S1, the numerical result suggests that S1 obeys
a linear scaling similarly to Rényi entropies and that the
subleading constant γ1 is universal. We conclude with a
summary in Sec. VI. Implications of our results on a 2D
sliding Luttinger liquid are also presented.

II. SETUP OF THE PROBLEM

In this section, we set up the system and the problem
which we consider in this paper. In particular, we present
the path integral representations of the reduced density
matrix moments Tr ρnA (with integer n ≥ 2), which will
be used in the following sections.

A. Coupled Tomonaga-Luttinger liquids

We consider a system of two TLLs Hν (ν = 1, 2) on
parallel periodic chains of length L coupled via interac-
tions H12. We assume that the two TLLs are equivalent
and are described by the Gaussian Hamiltonian:

Hν =

∫ L

0

dx
v

2

[

K

(

dθν
dx

)2

+
1

K

(

dφν

dx

)2
]

, ν = 1, 2,

(5)
where x is the coordinate along the chains, and v and
K are the velocity and the TLL parameter, respectively,
in each chain. In the case of fermions, K < 1 (K > 1)
corresponds to a repulsive (attractive) intra-chain inter-
action. The dual pair of bosonic fields, φν and θν , sat-
isfy [φν(x), θν′(x′)] = (i/2)[1 + sgn(x − x′)]δνν′ . The
field φν(x) is related to the particle density ρν(x) via

ρν(x) ≈ ρ0 − 1√
π

dφν(x)
dx with ρ0 being the density in the

ground state while the field θν(x) represents the Joseph-
son phase. We assume that there is no particle tunneling
between the chains, and therefore the particle number is
separately conserved in each chain (U(1)×U(1) symme-
try).
Now let us consider, for instance, the interaction of the

form

H12 =

∫ L

0

dx
U

π

dφ1

dx

dφ2

dx
, (6)

which corresponds to the leading part in the density-
density interaction. To treat this, we introduce the sym-
metric/antisymmetric combinations of the bosonic fields:

φ± =
1√
2
(φ1 ± φ2), θ± =

1√
2
(θ1 ± θ2). (7)

Then the total Hamiltonian H = H1 +H2 +H12 can be
formally decoupled into two free bosons defined for these
symmetric/antisymmetric channels:

H = H+ +H−, (8)
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FIG. 1: The path integral representation for the reduced
density matrix ρA in Eq. (15). In each of the two sheets,
a periodic boundary condition is imposed in the x direction.
Therefore the left and right sheets form a cylinder and a torus,
respectively.

with

H± =

∫ L

0

dx
v±
2

[

K±

(

dθ±
dx

)2

+
1

K±

(

dφ±
dx

)2
]

. (9)

Here the renormalised velocities v± and TLL parameters
K± are given by

v± = v

(

1± KU

πv

)
1
2

, K± = K

(

1± KU

πv

)− 1
2

. (10)

Note that, although the two channels are formally de-
coupled in Eq. (8), zero modes of the two channels are
intertwined, which will be seriously discussed in Sec. IV.
On the other hand, the oscillator modes of these channels
are completely decoupled. In general, if H12 consists only
of forward scattering processes, the total Hamiltonian H
can be similarly recast into the form in Eqs. (8) and (9).
Even when H12 contains other terms, this form is still
applicable as long as those terms are irrelevant and di-
minish to zero in the renormalization group (RG) flow.
In this case, K± can change slightly from the perturba-
tive result [like Eq. (10)] along the RG flow, and their
precise values in the infra-red limit can be determined
by examining correlation functions numerically, for ex-
ample. In the following, we consider the situation where
the Hamiltonian in Eqs. (8) and (9) presents the exact
long-distance physics, and treat K± as free parameters.
Since we are interested in the entanglement between the
two chains, we keep in mind that the bosonic fields φ±
and θ± diagonalizing H are related to the original fields
on the chains via Eq. (7). Note that Eq. (7) is protected
by the permutation symmetry of the two chains and is
applicable beyond the perturbative regime.

B. Path integral representations of reduced density

matrix moments

For the ground state |Ψ〉 of H , we consider the Rényi
entanglement entropy Sn [Eq. (1)] with integer n ≥ 2

between the two chains. Here we represent the moments
of the reduced density matrix, Tr ρnA, in the language of
the path integral. We start from the finite-temperature
density matrix of the total system:

ρ =
1

Z
e−βH with Z = Tr e−βH . (11)

The inverse temperature β is eventually taken to infinity
so that ρ → |Ψ〉〈Ψ|. We move on to the path integral
formalism in the Euclidean space time (tE , x). The Eu-
clidean action is

SE =

∫ β

0

dtE

∫ L

0

dx (LE+ + LE−) (12)

with

LE± =
v±
K±

[

(∂xφ±)
2 + v−2

± (∂tEφ±)
2
]

. (13)

Although SE is diagonalized in φ± basis, in the follow-
ing, we rather regard this as a functional of φ1,2 using
the relation (7) since we are interested in the entangle-
ment between the two chains. On this ground, the matrix
element of the density matrix ρ is expressed as

〈ϕ′
1, ϕ

′
2|ρ|ϕ1, ϕ2〉

=
1

Z

∫

φν(0, x) = ϕν(x)
φν(β, x) = ϕ′

ν(x)

Dφ1Dφ2 e−SE[φ1,φ2], (14)

where ϕν = {ϕν(x)}0≤x<L and those with a prime are
field configurations defined along the chains 1 and 2 re-
spectively. The path integral is done under the condition
that φν(tE , x) (ν = 1, 2) is equal to ϕν(x) and ϕ′

ν(x) at
the imaginary time tE = 0 and β, respectively.
The reduced density matrix ρA for the chain 1 is ob-

tained by identifying ϕ2 and ϕ′
2 in Eq. (14) and integrat-

ing over ϕ2:

〈ϕ′
1|ρA|ϕ1〉 =

∫

Dϕ2 〈ϕ′
1, ϕ2|ρ|ϕ1, ϕ2〉

=
1

Z

∫

φ1(0, x) = ϕ1(x)
φ1(β, x) = ϕ′

1(x)
φ2(0, x) = φ2(β, x)

Dφ1Dφ2 e−SE[φ1,φ2], (15)

with Dϕν =
∏

x dϕν(x). We introduce a graphical repre-
sentation in Fig. 1, where two sheets express the space-
time on which the fields φ1,2 are defined. The partial
trace in Eq. (15) corresponds to gluing the two edges of
the sheet for φ2.
Now we consider the n-th moment of the reduced den-

sity matrix, TrρnA, with integer n ≥ 2. To construct this,
we consider n copies of the diagram in Fig. 1 and glue
them cyclically, as illustrated in Fig 2 for the case of
n = 3. This leads to an expression

Tr ρnA =

∫ n
∏

j=1

Dϕ2j−1

n
∏

j=1

〈ϕ2j+1|ρA|ϕ2j−1〉

=

∫ 2n
∏

j=1

Dϕj

n
∏

j=1

〈ϕ2j+1, ϕ2j |ρ|ϕ2j−1, ϕ2j〉
(16)
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FIG. 2: The path integral representation of TrρnA in Eqs. (16)
and (17), for the case of n = 3.

where ϕj ’s with odd (even) subscripts are defined for the
chain 1 (2) and ϕ2n+1 ≡ ϕ1. This can be expressed in a
compact way:

TrρnA =
Zn

Zn
, (17)

where Zn is the partition function defined for 2n sheets
which are interconnected as shown in Fig. 2. The dia-
gram consists of a large torus for φ1’s, and n small tori
for φ2’s. Because of the interactions between φ1 and φ2,
the calculation of such a partition function is not trivial.
In Secs. III and IV, we present different ways to compute
Eq. (16) or Eq. (17), which eventually lead to the same
results. Here we mention the case of no inter-chain inter-
action H12 = 0, where the tori in Fig. 2 are decoupled.
Using the ground-state energy E0 of H1 and H2, we have
Zn ≈ e−nβE0

(

e−βE0

)n
and Zn ≈

(

e−2βE0

)n
in the limit

β → ∞, which lead to Sn = 0.

III. WAVE FUNCTIONAL APPROACH

In this section we compute Eq. (16) using a field the-
oretical representation of the TLL wave function, and
derive the expressions of the Rényi entropies Sn for inte-
ger n ≥ 2. Similar approaches were also used to calculate
the entanglement entropy in 2D critical wave functions21

and the ground-state fidelity in TLLs.26–28 In this sec-
tion, we do not include the zero modes of the bosonic
fields and regard H± as completely independent. This is
justified because we are interested in the entanglement
properties of the ground state, where zero modes do not
appear.

