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A general system of particles (of one or several species) on a one dimensional lattice with boundaries is con-
sidered. Two general behaviors of such systems are investigated. The stationary behavior of the system, and
the dominant way of the relaxation of the system toward its stationary system. Bases on the first behavior,
static phase transitions (discontinuous changes in the stationary profiles of the system) are studied. Based on
the second behavior, dynamical phase transitions (discontinuous changes in the relaxation-times of the system)
are studied. The investigation is specialized on systems in which the evolution equation of one-point functions
are closed (thautonomousystems).

| Introduction havior of the system with respect to its parameters. Such
discontinuities, may arise in two general categories: in the
The study of the reaction-diffusion systems has been an at-stationary (large time) profiles of the system, and in the time
tractive area. A reaction-diffusion system consists of a col- constants determining the evolution of the system. In the
lection of particles (of one or several species) moving and in- first case, static phase transitions are dealt with; in the sec-
teracting with each other with specific probabilities (or rates ond case, dynamical phase transitions. As mentioned be-
in the case of continuous time variable). In the so called ex-fore, the task of finding the complete evolution of a general
clusion processes, any site of the lattice the particles movereaction-diffusion system is very difficult (if not impossi-
on, is either vacant or occupied by one particle. The aim ble). So our studies are limited to a certain class of reaction-
of studying such systems, is of course to calculate the timediffusion systems, and in them to certain properties. To be
evolution of such systems. But to find the complete time specific, we deal with one-dimensional systems for which
evolution of a reaction-diffusion system, is generally a very the evolution equation of one-point functions (probabilities
difficult (if not impossible) task. of finding a particle of a certain kind on a certain point) is
Reaction-diffusion system have been studied using var-closed @utonomousystems). For these systems, we only
ious methods: analytical techniques, approximation meth-consider the final (stationary) profile of the one-point func-
ods, and simulation. The success of the approximationtion, and the relaxation-time (the most significant one) to-
methods, may be different in different dimensions, as for wards the stationary profile.
example the mean field techniques, working good for high In [26], a ten-parameter family of one-species reaction-
dimensions, generally do not give correct results for low di- diffusion processes with nearest-neighbor interaction was
mensional systems. A large fraction of analytical studies, introduced, for which the evolution equation afpoint
belong to low-dimensional (specially one-dimensional) sys- functions contains only:- or less- point functions. The av-
tems, as solving low-dimensional systems should in princi- erage particle-number in each site has been obtained exactly
ple be easier [1-13]. for these models. In [27, 28], this has been generalized to
Various classes of reaction-diffusion systems are calledmulti-species systems and more-than-two-site interactions.
exactly-solvable, in different senses. In [14] and [15], in- In [29-32], the phase structure of some classes of single-
tegrability means that thé/-particle conditional probabil-  or multiple-species reaction-diffusion systems have been in-
ities’ S-matrix is factorized into a product of 2-particle S- vestigated. These investigations were based on the one-point
matrices. This is related to the fact that for systems solvablefunctions of the systems.
in this sense, there are a large number of conserved quanti- The scheme of the present article is as follows. In sec-
ties. In [16-25], solvability means closedness of the evolu- tion Il, the conditions for the most general multi-species
tion equation of the empty intervals (or their generalization). reaction-diffusion models with nearest-neighbor interac-
Consider a reaction-diffusion system (on a lattice) with tions, to be solvable, or autonomous, are obtained. In sec-
open boundaries. By open boundaries, it is meant that in adion Ill, autonomous single-species reaction-diffusion mod-
dition to the reactions in the bulk of the lattice, particles at els with boundaries have been investigated. It is shown that
the boundaries do react with some external source. A queschanging the bulk rates may lead to a static phase transi-
tion is to find the possible phase transitions of the system.tion, while changing the bulk or boundary rates may lead to
By phase transition, it is meant a discontinuity in some be- a dynamical phase transition. In section IV, as an example,
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an asymmetric generalization of the Glauber model at zerowhereP is a the vector in thép+1)” dimensional space, the
temperature is introduced. This system exhibits both staticcomponentP®:*~ of which is the probability of finding a
and dynamical phase transitions. In section V, as an exam-article of typeA,, in site1, etc. Clearly, the components
ple of systems with more than two-site interactions, Glauber of this vector are nonnegative and satisfy
model at finite temperature has been considered. With spe-
cific boundary interactions, the Glauber model with open SP=1, (8)
boundaries is also autonomous. It is shown that although
this system does not show a static phase transition, it doesvhere
exhibit a dynamical phase transition. In the last section, S:=s®---®s. 9)
as an example of multi-species reaction-diffusion systems, —
an asymmetric generalization of the zero temperature Potts
model is introduced. This system exhibits both a static and The fact thatP should have these properties for all times,
a dynamical phase transition. means that the nondiagonal elements®&hould be non-
negative and that the action &f (from right) onS should

