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A host of spatially extended systems, both in physics and in other disciplines, are well described at a coarse-
grained scale by a Langevin equation with multiplicative-noise. Such systems may exhibit nonequilibrium
phase transitions, which can be classified into universality classes. Here we study in detail one such class that
can be mapped into a Kardar-Parisi-Zhang (KPZ) interface equation with a positive (negative) non-linearity in
the presence of a bounding lower (upper) wall. The wall limits the possible values taken by the height variable,
introducing a lower (upper) cut-off, and induces a phase transition between a pinned (active) and a depinned
(absorbing) phase. This transition is studied here using mean field and field theoretical arguments, as well as
from a numerical point of view. Its main properties and critical features, as well as some challenging theoretical
difficulties, are reported. The differences with other multiplicative noise and bounded-KPZ universality classes
are stressed, and the effects caused by the introduction of “attractive” walls, relevant in some physical contexts,
are also analyzed.

I Introduction

Nonequilibrium phase transitions occurring in systems
amenable to be described by Langevin equations including
a multiplicative noise (MN) term are the subject of current
intense studies. This embraces a broad variety of systems
both in physics and in other disciplines. A phenomenology
much richer and complex than that appearing in equilibrium
systems, including counterintuitive behaviors, has been re-
ported to appear in these, typically nonequilibrium, situa-
tions. See [1,2] for detailed introductions to this growing
field, including many different realizations.

The interest in MN problems is enlarged even further,
because of the existing mappings between them and other
prototypical nonequilibrium problems [2]. A well known in-
stance is the Kardar-Parisi-Zhang (KPZ) equation, describ-
ing the kinetic roughening transition of generic interfaces
under nonequilibrium conditions [3, 5, 4], which can be
mapped onto a MN Langevin equation, by performing the so
called Cole-Hopf transformation linking the interface height
at each point with the activity field of the MN equation. If an
interface under consideration is described by the KPZ equa-
tion and it is physically limited by a wall,i.e. if the heights
cannot be larger or smaller than a certain value, then this
problem,bounded KPZ, can be mapped into a multiplicative
noise equation by employing the abovementioned transfor-
mation [2,6,7]. The bounded KPZ equation may experience,

as parameters are varied, a phase transition from a depinned
phase in which the interface escapes with probability one
from the wall, to a pinned phase characterized by a finite ex-
pectation value of the stationary averaged height (measured
from the wall). In the MN language (i.e. after employing
the Cole-Hopf transformation) the pinning-depinning transi-
tion corresponds to a critical point separating anabsorbing
phasein which the order parameter goes exponentially to
zero (depinned phase) to anactive phasein which the order
parameter takes a nonvanishing average value.

Surprisingly enough, it was shown a few years ago that
the introduction of “upper” or “lower” walls into a given
KPZ equation (with a fixed non-linearity sign) lead to quite
different phenomenologies. The origin of this can be tracked
down to the fact that the KPZ equation is not invariant upon
inverting the height (see [8] or [2] for a more detailed expla-
nation). Taking, for instance, the sign of the coefficient of
the KPZ non-linearity to be positive, the introduction of an
upper wall leads to a (well established by now) set of critical
exponents characterizing the so called multiplicative noise 1
(MN1) universality class [6-9]. On the other hand, a wall
limiting negative values of the interface height (lower wall)
leads to a different type of phase transition as shown by T.
Hwa and one of us some years back [8]. In what follows,
and following the nomenclature introduced in [2], we will
use the term MN2 to denote this class.

It can be easily shown that a KPZ equation with positive
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non-linearity and a lower wall is completely equivalent to
a KPZ with a negative non-linearity coefficient and an up-
per wall [2]: one just has to change the sign of the height
variable in the KPZ-like equation to verify this.

The MN2 class is of great importance in the context of
alignment of DNA and other biological sequences. It has
been argued by Hwa and collaborators, that the phase tran-
sition appearing upon changing the so called scoring pa-
rameter in the commonly used alignment algorithm can be
mapped into the MN2 critical point [14]. It is also related
to some instances of nonequilibrium wetting [10]. For some
other applications and physical instances within this class
see [2] and references therein.