NOPQ RS TT U

VWX
YZ

[\]^ _` aa b

[\]^ c` aa b

def
gh

[\]^ ci aa b

[\]^ ji aa b

VkX
YZ

lmno pq rr s

NOPQ RS TT t

VWX
uZ

vwxy z{ || }

vwxy ~{ || }

def
�h

vwxy ~� || }

vwxy �� || }

VkX
uZ

lmno pq rr �

FIG. 3: Rewriting of Z3 in Fig. 2 using φ± basis. The par-
tition function Z3 is obtained after integrating over the field
configurations ϕ1, . . . , ϕ6.

A. Reduced density matrix moments and wave

functionals

The difficulty in computing Zn comes from the inter-
actions between different sheets in Fig. 2. To treat these
interactions, we work the symmetric/antisymmetric basis
of bosonic fields, in which the action is diagonal, leading
to a diagram as in Fig. 3. As a tradeoff, the boundaries
of the sheets are now interconnected in a non-trivial way.
The strategy of this section is to first treat each sheet of
Fig. 3 separately by fixing the boundary field configura-
tions, ϕj ’s, and to then integrate over ϕj ’s to calculate
the partition function Zn.
As mentioned in Sec. II A, the winding numbers (zero

modes) of the symmetric/antisymmetric channels are in-
tertwined, and therefore the two channels are not com-
pletely decoupled. However, since we are interested in the
entanglement properties of the ground state in the limit
β → ∞, we can work in the sector of the Hilbert space
where the winding numbers are set to zero. Namely,
we focus on the oscillator modes in the Hamiltonian.
In this sector, H± commute with each other. Using
e−βH = e−βH+e−βH− , we rewrite the matrix element of
ρ appearing in Eq. (16) as

〈ϕ2j+1, ϕ2j |ρ|ϕ2j−1, ϕ2j〉

=
1

Z

〈

ϕ2j+1 + ϕ2j√
2

∣

∣

∣

∣

e−βH+

∣

∣

∣

∣

ϕ2j−1 + ϕ2j√
2

〉

×
〈

ϕ2j+1 − ϕ2j√
2

∣

∣

∣

∣

e−βH−

∣

∣

∣

∣

ϕ2j−1 − ϕ2j√
2

〉

.

(18)

An expression of the form 〈ϕ′|e−βH± |ϕ〉 in this equation
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corresponds to each sheet in Fig. 3. Since H± are the
Hamiltonians of massless free bosons, 〈ϕ′|e−βH± |ϕ〉 can
be viewed as the propagator of a closed bosonic string in
the imaginary time. Such a “closed string propagator”
has been computed in, e.g., Refs. 29–31 [in particular
a compact expression is shown in Eq. (24) of Ref. 31].
Rather than using the expression obtained in these works,
we here take a simpler route as follows.
We take the limit β → ∞, and then only the ground

states |Ψ±〉 of H± (with eigenenergies E±) contribute to
the propagators and the partition function:

〈ϕ′|e−βH± |ϕ〉 ≈ 〈ϕ′|Ψ±〉e−βE±〈Ψ±|ϕ〉, (19)

Z = Tre−βH ≈ e−β(E++E−). (20)

Using these, we can rewrite Eq. (18) as

〈ϕ2j+1, ϕ2j |ρ|ϕ2j−1, ϕ2j〉

≈
〈

ϕ2j+1 + ϕ2j√
2

∣

∣

∣

∣

Ψ+

〉〈

Ψ+

∣

∣

∣

∣

ϕ2j−1 + ϕ2j√
2

〉

×
〈

ϕ2j+1 − ϕ2j√
2

∣

∣

∣

∣

Ψ−

〉〈

Ψ−

∣

∣

∣

∣

ϕ2j−1 − ϕ2j√
2

〉

.

(21)

Here, an expression of the form 〈ϕ|Ψ±〉 is the represen-
tation of a ground state wave function in terms of the
field configuration {ϕ(x)}0≤x<L along the chain, which
we call a “wave functional” following Ref. 32.

B. Calculation of reduced density matrix moments

The ground state wave functional of a TLL has been
derived in literature.21,27,32–35 In Appendix A, we present
its simple derivation in the operator formalism. From
Eq. (A12), the wave functional is expressed as

〈ϕ|Ψ±〉 =
1

√

N±
e
− 1

K±
E[ϕ]

, (22)

where E [ϕ] is a quadratic function of ϕ [see Eq. (A14) for
the explicit form]. From Eq. (A11), the normalization
factors N± are given by

N± =

∞
∏

m=1

πK±
km

. (23)

Using Eqs. (21) and (22) and E [ϕ] = E [−ϕ], Eq. (16) is
rewritten as

TrρnA = (N+N−)
−n

∫ 2n
∏

j=1

Dϕj

× exp



−
2n
∑

j=1

(

1

K+
E
[

ϕj + ϕj+1√
2

]

+
1

K−
E
[

ϕj − ϕj+1√
2

])



 .

(24)

Here each term in the argument of the exponential func-
tion corresponds to an edge of a sheet in Fig. 3, and

represents the probability distribution of field configura-
tions in a way analogous to the Boltzmann weight. As
shown in Eq. (A9), the functional E [ϕ] has a very simple
form when written in terms of the Fourier components
{ϕ̃m} of ϕ:

E [{ϕ̃m}] =
∞
∑

m=1

km|ϕ̃m|2. (25)

Therefore, we expand ϕj into the Fourier components
{ϕ̃j,m} as in Eq. (A6), and rewrite Eq. (24) as

Tr ρnA =(N+N−)
−n

∫ 2n
∏

j=1

∞
∏

m=1

(dϕ̃j,mdϕ̃∗
j,m)

× exp

(

−
∞
∑

m=1

2km
(K+K−)1/2

Φ̃†
mMnΦ̃m

)

,

(26)

where Φ̃m = (ϕ̃1,m, ϕ̃2,m, . . . , ϕ̃2n,m)t andMn is a 2n×2n
matrix defined as

Mn :=

















A 1
2B

1
2B

1
2B A 1

2B

1
2B A

. . .

. . .
. . . 1

2B
1
2B

1
2B A

















, (27)

A :=
1

2

(
√

K−
K+

+

√

K+

K−

)

, B :=
1

2

(
√

K−
K+

−
√

K+

K−

)

.

(28)

Performing the Gaussian integration and using Eq. (23),
Eq. (26) is calculated as

Tr ρnA = (N+N−)
−n

∞
∏

m=1





(

πK
1/2
+ K

1/2
−

km

)2n
1

detMn



 ,

=
∞
∏

m=1

(detMn)
−1

(29)

Since Mn has the same form as the Hamiltonian of a 1D
tight-binding model, it can be easily diagonalized and its
determinant is calculated as

detMn =

2n−1
∏

l=0

λl, λl := A+B cos

(

2πl

2n

)

. (30)

In Eq. (29), we have obtained an infinite product of
the form

∏∞
m=1 C

−1 (with C ≥ 1), which needs to be
regularized. We introduce a short-distance cutoff a0 of
the order of the lattice spacing. We rewrite the prod-
uct as

∏

m 6=0 C
−1/2. In this expression, m runs over

L/a0 − 1 modes by considering the exclusion of the zero
mode. Therefore the product scale as C1/2e−αL (with
α = (logC)/(2a0) > 0). The prefactor C1/2 gives a
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cutoff-independent (and thus universal) constant. [A
similar technique has also been used for evaluating the
fidelity in a TLL in Ref. 28.] We note that the same uni-
versal constant can also be obtained by the ζ-function
regularization. Applying this argument to Eq. (29), we
arrive at

Tr ρnA = e−αL(detMn)
1/2, (31)

where α is a cutoff-dependent constant. Note that, al-
though we initially assumed integer n ≥ 2, the final
expression (31) also contains the case of n = 1, where
Tr ρA = 1. This can be seen by setting α = 0 and

M2 =

(

A B
B A

)

. (32)

Compared to Eq. (27), we have B instead of 1
2B in the

elements because the elements on the subdiagonal parts
and at the upper-right/lower-left corners in Eq. (27) are
combined. The determinant and the eigenvalues of M2

are written in the same ways as Eq. (30).

