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A general system of particles (of one or several species) on a one dimensional lattice with boundaries is con-
sidered. Two general behaviors of such systems are investigated. The stationary behavior of the system, and
the dominant way of the relaxation of the system toward its stationary system. Bases on the first behavior,
static phase transitions (discontinuous changes in the stationary profiles of the system) are studied. Based on
the second behavior, dynamical phase transitions (discontinuous changes in the relaxation-times of the system)
are studied. The investigation is specialized on systems in which the evolution equation of one-point functions
are closed (theautonomoussystems).

I Introduction

The study of the reaction-diffusion systems has been an at-
tractive area. A reaction-diffusion system consists of a col-
lection of particles (of one or several species) moving and in-
teracting with each other with specific probabilities (or rates
in the case of continuous time variable). In the so called ex-
clusion processes, any site of the lattice the particles move
on, is either vacant or occupied by one particle. The aim
of studying such systems, is of course to calculate the time
evolution of such systems. But to find the complete time
evolution of a reaction-diffusion system, is generally a very
difficult (if not impossible) task.

Reaction-diffusion system have been studied using var-
ious methods: analytical techniques, approximation meth-
ods, and simulation. The success of the approximation
methods, may be different in different dimensions, as for
example the mean field techniques, working good for high
dimensions, generally do not give correct results for low di-
mensional systems. A large fraction of analytical studies,
belong to low-dimensional (specially one-dimensional) sys-
tems, as solving low-dimensional systems should in princi-
ple be easier [1-13].

Various classes of reaction-diffusion systems are called
exactly-solvable, in different senses. In [14] and [15], in-
tegrability means that theN -particle conditional probabil-
ities’ S-matrix is factorized into a product of 2-particle S-
matrices. This is related to the fact that for systems solvable
in this sense, there are a large number of conserved quanti-
ties. In [16-25], solvability means closedness of the evolu-
tion equation of the empty intervals (or their generalization).

Consider a reaction-diffusion system (on a lattice) with
open boundaries. By open boundaries, it is meant that in ad-
dition to the reactions in the bulk of the lattice, particles at
the boundaries do react with some external source. A ques-
tion is to find the possible phase transitions of the system.
By phase transition, it is meant a discontinuity in some be-

havior of the system with respect to its parameters. Such
discontinuities, may arise in two general categories: in the
stationary (large time) profiles of the system, and in the time
constants determining the evolution of the system. In the
first case, static phase transitions are dealt with; in the sec-
ond case, dynamical phase transitions. As mentioned be-
fore, the task of finding the complete evolution of a general
reaction-diffusion system is very difficult (if not impossi-
ble). So our studies are limited to a certain class of reaction-
diffusion systems, and in them to certain properties. To be
specific, we deal with one-dimensional systems for which
the evolution equation of one-point functions (probabilities
of finding a particle of a certain kind on a certain point) is
closed (autonomoussystems). For these systems, we only
consider the final (stationary) profile of the one-point func-
tion, and the relaxation-time (the most significant one) to-
wards the stationary profile.

In [26], a ten-parameter family of one-species reaction-
diffusion processes with nearest-neighbor interaction was
introduced, for which the evolution equation ofn-point
functions contains onlyn- or less- point functions. The av-
erage particle-number in each site has been obtained exactly
for these models. In [27, 28], this has been generalized to
multi-species systems and more-than-two-site interactions.
In [29-32], the phase structure of some classes of single-
or multiple-species reaction-diffusion systems have been in-
vestigated. These investigations were based on the one-point
functions of the systems.

The scheme of the present article is as follows. In sec-
tion II, the conditions for the most general multi-species
reaction-diffusion models with nearest-neighbor interac-
tions, to be solvable, or autonomous, are obtained. In sec-
tion III, autonomous single-species reaction-diffusion mod-
els with boundaries have been investigated. It is shown that
changing the bulk rates may lead to a static phase transi-
tion, while changing the bulk or boundary rates may lead to
a dynamical phase transition. In section IV, as an example,
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an asymmetric generalization of the Glauber model at zero
temperature is introduced. This system exhibits both static
and dynamical phase transitions. In section V, as an exam-
ple of systems with more than two-site interactions, Glauber
model at finite temperature has been considered. With spe-
cific boundary interactions, the Glauber model with open
boundaries is also autonomous. It is shown that although
this system does not show a static phase transition, it does
exhibit a dynamical phase transition. In the last section,
as an example of multi-species reaction-diffusion systems,
an asymmetric generalization of the zero temperature Potts
model is introduced. This system exhibits both a static and
a dynamical phase transition.