. ) . be zero. But the nonnegativity of the nondiagonal elements

I Autonomous reaction-diffusion of H, and the condition (3), are sufficient for these two con-

. . . ditions on’H to be satisfied.
SyStemS with nearest-nelghbor In- The expectation value of any operatris

teractions
(0)=SOP. (10)
In [27], multi-species reaction diffusion systems with

nearest-neighbor interactions on a one-dimensional latticeThis is also true forS', from which it is seen that
are studied, and criteria are obtained that such systems be

autonomous, meaning that the evolution equation for the d (n%) = Sn® HP. (11)
one-point functions be closed. The summary of the work de ’
follows. L . .
Let the Hamiltonian of the system be Now the question is, u_nder_what conditions the rlght-hand
side of (11) can be written in terms of the one-point func-
L-1 tionSn?’s?
H=> Hii, @ To answer this, one notes that commutes with all of
i=1 terms inH, except possibly wittH;_, ; andH; ;4. Using
where
s®s(an)®(bn) H = (a®bH)ags®sn"®nB, (12)
Hiip1 =19 ®19HQ1®---®1.  (2)
—— ————

which is true for any two covectoes andb, and using (6),

it is seen that
listhe(p +1) x (p + 1) unit matrix, and H is a q
(p +1)2 x (p + 1)? matrix (for ap species system), the -
nondiagonal elements of which are nonnegatiealso sat- de
isfies

i—1 L—i—1

(i) = sy H'up (i mf) + 59 H (0 01 4).
(13)
SH =0 3) T_he right hand si.de is expressed in terms of two-pp[nt func-
’ tions not one-point functions. However, from (6) it is seen
wheres is a covector with all of its components equal to 1:  that the two-point functions are not independent. In order
that an expressioB,,,, nj’ n/ be expressible in terms of the
Sa = 1. (4) first power of number operators, itis necessary and sufficient

The number operator of a particle of typk, in the site: that

is denoted byn¢', where A, ,; can be the vacancy. These Buy = 1By sy + su2By. (14)

number operators are of the form So the necessary and sufficient condition for the system to
be autonomous, is that

=18 - 0len*®le - ol ®)
H/_/ E/_/ i o i pro i pro
i—1 L—i H®,, =1H%, s, +s,5H",, (15)

wheren® is a diagonalp + 1) x (p + 1) matrix, the only oo
nonzero element of which is the elemenof the diagonal.
Itis clear that the vectan whose components are*, satis- Lo .o fov
fies oo M - e

sn=1, or San® =1. (6) H®,, =s,H",,. (16)

The Hamiltoniar?{ is the generator of time translation,
by which it is meant that

d , , ,
PO =HP(1), () PH®, — CH®, + ™ sy, 7

Note that even if (15) is satisfiegjﬂ’s are not uniquely de-
termined through which. One can change them like
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with 4 parameter family of the general systems.
Z}w =0. (18) The condition (15) for a system to be autonomous, can
J be easily extended to systems with interaction-ranges longer
For the simplest casp = 1 (single-species systems) than the nearest neighbor. This has been done in [28]. The

(15) consists of two independent constraints, leaving a ten-result is that if the interaction is in a block sfneighboring
parameter family of autonomous systems out of the twelve- sites, then one should have

