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ASKEY-WILSON POLYNOMIALS: AN AFFINE HECKE

ALGEBRAIC APPROACH

MASATOSHI NOUMI AND JASPER V. STOKMAN

Abstract. We study Askey-Wilson type polynomials using representation
theory of the double affine Hecke algebra. In particular, we prove bi-orthogona-
lity relations for non-symmetric and anti-symmetric Askey-Wilson polynomials
with respect to a complex measure. We give duality properties of the non-
symmetric Askey-Wilson polynomials, and we show how the non-symmetric
Askey-Wilson polynomials can be created from Sahi’s intertwiners. The diag-
onal terms associated to the bi-orthogonality relations (which replace the no-
tion of quadratic norm evaluations for orthogonal polynomials) are expressed
in terms of residues of the complex weight function using intertwining prop-
erties of the non-symmetric Askey-Wilson transform under the action of the
double affine Hecke algebra. We evaluate the constant term, which is essen-
tially the well-known Askey-Wilson integral, using shift operators. We further-
more show how these results reduce to well-known properties of the symmetric
Askey-Wilson polynomials, as were originally derived by Askey and Wilson
using basic hypergeometric series theory.

1. Introduction

1.1. Due to work of Cherednik [2]–[6], Macdonald [15], Noumi [16] and Sahi [19],
one can associate to every irreducible affine root system certain families of orthog-
onal polynomials (all closely related to the Macdonald polynomials), and prove
their basic properties using a fundamental representation of the affine Hecke alge-
bra in terms of difference-reflection operators. In this paper, we consider a rank
one example of this theory in detail. The example is connected with a rank one
non-reduced irreducible affine root system which has four orbits under the action of
the associated affine Weyl group. The family of symmetric orthogonal polynomials
associated to this particular affine root system is the celebrated four parameter
family of Askey-Wilson polynomials, see [1].

1.2. The four parameter family of Askey-Wilson polynomials has played an impor-
tant and central role in the theory of basic hypergeometric orthogonal polynomials.
In fact, up to date they seem to be the most general family of basic hypergeometric
orthogonal polynomials which satisfy the additional requirement that they are joint
eigenfunctions of a second-order q-difference operator. We use the link between the
Askey-Wilson polynomials and the most general non-reduced affine root system of
rank one (see 1.1) to derive in this paper the basic properties of the Askey-Wilson
polynomials (and more!) from the algebraic structure of the associated (double)
affine Hecke algebra.
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1.3. We introduce a Cherednik-Dunkl type difference-reflection operator Y using

the fundamental representation of the affine Hecke algebra of type Ã1. The fun-
damental representation was defined by Noumi [16] in the higher rank case, see
also Sahi [19]. Sahi’s [19] non-symmetric Askey-Wilson polynomials are defined as
the eigenfunctions of the Cherednik-Dunkl operator Y . They form a linear basis
of the Laurent polynomials in one variable. We explicitly indicate their connection
with the symmetric Askey-Wilson polynomials as originally defined by Askey and
Wilson in [1]. In particular, we give explicit expressions for the non-symmetric
Askey-Wilson polynomials as a sum of two terminating balanced 4φ3’s (here rφs

is the basic hypergeometric series, see Gasper and Rahman [8] for the definition).
All the other results in this paper are derived without using the explicit series
expansions of the (non-)symmetric Askey-Wilson polynomials in terms of basic
hypergeometric series.

1.4. We derive bi-orthogonality relations for the non-symmetric Askey-Wilson
polynomials by explicitly computing the adjoint of the Cherednik-Dunkl operator
Y with respect to an explicit, complex measure. By a kind of symmetrization pro-
cedure, the bi-orthogonality relations imply Askey and Wilson’s [1] orthogonality
relations for the symmetric Askey-Wilson polynomials.

1.5. We shortly describe Sahi’s [19] results how an anti-isomorphism of the double
affine Hecke algebra gives rise to a duality between the spectral and the geometric
parameter of the (non-)symmetric Askey-Wilson polynomial. We use the duality to
determine explicit intertwining properties of the action of the double affine Hecke
algebra under the non-symmetric Askey-Wilson transform. Here the non-symmetric
Askey-Wilson transform is a generalized Fourier transform which is defined with
respect to the bi-orthogonality measure of the non-symmetric Askey-Wilson poly-
nomials. This leads to the evaluation of the diagonal terms of the (bi-)orthogonality
relations in terms of certain residues of the complex weight function. This tech-
nique is motivated by Cherednik’s [4] approach to the study of the diagonal terms
for non-symmetric Macdonald polynomials, in which he rewrites part of the action
of the double affine Hecke algebra on non-symmetric Macdonald polynomials in
terms of explicit operators acting on the spectral parameter.

1.6. To complete the explicit computation of the diagonal terms, we need the
evaluation of the constant term and the evaluation of the non-symmetric Askey-
Wilson polynomial in a specific point (the latter playing a fundamental role in the
duality arguments). We evaluate the constant term, which is essentially the well-
known Askey-Wilson integral (see [1]), using shift operators. For the evaluation of
the non-symmetric Askey-Wilson polynomial in a specific point we use a Rodrigues
type formula for the non-symmetric Askey-Wilson polynomial in terms of Sahi’s
[19] intertwiners.

1.7. The purpose of this paper is two-fold. First of all, we would like to show
the power of the Cherednik-Macdonald theory in the study of basic hypergeometric
orthogonal polynomials. It not only shows that all the basic properties of the
Askey-Wilson polynomials can be obtained by natural algebraic manipulations,
but it also reveals new and important insights in the structure of the Askey-Wilson
polynomials.
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Secondly, the affine Hecke algebraic approach also works for multivariable Askey-
Wilson polynomials, the so called Koornwinder polynomials [11] (which are asso-
ciated with a higher rank non-reduced affine root system). The structure of the
proofs in the higher rank setting are essentially the same, although the technical-
ities are more involved. Only part of the Cherednik-Macdonald theory associated
with non-reduced affine root systems has been written down explicitly at this mo-
ment, see Noumi [16] and Sahi [19]. In our opinion, this paper can serve as one of
the building blocks for obtaining a full understanding of the Cherednik-Macdonald
theory in the case of non-reduced affine root systems. The higher rank case will be
treated in an upcoming paper of the second author.

1.8. In view of our aims described in 1.7, we have chosen to make this paper
fairly self-contained. In particular, we have included some of the proofs of Noumi
[16] and Sahi [19], restricted to our present rank one setting. Furthermore, we
have included several proofs which are fairly straightforward modifications from
Cherednik’s [2]–[6] and Macdonald’s [15] work in case of Macdonald polynomials,
see also for instance Opdam’s [17] lecture notes for the classical q = 1 setting.

1.9. Finally we would like to point out the close connection with the paper [9] of
Kalnins and Miller. In [9] the Askey-Wilson second order q-difference operator is
written as the composition of a first order q-difference operator with its adjoint.
This decomposition leads naturally to proofs of the orthogonality relations and of
the quadratic norm evaluations for the symmetric Askey-Wilson polynomials (us-
ing shift principles). In our paper we use similar techniques, but we decompose
the Askey-Wilson second order q-difference operator now as a sum of a difference-
reflection operator (the Cherednik-Dunkl operator Y ) and its inverse. This decom-
position has the advantage that the Cherednik-Dunkl operator Y itself satisfies a
self-adjointness property with respect to a suitable extension of the Askey-Wilson
orthogonality measure to a complex measure space for non-symmetric functions.
This extra property of Y naturally leads to the introduction of non-symmetric and
anti-symmetric Askey-Wilson polynomials and to their bi-orthogonality relations.

1.10. Notations: We use Gasper and Rahman’s [8] notations for basic hypergeo-
metric series and q-shifted factorials. We write Z+ = {0, 1, 2, . . .} for the positive
integers and N = {1, 2, . . .} for the strictly positive integers.

1.11. Acknowledgments: The second author is supported by a NWO-TALENT
stipendium of the Netherlands Organization for Scientific Research (NWO). Part
of the research was done while the second author was supported by the EC TMR
network “Algebraic Lie Representations”, grant no. ERB FMRX-CT97-0100.

2. The Dunkl-Cherednik difference-reflection operators

2.1. Let R̂ be the vector space consisting of affine, linear transformation from R

to R. We identify R̂ with R ⊕ Rδ, where δ is the function identically one, and
where R acts by multiplication on itself. We introduce and study in this section a

particular example of a rank one affine root system S ⊂ R̂. See Macdonald [14] for
the general discussion of affine root systems.
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2.2. Let 〈., .〉 be the positive semi-definite form on R̂ defined by

〈λ + µδ, λ′ + µ′δ〉 = λλ′, λ, λ′, µ, µ′ ∈ R.

Then we can associate to every 0 6= f = λ + µδ ∈ R̂ \Rδ the involution sf : R̂ → R̂

defined by

sf (g) = g − 〈g, f∨〉f, g ∈ R̂,

where f∨ := 2f/〈f, f〉. Observe that sf is an isometry with respect to 〈., .〉. In

fact, we have sf (g) = g ◦ s̃f , where s̃f ∈ R̂ is the reflection in f−1(0).

2.3. We define now a subset S ⊂ R̂ by

S = {±1 +
m

2
δ, ±2 + mδ | m ∈ Z},

and we write W = W(S) for the subgroup of invertible linear transformations of

R̂ generated by sf , f ∈ S. Then S ⊂ R̂ is an affine root system. In particular,
〈f, g∨〉 ∈ Z for all f, g ∈ S, and S is stable under the action of the affine Weyl
group W(S).

2.4. The gradient root system Σ of S is the projection of S on R along the direct

sum decomposition R̂ = R ⊕ Rδ. Here Σ = {±1,±2}, which is a non-reduced root
system of type BC1, with associated Weyl group W = {1, s1} = {±1}. Observe

that W ⊂ W acts on R̂ by (±1)(λ + µδ) = ±λ + µδ.

2.5. Let a0 = δ−2 ∈ S and a1 = 2 ∈ S. Observe that a∨
0 = a0/2 = 1

2δ−1 ∈ S, and
a∨
1 = a1/2 = 1 ∈ S. Then {a∨

0 , a∨
1 } forms a basis of the affine root system S. We

write S+ for the positive roots in S with respect to {a∨
0 , a∨

1 }, so that S = S+∪(−S+)
disjoint union. We furthermore set Σ+ = {a∨

1 , a1}, which are the positive roots of
Σ with respect to the basis {a∨

1 }. Observe that S+ = Σ+ ∪ {f ∈ S | f(0) > 0}.