II Autonomous reaction-diffusion
systems with nearest-neighbor in-
teractions

In [27], multi-species reaction diffusion systems with
nearest-neighbor interactions on a one-dimensional lattice
are studied, and criteria are obtained that such systems be
autonomous, meaning that the evolution equation for the
one-point functions be closed. The summary of the work
follows.

Let the Hamiltonian of the system be

H =
L−1∑

i=1

Hi,i+1, (1)

where

Hi,i+1 := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗H ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i−1

. (2)

1 is the (p + 1) × (p + 1) unit matrix, and H is a
(p + 1)2 × (p + 1)2 matrix (for a p species system), the
nondiagonal elements of which are nonnegative.H also sat-
isfies

sH = 0, (3)

wheres is a covector with all of its components equal to 1:

sα = 1. (4)

The number operator of a particle of typeAα in the sitei
is denoted bynα

i , whereAp+1 can be the vacancy. These
number operators are of the form

nα
i := 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1

⊗nα ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i

, (5)

wherenα is a diagonal(p + 1) × (p + 1) matrix, the only
nonzero element of which is the elementα of the diagonal.
It is clear that the vectorn whose components arenα, satis-
fies

s n = 1, or sα nα = 1. (6)

The HamiltonianH is the generator of time translation,
by which it is meant that

d
dt

P(t) = HP(t), (7)

whereP is a the vector in the(p+1)L dimensional space, the
componentPα1···αL of which is the probability of finding a
particle of typeAα1 in site1, etc. Clearly, the components
of this vector are nonnegative and satisfy

SP = 1, (8)

where
S := s⊗ · · · ⊗ s︸ ︷︷ ︸

L

. (9)

The fact thatP should have these properties for all times,
means that the nondiagonal elements ofH should be non-
negative and that the action ofH (from right) onS should
be zero. But the nonnegativity of the nondiagonal elements
of H, and the condition (3), are sufficient for these two con-
ditions onH to be satisfied.

The expectation value of any operatorO is

〈O〉 = SOP. (10)

This is also true fornα
i , from which it is seen that

d
dt
〈nα

i 〉 = Snα
i HP. (11)

Now the question is, under what conditions the right-hand
side of (11) can be written in terms of the one-point func-
tionsnβ

j ’s?
To answer this, one notes thatnα

i commutes with all of
terms inH, except possibly withHi−1,i andHi,i+1. Using

s⊗ s (an)⊗ (bn)H = (a⊗bH)αβ s⊗ s nα⊗nβ , (12)

which is true for any two covectorsa andb, and using (6),
it is seen that

d
dt
〈nα

i 〉 = sγ Hγα
µν 〈nµ

i−1 nν
i 〉+ sγ Hαγ

µν 〈nµ
i nν

i+1〉.
(13)

The right hand side is expressed in terms of two-point func-
tions not one-point functions. However, from (6) it is seen
that the two-point functions are not independent. In order
that an expressionBµν nµ

i nν
j be expressible in terms of the

first power of number operators, it is necessary and sufficient
that

Bµν = 1Bµ sν + sµ 2Bν . (14)

So the necessary and sufficient condition for the system to
be autonomous, is that

iHα
µν = i

1H
α

µ sν + sµ
i
2H

α
ν , (15)

where

1Hα
µν := sγ Hαγ

µν ,
2Hα

µν := sγ Hγα
µν . (16)

Note that even if (15) is satisfied,i
jH ’s are not uniquely de-

termined through which. One can change them like

i
jH

α
µ → i

jH
α

µ + i
jw

α sµ, (17)



Brazilian Journal of Physics, vol. 33, no. 3, September, 2003 423

with ∑

j

i
jw = 0. (18)

For the simplest casep = 1 (single-species systems)
(15) consists of two independent constraints, leaving a ten-
parameter family of autonomous systems out of the twelve-

parameter family of the general systems.