While the MN1 class has been extensively studied, es-
pecially after its connections with nonequilibrium wetting
[10-12] and with the problem of synchronization in ex-
tended systems were established [2, 13], the MN2 class re-
mains poorly studied. Furthermore, recent numerical analy-
ses have revealed that the preliminary critical exponent val-
ues reported in [14] might be far from their true asymptotic
values.

Aimed at clarifying these issues, it is the purpose of
this paper to analyze the MN2 phase transition in one di-
mensional systems using: i) mean-field and field-theoretical
techniques and ii) numerical (Monte Carlo) analysis of dif-
ferent models claimed to belong to this class.

Finally let us stress that if the wall becomes attractive,
rather than simply bounding, new phenomenology might ap-
pear. This is particularly interesting in the context of syn-
chronization [2, 13]. This possibility will also be discussed
in the paper.

II The MN2 class

Let us consider a KPZ equation with a positive non-linearity
coefficient,λ > 0, in the presence of a lower wall,

∂th(x, t) = a+b e−ph +D∇2h+λ(∇h)2 +ση(x, t). (1)

whereh is a height variable,a represents a constant drift
while b e−ph is a bounding wall. The parameterp > 0 con-
trols the wall penetrability, the limitp → ∞ corresponding
to a perfectly rigid (impenetrable) wall. It has been shown
previously that for both the MN1 and the MN2 classes the
magnitude ofp does not influence the asymptotic proper-
ties at criticality [6, 7] (its sign, however, is important, as
it determines whether the wall is a lower or an upper one).
The same property applies to equilibrium systems (i.e., for
λ = 0) [15]. η is a stochastic white noise with〈η〉 = 0 and
〈η(x, t)η(x′, t′)〉 = 2δ(t − t′)δ(x − x′), where〈·〉 denotes
an average over the distribution of the noise.

For a fixed value ofb the interface experiences a pinning-
depinning transition at some valuea = ac.

Some remarks concerning the connection of the previ-
ous equation with wetting problems follow. Whenh(x, t) is
viewed as the distance separating a liquid-gas interface from
a solid wall, Eq. (1) can then be interpreted as a dynamic
model for nonequilibrium wetting. Under this perspectivea
is the chemical potential difference between the liquid and

the gas phases,〈h〉 is the thickness of the wetting layer, and
the wall is a, physical substrate. Atbulk phase coexistence,
i.e. for the value ofa = ac for which in the absence of the
wall the interface does not move on average,〈h〉 diverges
at all temperatures above certain wetting temperature,TW ,
while for a 6= ac the thickness of the liquid film can be
big, but finite (pinned interface). The temperature here is
controlled by the parameterb, which vanishes linearly with
the mean-field wetting temperature asT − TW . Thus, on
approaching coexistence forT > TW (b > 0 at the mean-
field level),〈h〉 diverges as〈h〉 ∼ |a−ac|βh . This transition,
termedcomplete wetting, is always continuous and the value
of theβh exponent depends on the nature of the forces be-
tween the particles in the fluid phases and the wall. In this
paper only short-range, exponentially decaying interactions
between all the particles and the substrate (as described by
Eq. (1)) are considered.

The change of variablesn = exp(−h) transforms Eq.
(1) into the MN2 Langevin equation:

∂tn(x, t) = ∇2n−2
(∇n)2

n
− (a+1)n−bnp+1 +nη, (2)

where for the sake of simplicity we have setλ = D = σ = 1
and Ito calculus [16] has been used (different coefficients
for the Laplacian and the KPZ non-linear term could be
reabsorbed usingn = exp(−αh) with a proper choice of
α). This transformation maps the depinning from the wall
〈h〉 → ∞ to a transition into an absorbing state〈n〉 → 0.
The physical equivalence between the casesλ > 0 with a
lower-wall (p > 0), andλ < 0 with an upper wall (p < 0),
reflects in the fact that the same equation is obtained using
n = exp(−h) andn = exp h, respectively.