2.6. The affine Weyl group W is generated by the simple reflections s0 := sa0
=

sa∨

0
and s1 = sa1

= sa∨

1
, while W is generated by s1. Observe that s1s0 = τ(1),

where τ(µ) is the translation operator τ(µ)f = f + 〈µ, f〉δ for f ∈ R̂ and µ ∈ R. In
particular, s1s0 has infinite order in W and

W = W ⋉ τ(Z).

Furthermore, W is isomorphic to the Coxeter group with two generators s0, s1 and
relations s2

0 = 1, s2
1 = 1.

2.7. The affine root system S has four W-orbits, namely

S1
s = Wa∨

0 =
(1

2
+ Z

)
δ ± 1, S2

s = Wa∨
1 = Zδ ± 1,

S1
l = Wa0 =

(
1 + 2Z

)
δ ± 2, S2

l = Wa1 = 2Zδ ± 2.

2.8. We have the disjoint union S = R∨ ∪ R, with R = S1
l ∪ S2

l a reduced,
irreducible affine root system with basis {a0, a1}, affine Weyl group W , and gradient
root system {±a1}, and with R∨ = S1

s ∪S2
s the corresponding affine co-root system.

The co-root system R∨ is a reduced, affine root system with basis {a∨
0 , a∨

1 }, affine
Weyl group W , and gradient root system {±a∨

1 }. Similarly as for S, see 2.5, the
fixed choice of basis give rise to a decomposition of R and R∨ in positive and
negative roots (the positive roots are denoted by R+ and R∨,+, respectively). For
example, we have R+ = {a1} ∪ {±a1 + Nδ}.
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2.9. Let ω ∈ R̂ be the involution ω(x) := 1
2 − x (x ∈ R), and consider ω as an

involution of R̂ by ω : f 7→ f ◦ ω for f ∈ R̂. Then ω preserves S. Furthermore,
ω = s1τ(1

2 ), ω(ai) = a1−i and ωsiω = s1−i for i = 0, 1. The subgroup We of the

invertible linear transformations of R̂ generated by W and ω is called the extended

affine Weyl group. It is isomorphic to W ⋊Ω, where Ω is the subgroup of order two
generated by ω.

2.10. Set A := C[x±1] for the algebra of Laurent polynomials in one indeterminate
x. We set xf := qλxµ ∈ A for f = µ + λδ ∈ Z + Rδ, where q is a fixed non-zero
complex number. Observe that xa ∈ A is well defined for a ∈ S and that We

preserves Z + Rδ. Furthermore, w(xµ) := xw(µ) for µ ∈ Z and w ∈ We extends to
an action of We on A by linearity. In particular,

s0(x
m) = qmx−m, s1(x

m) = x−m, m ∈ Z.

Observe that τ(µ) (µ ∈ Z) acts as a q-difference operator: τ(µ)(xm) = qµmxm for
all m ∈ Z.

2.11. A multiplicity function t = {ta}a∈S of S is a choice of non-zero complex
numbers ta (a ∈ S) such that tw(a) = ta for all a ∈ S and all w ∈ W . We use the

convention that tf = 1 for all f ∈ R̂\S. A multiplicity function t of S is determined
by the values k0 := ta0

, u0 := ta∨

0
, k1 := ta1

and u1 := ta∨

1
, see 2.7. Later on it

will be necessary to impose (generic) conditions on the parameters tf (f ∈ S) and
on the deformation parameter q. Until section 6 it suffices to assume that |q| 6= 1
and that k2

0 , k
2
1 , u

2
1 6∈ ±qZ. These conditions are assumed to hold throughout the

remainder of the paper, unless specified explicitly otherwise.

2.12. The Hecke algebra H0 = H0(k1) of type A1 is the unital, associative C-
algebra with generator T1 and relation (T1 − k1)(T1 + k−1

1 ) = 0. Observe that

{1, T1} is a linear basis of H0 and that T1 is invertible in H0 with inverse T−1
1 =

T1 + k−1
1 − k1.

2.13. The affine Hecke algebra H = H(R; k0, k1) of type Ã1 is the unital C-algebra
with generators T0 and T1 and relations

(Ti − ki)(Ti + k−1
i ) = 0, i = 0, 1.

Similarly as for H0 we have that Ti is invertible in H with inverse T−1
i = Ti +k−1

i −
ki.

2.14. For w ∈ W , let w = si1si2 · · · sir
be a reduced expression, i.e. a mini-

mal expression of w as product of the simple reflections s0 and s1. Then Tw :=
Ti1Ti2 · · ·Tir

is well-defined and {Tw}w∈W is a linear basis of H(R; k0, k1), see [13].
In particular, we may regard H0 as a subalgebra of H .

2.15. We set Y := Tτ(1) = T1T0 ∈ H . By [13], we known that Y is algebraically

independent in H . Let C[Y ±1] ⊂ H be the commutative subalgebra generated by
Y ±1. Then

H0(k1) ⊗ C[Y ±1] ≃ H(R; k0, k1) ≃ C[Y ±1] ⊗ H0(k1)

as linear spaces, where the isomorphisms are given by multiplication. In particular,
{Y m, Y nT1}m,n∈Z and {Y m, T1Y

n}m,n∈Z are linear bases of H(R; k0, k1), see [13,
proposition 3.7].
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In the remainder of the paper we identify A with C[Y ±1] as algebra by identifying
the indeterminate x of A with Y . In particular, we write f(Y ) =

∑
k ckY k ∈ C[Y ±1]

for f(x) =
∑

k ckxk ∈ A.

2.16. By Lusztig [13, proposition 3.6], we have the fundamental commutation
relations

T1f(Y ) − f(Y −1)T1 =
(
(k1 − k−1

1 )Y 2 + (k0 − k−1
0 )Y

)(
f(Y −1) − f(Y )

1 − Y 2

)

in H(R; k0, k1) for all f(Y ) ∈ C[Y ±1]. Indeed, observe that if the formula holds
for f(Y ) and g(Y ), then it also holds for f(Y )g(Y ). It thus suffices to prove it for
f(Y ) = Y ±1, in which case it follows from an elementary computation using the
definition of Y and the quadratic relations for the Ti, see 2.15 and 2.13, respectively.

2.17. The following result was observed by Sahi [19, theorem 5.1] in the higher
rank setting.

Corollary (The non-affine intertwiner). Set S1 = [T1, Y ] = T1Y −Y T1 ∈ H. Then

f(Y )S1 = S1f(Y −1) in H for all f(Y ) ∈ C[Y ±1].

Proof. This follows immediately from the definition of S1 and from Lusztig’s com-
mutation relation 2.16.

2.18. Another important consequence of Lusztig’s commutation relation 2.16 is
the following result.

Corollary. The affine Hecke algebra H = H(R; k0, k1) acts on C[Y ±1] by

T1.g(Y ) = k1g(Y −1) +
(
(k1 − k−1

1 )Y 2 + (k0 − k−1
0 )Y

) (
g(Y −1) − g(Y )

1 − Y 2

)

= k1g(Y ) + k−1
1

(1 − k0k1Y
−1)(1 + k−1

0 k1Y
−1)

(1 − Y −2)
(g(Y −1) − g(Y )),

f(Y ).g(Y ) = f(Y )g(Y )

for all f(Y ), g(Y ) ∈ C[Y ±1].

Proof. Let χ be the character of H0(k1) which maps T1 to k1. By 2.15 we may

identify the representation space of the induced representation IndH
H0

(χ) = H ⊗χ C

with C[Y ±1]. By 2.16 the corresponding induced action of H on C[Y ±1] is as
indicated in the statement of the corollary.

2.19. We define linear operators T̂i ∈ EndC(A) by

T̂i :=ki + k−1
i

(
1 − kiuix

a∨

i

)(
1 + kiu

−1
i xa∨

i

)

1 − xai

(si − id)

=kisi +
(ki − k−1

i ) + (ui − u−1
i )xa∨

i

(1 − xai)
(id − si), i = 0, 1.

The following theorem was proved by Noumi [16, section 3] in the higher rank
setting, see also [19, section 2.3].

Theorem. The application Ti 7→ T̂i (i = 0, 1) extends uniquely to an algebra ho-

momorphism πt,q : H(R; k0, k1) → EndC(A).
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Proof. We identify C[Y ±1] ⊂ H(R; u1, k1) with A as algebra by identifying Y with

x−1. Then it follows from corollary 2.18 (applied to H(R; u1, k1)) that (T̂1−k1)(T̂1+

k−1
1 ) = 0 in EndC(A). Conjugating T̂1 with the involution ω, see 2.9, and replacing

k1 and u1 by k0 and u0 respectively, we see that (T̂0−k0)(T̂0 +k−1
0 ) = 0 in End(A).

The theorem follows, since we have shown that all the defining relations 2.13 of

H(R; k0, k1) are satisfied by the linear operators T̂i ∈ EndC(A) (i = 0, 1).

2.20. Observe that the linear operator T̂0 on A has a reflection and a q-difference

part, while T̂1 has only a reflection part, see 2.10. The operators T̂i ∈ EndC(A)
(i = 0, 1) are called the difference-reflection operators associated with S. In the

remainder of the paper, we simply write Ti for the difference-reflection operators T̂i

(i = 0, 1) if no confusion is possible. The operator Y = T1T0 ∈ EndC(A) is called
the Cherednik-Dunkl operator associated with S.

2.21. The representation πt,q has two extra degrees of freedom u0 and u1 besides
the deformation parameter q (which already lives on the affine Weyl group level,
see 2.10). The motivation to label these two degrees of freedom in this particular
way comes from the theory of double affine Hecke algebras. The double affine

Hecke algebra H(S; t; q) associated with the affine root system S (see [19]) is the
subalgebra of EndC(A) generated by πt,q(H(R; k0, k1)) and A, where we consider A

as a subalgebra of EndC(A) via its regular representation. We write f(z) ∈ End
(
A

)

for the Laurent polynomial f(x) ∈ A regarded as a linear endomorphism of A. By
the second formula for the difference-reflection operators Ti in 2.19 we have that

f(z)Ti − Ti(sif)(z) =
(ki − k−1

i ) + (ui − u−1
i )za∨

i

(1 − zai)

(
f(z) − (sif)(z)

)
, f ∈ A

in H(S; t, q) for i = 0, 1.

2.22. The labeling of the extra degrees of freedom in the representation πt,q is
now justified by the following theorem, together with 2.11.