]

iHuﬁl"'ﬁk = ZiHaﬁl 88y 8, t 88 88, ZHaﬁk7 (19)

where ,
1Haiﬁl...gk = Say tSay_1 Saupr T San Halmakﬁl...gk. (20)

Assuming that (15) holds, one can write the evolution equation for the one-point functions as

d :
i) = TH (1) + GH +1H) (n;) + 3H (ni41), 1<i<L. (21)

Fori = 1, at the right-hand only the last two terms re- |l Autonomous single-species

main; fori = L, only the first two terms. This is a linear : : : :
differential-difference equation for the vectdis). reactlon-.dlffusmn systems with
boundaries

For a single-species system, the condition (15) can be rewrit-
ten in the more explicit form

—H 1 — H® 1y + H% g+ H 10— H'Y o1 — H' 01 + H" oo + H g9 =: 0,
CHY, — HO — B — HOY o+ HY 4+ Hy + HY o + H g =: 0. (22)

Here the statel; is an occupied site, whild is a vacancy.  one can write (22) as

Defining
U+s=u-+s
v+ w =7+ w. (24)
w:=H"%y +H” : : :

0101 0001 The evolution equation ofn;), for 1 < ¢ < L is of the
vi=H"10+H 1o form (21). Fori = 1 andi = L, only half of the terms at
7= HYY + H,, the right-hand side of (21) are there. Moreover, if there is
~ o1 00 injection and extraction of particles at the end sites, terms
v:=H" 1n+H" 1 corresponding to these rates should also be added. Finally,
w = HY o + H for the single species case, denotirfgby n;, one can write

I o1 instead of the vector equation (21), a scalar equation for
s:= H o0+ H 00 asn}+n? = 1. denoting the injection and extraction rates at
W= H" + H'y the first site byz anda’ respectively, and those at the last site
_ 1 o1 by b andl’, the evolution equation of the one-point functions
§:=H 10+ H o, (23)  canbe seento be

]

(ni) =— (v+w+u+s)(n) + (v —0)(nip1) + (u—a){ni—1)
+w+ s, 1<i<L
(n1) = — (v +w){ni) + (v —0)(n2) + w+a(l — (n1)) — a’{ny)
(np) == (u+s){np) + (u—a){np_1) +s+b(1 —(ng)) — b (ng), (25)
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[1l.1 The static phase transition other &) outside that region. So in the thermodynamic limit
The stationary-state to (25) is L = oo,
(nj) =C+ Dy 2] + Da 2, (26) (nj)zC+D1z{7 J<L
(n;) =~ C+ Doz 71 L—j<L. (31)

wherez;’s satisfy

—r 4 pzid gt =0 (27) C, Di’s, andz;’s are smooth functions of rates, and there is
! ’ no phase transition.
and we takez, to be the root of the above equation with However, if|x + y| = 1, then one of the roots of (27)
larger absolute value, and the new parametegsandr are  would bex +y; that is, the absolute value of one of the roots
defined through will be 1. The other roots would bg/z. If |y/z| < 1, then
z; = 1 and from (31) it is seen that near the end of the lat-
pi=v =0 tice, |(n;) — C| is essentially constant. |f;/x| > 1, then
q=u—1 zo = 1 and from (31) it is seen that near the beginning of
o the lattice,|(n;) — C| is essentially constant. So there is a
r=utstuvtw=uts+otw phase transition at = y = 4+1/2. This static phase transi-
=U+5+tv+w=1u+5+7+w, (28) tion manifests itself as a change in the slope of the profile of
the one-point function, near the end or the beginning of the
Noting that the rates (nondiagonal elementdijfare non- lattice.
negative, itis seen that [11.2 The dynamical phase transition
r=Ip+qllp—aql. (29)

The dynamical phase transition is related to the relax-
More over, it is seen that if = 0, then all the parame-  ation time of the system evolving towards its stationary con-
ters introduced in (23) vanish, ar{d;) would be constant  figuration. To find this relaxation time, one writes the ho-

(for 1 < i < L). So apart from this trivial case, is posi- mogeneous part of (25) as

tive and in fact can be rescaled to one (by a proper redefini- )

tion of time). Hence, as long as only the stationary profile N; = h;’ Nj, (32)

of the one-point function is considered, there are only two-

parameters in the system: whereN; is (n;) minus its stationary value. Then, one seeks