Observe that Eq.(2) is identical to the MN equation de-
scribing the MN1 class [2, 6, 7], except for the presence of
an extra term(∇n)2/n. This term can also be written as
(∇n) · (∇ ln(n)) = (∇n) · (∇h) suggesting that the inter-
face language is the natural one for this class. In fact, except
for the factor 2 in front of(∇n)2/n Eq. (2) coincides with
the Cole-Hopf transform of

∂th(x, t) = ∇2h + a + be−ph + η(x, t) (3)

that describes the growth of wetting layers toward their equi-
librium state [19] (observe that this is just the equilibrium,
Edwards-Wilkinson model, in the presence of a bounding
wall). Note also that the factor2 in Eq. (2) cannot be read-
sorbed by reparametrizing.

Finally, let us underline that in the regime whereb < 0
the wall becomes attractive (which might be necessary to
describe some physical situations as, for instance, synchro-
nization problems as said in the introduction) and a new
term, say,c exp(−2h) (equivalentlycn2p+1) with c > 0 has
to be added to stabilize the equation.

Having presented the equations defining the model, in
the forthcoming sections we study the associated physics
by using i) mean field approaches, ii) field theory, and iii)
numerical, Monte Carlo simulations combined with scaling
arguments.
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III Mean-field approaches

Mean-field approaches to Eq. (1) can be implemented with
several degrees of sophistication. A crude approximation
consists of ignoring the noise and spatial variations. At this
level one trivially gets that the order parameter〈h〉 vanishes
as a → 0 with an exponentβh = 0. When applied to
Eq.(2), this approximation yields a shifted critical point at
ac = −1 and the usual result for the order parameter critical
exponent,βn = 1/p. But, as experience with other systems
with multiplicative-noise dictates, neglecting completely the
noise is a too crude approximation, that eliminates most of
the characteristic traits of MN physics.

Now the effect of allowing a spatially varying order pa-

rameter and taking the noise into consideration are exam-
ined. The Laplacian is discretized as

∇2ni =
1
2d

∑

j

(nj − ni) ≈ 〈n〉 − ni, (4)

where the sum runs over the nearest neighbors ofi and a
large system dimensionality has been assumed. Similarly,
the square gradient term can be written as

(∇n)2i
ni

≈ 〈n2〉
ni

− 2〈n〉+ ni. (5)

The one-site stationary probability distribution is then read-
ily obtained from the associated Fokker-Planck equation,

c

Pst

(
n, 〈n〉

)
∝ 1

n2
exp

∫ n (∇x)2i − 2(∇x)2i /xi − (a + 1)xi − bxp+1
i

x2
i

dxi,

≈ 1
na+6

exp

(
− 5

〈n〉
n
− b

np

p
+
〈n2〉
n2

)
. (6)

d

where〈n〉 and〈n2〉 have to be calculated self-consistently.
For a < ac = −5, Pst is not normalizable, which means
that the stationary state is the absorbing phase〈n〉 = 0. For
〈n〉 6= 0, however, the non-analyticity ofexp[〈n2〉/n2] at
n = 0 again rendersPst non-normalizable. As a result,
there is no well-defined active phase at this mean-field level
for Eq. (6). Similar problems are found if the same type of
approach is applied to Eq. (1) instead of Eq. (2).

To avoid the presence of the square gradient term in Eq.
(2), and the complications of its, somewhat arbitrary, dis-
cretization, we resort to a different change of variables. Af-
tern = exp h,

∂tn = ∇2n + (a + 1)n + bn3−p + nη,

Pst ∼ 1
n2−a

exp
[
bn2−p

2− p
− 〈n〉

n

]
. (7)

These equations are simpler than (2) and (6), but at the cost
that〈n〉 is no longer an order parameter as, at the transition
point 〈n〉 → ∞ rather than going to0. Furthermore, Lan-
dau expansions only make sense when the order parameter
vanishes at the critical point, making the whole approach in-
consistent. One possible way to circumvent this problem is
to monitorm ≡ 1/n, and studyP̃st(m)dm = Pst(n)dn,
but given the non-Gaussian nature of the probability distri-
bution the substitution〈n〉 = 1/〈m〉 is likely to be incorrect,
and there seem to be no safe way to proceed.