Theorem. H(S; t; q) is isomorphic as algebra to the unital, associative C-algebra

F(t; q) with generators V ∨
0 , V0, V1, V

∨
1 and relations:

1. The application Ti 7→ Vi for i = 0, 1 extends to an algebra homomorphism

H(R; k0, k1) → F(t; q).
2. The application Ti 7→ V ∨

i for i = 0, 1 extends to an algebra homomorphism

H(R; u0, u1) → F(t; q).
3. (Compatibility). V ∨

1 V1V0V
∨
0 = q−1/2.

The isomorphism φ : F(t; q) → H(S; t; q) is explicitly given by φ(Vi) = Ti (i = 0, 1),

φ(V ∨
0 ) = T−1

0 z−a∨

0 = q−1/2T−1
0 z and φ(V ∨

1 ) = z−a∨

1 T−1
1 = z−1T−1

1 .

The existence of the algebra homomorphism φ follows by direct computations
using 2.21. It is immediate that φ is surjective. The injectivity of φ requires a
detailed study of the difference-reflection operators Ti associated with S. We give
the proof in 8.3.

3. Non-symmetric Askey-Wilson polynomials
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3.1. For a ∈ R, let R(a) ∈ End(A) be the difference-reflection operator defined
by

R(a) := tasa + t−1
a

(1 − tata/2x
a/2)(1 + tat−1

a/2x
a/2)

(1 − xa)

(
1 − sa

)
.

Then it is immediate that R(ai) = Tisi for i = 0, 1, where Ti is the difference-
reflection operator associated with S (see 2.19). Furthermore, we have wR(a)w−1 =
R(w(a)) for all w ∈ W and all a ∈ R. Since any a ∈ R is conjugate to a0 or a1 under
the action of W , we obtain from the quadratic relations for the difference-reflection
operators Ti (see 2.13 and 2.19) that

R(a)−1 = R(−a) + (ta − t−1
a )sa, a ∈ R.

3.2. We define a total order � on the basis of monomials {xm}m∈Z of A by

1 ≺ x−1 ≺ x ≺ x−2 ≺ x2 ≺ · · · .

Observe that this order is not well behaved under multiplication of the monomials:
if xmi � xni (i = 1, 2), then not necessarily xm1+m2 � xn1+n2 .

3.3. Let ǫ : Z → {±1} be the function which sends a positive integer to 1 and a
strictly negative integer to −1.

Lemma. Let a ∈ R be of the form a = 2 + kδ with k ∈ Z (see 2.8 ) and let m ∈ Z.

Then

R(a)
(
xm

)
= tǫ(m)

a xm + lower order terms w.r.t. � .

Proof. For a ∈ R, let Da ∈ End(A) be the divided difference operator defined by

Daf :=
f − saf

1 − xa
, f ∈ A.

Then Da(1) = 0 and

Da

(
xm

)
=

{
−xm−a − xm−2a − · · · − xm−〈m,a∨〉a if 〈m, a∨〉 ∈ N,

xm + xm+a + · · · + xm−(1+〈m,a∨〉)a if 〈m, a∨〉 ∈ −N.

Observe that 〈m, a∨〉 = m when a = 2 + kδ for some k ∈ Z. The lemma is now
immediate when m ∈ Z+. For m ∈ −N, we first observe that the coefficient of x−m

in the expansion of R(a)(xm) in terms of monomials is zero. Indeed, the coefficient
of x−m in

t−1
a (1 − tata/2x

a/2)(1 + tat−1
a/2x

a/2)Da(xm)

is −taq−mk, which cancels with the coefficient of tasa(xm) = taq−mkx−m. Hence
the highest order term of R(a)(xm) is t−1

a xm when m ∈ −N. This completes the
proof of the lemma.

3.4. Lemma 3.3 implies the following triangularity property of the Cherednik-

Dunkl operator Y . Set γm := k
ǫ(m)
0 k

ǫ(m)
1 qm for m ∈ Z.

Proposition. For all m ∈ Z, we have

Y (xm) = γmxm + lower order terms w.r.t. � .

Proof. Observe that Y = T1T0 = R(a1)s1R(a0)s0 = R(a1)R(s1(a0))τ(1). Now
s1(a0) = 2 + δ and τ(1)(xm) = qmxm (see 2.10), so the proposition follows from
lemma 3.3.
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3.5. The diagonal terms γm (m ∈ Z) of the triangular operator Y are pair-wise
different by the generic conditions 2.11 on q and on the multiplicity function t.
Hence proposition 3.4 leads immediately to the following proposition (compare
with Sahi [19, section 6] for the higher rank setting).

Proposition. There exists a unique basis {Pm(·) = Pm(·; t; q) | m ∈ Z} of A such

that

1. Pm(x) = xm+ lower order terms with respect to �,

2. Y (Pm) = γmPm

for all m ∈ Z.

Definition. The Laurent polynomial Pm = Pm(·; t; q) (m ∈ Z) is called the monic,

non-symmetric Askey-Wilson polynomial of degree m.

We will justify this terminology in section 5, where we relate the non-symmetric
Askey-Wilson polynomials with the well-known symmetric Askey-Wilson polyno-
mials by a kind of symmetrization procedure.

4. The fundamental representation

4.1. In the previous section we have diagonalized the action of the “translation
part” C[Y ±1] of the affine Hecke algebra H = H(R; k0, k1) under the fundamental
representation πt,q (see 2.19). The corresponding eigenfunctions are exactly the
non-symmetric Askey-Wilson polynomials. Since H is generated as algebra by
Y and the difference-reflection operator T1, see 2.15, it suffices to understand the
action of T1 on the non-symmetric Askey-Wilson polynomials in order to completely

decompose A as an H-module. Recall the notation γm = k
ǫ(m)
0 k

ǫ(m)
1 qm (m ∈ Z)

for the eigenvalues of Y .

Proposition. For m ∈ Z we have

T1Pm = αmPm + βmP−m,

with

αm =
(k−1

1 − k1)γ
2
m + (k−1

0 − k0)γm

1 − γ2
m

.

If m ∈ −N then βm = k1, and

βm = k1

∏

ξ=±1

(1 + k0k
−1
1 γξ

m)(1 − k−1
0 k−1

1 γξ
m)

(1 − γ2ξ
m )

if m ∈ Z+.

Proof. The formula for m = 0 reduces to T1(P0) = k1P0, which is clear. For
0 6= m ∈ Z, we derive from Lusztig’s formula 2.16 and from the definition 3.5 of
the non-symmetric Askey-Wilson polynomials that for all f(Y ) ∈ C[Y ±1],

(
f(Y ) − f(γ−m)

)
T1Pm = αm

(
f
(
γm

)
− f

(
γ−m

))
Pm

with αm as given in the statement of the proposition. Since γm (m ∈ Z) are mutu-
ally different by the conditions 2.11 on the parameters, we derive from proposition
3.5 that T1Pm = αmPm + βmP−m for some βm.

If m ∈ −N, then we have xm ≺ s1(x
m) = x−m. Combined with the formula

T1 = s1R(a1)
−1 +k1−k−1

1 (see 3.1) and with the triangularity of R(a1) (see lemma
3.3), we obtain that the coefficient of x−m in the expansion of T1(x

m) with respect
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to the basis of monomials is equal to k1. By the definition 3.5 of the non-symmetric
Askey-Wilson polynomials, we conclude that βm = k1 for m ∈ −N.

Now act by T1 on both sides of the formula T1Pm = αmPm + βmP−m and use
the quadratic relation for T1, see 2.12. It follows that the αm and the βm satisfy
the relation

βmβ−m = (k1 − αm)(k−1
1 + αm), 0 6= m ∈ Z.

This allows us to compute βm with m ∈ N from the known expressions for αm and
β−m, which yields the desired result.

4.2. A uniform formula for the action of T1 on the non-symmetric Askey-Wilson
polynomials can be obtained by renormalizing the non-symmetric Askey-Wilson
polynomials in a suitable way. A natural renormalization, together with a new
proof of proposition 4.1, is given in section 10.

4.3. As a consequence of proposition 4.1, we can compute the action of the non-
affine intertwiner S1 (see 2.17) on the non-symmetric Askey-Wilson polynomials
explicitly.

Corollary. We have S1(Pm) =
(
γm − γ−m

)
βmP−m for m ∈ Z, where βm is as in

proposition 4.1.

Proof. By proposition 4.1 and by the definition 3.5 of the non-symmetric Askey-
Wilson polynomial, we have

S1Pm =(T1Y − Y T1)Pm =
(
γm − Y

)
T1Pm

=
(
γm − Y

)(
αmPm + βmP−m

)
=

(
γm − γ−m

)
βmP−m.

4.4. We set A(0) = span{P0} and A(m) = span{Pm, P−m} for m ∈ N.

Theorem. (i) The representation (πt,q, H(R; k0, k1)) is faithful.

(ii) The center Z(H) of H = H(R; k0, k1) is equal to C[Y ±1]W = C[Y + Y −1].
(iii) The decomposition A = ⊕m∈Z+

A(m) is the multiplicity-free, irreducible

decomposition of A as (πt,q, H)-module. It is also the decomposition of A in isotyp-

ical components for the action of the center, where the central character of A(m)
is given by χm(f(Y )) = f

(
γm

)
for f(Y ) ∈ Z(H) = C[Y ±1]W .

Proof. (i) Suppose that h = f(Y ) + T1g(Y ) acts as zero on A under the repre-
sentation πt,q, where f, g ∈ A. Let h act on the non-symmetric Askey-Wilson
polynomials Pm (m < 0) and use proposition 4.1 together with the fact that the
coefficients βm (m < 0) in 4.1 are non-zero. Then we conclude that g(γm) = 0 for
all m ∈ −N. By the conditions 2.11 on the parameters, this implies g = 0 in A.
But h = f(Y ) acting on Pm shows that f

(
γm

)
= 0 for all m, hence f = 0 in A.

Combined with 2.15, this shows that πt,q is faithful.
(ii) Clearly any element from C[Y +Y −1] commutes with C[Y ±1], but also with

T1 by Lusztig’s formula 2.16. Hence 2.15 gives C[Y + Y −1] ⊂ Z(H). Suppose
0 6= h = f(Y ) + T1g(Y ) ∈ Z(H), where f, g ∈ A. Then h acts as a constant on
each of the Pm (m ∈ Z). In view of proposition 4.1, this implies that g(γm) = 0 for
all m 6= 0, hence g = 0 in A. By corollary 4.3 we then have for m 6= 0,

f
(
γm

)
S1Pm = S1(hPm) = h(S1Pm) = f

(
γ−1

m

)
S1Pm.
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Furthermore, S1Pm 6= 0 by the conditions 2.11 on the parameters. Hence f(γm) =
f(γ−1

m ) for 0 6= m ∈ Z, i.e. h = f(Y ) ∈ C[Y + Y −1].
(iii) The second statement follows directly from proposition 3.5 and from the

fact that the central character values χm(Y +Y −1) = γm +γ−1
m (m ∈ Z+) are pair-

wise different by the conditions 2.11 on the parameters. For the first statement, it
then suffices to show that A(m) (m ∈ Z+) are irreducible H-modules. This follows
without difficulty from 2.15, proposition 4.1, corollary 4.3 and the fact that βm 6= 0
for all 0 6= m ∈ Z by the conditions 2.11 on the parameters.