The condition (15) for a system to be autonomous, can
be easily extended to systems with interaction-ranges longer
than the nearest neighbor. This has been done in [28]. The
result is that if the interaction is in a block ofk neighboring
sites, then one should have

c
iHα

β1···βk
= i

1H
α

β1 sβ2 · · · sβk
+ · · ·+ sβ1 · · · sβk−1

i
kHα

βk
, (19)

where
iHαi

β1···βk
:= sα1 · · · sαi−1 sαi+1 · · · sαk

Hα1···αk
β1···βk

. (20)

Assuming that (15) holds, one can write the evolution equation for the one-point functions as

d
dt
〈ni〉 = 2

1H 〈ni−1〉+ (22H + 1
1H) 〈ni〉+ 1

2H 〈ni+1〉, 1 < i < L. (21)

d

For i = 1, at the right-hand only the last two terms re-
main; for i = L, only the first two terms. This is a linear
differential-difference equation for the vectors〈n〉.

III Autonomous single-species
reaction-diffusion systems with
boundaries

For a single-species system, the condition (15) can be rewrit-
ten in the more explicit form

c

−H01
11 −H00

11 + H01
10 + H00

10 −H11
01 −H10

01 + H11
00 + H10

00 =: 0,

−H10
11 −H00

11 −H11
10 −H01

10 + H10
01 + H00

01 + H11
00 + H01

00 =: 0. (22)

d

Here the stateA1 is an occupied site, whileA0 is a vacancy.
Defining

u := H10
01 + H00

01

v := H01
10 + H00

10

ū := H10
11 + H00

11

v̄ := H01
11 + H00

11

w := H11
00 + H10

00

s := H11
00 + H01

00

w̄ := H11
01 + H10

01

s̄ := H11
10 + H01

10, (23)

one can write (22) as

u + s = ū + s̄

v + w = v̄ + w̄. (24)

The evolution equation of〈ni〉, for 1 < i < L is of the
form (21). Fori = 1 andi = L, only half of the terms at
the right-hand side of (21) are there. Moreover, if there is
injection and extraction of particles at the end sites, terms
corresponding to these rates should also be added. Finally,
for the single species case, denotingn1

i by ni, one can write
instead of the vector equation (21), a scalar equation forni,
asn1

i +n0
i = 1. denoting the injection and extraction rates at

the first site bya anda′ respectively, and those at the last site
by b andb′, the evolution equation of the one-point functions
can be seen to be

c

〈ṅi〉 =− (v + w + u + s)〈ni〉+ (v − v̄)〈ni+1〉+ (u− ū)〈ni−1〉
+ w + s, 1 < i < L

〈ṅ1〉 =− (v + w)〈n1〉+ (v − v̄)〈n2〉+ w + a(1− 〈n1〉)− a′〈n1〉
〈ṅL〉 =− (u + s)〈nL〉+ (u− ū)〈nL−1〉+ s + b(1− 〈nL〉)− b′〈nL〉, (25)
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III.1 The static phase transition
The stationary-state to (25) is

〈nj〉 = C + D1 zj
1 + D2 zj

2, (26)

wherezi’s satisfy

−r + p zi + q z−1
i = 0, (27)

and we takez2 to be the root of the above equation with
larger absolute value, and the new parametersp, q, andr are
defined through

p :=v − v̄

q :=u− ū

r :=u + s + v + w = u + s + v̄ + w̄

=ū + s̄ + v + w = ū + s̄ + v̄ + w̄, (28)

Noting that the rates (nondiagonal elements ofH) are non-
negative, it is seen that

r ≥ |p + q|, |p− q|. (29)

More over, it is seen that ifr = 0, then all the parame-
ters introduced in (23) vanish, and〈ni〉 would be constant
(for 1 < i < L). So apart from this trivial case,r is posi-
tive and in fact can be rescaled to one (by a proper redefini-
tion of time). Hence, as long as only the stationary profile
of the one-point function is considered, there are only two-
parameters in the system:

x :=
p

r
, and y :=

q

r
. (30)

The physical region corresponding to these parameters is a
square the boundaries of which are|x± y| = 1.