C. Expressions of Rényi entropies

Equation (31) leads to a linear scaling of Sn as a func-
tion of the chain length L as in Eq. (4). The coefficient αn

of the linear term depends on the short-distance cutoff a0
and therefore is not universal. The subleading constant
term γn for integer n ≥ 2 is obtained as

γn =
−1

2(n− 1)
log(detMn) =

−1

2(n− 1)

2n−1
∑

l=0

logλl. (33)

We see that γn is determined by the underlying field the-
ory and is a function of the ratio of the two TLL param-
eters, K+/K−. As an example, for n = 2, one obtains

γ2 = − log

[

1

2

(
√

K−
K+

+

√

K+

K−

)]

. (34)

In the limit of n → ∞, the summation over l is replaced
by an integral, leading to

γ∞ = − log

[

1

2

(
√

K−
K+

+

√

K+

K−

)]

− I

(

K− −K+

K− +K+

)

(35)
with

I(s) =

∫ 2π

0

dθ

2π
log(1 + s cos θ) = log

(

1 +
√
1− s2

2

)

.

(36)
Here the integral was calculated as follows. We differen-
tiate I(s) with respect to s and integrate over θ:

dI(s)

ds
=

∫ 2π

0

dθ

2π

cos θ

1 + s cos θ
=

1

s
− 1

s
√
1− s2

(37)

Using I(0) = 0 and integrating this over the interval [0, s]
gives the final expression in Eq. (36).
In the replica procedure for calculating the von Neu-

mann entropy, we compute the Rényi entropies for in-
teger n ≥ 2, take the analytic continuation to real
n ∈ [1,∞], and then take the limit n → 1+. In Eq. (33),
we cannot find any obvious way to extend the formula
of γn to the case of real n. Let us focus on the expres-
sion γ̃n := log(detMn) appearing in Eq. (33). To gain
insights on the analyticity of γ̃n as a function of n, we
expand it around K+/K− = 1, which corresponds to the
limit of no inter-chain coupling. To this end, it is useful
to introduce a parameter

κ :=
K− −K+

K− +K+
. (38)

Using this, γ̃n is written as

γ̃n = −n log(1−κ2)+
2n−1
∑

l=0

log

[

1 + κ cos

(

2πl

2n

)]

. (39)

Expanding around κ = 0 gives

γ̃n =

∞
∑

m=1

2n−An,m

2m
κ2m, (40)

with

An,m :=
2n−1
∑

l=0

cos2m
(

2πl

2n

)

=
1

22m

2m
∑

k=0

(

2m
k

) 2n−1
∑

l=0

e2πl(k−m)/n.

(41)

In the summation over k, only the terms where k −m is
an integer multiple of n contribute. For m < n, it occurs
only for k = m, and An,m is given by a simple expression

An,m =
2n

22m

(

2m
m

)

. (42)

For m ≥ n, An,m can contain other terms and show non-
trivial dependences on n and m. For example, for m = 1,
one obtains

An,1 =

{

2 (n = 1)

n (n ≥ 2).
(43)

This leads to the lowest-order expansion of γ̃n for n ≥ 2

γ̃n =
n

2
κ2 +O(κ4), (44)

which is not smoothly connected to γ̃1 = 0 as n → 1+.
Multiplying −1/[2(n − 1)] to Eq. (44) to obtain γn, we
find that the coefficient of the leading (order-κ2) term
in γn is divergent as n → 1+. This indicates that in
this problem, it is difficult to study the von Neumann
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entropy S1 from the knowledge of the Rényi entropies
Sn with integer n ≥ 2. At present, we do not have any
analytic prediction on S1. However, our numerical result
in Sec. V indicates that S1 also obeys a linear function
of L and that the subleading constant γ1 is determined
by K+/K−.
In passing, we comment that the non-analyticity of

the subleading constant in the limit n → 1 has also be
seen in the Rényi entropy of a line embedded in 2D Ising
models.23

IV. BOUNDARY STATE APPROACH

In this section we express the partition functions, Zn

and Zn, in Eq. (17) as the transition amplitudes between
conformal boundary states. In the limit β ≫ L ≫ 1,
these partition functions contain universal multiplicative
constant contributions, known as the boundary “ground-
state degeneracies.”36 This approach does not require
any regularization procedure and determines the univer-
sal contributions in the partition functions in a way con-
sistent with a certain condition under the modular trans-
formation (Cardy’s consistency condition37). Similar ap-
proaches were also used quite recently to calculate the
entanglement entropy in 2D critical wave functions22,24

and the ground-state fidelity in TLLs.28

A. Compactification conditions of bosonic fields

To apply boundary CFT to the system introduced in
Sec. II A, one needs to precisely discuss the compactifica-
tion conditions imposed on the bosonic fields. We will see
that zero modes of the symmetric/antisymmetric chan-
nels are intertwined and require a careful treatment.
The original bosonic fields, φν and θν (ν = 1, 2), de-

fined along the chains are compactified on circles with dif-
ferent radii. When periodic boundary conditions (PBC)
are imposed, the fields can acquire winding numbers
when going around the chains, namely,38

φν(L) = φν(0) + 2πrnν ,

θν(L) = θν(0) + 2πr̃mν ,

nν ,mν ∈ Z.

(45)

Here the compactification radii are given by

r =
1

2
√
π
, r̃ =

1√
π
. (46)

Before discussing the compactification in the symmet-
ric/antisymmetric channels, let us mention that H in
Eq. (8) is not a Hamiltonian of a conformally invariant
system because the two velocities v± in Eq. (9) are differ-
ent in general. To apply boundary CFT later, we restore
the conformal invariance by simply replacing v± → 1.
Although this replacement changes the spectrum of the

Hamiltonian, it does not change the eigenstates. The
ground state and therefore its entanglement properties
should remain unchanged. To further simplify the Hamil-
tonian, we rescale the bosonic fields as Φ± = φ±/

√

K±
and Θ± =

√

K±θ±. The new Hamiltonian is

H̃ =
1

2

∫ L

0

dx





(

d~Θ

dx

)2

+

(

d~Φ

dx

)2


 (47)

with

~Φ =

(

Φ+

Φ−

)

, ~Θ =

(

Θ+

Θ−

)

. (48)

From Eq. (45), the new bosonic fields are subject to
the conditions

~Φ(L) = ~Φ(0) + 2π~u, ~u = n1~a1 + n2~a2, (49)

~Θ(L) = ~Θ(0) + 2π~v, ~v = m1
~b1 +m2

~b2, (50)

n1, n2,m1,m2 ∈ Z,

where

~a1,2 =
r√
2

(

1/
√

K+

±1/
√

K−

)

, ~b1,2 =
r̃√
2

( √

K+

±
√

K−.

)

(51)

Note that ~ai ·~bj = 1
2π δij . Let Λ be the lattice of ~u defined

by Eq. (49), and let Λ∗ be its reciprocal lattice. Then ~v
defined by Eq. (50) lives on 1

2πΛ
∗. The lattices of ~u and

~v introduced in this way are called the compactification

lattices of ~Φ and ~Θ.

B. Reduced density matrix moments and

boundary states

We consider the partition functions, Zn and Zn, ap-
pearing in Eq. (17). In the following discussions, we
mainly focus on the case n = 2; the generalization to
arbitrary integer n ≥ 1 is straightforward and will be
done in Sec. IVD. From the argument in Sec. II B, Z2

is expressed by four sheets interconnected as shown in
Fig. 4(a). Invoking the folding technique of Refs. 24,39,
we fold each sheet at tE = β/2 and superpose all the
8 pieces of sheets. As a result, we have a 8-component

bosonic field ~Φ living on a cylinder of lengths L and β/2
in the spatial and temporal directions respectively; see
Fig. 4(b). The Hamiltonian H̃ for this “system” is writ-

ten in the same form as in Eq. (47), but now ~Φ and ~Θ
consist of 8 components each:

~Φ = (Φ
(1)
+ ,Φ

(1)
− ,Φ

(2)
+ ,Φ

(2)
− ,Φ

(3)
+ ,Φ

(3)
− ,Φ

(4)
+ ,Φ

(4)
− )t, (52)

~Θ = (Θ
(1)
+ ,Θ

(1)
− ,Θ

(2)
+ ,Θ

(2)
− ,Θ

(3)
+ ,Θ

(3)
− ,Θ

(4)
+ ,Θ

(4)
− )t. (53)

Here, the components of ~Φ are related to φ
(j)
ν ’s in

Fig. 4(a) as

Φ
(j)
± =

1
√

2K±
(φ

(j)
1 ± φ

(j)
2 ), (54)
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FIG. 4: Two representations of Z2. Four sheets are interconnected in (a). We fold each sheet at tE = β/2 and superpose all

the 8 pieces of sheets, leading to a 8-component field ~Φ on a single sheet in (b).

and Θ
(j)
± are defined as their dual counterparts. The 8-

component fields are subject to the conditions

~Φ(L) = ~Φ(0) + 2π~u, ~u ∈ Ξ ≡ Λ4 (55)

~Θ(L) = ~Θ(0) + 2π~v, ~v ∈ Ξ̃ ≡
(

1

2π
Λ∗
)4

. (56)

The primitive vectors of the lattice Ξ are ~a
(j)
ν (ν =

1, 2; j = 1, 2, 3, 4), each of which is defined by insert-
ing ~aν into (2j − 1)- and (2j)-th elements and zeros into
the others. Similarly, the primitive vectors of the lattice

Ξ̃ are ~b
(j)
ν (ν = 1, 2; j = 1, 2, 3, 4), defined likewise from

~bν .