5. The (anti-)symmetric Askey-Wilson polynomials

5.1. In the present rank one setting, the representation theory of the underly-
ing two-dimensional Hecke algebra H0 = H0(k1) is extremely simple: the trivial
representation χ+ and the alternating representation χ− exhaust its irreducible
representations, where χ± are uniquely determined by χ±(T1) = ±k±1

1 . The corre-
sponding mutually orthogonal, primitive idempotents are given by

C+ =
1

1 + k2
1

(
1 + k1T1

)
, C− =

1

1 + k−2
1

(
1 − k−1

1 T1

)
.

So {C−, C+} is a partition of the unity for H0. In particular, we have C−+C+ = 1.

5.2. The partition of the unity of H0 introduced in 5.1 gives the decomposition
A = A− ⊕A+ of A in isotypical components for the action of (πt,q|H0

, H0), where
A± = C±A. Observe that A± consists of the Laurent polynomials f ∈ A which
satisfy (T1 ∓ k±1

1 )f = 0. By the explicit expression 2.19 for the difference-reflection
operator T1 we have T1 − k1 = φ1(x)(s1 − id) for some non-zero rational func-
tion φ1(x), so that A+ coincides with the algebra AW = C[x + x−1] consisting
of W -invariant Laurent polynomials. We call A− the subspace of anti-symmetric

Laurent polynomials. The decomposition f = C−f + C+f for f ∈ A is its unique
decomposition as a sum of an anti-symmetric and a symmetric Laurent polynomial.

5.3. The irreducible H-module A(m) ⊂ A decomposes under the action of H0 by
A(m) = A−(m) ⊕A+(m), where A±(m) = C±A(m).

Proposition. (i) Let m ∈ Z+, then dim(A+(m)) = 1. More precisely, there exists

a unique P+
m ∈ A+(m) of the form P+

m(x) = xm+ lower order terms with respect

to �. In terms of non-symmetric Askey-Wilson polynomials, we have

P+
m = Pm +

(1 + k0k
−1
1 γm)(1 − k−1

0 k−1
1 γm)

(1 − γ2
m)

P−m, m ∈ Z+.

(ii) We have A−(0) = {0} and dim(A−(m)) = 1 for m ∈ N. More precisely,

there exists for all m ∈ N a unique P−
m ∈ A−(m) of the form P−

m(x) = xm+
lower order terms with respect to �. In terms of non-symmetric Askey-Wilson

polynomials, we have

P−
m = Pm −

(1 + k0k
−1
1 γ−1

m )(1 − k−1
0 k−1

1 γ−1
m )

(1 − γ−2
m )

P−m, m ∈ N.

Proof. The statements for m = 0 are immediate since T1(1) = k11, where 1 ∈ A
is the Laurent polynomial identically equal to one. For m ∈ N, we can write
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C±Pm ∈ A±(m) explicitly as

C±Pm =
1 ± k±1

1 αm

1 + k±2
1

Pm ±
k±1
1 βm

1 + k±2
1

P−m

= k±1
1

(k∓1
1 ± αm)

(1 + k±2
1 )

(
Pm ± k−1

1 (k±1
1 ∓ αm)P−m

)

in view of (the proof of) proposition 4.1. Observe that the coefficient of Pm

is non-zero by the conditions 2.11 on the parameters. In particular, A±(m) =
span{C±Pm} are one-dimensional subspaces for all m ∈ N. Dividing out the
non-zero coefficient of Pm in the expansion of C±Pm and using proposition 3.5,
we conclude that there exist unique elements P±

m ∈ A±(m) (m ∈ N) satisfying
P±

m(x) = xm+ lower order terms w.r.t. �. The explicit formulas for P±
m in terms of

non-symmetric Askey-Wilson polynomials follow now by substituting the explicit
expression for αm in the above expansion of C±Pm, see proposition 4.1.

Definition. (i) The polynomial P+
m = P+

m(·; t; q) ∈ A+ (m ∈ Z+) is called the

monic, symmetric Askey-Wilson polynomial of degree m.

(ii) The polynomial P−
m = P−

m(·; t; q) ∈ A− (m ∈ N) is called the monic, anti-

symmetric Askey-Wilson polynomial of degree m.

Askey and Wilson [1] defined a very general family of basic hypergeometric or-
thogonal polynomials which are nowadays known as the Askey-Wilson polynomials.
In 5.9 we justify our terminology for the Laurent polynomials P±

m by showing that
the P+

m (m ∈ Z) coincide with the Askey-Wilson polynomials as defined in [1].

5.4. We can also express the non-symmetric Askey-Wilson polynomial in terms of
the symmetric Askey-Wilson polynomial in the following way.

Lemma. We have P0 = P+
0 , and for m ∈ N,

Pm =
1

γm − γ−m

(
Y − γ−m

)
P+

m ,

P−m =
γm

(1 + k0k
−1
1 γm)(1 − k−1

0 k−1
1 γm)

(
Y − γm

)
P+

m .

Proof. The statement for m = 0 is trivial. For m ∈ N the formulas follow directly
from proposition 3.5 and from the expansion of P+

m as linear combination of non-
symmetric Askey-Wilson polynomials, see proposition 5.3.

5.5. Observe that the affine Weyl group W acts on A by algebra automorphisms
(see 2.10). This action can be uniquely extended to an action (by automorphisms)
of W on the rational functions C(x) in the indeterminate x. Since |q| 6= 1 (see
2.11), we have

⊕

w∈W

C(x)w =
⊕

m∈Z,σ∈W

C(x)τ(m)σ

as a subalgebra of EndC

(
C(x)

)
.

5.6. Any X ∈ Im(πt,q) ⊂ EndC

(
A) can be uniquely written as a finite C(x)-linear

combination of the automorphisms w ∈ W of A. By 5.5, we may regard X as a linear
endomorphism of C(x). We thus have a unique decomposition X = X−s1 + X+

where X± ∈
⊕

m∈Z
C(x)τ(m) are q-difference operators with rational coefficients.

We write Xsym := X− + X+, so that Xf = Xsymf for all f ∈ A+ = AW .
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5.7. In order to make the connection between the symmetric Askey-Wilson poly-
nomials P+

m (m ∈ Z) and the four parameter family of Askey-Wilson polynomials as
originally defined in [1], it is convenient to reparametrize the multiplicity function
t ≃ (u0, u1, k0, k1) (see 2.11) by

a = k1u1, b = −k1u
−1
1 , c = q

1
2 k0u0, d = −q

1
2 k0u

−1
0 .

5.8. Using the parameters a, b, c, d (see 5.7), we can give the following explicit
expression for the q-difference operator (Y + Y −1)sym, see [16] for the higher rank
result.

Proposition. We have

(
Y + Y −1

)
sym

= A(x)
(
τ(1) − 1

)
+ A(x−1)

(
τ(−1) − 1

)
+ k0k1 + k−1

0 k−1
1 ,

with

A(x) = k−1
0 k−1

1

(1 − ax)(1 − bx)(1 − cx)(1 − dx)

(1 − x2)(1 − qx2)
.

Proof. We write Ti = ki + φi(x)(si − 1) with

φ0(x) = k−1
0

(1 − cx−1)(1 − dx−1)

(1 − qx−2)
, φ1(x) = k−1

1

(1 − ax)(1 − bx)

(1 − x2)

for the difference-reflection operators associated with S, see 2.19. Since Y = T1T0,
s0 = t(−1)s1 and T−1

i = Ti + k−1
i − ki for i = 0, 1, we have

(Y + Y −1)sym = B(x)(τ(1) − 1) + C(x)(τ(−1) − 1) + D(x)

for unique coefficients B, C, D ∈ C(x). Observe that D(x) = (Y +Y −1)(1) = k0k1+
k−1
0 k−1

1 where P0 = 1 ∈ A+ is the Laurent polynomial identically equal to one,
since Ti(1) = ki1 for i = 0, 1. To compute the coefficient B(x) (respectively C(x)),
we need to compute the coefficient of τ(1) (respectively τ(−1)) in (Y + Y −1)sym.
Recall that s0 = s1τ(1) = τ(−1)s1, so that the τ(1)-term (respectively τ(−1)-
term) of Ysym has coefficient φ1(x)φ0(x

−1) = A(x) (respectively has coefficient
(k1 − φ1(x))φ0(x)). The τ(1)-term (respectively τ(−1)-term) of (Y −1)sym is zero

(respectively has coefficient φ0(x)φ1(qx
−1) + φ0(x)(k−1

1 − φ1(qx
−1)) = k−1

1 φ0(x)).
Adding the contributions, we see that B(x) = A(x) and that C(x) = φ0(x)

(
k1 +

k−1
1 − φ1(x)

)
= A(x−1), which completes the proof of the proposition.

The second order q-difference operator L = (Y +Y −1)sym is called the Askey-Wilson
second-order q-difference operator, cf. [1, (5.7)].

5.9. The symmetric Askey-Wilson polynomial P+
m (m ∈ Z+) lies in the irreducible

H(R; k0, k1)-module A(m), hence the central element Y +Y −1 ∈ Z(H) acts on P+
m

as the scalar γm+γ−1
m , see theorem 4.4. Combined with proposition 5.8, we conclude

that P+
m is an eigenfunction of the Askey-Wilson second-order q-difference operator

L with eigenvalue γm + γ−1
m . The eigenvalues γm + γ−1

m (m ∈ Z+) are mutually
different by the conditions 2.11 on the parameters and {P+

m}m∈Z+
is a linear basis

of A+ = AW , so that P+
m is the unique W -invariant Laurent polynomial satisfying

LP+
m = (γm + γ−1

m )P+
m . A comparison with [1, (5.7)] yields the following result.



14 MASATOSHI NOUMI AND JASPER V. STOKMAN

Theorem. The W -invariant Laurent polynomial P+
m (m ∈ Z+) coincides with the

monic Askey-Wilson polynomial of degree m as described in [1]. In particular, we

have in terms of basic hypergeometric series,

P+
m(x) =

(
ab, ac, ad; q

)
m

am
(
abcdqm−1; q

)
m

4φ3

(
q−m, qm−1abcd, ax, ax−1

ab, ac, ad
; q, q

)
.