It can be seen that inside the physical square, both of
the roots of (27) are real, one (z1) between−1 and1, the

other (z2) outside that region. So in the thermodynamic limit
L →∞,

〈nj〉 ≈ C + D1 zj
1, j ¿ L

〈nj〉 ≈ C + D2 zj−L−1
2 , L− j ¿ L. (31)

C, Di’s, andzi’s are smooth functions of rates, and there is
no phase transition.

However, if |x + y| = 1, then one of the roots of (27)
would bex+y; that is, the absolute value of one of the roots
will be 1. The other roots would bey/x. If |y/x| < 1, then
z1 = 1 and from (31) it is seen that near the end of the lat-
tice, |〈nj〉 − C| is essentially constant. If|y/x| > 1, then
z2 = 1 and from (31) it is seen that near the beginning of
the lattice,|〈nj〉 − C| is essentially constant. So there is a
phase transition atx = y = ±1/2. This static phase transi-
tion manifests itself as a change in the slope of the profile of
the one-point function, near the end or the beginning of the
lattice.

III.2 The dynamical phase transition

The dynamical phase transition is related to the relax-
ation time of the system evolving towards its stationary con-
figuration. To find this relaxation time, one writes the ho-
mogeneous part of (25) as

Ṅi = hi
j Nj , (32)

whereNi is 〈ni〉minus its stationary value. Then, one seeks
the eigenvalues ofh. The eigenvalue with the largest real
part, determines the relaxation time:

τ = − 1
Re(Emax)

. (33)

The eigenvector equations read

c

E Xj = −(v + w + u + s)Xj + (v − v̄)Xj+1 + (u− ū)Xj−1, j 6= 1, L

E X1 = −(v + w + a + a′)X1 + (v − v̄)X2,

E XL = −(u + s + b + b′)XL + (u− ū)XL−1. (34)

A solution for this is
Xj = α zj

1 + βzj
2, (35)

with
E = −(v + w + u + s) + (v − v̄)zi + (u− ū)z−1

i , (36)

and

(v − v̄)(αz2
1 + βz2

2)− (E + a + a′ + v + w)(αz1 + βz2) = 0

(u− ū)(αzL−1
1 + βzL−1

2 )− (E + b + b′ + u + s)(αzL
1 + βzL

2 ) = 0. (37)

One putsE from (36) in (37), and demands (37) to have nonzero solutions forα andβ. The result is

[(u− ū) + z1δa][(v − v̄)zL+1
2 + zL

2 δb]− [(u− ū) + z2δa]

× [(v − v̄)zL+1
1 + zL

1 δb] = 0, (38)
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where

δa := a + a′ − (u + s),

δb := b + b′ − (v + w). (39)

Defining the new variablesZi as

Zi := zi

√∣∣∣∣
v − v̄

u− ū

∣∣∣∣, (40)

it is seen that

E = −(v + w + u + s) +
√
|(u− ū)(v − v̄)|[Zi sgn(v − v̄) + Z−1

i sgn(u− ū)]

= −(v + w + u + s) + sgn(v − v̄)
√
|(u− ū)(v − v̄)|(Z1 + Z2)

= −(v + w + u + s) + sgn(u− ū)
√
|(u− ū)(v − v̄)|(Z−1

1 + Z−1
2 ). (41)

d

In the thermodynamic limitL → ∞, all unimodular
complex numbers are solutions forZi. The maximum of
the real part ofE depends on whether all of the values of
Zi are unimodular or not. In the first case, the relaxation
time is independent of the injection and extraction rates at
the boundaries. This is called thefast phase. In the second
case, the relaxation time does depend on the injection and
extraction rates at the boundaries. This is called theslow
phase. The terms fast and slow come from the fact that for
fixed bulk reaction rates, the relaxation time in the fast phase

is smaller than that of the slow phase. Now the physical pa-
rameter space can be divided to three regions, with different
behaviors for the relaxation-time:





a + a′ < A, a + a′ − (b + b′) < A− B, region I

b + b′ < B, a + a′ − (b + b′) > A− B, region II

otherwise, region III
(42)

c
where

A := u + s−
√
|(u− ū)(v − v̄)| = ū + s̄−

√
|(u− ū)(v − v̄)|,

B := v + w −
√
|(u− ū)(v − v̄)| = v̄ + w̄ −

√
|(u− ū)(v − v̄)|. (43)