At the two boundaries at tE = β/2 and 0, the following
boundary conditions are imposed respectively:

Γ1 : φ
(2j−1)
1 = φ

(2j)
1 , φ

(2j−1)
2 = φ

(2j)
2 (j = 1, 2), (57)

Γ2 : φ
(2j)
1 = φ

(2j+1)
1 , φ

(2j−1)
2 = φ

(2j)
2

(j = 1, 2; φ
(5)
1 ≡ φ

(1)
1 ). (58)

We will express these conditions using boundary states,
|Γ1〉 and |Γ2〉. The partition functions we wish to calcu-
late are expressed as the transition amplitudes between
these states:

Z2 = ZΓ1Γ2
= 〈Γ1|e−

β

2
H̃ |Γ2〉, (59)

Z2 = ZΓ1Γ1
= 〈Γ1|e−

β

2
H̃ |Γ1〉. (60)

C. Boundary state formalism

Before considering the two boundary states |Γ1,2〉
in more detail, we discuss the construction of bound-
ary states in a more general setting. The bound-
ary CFT for multicomponent bosons has been devel-
oped in string theory40–42 and applied to condensed
matter problems.43–46 In particular, a “mixed” Dirich-
let/Neumann boundary condition, which we focus on
here, has been discussed in Refs. 42,46. Such “mixed”
conditions have recently been applied to the calcula-
tion of the entanglement entropy in 2D critical wave
functions.24 Here we review basic knowledge on the
boundary CFT for multicomponent bosons, and dis-
cuss how to construct the boundary state for a “mixed”
Dirichlet/Neumann condition. For further details, we re-
fer the reader to, e.g., Refs. 24,44,46 (especially Ref. 24
for the present application47), which contain useful sum-
maries of boundary CFT for multicomponent bosons.
The main result of this subsection is the formula of the
boundary “ground-state degeneracy” in Eq. (90), which
is used later to calculate universal (non-extensive) con-
stant contributions in partition functions.

We consider a c-component free boson defined by the
Hamiltonian H̃ in Eq. (47). The system is placed on a
cylinder like Fig. 4(b) and we impose certain conformally
invariant boundary conditions at both ends. Since the
PBC is imposed in the x direction, the bosonic fields
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have the following mode expansions:

~Φ(t, x) = ~Φ0 +
2π

L
(~̂ux+ ~̂vt) (61a)

+

∞
∑

m=1

1√
4πm

(

~aLme−ikm(x+t) + ~aRmeikm(x−t) + h.c.
)

,

~Θ(t, x) = ~Θ0 +
2π

L
(~̂vx+ ~̂ut) (61b)

+

∞
∑

m=1

1√
4πm

(

~aLme−ikm(x+t) − ~aRmeikm(x−t) + h.c.
)

,

with km = 2πm/L. The spectra of ~̂u and ~̂v form the

lattices Ξ and Ξ̃ = 1
2πΞ

∗, respectively. We have included
the dependence on the real time t, which help to see
that ~aLm (~aRm) represents a left (right) moving mode. The
elements of vectors, which we label by j = 1, 2, . . . , c,
obey the commutation relations

[Φ0,j , v̂j′ ] = [Θ0,j, ûj′ ] = iδjj′/(2π), (62)

[aLm,j, a
L†
m′,j′ ] = [aRm,j , a

R†
m′,j′ ] = δmm′δjj′ . (63)

Using the expansions (61), the Hamiltonian H̃ is diago-
nalized as

H̃ =
2π

L

[

π(~̂u2+~̂v2)+

∞
∑

m=1

m
(

~aL†
m · ~aLm + ~aR†

m · ~aRm
)

− c

12

]

,

(64)
where the last term comes from the zero-point motions
of oscillators (Casimir effect). The ground state |Ψ〉 of

H̃ is given by the condition ~a
L/R
m |Ψ〉 = ~̂u|Ψ〉 = ~̂v|Ψ〉 = ~0.

We can decompose Eq. (61) into the chiral components
as

~Φ(t, x) = ~ΦL(x+) + ~ΦR(x−),

~Θ(t, x) = ~ΦL(x+)− ~ΦR(x−),

x± = t± x.

(65)

with

~ΦL/R(x±) =
1

2
(~Φ0 ± ~Θ0) +

π

L

(

±~̂u+ ~̂v
)

x±

+

∞
∑

m=1

1√
4πm

(

~aL/R
m e−ikmx± + h.c.

)

.
(66)

We now introduce a conformally invariant boundary
condition Γ at the time t = 0. Boundary conformal in-
variance implies that the momentum density operator
TL − TR vanishes at the boundary. Here, TL/R(t, x) =

TL/R(x±) = (∂±~Φ)2 (with ∂± := ∂x±
) are the chiral com-

ponents of the energy-momentum tensor. The conformal
boundary state |Γ〉 therefore satisfies

[TL(x) − TR(x)] |Γ〉 = 0 (67)

(Here, TL/R(x) is defined by TL/R(t = 0, x). The same
convention applies to ΦL/R(x) and JL/R(x) below). In a

multicomponent boson, one can also introduce additional
symmetry requirement of the form

[

~JL(x) −R ~JR(x)
]

|Γ〉 = 0, (68)

which represents the conservation of currents in a general
form (associated with a Heisenberg algebra). Here R is
an orthogonal matrix, and

~JL/R(t, x) = ~JL/R(x±) = ±∂±~Θ(t, x) = ∂±~ΦL/R(x±)
(69)

are the chiral components of the current operator. Since
TL/R(x±) = (JL/R(x±))2, Eq. (68) implies Eq. (67).
Therefore, Eq. (68) defines a subclass of conformal
boundary states for multicomponent bosons, which have
many interesting physical applications.43,45,46 On the
other hand, conformal boundary states which satisfy only
Eq. (67) and not Eq. (68) are also known.44

We now focus on the subclass defined by Eq. (68). The
condition can be rewritten as

∂x

[

~ΦL(x) +R~ΦR(x)
]

|Γ〉 = 0. (70)

This means that ~ΦL +R~ΦR is fixed at a constant vector
along the boundary. In particular, setting R to the iden-
tity matrix I, we have the Dirichlet boundary condition

(“D”), where ~Φ is fixed at a constant vector along the

boundary. Setting R = −I leads to fixing ~Θ, which then

means the Neumann boundary condition (“N”) ∂t~Φ = 0

(since ∂t~Φ = ∂x~Θ).
To obtain the explicit form of |Γ〉, we decompose

Eq. (70) into Fourier components using Eq. (66), lead-
ing to

[

(~̂u+ ~̂v) +R(~̂u − ~̂v)
]

|Γ〉 = 0, (71a)

(~aLm +R~aR†
m )|Γ〉 = (~aL†

m +R~aRm)|Γ〉 = 0. (71b)

The solution of Eq. (71b) is given by the Ishibashi state48

|(~u,~v)〉〉 := exp

(

−
∞
∑

m=1

~aL†
m · R~aR†

m

)

|(~u,~v)〉, (72)

where |(~u,~v)〉 is an oscillator vacuum characterized by
the zero mode quantum numbers (or “winding numbers”)