P q the eigenvalues of. The eigenvalue with the largest real

T= and y=- (30) part, determines the relaxation time:

The physical region corresponding to these parameters is a e 1 (33)

square the boundaries of which &ret y| = 1. R&(Emax)

It can be seen that inside the physical square, both of
the roots of (27) are real, one,( between—1 and1, the The eigenvector equations read

J

EXj:—(v—i—w—l—u—i—s)Xj+(v—1‘))Xj+1—|—(u—ﬂ)Xj,1, j?é].,L
EXi=—-(v+w+a+d)X1+ (v—10)Xo,

EXp=—(u+s+b+0)Xy+ (u—u)Xp_1. (34)
A solution for this is _ _
X; =az + (23, (35)
with
E=—(v+twtu+s)+w—0)z+@wu—a)z", (36)
and

(v—v)(azi +B23) — (E+a+d +v+w)(az + Bz) =0
(u—a)(azt ' + 28 ) — (E+b+V +u+s)(azf +p25) = 0. (37)

One putsF from (36) in (37), and demands (37) to have nonzero solutions ford 5. The result is

[(u— @) 4+ z16a][(v — )25 T + 226b) — [(u — @) + 220a]
x [(v—0)zEt + 2Eob) = 0, (38)
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where

da:=a+ad — (u+s),

Sb:=b+b — (v+w). (39)
Defining the new variableg; as
Zi = 2 vy , (40)
u—u

it is seen that

E=—(w+w+u+s)+](u—a)(v—70)|[Zisgn(v—9)+ Z; ' sgn(u — @)]
=—@w4+w+u+s)+sgn(v—70)\/|(u—1u)(v—20)(Z1 + Z2)

= —(v+w+u+s)+sgn(u—a)/|(u—1a)(v—2)](Z" + Z; ). (41)
|

In the thermodynamic limit. — oo, all unimodular is smaller than that of the slow phase. Now the physical pa-
complex numbers are solutions f&@;. The maximum of  rameter space can be divided to three regions, with different
the real part off depends on whether all of the values of behaviors for the relaxation-time:

Z; are unimodular or not. In the first case, the relaxation

time is independent of the injection and extraction rates at

the boundaries. This is called tfest phase. In the second atd <A a+d—(b+¥)<A-B, regionl

case, the relaxation time does depend on the injection and , 7 , , ’ .

extraction rates at the boundaries. This is calledsiogy b+0' <B, atd—(b+V)>A=B, regionll

phase. The terms fast and slow come from the fact that for | otherwise region Il

fixed bulk reaction rates, the relaxation time in the fast phase (42)
]

where

0 —+/|(u—a)(v— ") (43)
The relaxation time is then

+w+a+a +(w—u)(v-o)(a+a —u—s)"1]7L, regionl
T=u+s+b+b+u—u)(v—2) b+ —v—w)"t7L,  regionll (44)

{v+w+u+s—2Re/(u—1u)(v—12)}71, region I1I
|

Itis seen that in region |, the relaxation time depends on the peraturel’, which is based on the principle of detailed bal-
injection and extraction rates at the beginning of the lattice; ance. This model is based on a three-site interaction: a spin
in region Il it depends on the injection and extraction rates is flipped with the ratg:, := 1 — tanh 8 J if the spins of
at the end of the lattice; and in region Il it depends on none its neighboring sites are the same as itself; it flips with the
of the injection or extraction rates. rate A := 1 4 tanh § J, if the the spins of the neighboring
The details of the calculations can be seen in [30]. sites are opposite to it: and flips with the ratdf the spins
of the neighboring sites are opposite to each other. Here
B = (kg T)~!, and time has been rescaled so that one of the

. L tes isl.
IV An asymmetric generalization of ~ "*°"®
It has been shown in [34] that at zero temperature, the

the Glauber model at zero temper- Glauber dynamics is effectively a two-site interaction, in

which two opposite neighboring spins become the same,
ature, as an example with the ratel (independent of which is up and which is

The Glauber model [33] is a model for the relaxation of an down, and which one flips).