The relaxation timeτ is then

τ =





[v + w + a + a′ + (u− ū)(v − v̄)(a + a′ − u− s)−1]−1, region I

[u + s + b + b′ + (u− ū)(v − v̄)(b + b′ − v − w)−1]−1, region II

{v + w + u + s− 2Re[
√

(u− ū)(v − v̄)]}−1, region III

(44)

d

It is seen that in region I, the relaxation time depends on the
injection and extraction rates at the beginning of the lattice;
in region II it depends on the injection and extraction rates
at the end of the lattice; and in region III it depends on none
of the injection or extraction rates.

The details of the calculations can be seen in [30].

IV An asymmetric generalization of
the Glauber model at zero temper-
ature, as an example

The Glauber model [33] is a model for the relaxation of an
Ising model towards its equilibrium with a heat bath at tem-

peratureT , which is based on the principle of detailed bal-
ance. This model is based on a three-site interaction: a spin
is flipped with the rateµ := 1 − tanh β J if the spins of
its neighboring sites are the same as itself; it flips with the
rateλ := 1 + tanh β J , if the the spins of the neighboring
sites are opposite to it: and flips with the rate1, if the spins
of the neighboring sites are opposite to each other. Here
β = (kB T )−1, and time has been rescaled so that one of the
rates is1.

It has been shown in [34] that at zero temperature, the
Glauber dynamics is effectively a two-site interaction, in
which two opposite neighboring spins become the same,
with the rate1 (independent of which is up and which is
down, and which one flips).

An extension of the Glauber dynamics at zero tempera-
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ture is a system with the following dynamics.

A∅ →
{

AA, with the rateu

∅∅, with the ratev

∅A →
{

AA, with the ratev

∅∅, with the rateu
(45)

whereA denotes a spin up (or a particle) and∅ denotes a
spin down (or a vacancy). In the ordinary Glauber model,
the system is left-right symmetric andu = v. Now consider
a system with the dynamics (45), on anL-site lattice. As-
sume also that there are injection and extraction rates at the
first and last sites, with the ratesa, a′, b, andb′ introduced
in the previous section. It is easily seen that for this system,
of the eight bulk-rate parameters introduced in the previous
section, onlyu, v, s̄, andw̄ are nonzero, and

s̄ = u,

w̄ = v. (46)

From this, it is seen that

x =
v

u + v
,

y =
u

u + v
. (47)

Sox andy are nonnegative andx + y = 1. This means that
there is a static phase transition, which occurs atu = v, the
point corresponding to the ordinary Glauber model.

For the dynamical phase transition, it is seen thatA and
B introduced in (43), are

A := u−√u v,

B := v −√u v. (48)

Of A andB, only one can be positive, and this is when
u 6= v. So, as the injection and extraction rates are non-
negative, at most two of the regions I, II, and III may exist:
for u > v, only the regions I and III; foru < v, only the
regions II and III. The expression for the relaxation time is

τ =





[v + a + a′ + u v(a + a′ − u)−1]−1, region I

[u + b + b′ + u v(b + b′ − v)−1]−1, region II

(v + u− 2
√

u v)−1, region III
(49)

As a final note, it is easily seen that changing the dynam-
ics (45) into the following

A∅ →





∅A, with the rateλ

AA, with the rateu− λ

∅∅, with the ratev − λ

∅A →





A∅, with the rateλ′

AA, with the ratev − λ′

∅∅, with the rateu− λ′
(50)

which contains diffusion as well, does not change the evo-
lution equation of the one-point function. So the results of
this section are valid for this interaction as well. The only
difference is that the introduction of diffusion, restricts the
parameter space ofu andv, since the rates should be non-
negative. Sou, v ≥ λ, λ′.