~u ∈ Ξ and ~v ∈ Ξ̃. If (~u,~v) satisfies

(~u+ ~v) +R(~u − ~v) = 0 (73)

required from Eq. (71a), the Ishibashi state |(~u,~v)〉〉 satis-
fies the conformal invariance. It is known, however, that
in order to obtain a stable boundary state for a given
R, one must take a linear combination of the Ishibashi
states over all possible (~u,~v) satisfying Eq. (73).46

We proceed our discussion focusing on the case of a
“mixed” Dirichlet/Neumann boundary condition, which
is defined as a special case of Eq. (70) as follows. In
the c-dimensional space of the vectorial bosonic fields, we
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impose “D” for the dD-dimensional subspace VD and “N”
for the remaining dN (= c−dD)-dimensional subspace VN

perpendicular to it. Namely,

~s · ∂x~Φ(x)|Γ〉 = 0 for ~s ∈ VD, (74)

~s · ∂x~Θ(x)|Γ〉 = 0 for ~s ∈ VN . (75)

Let P‖ and P⊥ be the projection operators onto VD and
VN , respectively. Then R in Eq. (70) is expressed as

R = IP‖ + (−I)P⊥ = P‖ − P⊥, (76)

which is the reflection operator about the “surface” VD.
As explained above, the corresponding boundary state
|Γ〉 is constructed as a linear combination of Ishibashi
states (72):

|Γ〉 = gΓ
∑

(~u,~v)

|(~u,~v)〉〉, (77)

where gΓ is a prefactor to be determined later and
the summation runs over all possible (~u,~v) satisfying
Eq. (73). Usually, instead of the condition (73), it is
sufficient to require separate conditions for ~u and ~v:

R~u = −~u, R~v = ~v. (78)

Since ~u and ~v live on different lattices Ξ and Ξ̃, a solution
(~u,~v) satisfying only Eq. (73) and not Eq. (78) appears
only when the primitive vectors of the lattices are fine-
tuned, and is not considered in the present discussion.
Because of the definition (76) of R in the present case,
the conditions (78) imply

~u ∈ VN , ~v ∈ VD. (79)

Let ΞN be the set of ~u ∈ Ξ satisfying ~u ∈ VN and Ξ̃D

be the set of ~v ∈ Ξ̃ satisfying ~v ∈ VD. Then, Eq. (77) is
rewritten as

|Γ〉 = gΓ
∑

~u∈ΞN

∑

~v∈Ξ̃D

|(~u,~v)〉〉. (80)

The prefactor gΓ is fixed by requiring Cardy’s consis-
tency condition,37 stated as follows. We impose bound-
ary conditions Γ and Γ′ at the imaginary time tE = β/2
and 0 respectively, and consider the transition amplitude
(partition function):

ZΓΓ′ = 〈Γ|e−β

2
H̃ |Γ′〉. (81)

This can be expressed as a function of

q = e2πiτ = e−2πβ/L, (82)

where τ = iβ/L is the modular parameter49 (this picture
is referred to as the “closed string channel”). By modular
transformation, we exchange the roles of space and time
and express ZΓΓ′ as a function of q̃ = e−2πi/τ = e−2πL/β

(“closed string channel”). In this picture, we may define

the Hamiltonian H̃ΓΓ′ for a 1D system with two bound-
ary conditions Γ and Γ′ at the ends, and write the parti-

tion function as ZΓΓ′(q̃) = Tr e−LH̃ΓΓ′ . This means that

ZΓΓ′(q̃) is determined by the spectrum of H̃ΓΓ′ . There-
fore it should have the form

ZΓΓ′(q̃) =
∑

h

Nh
ΓΓ′χVir

h (q̃), (83)

where χVir
h (q̃) is a character of the Virasoro algebra. The

coefficient Nh
ΓΓ′ can be interpreted as the number of pri-

mary fields with conformal weight h, and has to be a
non-negative integer (Cardy’s condition37). Usually it is
also required that N0

ΓΓ = 1, where h = 0 corresponds to
the identity operator. This is related to the uniqueness
of the ground state of H̃ΓΓ′ . This requirement can be
used to fix gΓ.
Now we calculate the amplitude between two |Γ〉’s de-

fined by Eq. (80):

ZΓΓ(q) = g2Γ

(

1

η(q)

)c
∑

~u∈ΞN

∑

~v∈Ξ̃D

q
π
2
(~u2+~v2), (84)

where

η(q) = q1/24
∞
∏

m=1

(1− qm) (85)

is the Dedekind η function. By modular transformation,
we can rewrite ZΓΓ using q̃:

ZΓΓ(q̃) = g2Γπ
−c/2v0(ΞN )−1v0(Ξ̃D)−1

×
(

1

η(q̃)

)c
∑

~r∈Ξ∗
N

∑

~s∈Ξ̃∗
D

q̃
1
2π

(~r2+~s2), (86)

where v0(...) represents the unit cell volume of the lattice.
Here we have used the following identities:

η(q) =

(

β

L

)1/2

η(q̃), (87)

∑

~u∈ΞN

q
π
2
~u2

=
1

v0(ΞN )

(

β

πL

)dN/2
∑

~r∈Ξ∗
N

q̃
1
2π

~r2 , (88)

∑

~v∈Ξ̃D

q
π
2
~v2

=
1

v0(Ξ̃D)

(

β

πL

)dD/2
∑

~s∈Ξ̃∗
D

q̃
1
2π

~s2 . (89)

The second and third equations come from the multi-
dimensional generalization of the Poisson summation for-
mula. To satisfy Cardy’s consistency condition above, we
require the coefficient of the term with (~r, ~s) = (~0,~0) to
be unity, obtaining

gΓ = πc/4v0(ΞN )1/2v0(Ξ̃D)1/2. (90)

The constant gΓ appears in the overlap between the
ground state |Ψ〉 of H̃ and the boundary state (80):
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gΓ = 〈Ψ|Γ〉. This means that the partition function ZΓΓ′

has a multiplicative constant contribution gΓgΓ′ com-
ing from the boundaries in the limit β/2 ≫ L ≫ 1.
This result can be interpreted as follows. In the open
string channel picture, the 1D system described by H̃ΓΓ′

has the “spacial length” β/2 and the “inverse tempera-

ture” L. The ground state of H̃ΓΓ′ is unique, and there-
fore the thermal entropy goes to zero in the “zero tem-
perature” limit 1/L → 0. On the other hand, when
β/2 ≫ L ≫ 1, the “temperature” 1/L is high enough

and the spectrum of H̃ΓΓ′ looks effectively continuous. In
this case, the thermal entropy acquires a constant contri-
bution log(gΓgΓ′), in addition to the standard extensive
contribution linear in temperature. Because of this, gΓ is
referred to as the boundary “ground-state degeneracy,”
and is generally non-integer.36

D. Boundary conditions Γ1 and Γ2

The two boundary conditions Γ1,2 in Eqs. (57) and
(58) can be expressed as special cases of “mixed” Dirich-
let/Neumann conditions discussed in the previous subsec-
tion. The condition Γ2 in Eq. (58) leads to the following
“D” conditions:

0 = ∂x(φ
(2j)
1 − φ

(2j+1)
1 ) =

1

r̃
(~b

(2j)
1 −~b

(2j+1)
1 ) · ∂x~Φ,

0 = ∂x(φ
(2j−1)
2 − φ

(2j)
2 ) =

1

r̃
(~b

(2j−1)
2 −~b

(2j)
2 ) · ∂x~Φ

(j = 1, 2; ~b
(5)
1 ≡ ~b

(1)
1 ).

(91)

Therefore, the subspace VD2 where “D” is imposed is
spanned by the following (non-orthogonal) basis vectors:

~s1 = ~b
(1)
2 −~b

(2)
2 , ~s2 = ~b

(2)
1 −~b

(3)
1 ,

~s3 = ~b
(3)
2 −~b

(4)
2 , ~s4 = ~b

(4)
1 −~b

(1)
1 .

(92)

In the perpendicular space VN2, the field ~Φ is free at the
boundary, and therefore we impose “N”, where the dual

field ~Θ is locked. This space is spanned by

~t1 = ~a
(1)
2 + ~a

(2)
2 , ~t2 = ~a

(2)
1 + ~a

(3)
1 ,

~t3 = ~a
(3)
2 + ~a

(4)
2 , ~t4 = ~a

(4)
1 + ~a

(1)
1 .

(93)

Now we consider the lattices ΞN2 and Ξ̃D2 used to con-
struct the boundary state |Γ2〉 as in Eq. (80). Since any
linear combination of {~sj} with integer coefficients be-

longs to the lattice Ξ̃, {~sj} can be used as the primitive

vectors of Ξ̃D2 (= Ξ̃ ∩ VD2). Similarly, {~tj} can be used
as the primitive vectors of ΞN2 (= Ξ ∩ VN2).