5.10. Theorem 5.9 and lemma 5.4 can be used to write the non-symmetric and the
anti-symmetric Askey-Wilson polynomials as a sum of two terminating balanced

4φ3’s. It is convenient to write P+
m(x) = P+

m(x; a, b, c, d) for the symmetric Askey-
Wilson polynomial P+

m(x) = P+
m(x; t; q) when we want to emphasize the dependence

of P+
m on the (reparametrized) multiplicity function (a, b, c, d), see 5.7.

Proposition. (i) For m ∈ Z+ we have

Pm(x) = qm (1 − abcdqm−1)

(1 − abcdq2m−1)
P+

m(x; a, b, c, d)

+ q(m−1)/2 (1 − cx−1)(1 − dx−1)x(1 − qm)

(1 − abcdq2m−1)
P+

m−1(q
−1/2x; q1/2a, q1/2b, q1/2c, q1/2d),

where the second term should be read as zero when m = 0.
(ii) For m ∈ N we have

P−m(x) =
1

(1 − cdqm−1)
P+

m(x; a, b, c, d)

− q(m−1)/2 (1 − cx−1)(1 − dx−1)x

(1 − cdqm−1)
P+

m−1(q
−1/2x; q1/2a, q1/2b, q1/2c, q1/2d).

(iii) For m ∈ N we have

P−
m(x) =

(1 − abcdqm−1)

ab(1 − cdqm−1)
P+

m(x; a, b, c, d)

+ q(m−1)/2 (1 − cx−1)(1 − dx−1)x(ab − 1)

ab(1 − cdqm−1)
P+

m−1(q
−1/2x; q1/2a, q1/2b, q1/2c, q1/2d).

Proof. Recall the rational function φ0(x) defined in the proof of proposition 5.8.
The proof of proposition 5.8 shows that (Y −1)sym = k−1

1 φ0(x)
(
τ(−1)−1

)
+k−1

0 k−1
1 .

(i) The formula for m = 0 is trivial. Let m ∈ N. By lemma 5.4, we have
Pm = (γm − γ−m)−1(γm − (Y −1)sym)P+

m . In view of the explicit formula for the
q-difference operator (Y −1)sym, we need to write (t(−1) − 1)P+

m as a terminating
balanced 4φ3. By a direct computation using the explicit expression of P+

m in terms
of a terminating balanced 4φ3, see theorem 5.9, we have

(
(τ(−1) − 1)P+

m(.; a, b, c, d)
)
(x) =(q1/2x−1 − q−1/2x)(qm/2 − q−m/2)

.P+
m−1(q

−1/2x; q1/2a, q1/2b, q1/2c, q1/2d),

cf. [1, (5.6)] or [8, (7.7.7)]. This leads to the desired result.
(ii) We have P−m(x) = (1+k0k

−1
1 γm)−1(1−k−1

0 k−1
1 γm)−1(1−γm(Y −1)sym)P+

m

by lemma 5.4. The proof is now similar to the proof of (i).
(iii) This follows from (i) and (ii), together with proposition 5.3.
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6. (Bi-)orthogonality relations

6.1. We assume in this section that the multiplicity function t and the deformation
parameter q satisfy the additional conditions that 0 < |q| < 1 and that ef 6∈ qZ for
all e, f ∈ {a, b, c, d}.

6.2. Let C ⊂ C be a continuous rectifiable Jordan curve such that aqk, bqk, cqk, dqk

(k ∈ Z+) are in the interior of C and such that a−1q−k, b−1q−k, c−1q−k, d−1q−k

(k ∈ Z+) are in the exterior of C. By the conditions 6.1 on the parameters, such a
contour exists. We give C the counterclockwise orientation. Let 〈., .〉 = 〈., .〉t,q and(
., .

)
=

(
., .

)
t,q

be the bilinear forms on A defined by

〈f, g〉 =
1

2πi

∫

x∈C

f(x)g(x−1)∆(x)
dx

x
,

(
f, g

)
=

1

2πi

∫

x∈C

f(x)g(x−1)∆+(x)
dx

x
,

where the weight functions ∆(x) = ∆(x; t; q) and ∆+(x) = ∆+(x; t; q) are given by
the infinite products

∆(x) =
∏

a∈R+

(
1 − xa

)
(
1 − tata/2xa/2

)(
1 + tat−1

a/2x
a/2

) ,

∆+(x) =
∏

a∈R:a(0)≥0

(
1 − xa

)
(
1 − tata/2xa/2

)(
1 + tat−1

a/2x
a/2

) .

The conditions 6.1 on the parameters ensure that the weight functions are well-
defined. In terms of q-shifted factorials, we can rewrite the weight function ∆+(x)
as

∆+(x) =

(
x2, x−2; q

)
∞(

ax, ax−1, bx, bx−1, cx, cx−1, dx, dx−1; q
)
∞

using 5.7, 2.7 and 2.10. Hence ∆+(·) coincides with the weight function of the
orthogonality measure of the symmetric Askey-Wilson polynomials as defined in
[1] (see also proposition 6.9). Observe that ∆(x) = α(x)∆+(x) with α(x) =
α(x; k1, u1) given by

α(x) =
(1 − k1u1x

−1)(1 + k1u
−1
1 x−1)

(1 − x−2)
=

(1 − ax−1)(1 − bx−1)

(1 − x−2)
.

6.3. Using Cauchy’s theorem we can rewrite 〈., .〉 and
(
., .

)
as an integral over the

unit circle T in the complex plane plus a finite sum of residues of the integrand.
The residues of the weight functions ∆(·) and ∆+(·) can be computed explicitly,
see [1, section 2] or [8, section 7.5] for more details.

6.4. Observe that the factor α(x) in the weight function ∆(x) satisfies the identity
α(x) + α(x−1) = 1 − ab. Since ∆+(x) is furthermore invariant under x 7→ x−1, we
see that the restrictions of the bilinear forms 〈., .〉 and

(
., .

)
to AW coincide up to

a constant:

Lemma. For f, g ∈ AW , we have 〈f, g〉 = 1
2 (1 − ab)

(
f, g

)
= 1

2 (1 + k2
1)

(
f, g

)
.

6.5. Let T be a linear endomorphism of A. Then there exists at most one linear
endomorphism T ∗ of A such that 〈Tf, g〉 = 〈f, T ∗g〉 for all f, g ∈ A, since the
bilinear form 〈., .〉 is non-degenerate. If T ∗ exists, then we call T ∗ the adjoint of T
with respect to 〈., .〉.
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6.6. We write T ′
0, T

′
1 for the difference-reflection operators associated to S with

respect to inverse parameters (t−1, q−1), where t−1 is the multiplicity function
(t−1

a )a∈S . More precisely, T ′
i is the image of the fundamental generator Ti ∈

H(R; k−1
0 , k−1

1 ) under the (faithful) representation πt−1,q−1 , see 2.19. Furthermore,
we set Y ′ = T ′

1T
′
0 for the associated Cherednik-Dunkl operator.

Proposition. The adjoint of the difference-reflection operator Ti (i = 0, 1) and of

the Dunkl operator Y exists. More precisely, we have T ∗
i = (T ′

i )
−1 (i = 0, 1) and

Y ∗ = (Y ′)−1.

Proof. We use the notation Ti = ki + φi(x)(si − 1) and T ′
i = k−1

i + φ′
i(x)(s′i − 1)

(i = 0, 1) for the difference reflection operator with respect to the parameters (t, q)
and (t−1, q−1) respectively. Here s′1 = s1, (s′0f)(x) = f(q−1x−1) and φi(x) is
as in the proof of proposition 5.8, while φ′

i(x) is φi(x) with the parameters (t, q)
replaced by (t−1, q−1). In view of the analytic dependence on the parameters t and
q, we may assume without loss of generality that 0 < q < 1 and that the Jordan
curve C in the definition 6.2 of 〈., .〉 satisfies the following additional properties: C
has a parametrization of the form rC(x)e2πix with rC : [0, 1] → (0,∞), and C is
W -invariant: C−1 := {z−1 | z ∈ C} = C.

For i = 1 it follows now from the W -invariance of ∆+(x) that 〈T1f, g〉 = 〈f, T ∗
1 g〉

for all f, g ∈ A with

T ∗
1 = k1 − φ1(x

−1) +
α(x)

α(x−1)
φ1(x)s1.

Now α(x)φ1(x) = α(x−1)φ′
1(x) and φ1(x

−1) = φ′
1(x), so that

T ∗
1 = k1 + φ′

1(x)(s′1 − 1) = (T ′
1)

−1.

For i = 0, let f, g ∈ A and set h(x) = f(qx−1)g(x−1). Observe that

(T0f)(x)g(x−1) − f(x)
(
(T ′

0)
−1g

)
(x−1) = φ0(x)

(
h(x) − (s0h)(x)

)

and that

φ0(x)∆(x) = k−1
0

(
x2, q2x−2; q

)
∞(

ax, bx, cx, dx, qax−1, qbx−1, qcx−1, qdx−1; q
)
∞

is invariant under x 7→ qx−1. By the specific properties of C, we obtain

〈T0f, g〉 − 〈f, (T ′
0)

−1g〉 =
1

2πi

∫

x∈C

(
h(x) − (s0h)(x)

)
φ0(x)∆(x)

dx

x

=
1

2πi

∫

x∈C−qC

h(x)φ0(x)∆(x)
dx

x
= 0,

where the last equality follows from Cauchy’s theorem since φ0(x)∆(x) is analytic
on and within C − qC.

The statement for the Dunkl operator Y is immediate since Y = T1T0.

6.7. We write P ′
m (m ∈ Z) for the non-symmetric Askey-Wilson polynomials with

respect to the inverse parameters (t−1, q−1).

Proposition. The two bases {Pm}m∈Z and {P ′
n}n∈Z of A form a bi-orthogonal

system with respect to the non-degenerate bilinear form 〈., .〉, i.e. 〈Pm, P ′
n〉 = 0 for

m, n ∈ Z if m 6= n.
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Proof. By proposition 6.6 and proposition 3.5 we have

γm〈Pm, P ′
n〉 = 〈Y Pm, P ′

n〉 = 〈Pm, (Y ′)−1P ′
n〉 = γn〈Pm, P ′

n〉.

It follows that 〈Pm, P ′
n〉 = 0 if m 6= n since the eigenvalues γm (m ∈ Z) of Y are

pair-wise different by the conditions 2.11 on the parameters.

6.8. We write P+ ′
m and P− ′

m for the symmetric and anti-symmetric Askey-Wilson
polynomial with respect to inverse parameters (t−1, q−1).