V Extension to longer-range interac-
tions: dynamical phase transition
of kinetic Ising model with bound-
aries

It was pointed out in the previous section, that the Glauber
dynamics at nonzero temperatures consists of a three-site in-
teraction. Let us rewrite the reactions:

↑ ↑ ↑ → ↑ ↓ ↑ and ↓ ↓ ↓ → ↓ ↑ ↓ with the rateµ,

↑ ↓ ↑ → ↑ ↑ ↑ and ↓ ↑ ↓ → ↓ ↓ ↓ with the rateλ,

↑ ↑ ↓ ­ ↑ ↓ ↓ and ↓ ↓ ↑ ­ ↓ ↑ ↑ with the rate1,
(51)

where an upward arrow means spin up, a downward arrow
means spin down, andλ andµ are defined true

λ := 1 + tanh β J,

µ := 1− tanh β J, (52)

as in the previous section. As it is noted in [33], the evo-
lution equation for the expectation value of the spins (each
spin is either1 (upward) or−1 (downward)) is closed. This
is of course true for the spins at the bulk of the lattice. At
the boundaries, one should introduce some two-site interac-
tions and write separate equations for〈s1〉 and 〈sL〉. The
new interactions introduced at the boundaries are

↑ ↓→ ↓ ↓ with the rateg1,

↑ ↑→ ↓ ↑ with the rateg2,

↓ ↑→ ↑ ↑ with the rateg3,

↓ ↓→ ↑ ↓ with the rateg4, (53)

For the spin flip of the first site, and

↓ ↑→ ↓ ↓ with the rateh1,

↑ ↑→ ↑ ↓ with the rateh2,

↑ ↓→ ↑ ↑ with the rateh3,

↓ ↓→ ↓ ↑ with the rateh4, (54)

For the spin flip of the last site. It can be seen that the evo-
lution equation for the one-point functions is closed, iff

g1 + g4 = g2 + g3,

h1 + h4 = h2 + h3. (55)

Provided this is true, the evolution equation is
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〈ṡi〉 =− 2〈si〉+ (〈si+1〉+ 〈si−1〉) tanh(2β J), 1 < i < L

〈ṡ1〉 =− (g2 + g3)〈s1〉+ (g1 − g2)〈s2〉+ (g3 − g1),

〈ṡL〉 =− (h2 + h3)〈sL〉+ (h1 − h2)〈sL−1〉+ (h3 − h1). (56)

The stationary solution for this is
〈sj〉 = D1 zk

1 + D2 zk−L−1
2 , (57)

where
z1 = z−1

2 = tanh(β J). (58)

D1 andD2 are easily obtained at the thermodynamic limitL → ∞; and it is seen that they are both smooth functions of the
rates. So there is no static phase transition.

For the dynamical phase transition, similar to the method used in the previous sections, one writes the eigenvalue problem
for the homogeneous equation. That equation reads

E Xj = −2Xj + tanh(2βJ)(Xj+1 + Xj−1), j 6= 1, L,

E X1 = −(g2 + g3)X1 + (g1 − g2)X2,

E XL = −(h2 + h3)XL + (h1 − h2)XL−1. (59)

The solution to this is an expression like (35), with

E = −2 + tanh(2β J)(zi + z−1
i ). (60)

and

z1−L
i [2− g2 − g3 + z(g1 − g2 − tanh(2β J))− z−1

i tanh(2β J)]

×[2− h2 − h3 + zi(h1 − h2 − tanh(2β J))− z−1
i tanh(2β J)]

−zL−1
i [2− g2 − g3 + z−1(g1 − g2 − tanh(2β J))− zi tanh(2β J)]

×[2− h2 − h3 + z−1
i (h1 − h2 − tanh(2β J))− zi tanh(2β J)] = 0. (61)

d

Again in the thermodynamic limitL → ∞, if all of the
solutions to the above equation are unimodular, the relax-
ation time would be

τ = [−2 + 2 tanh(2β J)]−1, (62)

which is independent of the interaction rates at the bound-
aries. If there are some solutions that are nonunimodolar,
and among them there is a solution with Re(zi + z−1

i ) > 2
(for the ferromagnetic caseJ > 0), then the relaxation time

becomes larger than (62). This is the slow phase. The cri-
terion for this, is that one of the roots of (61) passes the
boundary

y = ±(x− 1)
√

x

2− x
, (63)

wherex andy are the real and imaginary parts of that root,
respectively.