What are the meanings of the lattices ΞN2 and Ξ̃D2

introduced in this way? Initially, in the mode expansions

(61), the eigenvalue ~u of ~̂u can take any element of the
lattice Ξ and thus be expressed as

~u =

4
∑

j=1

2
∑

ν=1

n(j)
ν ~a(j)ν , (94)

where n
(j)
ν is an integer representing the winding number

of φ
(j)
ν in Fig. 4(a) in the x direction. After imposing

the boundary condition Γ2, ~u lives on the reduced lattice
ΞN , where as indicated by Eq. (93), the winding numbers
obey the constraints:

n
(1)
2 = n

(2)
2 , n

(2)
1 = n

(3)
1 ,

n
(3)
2 = n

(4)
2 , n

(4)
1 = n

(1)
1 .

(95)

These equations simply mean that the winding numbers

of φ
(j)
ν ’s on two sheets connected through Γ2 in Fig. 4(a)

should take the same integer. Similarly, Eq. (92) implies

that the winding numbers m
(j)
ν of θ

(j)
ν ’s on two sheets

connected through Γ2 should take mutually opposite in-
tegers.
Using the primitive vectors {~sj}, the unit cell volume

of Ξ̃D2 is calculated as

v0(Ξ̃D2)
2 =

∣

∣

∣

∣

∣

∣

∣

~s1 · ~s1 ~s1 · ~s2 ~s1 · ~s3 ~s1 · ~s4
~s2 · ~s1 ~s2 · ~s2 ~s2 · ~s3 ~s2 · ~s4
~s3 · ~s1 ~s3 · ~s2 ~s3 · ~s3 ~s3 · ~s4
~s4 · ~s1 ~s4 · ~s2 ~s4 · ~s3 ~s4 · ~s4

∣

∣

∣

∣

∣

∣

∣

= det
(

2r̃2K
1/2
+ K

1/2
− M2

)

,

(96)

where M2 is the 4 × 4 matrix defined in Eq. (27). Since
the general case of integer n ≥ 1 can be handled by sim-
ply replacing M2 by the 2n× 2n matrix Mn [defined in
Eq. (27)], we proceed our discussion in this general case.
Now the boundary conditions Γ1,2 are imposed on a 4n-
component boson. We obtain

v0(Ξ̃D2) =
(

2r̃2K
1/2
+ K

1/2
−

)n

(detMn)
1/2. (97)

Similarly, we obtain the unit cell volume of ΞN2 as

v0(ΞN2) =
(

2r2K
−1/2
+ K

−1/2
−

)n

(detMn)
1/2. (98)

Therefore, using Eq. (90), the factor gΓ2
is calculated as

gΓ2
= πnv0(Ξ̃D2)

1/2v0(ΞN2)
1/2 = (detMn)

1/2. (99)

A similar procedure for Γ1 yields gΓ1
= 1.

E. Calculation of reduced density matrix moments

We consider the transition amplitudes, ZΓ1Γ2
and

ZΓ1Γ1
. The calculation of ZΓ1Γ2

for arbitrary β is a dif-
ficult issue because the R matrices for the two boundary
conditions do not commute with each other. However,
as mentioned at the end of Sec. IVC, one can still derive
the asymptotic expressions in the limit β ≫ L ≫ 1 (i.e.,
q → 0). The results are

ZΓ1Γ2
≈ 〈Γ1|Ψ〉q−4n/24〈Ψ|Γ2〉 = q−4n/24gΓ1

gΓ2
, (100)

ZΓ1Γ1
≈ 〈Γ1|Ψ〉q−4n/24〈Ψ|Γ1〉 = q−4n/24g2Γ1

, (101)
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from which we obtain

TrρnA ≈ gΓ2

gΓ1

= (detMn)
1/2. (102)

This constant is exactly the same with that appearing
in Eq. (31). So far, we have been concerned only with
the regulated part of Tr ρnA and have neglected diver-
gent contributions from the short-range cutoff. The log-
arithm of the partition functions, logZΓΓ′ , for a cylinder
contain contributions proportional to the area β

2L and
the circumference L (Refs. 22,50). The coefficient of the
circumference part depends on the details of the bound-
ary conditions while that of the area part depends only
on the bulk properties. Therefore, in − log(Tr ρnA) =
− log(ZΓ1Γ2

/ZΓ1Γ1
), the area parts cancel out while the

circumference parts do not, leaving a contribution αL. In
this way, the linear contribution in Sn found in Sec. III C
is also reproduced.

V. NUMERICAL ANALYSIS

In this section, we test the analytical predictions of
Secs. III and IV in a numerical diagonalization analysis of
a hard-core bosonic model on a ladder. The Hamiltonian
of the ladder model is given by

H =
∑

ν=1,2

L
∑

j=1

[

− t
(

b†j,νbj+1,ν + h.c.
)

+ V

(

nj,ν − 1

2

)(

nj+1,ν − 1

2

)

− µ

(

nj,ν − 1

2

)]

+

L
∑

j=1

U

(

nj,1 −
1

2

)(

nj,2 −
1

2

)

,

(103)

where bj,ν is a bosonic annihilation operator at the site

j on the ν-th leg, and nj,ν = b†j,νbj,ν is the number
operator defined from it. Here, t and V represent the
hopping amplitude and the interaction between nearest-
neighbor sites on each leg, and U represents the interac-
tion along a rung. We impose the hard-core constraint

b2j,ν = (b†j,ν)
2 = 0, and therefore the bosonic operators are

equivalent to spin- 12 operators as bj,ν = S−
j,ν , b

†
j,ν = S+

j,ν .
We assume the PBC bL+1,ν ≡ b1,ν. We define the aver-
age particle density as ρ0 = (N1 + N2)/(2L), where Nν

is the particle number on the ν-th leg. We assume t > 0,
−2 < V ≤ 0, and U ≥ 0; this case was studied recently
in Ref. 51. We set t = 1 in the following. As explained in
Appendix B and in Ref. 51, this model is equivalent to
a fermionic model on a ladder under the Jordan-Wigner
transformation. In particular, for V = 0, the model is
equivalent to the SU(2)-symmetric fermionic Hubbard
chain, which is solvable by Bethe ansatz. In the Hubbard
chain, the two legs ν = 1, 2 are identified with the spin-
up/down states, and the symmetric/antisymmetric sec-
tors correspond to charge and spin modes, respectively.

 0

 0.5

 1

 0  0.1  0.2

1 
/ K

±

1 / L

ρ0=1/3, V=−1

U=0   
U=0.6
U=1   
U=2   
U=3   

FIG. 5: (Color online) 1/K±(L) [Eq. (106)] versus 1/L for
ρ0 = 1/3 and V = −1. Filled and empty symbols show the
data of 1/K+(L) and 1/K−(L) (with L = 6, 9, 12, 15), re-
spectively. Lines show the fitting with the quadratic form
1/K±(L) = 1/K± + a/L + b/L2. Our motivation to plot
1/K±(L) instead of K±(L) is that the formers vary in a
smaller range [0, 2] in the parameter range of our interest.

We briefly review the recent results of Ref. 51 on the
model (103). For U = 0, the model decouples into two in-
dependent Bose gases, each equivalent to a solvable spin-
1
2 XXZ chain in a magnetic field. Each chain forms a TLL
described by the Hamiltonian (5). The velocity v and the
TLL parameter K of each XXZ chain can be determined
from Bethe ansatz.52,53 For small U > 0 and ρ0 6= 1/2,
the inter-chain coupling can be analyzed along the same
argument as Sec. II A, leading to the perturbative esti-
mates (10) of the renormalized velocities v± and TLL pa-
rameters K± (here, the lattice constant is set to unity).
As seen in this estimate, K− increases with increasing
U . For V < 0, it was found that K− finally diverges
as U approaches certain Uc, where a first-order phase
transition to a population-imbalanced state (N1 6= N2)
occurs. Here we focus on the uniform phase (N1 = N2)
in 0 ≤ U < Uc described by the effective Hamiltonian
in Eqs. (8) and (9). In the solvable case V = 0, the
transition is known not to occur, and the uniform phase
continues for arbitrary large U > 0. In our calculation
presented below, we fixed the density at ρ0 = 1/3, and
performed calculations for V = −1,−0.5, and 0.