Summing up, non-trivial mean-field approaches detect
some problems with the model under consideration, and are
not able to predict a phase correct phase diagram. A sound
mean-field approximation therefore needs to be found. No-
tice that none of these problems occur in the case of a nega-
tive KPZ non-linearity,i.e. in the MN1 class, where a stan-

dard mean-field approximation yields qualitatively correct
results (see [2, 12] and references therein).

IV Field theoretical considerations

The Langevin equation for MN1 is known to be super-
renormalizable,i.e. Feynman diagrams can be computed to
all orders and resummed. This does not imply that critical
exponents can be computed in all the cases, as the renormal-
ization group flow-equation has runaway trajectories sup-
posed to converge to astrong coupling fixed point. But at
least, the correct phase diagram, including strong and weak
coupling fixed points can be obtained.

For the MN2 the situation is far more complicated, as
can bea priori anticipated given the failure of mean-field
approaches. The extra term,(∇n)2/n, being singular inn
precludes the use of perturbative expansions aroundn = 0.
Given the lack of a non-perturbative approach to the KPZ
and MN strong coupling fixed points, there is not much we
can add to this section, except that there is a promising at-
tempt to tackle this and related KPZ-like problems. There is
a formalism, developed by Fogedby, aimed at developing a
strong coupling theory for KPZ based on a semiclassical or
WKB approximation applied upon the Martin-Siggia-Rose
generating functional [20]. Its main advantage is that it does
not involve expansions around classical noiseless solutions,
but around classical (extremal) noisy solutions. It would be
very interesting to extend these ideas to KPZ problems in
the presence walls, namely, to the multiplicative noise uni-
versality classes MN1 and MN2.
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V Numerical results

Owing to the failure of standard (nontrivial) mean-field ap-
proaches and lacking so far an alternative analytical route,
numerical methods are required to glean insight into the sys-
tem properties. We have carried out simulations of two sur-
face growth models. Both of them, in the absence of walls,
are known to belong to the KPZ universality class. An extra
rule is then added to generate a bounding wall, as described
above.

V.1 Model 1

Our first model was introduced in [21] and is defined as
follows: the surface position at timet above a sitex on a
one-dimensional lattice of sizeL is given by a continuous
height variableht(x). A new height configuration is then
generated in a three-step process.

1. Each lattice siteht(x) is updated according to
h′t(x) = ht(x)+a+ηt(x). ηt(x) is a random number
uniformly distributed in [0,1] anda is a constant drift
term analogous to that of (1).

2. The configuration is changed toht+1(x) =
min[h′t(x±1)+γ, h′t(x)], whereγ is a constant whose
precise value is not essential for the final results. We
have set without loss of generalityγ = 0.1 as in pre-
vious numerical analyses.

3. A hard wall ath = 0 is introduced by way of the ad-
ditional ruleht(x) = min[ht(x), 0] [8].

Finally, periodic boundary conditions are imposed and
ht(x) is initially set to0.

The continuum counterpart of this model is known to
be a KPZ equation [21] withλ < 0 in the presence of an
upper wall [22] which, as remarked before, is equivalent to
the caseλ > 0 and a lower wall, and corresponds to the
MN2 class. Numerical results for this model were first pre-
sented in [8] and seemed to be consistent with mean-field
(i.e. single-site) like behavior. However, a similar prob-
lem recently studied in the context of synchronization has
revealed inconsistencies probably due to insufficient statis-
tics [2, 13]. In this subsection improved simulation results
are provided upon revisiting the analysis reported in [8] for
larger system sizes and longer sampling times. The case of
an attractive wall, not included in [8], is also considered.