In the thermodynamic limitL → ∞, the equation (61)
for roots with modulus greater than one simplifies into

c

{2− g2 − g3+z−1[g1 − g2 − tanh(2β J)]− z tanh(2β J)}
×{2− h2 − h3+z−1[h1 − h2 − tanh(2β J)]− z tanh(2β J)} = 0. (64)

So the criterion for the transition to occur, is that a complex numberz = x + iy, satisfies (63) and (64). The relation between
rates, for this to occur, can be seen to be

2[1− tanh(2β J)]− g2 − g4 = 0, or,

[4 tanh(2β J)− 2 + g2 + g3][g1 − g2 − tanh(2β J)] + (2− g2 − g3) tanh(2β J) = 0. (65)
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This is for the case when the first factor in (64) vanishes.
A similar criterion come from the vanishing of the second
factor, with the roles ofgi’s andhi’s interchanged.

The detailed calculations can be found in [32].

VI Extension to multi-species sys-
tems: phase transition in an asym-
metric generalization of the zero-
temperature Potts model

A simple extension of the asymmetric generalization of the
Glauber model at zero temperature, introduced in section
4, is an asymmetric generalization of the zero-temperature
Potts model. In this system, any site can havep + 1 states
(rather than the two states of the Glauber model). The bulk
reactions are written as

AαAβ →
{

AαAα, with the rateu

AβAβ , with the ratev
.

Compare this with (45). One adds to this, reaction rates at
the boundaries:

Aβ → Aα with the rateΛα
β at the first site,

Aβ → Aα with the rateΓα
β at the last site. (66)

Forα 6= β, Λα
β andΓα

β are rates, and should be nonnega-
tive. The diagonal elements ofΛ andΓ are chosen so that

sΛ = sΓ = 0. (67)

Using these, the evolution equation for the one-point func-
tions is written as

〈ṅj〉 = −(u + v)〈nj〉+ u〈nj−1〉+ v〈nj+1〉, j 6= 1, L

〈ṅ1〉 = Λ〈n1〉 − v〈n1〉+ v〈n2〉,
〈ṅL〉 = Γ〈nL〉 − u〈nL〉+ u〈nL−1〉. (68)

VI.1 The static phase transition
The stationary solution to (68) can be written as

〈nj〉 = B + C′
(u

v

)j−1

, (69)

or

〈nj〉 = B + C′′
(u

v

)j−L

, (70)

where

sB = 1,

sC′ = sC′′ = 0, (71)

andB andC′ (or C′′) must also satisfy conditions com-
ing from the evolution equation (68) at the boundaries. For
u < v, it is better to work with (69). Then it is seen that in
the thermodynamic limitL →∞, one has

ΓB = 0,

(Λ− v + u)C′ = −ΛB. (72)

The first equation has at least one non-zero solution forB,
asγ does have a left eigenvectors, with the eigenvalue zero.
Depending on the degeneracy of this zero eigenvalue, there
are one or several solutions forB. One should then putB in
the second equation to findC′. The conditions onΛ, ensure
that the real part of the eigenvalues ofΛ are nonpositive, so
v−u cannot be an eigenvalue ofΛ. Hence, the second equa-
tion has one and only one solution forC′ (corresponding to
each solution forB).

For u > v, one uses (70) and (in the thermodynamic
limit) arrives at

ΛB = 0,

(Γ− u + v)C′′ = −ΓB. (73)

Similar arguments hold for the solution of this equation,
with the roles ofΛ andΓ, u andv, andC′ andC′′ inter-
changed. Now apart from the question of the uniqueness of
the stationary profile (which depends on the degeneracy of
the matricesΓ or Λ) one can see that ifu < v, the pro-
file is flat near the last site, while foru > v it is flat near
the first sites. This is the static phase transition, similar to
what observed for the asymmetric generalization of the zero-
temperature Glauber model.