Let B be the basis of A consisting of P+
m (m ∈ Z+) and P−

n (n ∈ N), and let B′

be the basis of A consisting of P+ ′
m (m ∈ Z+) and P− ′

m (m ∈ N).

Proposition. The pair (B,B′) forms a bi-orthogonal system of A with respect to

the non-degenerate bilinear form 〈., .〉.

Proof. It follows from proposition 6.7 and from the fact that P±
m ∈ A(m) =

span{Pm, P−m} for m ∈ Z+ (with the convention P−
0 ≡ 0), that 〈P±

m , P± ′
n 〉 = 0 if

m 6= n.
By proposition 6.6 we have 〈C±f, g〉 = 〈f, C′

±g〉 for all f, g ∈ A, where C′
± = (1+

k∓2
1 )−1(1± k∓1

1 T ′
1) are the mutually orthogonal, primitive idempotents of H0(k

−1
1 )

(see 5.1) which act on A via πt−1,q−1 . Hence 〈P±
m , P∓ ′

n 〉 = 0 for all m, n ∈ Z+.

6.9. The bi-orthogonality relations of proposition 6.8 restricted to A+ = AW

reduce to the well-known orthogonality relations [1, theorem 2.3] of the symmetric
Askey-Wilson polynomials:

Proposition. For all m ∈ Z+, we have P+ ′
m = P+

m . In particular, 〈P+
m , P+

n 〉 =(
P+

m , P+
n

)
= 0 if m 6= n.

Proof. Recall that P+
m is the unique W -invariant Laurent polynomial of the form

xm+ lower order terms with respect to � which is an eigenfunction of the Askey-
Wilson q-difference operator L = (Y + Y −1)sym with eigenvalue γm + γ−1

m . Then
P+

m = P+ ′
m follows from the fact that L and the eigenvalue γm + γ−1

m are invariant
under (t, q) 7→ (t−1, q−1). The second statement follows now from proposition 6.8
and lemma 6.4.

7. The generalized Weyl character formula

7.1. The generalized Weyl character formula relates the anti-symmetric Askey-
Wilson polynomial with the symmetric Askey-Wilson polynomial via the general-
ized Weyl denominator. The generalized Weyl denominator δ(·), which we define in
the following lemma, is an explicit anti-symmetric Laurent polynomial of minimal
degree with respect to the total order � on the monomials {xm}m∈Z.

Lemma. We have A− = δ(z)
(
A+

)
, where δ = δ( · ; k0, k1) ∈ A− is given by

δ(x) = x−1(x − k−1
0 k−1

1 )(x + k0k
−1
1 ) = x−1(x − a−1)(x − b−1).

Proof. By 2.21 we have (T1 + k−1
1 )δ(z) = δ(z−1)(T1 − k1). Combined with 5.2 this

implies δ(z)
(
A+

)
⊆ A−. Let now f ∈ A−, and set g = δ−1f ∈ C(x). Using the

extended action of T1 on C(x), see 5.6, we derive that

δ(x−1)
(
(T1 − k1)g

)
(x) =

(
(T1 + k−1

1 )f
)
(x) = 0,

so that
(
(T1 − k1)g

)
(x) = 0. Since T1 − k1 = φ1(x)(s1 − 1) with 0 6= φ1(x) ∈ C(x),

we conclude that g is W -invariant in C(x). In particular, δ(x−1)f(x) = δ(x)f(x−1)
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in A. Since δ(x−1) = a−1b−1x−1(x − a)(x − b) and δ(x) are relative coprime in
the unique factorisation domain A by the conditions 2.11 on the parameters, we
conclude that f is divisible by δ in A. Hence, g = δ−1f ∈ A. Since g is furthermore
W -invariant, we conclude that g ∈ A+, hence A− ⊆ δ(z)

(
A+

)
.

7.2. The bilinear form 〈., .〉 restricted to A− can now be related to the bilinear
form

(
., .

)
on A+ using lemma 7.1. We identify t with (k0, k1, u0, u1) in accordance

with 2.11.

Lemma. Assume that the parameters satisfy the additional conditions 6.1. Let

δ′(x) = δ(x; k−1
0 , k−1

1 ). Then for all f, g ∈ AW ,

〈δ(z)f, δ′(z)g〉t,q =
1

2
(1 + k−2

1 )
(
f, g

)
k0,qk1,u0,u1,q

.

Proof. Set α′(x) = α(x; k−1
1 , u−1

1 ), see 6.2, then

δ(x)δ′(x−1)α(x) = (1 − ax)(1 − bx)(1 − ax−1)(1 − bx−1)α′(x).

By the explicit expression for the W -invariant weight function ∆+(x; t; q), see 6.2,
we obtain

〈δ(z)f, δ′(z)g〉t,q =
1

2πi

∫

x∈C

f(x)g(x−1)α′(x)∆+(x; k0, qk1, u0, u1; q)
dx

x

for f, g ∈ AW . The result follows now by symmetrizing the integrand, cf. 6.4.

7.3. We are now in a position to relate the anti-symmetric Askey-Wilson poly-
nomial P−

m (m ∈ N) with the symmetric Askey-Wilson polynomial P+
m−1 via the

generalized Weyl denominator δ. The result is as follows.

Proposition (Generalized Weyl character formula). For m ∈ N we have

P−
m(x; t; q) = δ(x; k0, k1)P

+
m−1(x; k0, qk1, u0, u1; q).

Proof. We first prove the proposition when |q| < 1.
We assume for the moment that the multiplicity function t satisfies the additional

conditions 6.1 and that
(
., .

)
k0,qk1,u0,u1,q

restricts to a non-degenerate bilinear form

on AW
m := span{mn |n = 0, . . . , m − 1}, where m0(x) = 1 and mn(x) = xn + x−n

for n ∈ N. These are generic conditions on the parameters, which can be removed
by continuity at the end of the proof. Indeed, observe that the restriction of

(
., .

)
t,q

to AW
m is non-degenerate when 0 < a, b, c, d, q < 1, since then the bilinear form

can be given as integration over the unit circle with respect to the positive weight
function ∆+(x). By analytic continuation, it follows that the restriction of

(
., .

)
t,q

to AW
m is non-degenerate for generic parameter values satisfying the conditions 6.1.

By proposition 6.9 we conclude that P+
m−1(x; k0, qk1, u0, u1; q) is the unique

W -invariant Laurent polynomial of the form xm−1+ lower order terms w.r.t. �
which is orthogonal to mn for n = 0, . . . , m − 2 with respect to the bilinear form(
., .

)
k0,qk1,u0,u1,q

. We show that p(x) = δ(x; k0, k1)
−1P−

m(x; t; q) satisfies the same

characterizing conditions.
By lemma 7.1 we have p ∈ AW . Since P−

m(x) = xm+ lower order terms w.r.t.
� and δ(x) = x+ lower order terms w.r.t �, we have p(x) = xm−1+ lower order
terms w.r.t. �. By the triangularity properties of the anti-symmetric Askey-Wilson
polynomials (see proposition 5.3(ii)) and by lemma 7.1, we see that δ′(z)mn ∈
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span{P− ′
k | k = 1, . . . , m− 1} for n = 0, . . . , m − 2. By lemma 7.2 and proposition

6.8 we conclude that

1

2
(1 + k−2

1 )
(
p, mn

)
k0,qk1,u0,u1,q

= 〈P−
m , δ′(z)mn〉t,q = 0, (n = 0, . . . , m − 2).

Hence p(x) = P+
m−1(x; k0, qk1, u0, u1; q), as desired.

The proof for |q| > 1 is a slight modification of the arguments for |q| < 1. One
uses now that P+ ′

m = P+
m for m ∈ Z+ (see proposition 6.9) and a characterization

of P+
m(x; t; q) in terms of the bilinear form

(
., .

)
t−1,q−1 .

7.4. We have now all the ingredients to express the diagonal terms 〈Pm, P ′
m〉 (m ∈

Z) and 〈P−
m , P− ′

m 〉 (m ∈ N) of the bi-orthogonality relations in proposition 6.7 and
proposition 6.8 in terms of the “quadratic norms” 〈P+

m , P+
m〉 = 1

2 (1 + k2
1)

(
P+

m , P+
m

)

(m ∈ Z+).
Indeed, by the generalized Weyl character formula, lemma 7.2 and proposition

6.9 we have for m ∈ N that

〈P−
m , P− ′

m 〉t,q =

1

2
(1 + k−2

1 )
(
P+

m−1( · ; k0, qk1, u0, u1; q), P
+
m−1( · ; k0, qk1, u0, u1; q)

)
k0,qk1,u0,u1,q

.

On the other hand, for m ∈ N we have P−
m = −(1 + k−2

1 )C−P−m (cf. the proof of
proposition 5.3), so that

〈P−m, P ′
−m〉 =

(1 + k2
1)(1 − γ−2

m )

(1 + k0k
−1
1 γ−1

m )(1 − k−1
0 k−1

1 γ−1
m )

〈P−
m , P− ′

m 〉

by proposition 5.3(ii). Here we have used that 〈C+f, g〉 = 〈f, C′
−g〉 for all f, g ∈ A

(see the proof of proposition 6.8) and that C−P−
m = P−

m . Similarly, we can relate
〈Pm, P ′

m〉 for m ∈ N to 〈P−
m , P− ′

m 〉 using (the proof of) proposition 5.3(ii).

7.5. The generalized Weyl character formula plays a crucial role in the study of
shift operators for the symmetric Askey-Wilson polynomials. In turn, shift opera-
tors can be used to explicitly evaluate the quadratic norms

(
P+

m , P+
m

)
t,q

(m ∈ Z+).

Combined with 7.4, this leads to explicit evaluations of all the diagonal terms of
the bi-orthogonality relations in proposition 6.7 and proposition 6.8.

In section 11 we present another method for deriving explicit expressions of the
diagonal terms, which uses the double affine Hecke algebra in an essential way.
This method gives more insight in the particular structure of the diagonal terms.
Namely, it shows that the diagonal terms can be naturally expressed in terms of the
residue of the weight function in a certain specific simple pole, the constant term
〈1, 1〉, and the value of the Askey-Wilson polynomial at the point a−1 = k−1

1 u−1
1 .

We return to shift operators in section 12 in order to evaluate the constant term
〈1, 1〉 (which is the well-known Askey-Wilson integral, see [1]).