Ising model towards its equilibrium with a heat bath at tem- An extension of the Glauber dynamics at zero tempera-
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ture is a system with the following dynamics. which contains diffusion as well, does not change the evo-
lution equation of the one-point function. So the results of

AA.  with the rateu this section are valid for this interaction as well. The only

A — {(ZJQ) ’ ith the rat difference is that the introduction of diffusion, restricts the

Wl € ratev parameter space af andv, since the rates should be non-

; negative. Sai,v > A, \.
0A — AA, w!th the ratev (45)
0@,  with the rateu

_ _ Extension to longer-range interac-
where A denotes a spin up (or a particle) afidienotes a

spin down (or a vacancy). In the ordinary Glauber model, tions: dynamical phase transition
the system is left-right symmetric and= v. Now consider ; ; ; ; _

a system with the dynamics (45), on arsite lattice. As- Of.klnetIC Ismg model with bound

sume also that there are injection and extraction rates at the aries

first and last sites, with the ratesa’, b, andd’ introduced

in the previous section. Itis easily seen that for this system, |t was pointed out in the previous section, that the Glauber
of the eight bulk-rate parameters introduced in the previousdynamics at nonzero temperatures consists of a three-site in.

section, onlyu, v, 5, andw are nonzero, and teraction. Let us rewrite the reactions:
5=u, TMT1T—=1717Tand | ][] —] 1| withtherateu,
W ="v. (46) T17=117 and | 1| —]]] withtherate),
From this, it is seen that T1l=11l0l and || T=]11 withthe ratel,
(51)
- v
T Ut where an upward arrow means spin up, a downward arrow
u a7) means spin down, andandy are defined true
y= :
ut =1+ tanh 3 J,
Soz andy are nonnegative and+ y = 1. This means that pi=1—tanh3J, (52)
there is a static phase transition, which occurs at v, the
point corresponding to the ordinary Glauber model. as in the previous section. As it is noted in [33], the evo-
_For the dynamical phase transition, itis seen thatnd  |ution equation for the expectation value of the spins (each
B introduced in (43), are spin is eitherl (upward) or—1 (downward)) is closed. This
is of course true for the spins at the bulk of the lattice. At
A=u—+uv, the boundaries, one should introduce some two-site interac-
B:=v—av. (48) tions and write separate equations fer) and(s.). The
new interactions introduced at the boundaries are
Of A and 3, only one can be positive, and this is when )
u # v. So, as the injection and extraction rates are non- Tl=11 withthe rateg,
negative, at most two of the regions I, 1l, and Il may exist: 17— 11 withthe rategs,
for u > v, only the regions | and IlI; for, < v, only the ith the rat
regions Il and Ill. The expression for the relaxation time is LI=11 wi € rategs,
11— 11 withthe rateg,, (53)
[v+a+ad +uv(a+a —u)~1]7t, regionl Forth i fio of the fi ) )
= dlu+b+¥ +uvb+b —v)-1-L,  regionl or the spin flip of the first site, an
(v+u—2yuv)t, region Il I 1= 11 with the rateh,,
(49) i
As afinal note, it is easily seen that changing the dynam- f=1l W?th the ratehs,
ics (45) into the following 71— 11 withthe ratehs,
L 1= 17T withthe rateh,, (54)

0A,  with the rate)
A0 —{ AA.  with the ratey — \ For the spin flip of the last site. It can be seen that the evo-
’ . lution equation for the one-point functions is closed, iff
0@,  with the ratev — A

A,  with the rate)’ g1+ 94 = g2+ g3,
DA — ¢ AA, withthe ratev — X’ (50) hi + hy = hy + has. (55)

H /
00, with the rateu — A Provided this is true, the evolution equation is
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<SL> = — 2<SL> + (<87‘,+1> + <5i—1>) tanh(?ﬁ J), 1<i< L
(51) = = (92 + g3)(s1) + (91 — 92)(52) + (93 — 91),
(80) = = (h2 + h3)(sL) + (h1 — ha2)(sL—1) + (h3 — h1). (56)
The stationary solution for this is
(sj) =D 2% + Dy ZS_L_l, (57)

where
21 = 2y ' = tanh(8.J). (58)

D; and D, are easily obtained at the thermodynamic lithit> oco; and it is seen that they are both smooth functions of the
rates. So there is no static phase transition.