First, we take up the case of a simple (non-attractive)
wall, corresponding tob > 0 in Eqs. (1) and (2). Fig.
(1) shows how the steady order parameter〈n〉 changes with
the system sizeL. Within the active phase, it saturates to a
constant value, while in the absorbing one it bends down
and decays exponentially. Our best estimate for the crit-
ical point is ac = 1.57433(2) and from the slope of the
curve we getβn/ν⊥ ≈ 0.33(2) [23]. This value ofac corre-
sponds to the point where a free interface (far from the wall)
has zero average velocity. The time evolution of〈n〉 at the
critical point for different system sizes (Fig. (2)) behaves
like 〈n(t)〉 ∼ t−θn , with θn = 0.215(15) or, equivalently,
〈h(t)〉 ∼ tθh , with θh = 0.355(15). As for the exponents
β, which govern the saturation of the order parameter within

the active phase, they have been computed using the largest
available system sizes (L = 1600 and3200). The best fit to
〈X〉 ∼ |a − ac|±βX yieldsβn ≈ 0.32(3) (for 〈n〉) the and
βh = 0.52(2) (for 〈h〉), respectively. The error margin is
typically larger here than for other exponents due to the sen-
sitivity to the uncertainty in the determination of the critical
point.
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n>

Figure 1. Model 1: steady-state values of the order pa-
rameter,〈n〉 = 〈exp h〉, as function of the system size,
L, for drifts (top to bottom) 1.57450, 1.57440, 1.57435,
1.57433, 1.57430, 1.57425, 1.57420.〈·〉 denotes both spa-
tial and temporal averages, as well as averages over indepen-
dent runs. The straight line corresponds to the critical point
ac = 1.57433(2) and from its slopeβn/ν⊥ ≈ 0.33(2).
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Figure 2. Model 1: time evolution of the order parameter,
〈n(t)〉, at criticality,a = ac, for system sizes 100, 400, 800,
and 1600. The saturation values are those of Fig. 1. The
best fit givesθn = 0.215(15). The straight line is a guide
for the eye and has a slope -0.215.

It was proved in [6, 7] that these exponents must sat-
isfy the scaling relationz = β/(ν⊥θ), wherez is the dy-
namic exponent of the KPZ equation. The exact value for
z in d = 1 is 3/2, therebyz = 0.33/0.215 = 1.5(1)
in agreement with the prediction. In addition, also from
[6, 7], ν⊥ = 1, and from our direct measurements we get
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(βn/ν⊥)/βn = 0.33/0.32, implying ν⊥ ≈ 1. In terms of
h and assumingν⊥ = 1, z = 0.52/.355 = 1.5(1) which,
again, is compatible with3/2 within error bars.

The two alternative, but equivalent, mathematical de-
scriptions of the MN2 class in terms ofh andn = exp(−h)
can be related noting that the latter is essentially the density
of sites at zero hight,n(x, t) = δh(x,t),0 [24]. We have veri-
fied thatn andδh(x,t),0 exhibit the same asymptotic scaling
behavior.
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Figure 3. Model 1: steady-state values of the order parame-
ter for an attractive wall,b = −0.3, as function of the system
sizeL for drifts (top to bottom) 1.57450, 1.57447, 1.57445,
1.57440, 1.57435, 1.57433, 1.57430, 1.57425, 1.57420. The
best fit to a straight line again corresponds toac = 1.57433.

Attractive walls can also be simulated within this model
by simply replacinga by a−bδh,0, whereb < 0 and the sign
convention is chosen to keep the analogy with Eq. (1). This
means that wherever the interface is attached to the wall it
experiences an additional (“sticky”) force pushing it against
the wall. Extensive Monte Carlo simulations forb = −0.3
show that the previous results, in what respect universal fea-
tures, carry over without change, the only difference being
that the approach to asymptotics is slower. Upon increasing
the attractiveness of the wall the transients become longer.
The estimate for the critical point is the same as before (this
is due to the fact that the free interface is not affected by
variations of the attractiveness parameter). Again, our best
estimates for the critical exponents areβn/ν⊥ = 0.32 and
θn = 0.215 (see Fig. (3)). Forb = −0.4 we still observe
a second-order phase transition with a crossover to the men-
tioned exponents. Forb = −0.5 transition becomes first-
order but it still occurs ata = ac. Within the active phase
all the sites are close to the wall and the order parameter
is 1, but it suddenly changes to0 upon decreasinga and
hysteresis is observed for slightly subcritical valuesa (the
interface is pinned up to long times). Therefore, a tricritical
point must exist between0.4 and0.5. We have identified
it at b = −0.42(1). The tricritical behavior has not been
analyzed.