8. The double affine Hecke algebra

8.1. Recall from 2.21 that the double affine Hecke algebra H(S; t; q) is the subal-
gebra of EndC

(
A

)
generated by πt,q

(
H(R; k0, k1)

)
and by A, where A is regarded

as subalgebra of EndC(A) via its regular representation.
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8.2. We have observed in 2.22 that there is a unique surjective algebra homomor-
phism φ : F(t; q) → H(S; t; q) satisfying the conditions as stated in theorem 2.22.
In particular, we have

za∨

0 T0 = T−1
0 z−a∨

0 + u−1
0 − u0, z−a∨

1 T−1
1 = T1z

a∨

1 + u1 − u−1
1

in H(S; t; q). Combined with 2.15, we conclude that H(S; t; q) is spanned by the
elements zmY n and zmT1Y

n where m, n ∈ Z. In fact, we have the following stronger
result, see Sahi [19, theorem 3.2] for the higher rank setting.

Proposition. The set {zmY n, zmT1Y
n |m, n ∈ Z} is a linear basis of H(S; t; q).

Proof. Assume that X =
∑

m,n∈Z

(
c1
m,nzmY n+c2

m,nzmT1Y
n
)

= 0 in EndC

(
A

)
with

only finitely many coefficients cj
m,n non-zero. Since z is invertible in EndC

(
A

)
, we

may assume without loss of generality that cj
m,n = 0 unless m ∈ Z+. Suppose that

not all coefficients cj
m,n are zero. Let m0 ∈ Z+ be the largest positive integer such

that cj
m0,n is non-zero for some n ∈ Z and some j ∈ {1, 2}.

Let X act on the non-symmetric Askey-Wilson polynomial P−l (l ∈ N), and
consider the coefficient of xm0+l in the resulting expression using proposition 3.5 and
proposition 4.1. We obtain

∑
n∈Z+

k1c
2
m0,nγ−n

l = 0 for all l ∈ N, hence c2
m0,n = 0

for all n ∈ Z.
Let now X act on Pl with l ∈ Z+, and again consider the coefficient of xm0+l in

the resulting expression. Then
∑

n∈Z+
c1
m0,nγn

l = 0 for all l ∈ Z+, hence c1
m0,n = 0

for all n ∈ Z. This gives the desired contradiction.

8.3. We can finish now the proof of theorem 2.22 using proposition 8.2. It suffices
to show that the surjective algebra homomorphism φ : F(t; q) → H(S; t; q) defined
in theorem 2.22 is injective. Set w := V −1

1 (V ∨
1 )−1 = q1/2V0V

∨
0 ∈ F(t; q), then

φ(w) = z. Observe that V ∨
0 = q1/2w−1V0 + u0 − u−1

0 and that V ∨
1 = w−1V −1

1 in
F(t; q), so that F(t; q) is generated by w±1, V0 and V1 as an algebra. Furthermore,

V0w = qw−1V0 + (k0 − k−1
0 )w + q1/2(u0 − u−1

0 ), V1w = w−1V −1
1 + u−1

1 − u1

in F(t; q), so that any element in F(t; q) can be written as a finite linear combination
of elements of the form f(w)X , where f(w) is a Laurent polynomial in w and X
is an element in the subalgebra of F(t; q) generated by V0 and V1. By 2.15 and
by the relations (1) in theorem 2.22 for the generators V0, V1 ∈ F(t; q) it follows
that F(t; q) is spanned by {wmZn, wmV1Z

n |m, n ∈ Z}, where Z := V1V0. Since
the image of these elements under φ are linear independent by proposition 8.2, we
conclude that φ is injective.

8.4. In the remainder of the paper we use the notations T∨
0 := T−1

0 z−a∨

0 ∈

H(S; t, q) and T∨
1 := z−a∨

1 T−1
1 ∈ H(S; t; q) for the images of V ∨

0 and V ∨
1 respectively

under the algebra isomorphism φ : F(t; q) → H(S; t; q) (see theorem 2.22).

8.5. We associate with the multiplicity function t ≃ (k0, k1, u0, u1) a dual mul-
tiplicity function t̃ by interchanging k0 and u1, so t̃ ≃ (u1, k1, u0, k0). We write

T̃0, T̃1, T̃
∨
0 , T̃∨

1 for the generators of H(S; t̃; q) (cf. 2.22 and 8.4), and we write

Ỹ = T̃1T̃0 for the associated Dunkl operator and z̃ = T̃−1
1 (T̃∨

1 )−1 = q1/2T̃0T̃
∨
0 for

the corresponding “multiplication by x” operator. The first part of the following
proposition is a special case of Sahi’s results in [19, section 7].
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Proposition. (i) The application T0 7→ T̃∨
1 , T1 7→ T̃1, T∨

0 7→ T̃∨
0 and T∨

1 7→ T̃0

uniquely extend to an anti-algebra isomorphism ν = νt,q : H(S; t; q) → H(S; t̃; q).

Furthermore, ν−1
t,q = νt̃,q and ν(z) = Ỹ −1, ν(Y ) = z̃−1.

(ii) The application T0 7→ T̃−1
1 T̃∨

1 T̃1, T1 7→ T̃1, T∨
0 7→ T̃0T̃

∨
0 T̃−1

0 and T∨
1 7→

T̃0 uniquely extend to an algebra isomorphism µ = µt,q : H(S; t; q) → H(S; t̃; q).
Furthermore, µ(Y ) = z̃−1.

Proof. By theorem 2.22 it suffices to check that µ (respectively ν) is compatible
with the defining relations in F(t; q) ≃ H(S; t; q). This can be done by direct
computations. It is immediate that νt̃,q is the inverse of νt,q.

Observe that the application T̃0 → T∨
1 , T̃1 7→ T1, T̃∨

0 7→ (T∨
1 )−1T∨

0 T∨
1 and

T̃∨
1 7→ T1T0T

−1
1 uniquely extend to an algebra homomorphism from H(S; t̃; q) to

H(S; t; q). It is immediate that this homomorphism is the inverse of µ.

8.6. Following the terminology of Sahi [19, section 7], we call ν = νt,q the du-

ality anti-isomorphism. Furthermore, we call µ = µt,q the duality isomorphism.
These duality isomorphisms play a fundamental role in the theory of non-symmetric
Askey-Wilson polynomials. In particular, the duality anti-isomorphism can be used
to show that the geometric parameter x and the spectral parameter γ of the non-
symmetric Askey-Wilson polynomial are in a sense interchangeable (see Sahi [19,
section 7] or section 10). The duality isomorphism describes the intertwining prop-
erties of the action of the double affine Hecke algebra under the non-symmetric
Askey-Wilson transform, see section 11.

8.7. We write T ′
i and T∨′

i (i = 0, 1) for the generators of H(S; t−1; q−1), cf. 2.22,
6.6 and 8.4.

Proposition. There exists a unique anti-algebra isomorphism ∗ : H(S; t; q) →
H(S; t−1; q−1) such that T ∗

i = (T ′
i )

−1 and (T∨
i )∗ = (T∨′

i )−1 for i = 0, 1. Further-

more, T ∗ coincides with the adjoint of T ∈ H(S; t; q) if the parameters satisfy the

additional conditions 6.1.

Proof. The first statement follows easily from theorem 2.22. For the second state-
ment, it suffices to compute the adjoint of T∨

i (i = 0, 1) in view of proposition

6.6. Let z′ = q−1/2T ′
0T

∨′
0 be the “multiplication by x” operator in H(S; t−1; q−1).

It is immediate that z∗ = (z′)−1. Combined with proposition 6.6 we obtain
(T∨

0 )∗ = q−1/2(z′)−1T ′
0 = (T∨′

0 )−1 and (T∨
1 )∗ = T ′

1z
′ = (T∨′

1 )−1. This gives the
desired result.

9. Intertwiners as creation operators

9.1. In corollary 2.17 we have introduced the non-affine intertwiner S1 and derived
its basic property. The results of the previous section allow us to derive the following
analogous result for the commutator [Y, T∨

1 ] ∈ H(S; t; q), see Sahi [19, theorem 5.1]
for the result in the higher rank setting.

Corollary (The affine intertwiner). Set S0 := [Y, T∨
1 ] = Y T∨

1 − T∨
1 Y ∈ H(S; t; q).

Then g(Y )S0 = S0g(q−1Y −1) for all g(Y ) ∈ C[Y ±1].

Proof. By 2.21 we have f(z)[T0, z
−1] = [T0, z

−1](s0f)(z) in H(S; t; q) for any Lau-
rent polynomial f . Apply now the duality anti-isomorphism νt,q to this equality,
and replace the parameters by dual parameters in the resulting identity. This gives
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S0f(Y −1) = (s0f)(Y −1)S0 for any Laurent polynomial f . The corollary is now
immediate.

9.2. Recall from corollary 4.3 that the action of S1 on the non-symmetric Askey-
Wilson polynomials is completely explicit. In the following lemma we give the
analogous result for the action of the affine intertwiner S0 on Pm (m ∈ Z+).

Lemma. Let m ∈ Z+, then S0(Pm) =
(
γ−m−1 − γm

)
k−1
1 P−m−1.

Proof. Let m ∈ Z+. By proposition 4.1 we have

S0(Pm) = (Y − γm)
(
(αm + k−1

1 − k1)z
−1Pm + βmz−1P−m

)
.

It follows then from proposition 3.4 that the leading term of S0(Pm) with respect
to the total order � on the monomials equals

(γ−m−1 − γm)
(
(αm + k−1

1 − k1)cm + βm

)
x−m−1,

where c0 := 1 and where cm (m ∈ N) is the unique constant such that Pm(x) =
xm + cmx−m+ lower order terms w.r.t �. By proposition 5.3(i) we have

cm = 1 −
(1 + k0k

−1
1 γm)(1 − k−1

0 k−1
1 γm)

(1 − γ2
m)

= k−1
1 αm.

Furthermore, recall from the proof of proposition 4.1 that βm = k−1
1 (k1−αm)(k−1

1 +
αm). Hence the leading term of S0(Pm) reduces to (γm−1−γm)k−1

1 x−m−1. On the
other hand, corollary 9.1 implies that S0(Pm) = dmP−m−1 for some constant dm.
By the leading term considerations, we conclude that dm = (γm−1 − γm)k−1

1 .

9.3. The intertwiners S0 and S1 can be used to create the non-symmetric Askey-
Wilson polynomial Pm (m ∈ Z) from the unit polynomial 1 ∈ A in the following
way.

Proposition. We have (S1S0)
m(1) = dmPm for m ∈ Z+ and

(
S0(S1S0)

m−1
)
(1) =

d−mP−m for m ∈ N, with the constants dm (m ∈ Z) given by

dm = q−(m+1)mk−2m
0 k−2m

1

(
qk2

0k2
1 ; q

)
2m

, m ∈ Z+,

d−m = q−m2

k1−2m
0 k−2m

1

(
qk2

0k
2
1 ; q

)
2m−1

, m ∈ N.