For the dynamical phase transition, similar to the method used in the previous sections, one writes the eigenvalue proble
for the homogeneous equation. That equation reads

EFX; = —2Xj+tanh(2ﬂJ)(Xj+1—|—Xj_1), j# 1L,
E X1 =—(g2+93) X1+ (91 — 92) X2,
EF X, = 7(h2+h3)XL+(h1 7h2)XL_1. (59)
The solution to this is an expression like (35), with
E = -2+ tanh(28J) (2 + 2 ). (60)
and
2 M2 — g2 — g3+ 2(g1 — g2 — tanh(28 ) — z; " tanh(23 J)]
x[2 — hg — hg + zi(h1 — hy — tanh(23J)) — z; ' tanh(283 J)]
—2E7H2 — g — g3 + 27 (g1 — g2 — tanh(26.J)) — z; tanh(23 J)]
X[2 — hy — hg + z; ' (hy — ha — tanh(28.J)) — 2; tanh(23 J)] = 0. (61)

[

Again in the thermodynamic limil. — oo, if all of the becomes larger than (62). This is the slow phase. The cri-
solutions to the above equation are unimodular, the relax-terion for this, is that one of the roots of (61) passes the
ation time would be boundary

= [-2+ 2tanh(28 )], 62) y=t@—1)/5—. (63)

which is independent of the interaction rates at the bound-wherex andy are the real and imaginary parts of that root,
aries. If there are some solutions that are nonunimodolar,respectively.

and among them there is a solution with(Ret z; ') > 2 In the thermodynamic limif. — oo, the equation (61)
(for the ferromagnetic casé > 0), then the relaxation time  for roots with modulus greater than one simplifies into
]

{2 — g2 — g3+2" g1 — g2 — tanh(283 J)] — ztanh(23.J)}
x{2 — hg — hg+2"*[hy — hy — tanh(283 J)] — ztanh(23 J)} = 0. (64)

So the criterion for the transition to occur, is that a complex numberz + iy, satisfies (63) and (64). The relation between
rates, for this to occur, can be seen to be

2[1 — tanh(2ﬂ J)] — g2 — g4 =0, or,
[4tanh(268J) — 2 + g2 + gs3][g1 — g2 — tanh(28 J)] + (2 — g2 — g3) tanh(26 J) = 0. (65)
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This is for the case when the first factor in (64) vanishes. and B and C’ (or C”) must also satisfy conditions com-
A similar criterion come from the vanishing of the second ing from the evolution equation (68) at the boundaries. For

factor, with the roles ofy;’s andh;’s interchanged. u < v, itis better to work with (69). Then it is seen that in
The detailed calculations can be found in [32]. the thermodynamic limil. — oo, one has
I'B=0,

VI Extension to multi-species sys-

tems: phase transition in an asym-
The first equation has at least one non-zero solutiomBfor

metric generallzatlon of the zero- asy does have a left eigenvectgrwith the eigenvalue zero.

temperature Potts model Depending on the degeneracy of this zero eigenvalue, there

are one or several solutions fBr. One should then pd8 in

A simple extension of the asymmetric generalization of the the second equation to fir@’. The conditions o\, ensure

Glauber model at zero temperature, introduced in sectionthat the real part of the eigenvalues/ofire nonpositive, so

4, is an asymmetric generalization of the zero-temperaturev —u cannot be an eigenvalue &f Hence, the second equa-

Potts model. In this system, any site can have 1 states  tion has one and only one solution f6Y (corresponding to

(rather than the two states of the Glauber model). The bulk€ach solution foB).

reactions are written as Foru > v, one uses (70) and (in the thermodynamic
limit) arrives at

(A—v+u)C' =—-AB. (72)