Let us stress that, contrary to what happens for the MN1
class, where the presence of an attractive wall induces a
new and rich phenomenology (including a broad region of

phase coexistence and directed-percolation type transitions
[2]), the addition of “attractiveness” has a very mild effect
here. Basically, it just shifts the position of the critical point
and induces a first-order phase transition for very strong at-
tractions.

V.2 Model 2
In order to verify the robustness and eventual universal-

ity of the previous results, we have performed a second study
of a different model. It is a restricted solid-on-solid (RSOS)
model, a variant of the single-step model introduced in [21],
in the presence of a wall. A similar model has been recently
studied in the context of synchronization transitions [25], to
study MN1 type transitions. Initially the wall is located at
hw = 0 and a grooved interface is placed beneath it,i.e. the
interface has negative height at all the positions.

The dynamics proceeds as follows: At each time step,
a site is randomly picked from a one-dimensional lattice of
lengthL and its height decreased two units,h(i) → h(i)−2,
provided thath(i) > h(i + 1) andh(i) > h(i− 1), i.e. pro-
vided that it is a local maximum. Should the the RSOS con-
straint be violated, the trial is discarded and repeated. Every
2(L−1)/[1−2δv(1−L−1)] steps the wall retreats one unit
and, simultaneously, the interface is moved downwards by
two units wherever it lies above the wall [25]. The differ-
ence between the wall and interface velocities,δv, acts as
the control parameter: ifδv is negative, the interface even-
tually depins from the wall, while forδv > 0 it remains
pinned. It can easily be shown, using random walk argu-
ments, that for the chosen wall velocity the system sits at its
critical point. By varying it, we have a control parameter.
The possibility of computing analytically the critical point
largely simplifies the numerical analysis, and makes of this
an efficient discrete model.
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Figure 4. Model 2: (A) order parameter behavior,
〈exp(hw − h)〉, in the vicinity of the critical pointδvc = 0.
From the slope of the line we getβn = 0.325(5). (B) Decay
of the order parameter,〈exp(hw − h)〉, at the critical point
yieldsθn = 0.215(5) (cf. with Fig. (2). The straight line is
a guide for the eye and has a slope−0.215.

The quantities monitored are〈exp(hw−h)〉 andhw−h.
We have measured the exponentsβn and θn for a system
of L = 220 sites. Our results lead toβn = 0.325(5) and
θn = 0.215(5), in excellent agreement with those of model



448 Miguel A. Muñozet al.

1 (Fig. (4)). Once more, assumingν⊥ = 1, we getz ≈ 1.51
in good agreement with the scaling laws. In addition, we
have also measured the spreading exponent,η, that charac-
terizes the number of pinned sites. It is computed averag-
ing over all the runs and starting with an initial condition
with a single point attached to the wall. Our best estimate is
η = 0.80(2) (Fig. (5)). Measuring the survival probability,
and therefore the exponentsδ andζ ′, is a delicate technical
point because it is hard to decide when the activity of a run
has ceased. We have not tackled this problem here. Lastly,
we obtainθh = 0.34(5), which is again in good agreement
with the value reported for our Model 1.
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Figure 5. Model 2: number of pinned sites as a function of
time for an initial condition with a single point attached to
the wall. A fit for late times yieldsη = 0.80(2). The straight
line is a guide for the eye and has slope0.8.

We have also considered different variations of the
model in which the interface can penetrate the wall at some
points,i.e. the wall is not perfectly rigid. None of the uni-
versal features seem to be affected by this change. In con-
clusion, all these results support strongly the existence of
robust universality in the MN2 class.