Before presenting our results on entanglement, let us
explain our method for calculating the TLL parame-
ters K±. In the solvable case V = 0, K± can be de-
termined accurately by numerically solving the integral
equations obtained from Bethe ansatz.54–56 For other
cases, we determined K± in numerical diagonalization
of finite systems (up to L = 15) by using the method of
Refs. 57,58. In this method, we define ñj,± := ñj,1 ± ñ2,j

with ñj,ν := nj,ν−ρ0, and examine their correlation func-
tions C±(r) := 〈ñj,±ñj+r,±〉. Using the bosonic represen-
tation of operators, these correlation functions are shown
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FIG. 6: 1/K± for ρ0 = 1/3 and V = −1, obtained by extrapo-
lating finite-size data as in Fig. 5. Lines show the perturbative
estimates (10).

to have the asymptotic forms

C±(r) = − K±
(πr)2

+
A±

r1+K±
cos(2kF r) + . . . , (104)

where kF := πρ0 is the Fermi momentum in the cor-
responding fermionic model and A± are non-universal
coefficients. In the SU(2)-symmetric case, a marginally
irrelevant perturbation produces multiplicative logarith-
mic corrections in the second term.1,54,59 Performing the
Fourier transform, only the first term contribute for a
small wave vector q, leading to

N±(q) :=
∑

r

C±(r)e
−iqr ≈ K±

π
|q| (q ≈ 0). (105)

In a periodic finite-size system of length L, we evaluate
this for q = 2π/L, leading to the finite-size estimate of
the TLL parameters:

K±(L) =
L

2
N±

(

2π

L

)

. (106)

The data of 1/K±(L) are extrapolated into L → ∞ as
illustrated in Fig. 5. The values of 1/K± obtained by
the extrapolation are plotted as a function of U in Fig. 6,
in reasonable agreement with the perturbative estimates
(10) for small U(. 1).
Let us now present our results on the (Rényi) entan-

glement entropies Sn (with n = 1, 2,∞) between the two
legs. These entropies are calculated in the ground states
of finite-size systems (up to L = 12) obtained by Lanczos
diagonalization. The data of Sn well obey a linear func-
tion of L. For V = −1 and −0.5, we find that a scaling
form

Sn = αnL+ γn +
δn
L

(107)
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FIG. 7: (Color online) S1 and S∞ versus L for ρ0 = 1/3 and
V = −1. Solid lines show the fits with the scaling form (107)
and broken lines show the linear part αnL+ γn.
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FIG. 8: (Color online) S1 versus L for ρ0 = 1/3 and V = 0.
Solid lines show the fits with the linear form Sn = αnL+ γn.
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FIG. 9: (Color online) γn (with n = 1, 2,∞) as a function of
U , for ρ0 = 1/3 and V = −1,−0.5, 0. The analytical formulae
of γ2 and γ∞ in Eqs. (34) and (35) are also plotted using the
values of the TLL parameters K± obtained numerically.

fits the data very well as shown in Fig. 7. (A simi-
lar scaling form was also used in Ref. 21.) The linear
part αnL+ γn (broken lines) crosses zero around L = 3,
which means that the short-range cutoff a0 discussed in
Sec. III B is given by a0 ≈ 3. For V = 0, in contrast,
a simple linear form Sn = αnL + γn fits the data better
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FIG. 10: (Color online) (a) γn versus K+/K−. (b) −γn/κ
2

versus κ := (K− − K+)/(K− + K+) in logarithmic scales.
The data of γ1 are fitted with the form (109). The analytical
formulae of γ2 and γ∞ are from Eqs. (34) and (35).

as shown in Fig. 8. The extracted constant γn is plot-
ted as a function of U in Fig. 9. Using the values of
the TLL parameters K± obtained numerically, the for-
mulae of γ2 and γ∞ in Eqs. (34) and (35) are also plotted.
For V = −1 and −0.5 [Fig. 9(a), (b)], we find a broad
agreement between the numerical data and the analytical
formulae. The difference between them are within ≈ 30%
of their values. We note that our calculations of both γn
and K± are based on finite-size systems with L ≤ 15.
We expect that calculations in larger systems (by using,
e.g., the quantum Monte Carlo method of Ref. 60) would
demonstrate a more accurate agreement with the analyt-
ical predictions. For V = 0 (the Hubbard chain case), on
the other hand, we find a significant difference between
the numerical and analytical results — the numerical re-
sults are roughly four times as large as the analytical
results. The origin of this significant difference occurring
only for V = 0 will be discussed later.
In Fig. 10(a), we plot the relation of γn and K+/K−

using the data of V = −1 and V = −0.5. We can again
confirm that for γ2 and γ∞, the numerical data and the
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analytical formulae show a broad agreement. Further-
more, we observe that the data of γ1 for two values
of V show a broad agreement, which suggests a uni-
versal relation between γ1 and K+/K−. In Sec. III C,
we have expanded γn (with n = 2, 3, . . . ) in terms of
κ := (K− −K+)/(K− +K+) and found the leading de-
pendence

γn = − n

4(n− 1)
κ2 +O(κ4). (108)

Motivated by this observation, we plot −γn/κ
2 as a func-

tion of κ in logarithmic scales in Fig. 10(b). As expected,
the data for n = 2 and ∞ stay around constants as κ de-
creases, although these constants are slightly larger than
those expected from Eq. (108). The data for n = 1, how-
ever, increase as κ decreases, and follow straight lines in
logarithmic scales in Fig 10(b). We fit the data with the
form

γ1 = −aκb (109)

in the range 0 < κ < 0.5, obtaining (a, b) ≈ (1.13, 1.70)
and (1.16, 1.62) for V = −1 and 0.5, respectively. This
indicates that the leading κ-dependence of γ1 contains a
non-trivial exponent b ≈ 1.6-1.7, in marked contrast to
the quadratic dependence (108) of γn for integer n ≥ 2.
Finally, let us now discuss the origin of the significant

difference between numerical and analytical results ob-
served for V = 0 (the Hubbard chain case) in Fig. 9(c).
In SU(2)-symmetric systems like the Hubbard chain, it
is known that a marginally irrelevant perturbation pro-
duces non-trivial corrections to the predictions of the
pure Gaussian model in various physical quantities. In
particular, its effects are enhanced in the presence of non-
trivial boundary conditions, as discussed in the spin- 12
Heisenberg chain61–63 and the Hubbard chain63–65 with
open ends. In the present case, the system has a sim-
ple periodic boundary condition in space, and non-trivial
boundary conditions are imposed in the imaginary time
direction as presented in Sec. IV. We expect that a
perturbative calculation using boundary states, as was
done in Ref. 61, would clarify non-trivial effects of the
marginally irrelevant perturbation.

VI. SUMMARY AND DISCUSSIONS

We have considered two coupled TLLs on parallel
chains and calculated the Rényi entanglement entropy
Sn between the two chains. We formulated the problem
in the path integral formalism, and related Sn with inte-
ger n ≥ 2 to the partition functions on certain non-trivial
manifolds. These partition functions were calculated us-
ing two analytical methods. We argued that Sn obeys a
linear function of the chain length L followed by a uni-
versal subleading constant γn. The two methods led to
the same formulae for γn, which are written as functions
of the ratio of TLL parameters. The obtained formulae

were checked numerically in a hard-core bosonic model on
a ladder. When the model is away from the SU(2) case,
the numerical data of γ2 and γ∞ showed a broad agree-
ment with analytical formulae. The agreement among
two analytical approaches and numerical results has of-
fered a convincing evidence of the universality of γn with
integer n ≥ 2. Our numerical results also suggested that
the subleading constant γ1 in S1 is also universal and that
its leading dependence on κ := (K− −K+)/(K− +K+)
obeys a non-trivial power function, in contrast to the
quadratic dependence of γn for integer n ≥ 2. In the
SU(2)-symmetric case, the numerical data of γ2 and γn
differ significantly from the analytical formulae, which
indicates a strong effect of a marginally irrelevant per-
turbation.
Recently, Song et al.66 have discussed that the par-

ticle number fluctuations in a subsystem show similar
scaling behavior to the entanglement entropy in a num-
ber of systems. This is an interesting proposal relating
the entanglement entropy to an experimentally observ-
able quantity. In our setting of two coupled TLLs, parti-
cle number fluctuations in a chain are completely absent
since the particle number is separately conserved in each
chain. On the other hand, finite entanglement entropy
does exist between the two chains, and obeys a linear
scaling with the chain length L as we have discussed.
Therefore, our study offers a counterexample to the sim-
ilarity of the two quantities discussed by Song et al..
Our approaches for studying two coupled TLLs can be

extended to study the entanglement in multicomponent
TLLs. An exciting possibility is to study the entangle-
ment entropy in the sliding Luttinger liquid,4–6 which
appears in a 2D array of coupled TLLs. Suppose we de-
fine this system on a torus of length Lx and Ly in two
directions. Here, TLLs are running along the x direction,
and are coupled in the y direction. We consider dividing
the torus into two cylinders of the same size by cutting
it along two lines either in the x or y direction. Cutting
along x is similar to the problem of this paper; it leads
to the linear scaling of the entanglement entropy with
Lx, followed by a subleading constant determined by Ly