VI.2 The dynamical phase transition

The eigenvalue equation for the homogeneous part of
(69) is

E Xj =− (u + v)Xj + uXk−1 + v Xk+1, j 6= 1, L

E X1 =ΛX1 − v X1 + v X2,

E XL =ΓXL − uXL + uXL−1, (74)

the solution to which is

Xj = b zj
1 + c zj

2, (75)

wherezi’s satisfy

E = −(u + v) + v zi + u z−1
i . (76)

c
The second and third equation of (75), can be witten as




−(u + Λ)Z +
√

u v −(u + Λ)Z−1 +
√

u v

−(v + Γ)ZL +
√

u v ZL+1 −(v + Γ)Z−L +
√

u v Z−L−1







b

c


 = 0, (77)
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where the variable

Zi := zi

√
v

u
(78)

has been used, in terms of which
E = −(u + v) +

√
u v(Zi + Z−1

i ). (79)

(77) has nontrivial solutions forb andc, iff the determinant of the matrix of the coefficients vanishes:

det




−(u + Λ)Z +
√

u v −(u + Λ)Z−1 +
√

u v

−(v + Γ)ZL +
√

u v ZL+1 −(v + Γ)Z−L +
√

u v Z−L−1


 = 0. (80)

d

Again, if in the thermodynamic limitL → ∞, for all of the
solutions of the above equationRe(Z+Z−1) ≤ 2, the relax-
ation time is independent of the reaction rates at boundaries,
and the system is in the fast phase. In order that the system
be in the slow phase, it is necessary (but not sufficient) that
at least one of the roots of (80) has modulus larger than one.
For this solution, (80) is simplified in the thermodynamic
limit to

det[
√

u v Z − (v + Γ)] det[
√

u v Z − (u + Λ)] = 0. (81)

So, denoting the eigenvalues ofΛ andΓ with λ andγ re-
spectively, This root must be

Z =
v + γ√

u v
, or Z =

u + λ√
u v

. (82)

The real parts of the eigenvaluesλ andγ are nonpositive. It
is then seen that ifu ≥ v, then the real part ofZ in the first
case is not greater than1, andRe(Z + Z−1) ≤ 2. So in this
case, the only relevant equation for finding the system in the
slow phase is theZ = (u + λ)/

√
u v. A similar argument

shows that ifv ≥ u, then the first equation of (82) is rele-
vant. So, without loss of generality, let’s takeu < v. In this
case,b should be an eigenvector ofΓ. However, one also
demands

s b = 0. (83)

If b is the only eigenvector ofΓ, with zero eigenvalue, then
(83) cannot be satisfied, ass would also be the only left
eigenvector ofΓ with zero eigenvalue. So, from the eigen-
values ofΓ, one should put aside one zero eigenvalue, and
consider only the other ones. Of course if the zero eigen-
value is degenerate, thenγ can still be zero.

The system undergoes a dynamical phase transition,
whenx andy (the real and imaginary parts ofZ) pass the
curve

y = ±(x− 1)
√

x

2− x
, x ≥ 1. (84)

In terms of the eigenvalues ofΓ, it is seen that the system is
in the slow phase iff

|Im(λ)| < [
Re(λ) + u−√u v

]
√

Re(λ) + u

2
√

u v − Re(λ)− u
,

or Re(λ) > 2
√

u v − u. (85)

A simple way to induce the phase transition is to multi-
ply the matrixΓ by a parameterr. This means multiplying
the rates of the reaction at the first site byr. As Re(γ) ≤ 0,
one can see that for a large enough value ofr, the value of
Re(γ)+u−√u v will be negative (providedRe(γ) 6= 0, that
is, provided the zero eigenvalue of the matrixΓ is not degen-
erate). So the system will be in the fast phase. It is also seen
that asr tends to zero, either2

√
u v − Re(γ) − u becomes

negative, or in the first inequality in (86) the right-hand be-
comes greater than the left-hand side (which tends to zero).
So, the system will be in the slow phase. Roughly speak-
ing, increasing the reaction rates at the boundaries, brings
the system from the slow phase (relaxation time depending
on the reaction rates at boundaries) to the fast phase (relax-
ation time independent of the reaction rates at boundaries).
A similar argument holds, of course, for the caseu > v and
the eigenvalues of the matrixΛ.

The details of the calculations can be found in [31].
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