As a matter of consistency, we have modified the algo-
rithm of the model to simulate a lower wall, and therefore
a case expected to be in the MN1 class. We obtain the set
of exponentsβn = 1.69, θn = 1.19 andη = −0.4, all of
them in agreement we previously reported results and show-
ing that the upper and lower problem belong to different uni-
versality classes [2, 7, 9].

V.3 Numerical integration of stochastic differ-
ential equations

As a further test for universality, we have numerically
integrated Eq. (1) using Milshtein’s algorithm [26]. A sys-
tem size ofL = 2000 was considered and the time step

and mesh size were set to∆t = 0.001 and∆x = 1, re-
spectively. For simulation times up tot = 106 (109 tri-
als per site) our results lie far from the asymptotic regime.
We do not discard numerical instabilities in the integration
scheme, as it is known that results from numerical integra-
tions may not agree with the predictions from the contin-
uum KPZ [27]. The Cole-Hopf transform is a standard way
to account numerically for the integration of bounded KPZ
equations and, indeed, Langevin equations with MN are by
far more stable than their interface-language KPZ-like coun-
terparts [7, 9]. Nevertheless, we have also found numerical
problems when integrating (2), either when the extra term
is written in logarithmic form or averaging for smoothing
the gradient. All numerical attempts are unstable nearby the
absorbing state, owing to the presence of the extra singu-
lar term. We leave, therefore, the numerical integration of
a continuous Langevin equation, representative of the MN2
class as an open, challenging problem.

VI Discussion

We have characterized the MN2 universality class, or analo-
gously its bounded KPZ counterpart, which, as commented
above, accommodates different physical phenomena. We
have studied it from, somehow deceptive mean-field and
field theoretical approaches, as well as by numerical stud-
ies. None of the analytical methods provides a satisfactory
description of the phase transition present in this class. On
the other hand, Monte Carlo simulations of two different dis-
crete interface models, argued to belong to this universality
class, give firm evidence for the existence of a robust univer-
sality class. Contrary to what previous simulations seemed
to indicate [8], our results are not a simple extension of the
ones obtained for one-site, implying that spatial correlations
play an important role. Table 1 gathers the values of the
critical exponents in terms ofn for the two discrete models
considered in this paper. From the Monte Carlo estimates,
it cannot be discarded that they adopt the rational values
βn = 1/3 andθn = 2/9, which combined with the exact
values derived in [6, 7],ν⊥ = 1 andz = 3/2, would lead
to βn/ν⊥ = 1/3. Note that our results do not compare well
with those of the nonequilibrium wetting model reported in
[11]. We believe this is probably due to the extremely long
transients known to be present in that model. We have ver-
ified that the transition point is located at the same value of
the control parameter for any value of the “attractiveness”
parameter (b in Model 1), either representing an attractive or
a non attractive wall. For strong enough attractive walls,i.e.
b sufficiently negative, the transition becomes first order as
in [11], while if the wall is weakly attractive it remains in
the MN2 class.

βn ν⊥ βn/ν⊥ z θn η
Model 1 0.32(2) 0.97(5) 0.34(2) 1.55(5) 0.215(15) not measured
Model 2 0.325(5) ≈ 1 0.33(2) ≈ 1.5 0.215(5) η = 0.8

Table 1. Critical exponents for the MN2 class ind = 1.
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The problem of reaching a satisfactory analytical un-
derstanding, and even that of obtaining sound results from
numerical integrations of the continuous Langevin-equation
(in either the interface or the density language) representa-
tive of this class remains an open challenge.

Summing up, even though strong evidence is provided
confirming the existence of a universality class (i.e. the cor-
responding critical exponents are computed with good pre-
cision in one dimension and they are universal in two dif-
ferent discrete models), its theoretical description in terms
of Langevin equations, contrary to what happens for the
closely related MN1 class, is far from satisfactory. In par-
ticular, the Langevin equation does not seem to admit sound
mean-field solutions, nor is it amenable to being treated by
means of standard perturbative field theoretical tools, nor
does it admit stable numerical integration. Identifying the
physical causes at the root of these difficulties is a challenge
for future research.
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