TLL parameters. The coefficient of the linear term can
depend on Ly, but we expect that it converges to a con-
stant for sufficiently large Ly because of the short-range
character of the correlations in the y directions. Cutting
the system along y is similar to the problem of dividing
a ring of a 1D critical system with central charge c = Ly

into two parts. Using the finite-system formula in the
latter case,11,12 we predict a scaling

S =
Ly

3
log

(

Lx

π
sin

π(Lx/2)

Lx

)

+ const.

=
Ly

3
logLx + const. .

(110)

Therefore, the entanglement entropy shows qualitatively
different scalings depending on in which direction one
cuts the system. Such a highly anisotropic character of
entanglement is related to the anisotropic correlations in
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this system, and is in marked contrast to non-interacting
fermions67–69 and Fermi liquids.70
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Appendix A: Ground state wave functional of a TLL

Here we consider a single-component free boson Hamil-
tonian (defined by the fields φ(x) and θ(x)) with the
TLL parameter K, and derive the expression of the
ground-state wave functional 〈ϕ|Ψ〉. Such wave function-
als have been studied by using the path integral,27,32,33

the Schrödinger formalism,27,34,35 and the Calogero-
Sutherland wave function.21,32 This problem is also
closely related to the effective action for the boundary
degrees of freedom discussed in the context of dissipation
problems71 and impurity problems.72 Here we present a
simple derivation in the operator formalism. Since the
winding numbers (zero modes) of the bosonic fields are
zero in the ground state, we ignore them in the following
discussion.
The field φ is expanded as

φ(x) =

∞
∑

m=1

√

K

4πm

[

(aRm+aL†
m )eikmx+(aLm+aR†

m )e−ikmx
]

.

(A1)

with km = 2πm/L and [aLm, aL†
m′ ] = [aRm, aR†

m′ ] = δmm′ .
This is a one-component version of Eq. (61). The ground

state |Ψ〉 is defined by a
L/R
m |Ψ〉 = 0 (∀m ∈ N). By anal-

ogy with the quantum mechanics of a harmonic oscillator,
we introduce the “coordinate” and “momentum” opera-

tors, X̂
L/R
m and P̂

L/R
m , for each mode via

aL/R
m =

X̂
L/R
m + iP̂

L/R
m√

2
, (aL/R

m )† =
X̂

L/R
m − iP̂

L/R
m√

2
.

(A2)

The hermittian operators X̂
L/R
m and P̂

L/R
m satisfy

the canonical commutation relations [X̂L
m, P̂L

m′ ] =

[X̂R
m, P̂R

m′ ] = iδmm′ . We further introduce

X̂m,± =
X̂R

m ± X̂L
m√

2
, P̂m,± =

P̂R
m ± P̂L

m√
2

, (m > 0)

(A3)

which are related to the “center of mass” and “relative”
motions of the left/right-moving modes labeled by m.
Then, Eq. (A1) is rewritten as

φ(x) =

∞
∑

m=1

√

K

4πm

[

(X̂m,+ + iP̂m,−)e
ikmx

+ (X̂m,+ − iP̂m,−)e
−ikmx

]

.

(A4)

This expression “diagonalizes” φ(x) because all X̂m,+’s

and P̂m,−’s commute with each other.
The state |ϕ〉 is defined by

φ(x)|ϕ〉 = ϕ(x)|ϕ〉 (0 ≤ x < L). (A5)

From Eq. (A4), one can see that |ϕ〉 is given by a simul-

taneous eigenstate of {X̂m,+; P̂m,−}m>0. We expand the
field configuration ϕ(x) as

ϕ(x) =
1√
L

∞
∑

m=1

(

ϕ̃meikmx + ϕ̃∗
me−ikmx

)

. (A6)

Then the coefficient ϕ̃m is related to the eigenvalues,
Xm,+ and Pm,−, of X̂m,+ and P̂m,− as

Xm,+ + iPm,− =

√

2km
K

ϕ̃m. (A7)

From the solution of a harmonic oscillator, the ground
state wave function is written in terms of Xm,+’s and
Pm,−’s as

〈{Xm,+;Pm,−}|Ψ〉 ∝ exp

[

−1

2

∞
∑

m=1

(X2
m,+ + P 2

m,−)

]

.

(A8)
The wave function in terms of ϕ̃m’s is then given by

〈{ϕ̃m}|Ψ〉 = 1√
N

exp

(

− 1

K

∞
∑

m=1

km|ϕ̃m|2
)

. (A9)

We normalize the wave function such that
∫

∏

m>0

(dϕ̃mdϕ̃∗
m) |〈{ϕ̃m}|Ψ〉|2 = 1. (A10)

Then the normalization factor N is calculated as

N =

∞
∏

m=1

∫

dϕ̃mdϕ̃∗
m exp

(

−2km
K

|ϕ̃m|2
)

=

∞
∏

m=1

πK

km
.

(A11)
It is interesting to transform Eq. (A9) into the real-

space representation:

〈ϕ|Ψ〉 = 1√
N

e−
1
K

E[ϕ], (A12)
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with

E [ϕ] = − 1

2π

∫ L

0

dx1

∫ L

0

dx2

∂xϕ(x1)∂xϕ(x2) log

∣

∣

∣

∣

ei
2π
L

x1 − ei
2π
L

x2

∣

∣

∣

∣

(A13)

Using the charge density measured from the average,
δρ(x) = −∂xϕ(x)/

√
π, this is rewritten as

1

2

∫ L

0

δρ(x1)dx1

∫ L

0

δρ(x2)dx2 log

∣

∣

∣

∣

ei
2π
L

x1 − ei
2π
L

x2

∣

∣

∣

∣

.

(A14)
This can be viewed as the energy of a classical Coulomb
gas placed on a unit circle with a logarithmic repulsive
potential. Such a Coulomb gas structure of the ground
state wave function is directly seen in the Jastraw-type
ground states of the Calogero-Sutherland model73,74 and
the Haldane-Shastry model75,76. More detailed discus-
sions on these connections can be found in Refs. 21,32.

Appendix B: Jordan-Wigner transformation for a

ladder

Under the Jordan-Wigner transformation, the hard-
core bosonic model in Eq. (103) is equivalent to a spin-
less fermionic model on a ladder, where all the bosonic
operators bj,ν in Eq. (103) are replaced by fermionic ones

fj,ν . This transformation is defined as

fj,1 = exp

[

iπ

j−1
∑

l=1

nl,1

]

bj,1, (B1)

fj,2 = exp

[

iπ

(

L
∑

l=1

nl,1 +

j−1
∑

l=1

nl,2

)]

bj,2, (B2)

where the “string” part runs first along the first leg and
then along the second leg. In particular, for V = 0, the
model (103) is equivalent to the solvable fermionic Hub-
bard chain, where the two legs ν = 1, 2 are identified
with the spin-up/down states. Although the Hamilto-
nian retains the same form under this transformation, the
boundary condition is transformed in a non-trivial way.
For example, the PBC bL+1,ν ≡ b1,ν on the bosons cor-
responds to the boundary condition fL+1,ν ≡ eiπNνf1,ν
on the fermions, where Nν is the number of particles on
the ν-th leg. Our motivation to consider the bosonic
model (103) instead of the fermionic one is that in the
uniform phase which we consider here, the bosonic model
(103) with the PBC has a unique ground state, irrespec-
tive of the chain length L and the total particle num-
ber N = N1 + N2. On the other hand, for U = 0, the
fermionic model with the PBC has four-fold degenerate
ground states for some L and N . Although this degen-
eracy is split for U > 0, some irregular size dependence
occurs as a remnant of the degeneracy at U = 0.
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