AA ALA,, withthe rateu
oo AsAg, with the ratev AB =0,

Compare this with (45). One adds to this, reaction rates at ' —u+v)C"=-TB. (73)

the boundaries: o ) _ )
Similar arguments hold for the solution of this equation,

with the roles ofA andT', v andv, andC’ and C” inter-
Ap — A, with the rateA® s at the first site, changed. Now apart from the question of the uniqueness of
Ag — A, with the ratel® ; at the last site. (66) the statiqnary profile (which depends on the degeneracy of

the matriced or A) one can see that if. < v, the pro-

Fora # 38, A%z andI'®g are rates, and should be nonnega- file is flat near the last site, while far > v it is flat near
tive. The diagonal elements dfandI” are chosen so that the first sites. This is the static phase transition, similar to
what observed for the asymmetric generalization of the zero-

sA=sI'=0. (67) temperature Glauber model.

Using these, the evolution equation for the one-point func-

fions is Written as VI.2 The dynamical phase transition

<r_lj> = —(to)ng) +ulnja) + o), j#1LL The eigenvalue equation for the homogeneous part of
(m1) = A(my) — o) +v(ng), (69) is
(np) = T{ng)—ung)+ulng_q). (68)

EXj:7(U+’U)Xj+uxk_1+vxk+1, j#l,L

VI.1 The static phase transition X, =AX, — 0X; +0Xo,

The stationary solution to (68) can be written as

EXL :FXL—’ZLXL'FUXLfl, (74)
B+ (YY) 69
(nj) =B+ (5) ’ (69) the solution to which is
or , )
j— L e J J
) =B+ () (70) X =batesn, (79)
where wherez;'s satisfy
sB=1, E=—(u+v)+vz+uz "t (76)
sC' =sC" =0, (71)
]

The second and third equation of (75), can be witten as

( —(u+AN)Z + Juv —(u+MNZ7 4+ Juv )(b)

—(w+D)ZE + Juv ZE —(v+ D)2+ Juvz B

=0, 77)
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where the variable

Zii= 2y > (78)
u
has been used, in terms of which
E=—(u+v)+Vuo(Z;+ Z71). (79)
(77) has nontrivial solutions fds andc, iff the determinant of the matrix of the coefficients vanishes:
—(u+AN)Z + Vuv —(u+MNZ7 1+ VJuv
det =0. (80)
—(w+D)ZE + VuvZEt —(v+ D) Z7 L+ JSuvZ L
|
Again, if in the thermodynamic limiL. — oo, for all of the A simple way to induce the phase transition is to multi-
solutions of the above equati®r(Z+Z~!) < 2, the relax- ply the matrixI" by a parameter. This means multiplying

ation time is independent of the reaction rates at boundariesthe rates of the reaction at the first sitesbyAs Re(~y) < 0,

and the system is in the fast phase. In order that the systenone can see that for a large enough value,dhe value of

be in the slow phase, it is necessary (but not sufficient) thatRe(v)+u—+/u v will be negative (provide®e(~) # 0, that

at least one of the roots of (80) has modulus larger than oneis, provided the zero eigenvalue of the matriis not degen-

For this solution, (80) is simplified in the thermodynamic erate). So the system will be in the fast phase. Itis also seen

limit to that asr tends to zero, eithe,/uv — Re(y) — u becomes
negative, or in the first inequality in (86) the right-hand be-

det[vuv Z — (v+T)]det[vuv Z — (u+ A)] = 0. (81) comes greater than the left-hand side (which tends to zero).

So, the system will be in the slow phase. Roughly speak-

So, denoting the eigenvalues afandI’ with A and~ re- ing, increasing the reaction rates at the boundaries, brings
spectively, This root must be the system from the slow phase (relaxation time depending
on the reaction rates at boundaries) to the fast phase (relax-
_vty . _ut A (82) ation time independent of the reaction rates at boundaries).

Vuu’ NOOR A similar argument holds, of course, for the case v and

the eigenvalues of the matrix
The real parts of the eigenvalug®nd~ are nonpositive. It The details of the calculations can be found in [31].
is then seen that if > v, then the real part af in the first
case is not greater thdnandRe(Z + Z~1) < 2. So in this
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