Proof. By corollary 2.17 and corollary 9.1 we have g(Y )(S1S0) = (S1S0)g(qY ) for
all g ∈ A. It follows that Fm := (S1S0)

m(1) ∈ A for m ∈ Z+ satisfies g(Y )Fm =
g(γm)Fm for all m ∈ Z, so Fm = dmPm for some constant dm. Similarly, we obtain
F−m := S0(S1S0)

m−1(1) = d−mP−m for some constant d−m when m ∈ N. By
corollary 4.3 and lemma 9.2, we have the recurrence relations

dm = (γ−m − γm)k1d−m, m ∈ N,

d−m−1 = (γ−m−1 − γm)k−1
1 dm, m ∈ Z+.

Together with the initial condition d0 = 1, we obtain the explicit expressions for
dm (m ∈ Z) by complete induction with respect to m.



ASKEY-WILSON POLYNOMIALS: AN AFFINE HECKE ALGEBRAIC APPROACH 23

10. Evaluation formula and duality

10.1. Let Ev = Evt,q : H(S; t; q) → C be the linear map defined by Ev(X) :=(
X(1)

)
(k−1

1 u−1
1 ), where 1 ∈ A is the Laurent polynomial identically equal to one.

Observe that Ev satisfies

Ev
(
T±1

1 X
)

= k±1
1 Ev(X), X ∈ H(S; t; q),

since (T1f)(k−1
1 u−1

1 ) = k1f(k−1
1 u−1

1 ) for all f ∈ A by the explicit expression 2.19
for the difference-reflection operator T1.

10.2. Observe that we can evaluate Ev(Pm(z)) = Pm(k−1
1 u−1

1 ) explicitly using
proposition 5.10, since the two 4φ3’s in the right hand side of the formula for Pm(x)
are equal to one when x = a−1 = k−1

1 u−1
1 . We give here an alternative, inductive

proof for the evaluation which only uses the Rodrigues type formula for the non-
symmetric Askey-Wilson polynomials in terms of the intertwiners S0 and S1, see
proposition 9.3. We abuse notation by writing Ev(f) = Ev(f(z)) = f(k−1

1 u−1
1 ) for

f ∈ A.

Proposition. (i) For m ∈ Z+, we have

Ev
(
Pm

)
= k−m

1 u−m
1

(
−qk2

1, q
1/2k0k1u0u1,−q1/2k0k1u

−1
0 u1; q

)
m(

qm+1k2
0k

2
1 ; q

)
m

= a−m

(
qab, ac, ad; q

)
m(

qmabcd; q
)
m

.

(ii) For m ∈ N, we have

Ev
(
P−m

)
=

k−m
1 u−m

1

1 + k−2
1

(
−k2

1 , q
1/2k0k1u0u1,−q1/2k0k1u

−1
0 u1; q

)
m(

qmk2
0k

2
1 ; q

)
m

=
a−m

(1 − a−1b−1)

(
ab, ac, ad; q

)
m(

qm−1abcd; q
)
m

.

Proof. We write Fm = (S1S0)
m(1) for m ∈ Z+ and F−m = (S0(S1S0)

m−1)(1) for
m ∈ N, so that Fm = dmPm for m ∈ Z with the specific constants dm as given in
proposition 9.3. The proposition follows then from the explicit evaluation of the
dm, see proposition 9.3, and from the recurrence relations

Ev(Fm) = k−1
1 γ−m(1 − k0k1γm)(1 + k−1

0 k1γm)Ev(F−m), m ∈ N,

respectively

Ev(F−m) = u−1
1 γ−m(1 − u0u1q

−1/2γm)(1 + u−1
0 u1q

−1/2γm)Ev(Fm−1), m ∈ N,

by complete induction with respect to m. Let m ∈ N. For the first recurrence
relation, observe that by formula 10.1 and by Y F−m = γ−mF−m we have

Ev(Fm) = Ev(S1F−m) = Ev
(
(k1γ−m − k1T0T1)F−m

)
.

To reduce the T0T1-term, we use the relation

T0T1 = Y −1 + (k0 − k−1
0 )T1 + (k1 − k−1

1 )T−1
1 Y − (k0 − k−1

0 )(k1 − k−1
1 )

in H and formula 10.1, which yields

Ev(Fm) = k−1
1 γ−m(1 − k0k1γm)(1 + k−1

0 k1γm)Ev(F−m)



24 MASATOSHI NOUMI AND JASPER V. STOKMAN

after a direct computation. For the second recurrence relation, observe that

Ev(F−m) = Ev(S0Fm−1) = Ev
(
(Y z−1T−1

1 − u1γm−1)Fm−1

)

by formula 10.1, since Y Fm−1 = γm−1Fm−1. To reduce the Y z−1T−1
1 -term, we use

the relation

Y z−1T−1
1 = q−1z−1T−1

1 Y −1 + q−1(u−1
1 − u1)Y

−1 + q−1/2(u−1
0 − u0)

in H and formula 10.1, which gives the desired recursion

Ev(F−m) = u−1
1 γ−m(1 − u0u1q

−1/2γm)(1 + u−1
0 u1q

−1/2γm)Ev(Fm−1)

after a direct computation. This completes the proof of the proposition.

10.3. The explicit expression for the (anti-)symmetric Askey-Wilson polynomial
as linear combination of non-symmetric Askey-Wilson polynomials (see proposi-
tion 5.3) can be used to express Ev(P±

m) as a linear combination of Ev(Pm) and
Ev(P−m). Combined with proposition 10.2, this leads to explicit evaluation formu-
las for the (anti-)symmetric Askey-Wilson polynomials P±

m . In particular, it follows
that

Ev(P+
m) = P+

m(a) = a−m

(
ab, ac, ad; q

)
m(

qm−1abcd; q
)
m

, m ∈ Z+.

This result can also be obtained directly from the explicit expression of P+
m in terms

of a terminating, balanced 4φ3, see theorem 5.9.

10.4. The evaluation mapping Ev and the duality anti-isomorphism ν are com-
patible in the following sense.

Lemma. For all X ∈ H(S; t; q) we have Evt̃,q

(
νt,q(X)

)
= Evt,q

(
X

)
.

Proof. For X = f(z)g(Y ) with f and g Laurent polynomials, we have

Evt̃,q(νt,q(X)) =
(
g(z̃−1)f(Ỹ −1)(1)

)
(k−1

1 k−1
0 ) = f(k−1

1 u−1
1 )g(k1k0) = Evt,q(X),

and for X = f(z)T1g(Y ) we have

Evt̃,q(νt,q(X)) = f(k−1
1 u−1

1 )k1g(k1k0) = Evt,q(X).

Combined with proposition 8.2 we obtain the desired result.

10.5. We associate with the evaluation mappings Evt,q and Evt̃,q two bilinear
forms

B : H(S; t; q) ×H(S; t̃; q) → C, B̃ : H(S; t̃; q) ×H(S; t; q) → C,

which are defined by B(X, X̃) = Evt,q

(
νt̃,q(X̃)X

)
and B̃

(
X̃, X

)
= Evt̃,q

(
νt,q(X)X̃

)

for X ∈ H(S; t; q) and X̃ ∈ H(S; t̃; q).

Lemma. Let X, X1, X2 ∈ H(S; t; q) and X̃, X̃1, X̃2 ∈ H(S; t̃; q). Let f ∈ A.

(i) B(X, X̃) = B̃(X̃, X).

(ii) B(X1X2, X̃) = B
(
X2, νt,q(X1)X̃

)
, and B(X, X̃1X̃2) = B

(
νt̃,q(X̃1)X, X̃2

)
.

(iii) B
(
(X(f))(z), X̃

)
= B

(
X.f(z), X̃

)
and B

(
X, (X̃(f))(z̃)

)
= B(X, X̃.f(z̃)

)
.

(iv) B
(
XTi, X̃

)
= kiB(X, X̃

)
for i = 0, 1.
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Proof. (i) This follows from lemma 10.4 and the fact that νt,q is an anti-algebra
homomorphism with inverse νt̃,q, see proposition 8.5.

(ii) This is an immediate consequence of proposition 8.5.
(iii) The first equality is a direct consequence of the identity (X(f))(z)(1) =

X(f) =
(
X.f(z)

)
(1) in A. The second identity follows from the first and from (i).

(iv) By the explicit expressions 2.19 for the difference-reflection operators Ti,
we have Ti(1) = ki1 for i = 0 and i = 1. The identities are now immediate.

10.6. We write xm = k
ǫ(m)
1 u

ǫ(m)
1 qm (m ∈ Z) for the eigenvalues of the Cherednik-

Dunkl operator Ỹ ∈ H(S; t̃; q), see 3.5. We assume from now on that the pa-
rameters (t, q) are such that Pm(x−1

0 ; t; q) = Evt,q(Pm(·; t; q)) 6= 0 and such that

Pm(γ−1
0 ; t̃; q) = Evt̃,q(Pm(·; t̃; q)) 6= 0 for all m ∈ Z, and similarly for P+

m (m ∈ Z+).
By proposition 10.2 and 10.3, the corresponding generic conditions on the param-
eters can be specified explicitly. We write s(γ) := γ + γ−1 for all γ ∈ C∗.

Definition. (i) The renormalized non-symmetric Askey-Wilson polynomials are

defined by

Eγm
(x; t; q) :=

Pm(x; t; q)

Pm(x−1
0 ; t; q)

, m ∈ Z.

In other words, the non-symmetric Askey-Wilson are normalized such that they take

the value one at x = x−1
0 .

(ii) The renormalized symmetric Askey-Wilson polynomials are defined by

E+
s(γm)

(
x; t; q

)
:=

P+
m(x; t; q)

P+
m(x0; t; q)

, m ∈ Z+.

In other words, the symmetric Askey-Wilson polynomials are normalized such that

they take the value one at x = x±1
0 .

Observe that C+Eγm
= E+

s(γm) for m ∈ Z, where C+ = (1 + k2
1)

−1(1 + k1T1) is

the idempotent defined in 5.1, since (T1f)(k−1
1 u−1

1 ) = k1 for all f ∈ A.

10.7. In the following theorem we prove the duality between the geometric param-
eter x = xn and the spectral parameter γ = γm for the renormalized (non-)symme-
tric Askey-Wilson polynomials, see Sahi [19, section 7] for the result in the higher
rank setting.

Theorem (Duality). (i) For all m, n ∈ Z and f ∈ A, we have

f(γ−1
m ) = B̃

(
f(z̃), Eγm

(z; t; q)
)
, f(x−1

n ) = B
(
f(z), Exn

(z̃; t̃; q)
)
.

In particular, Eγm
(x−1

n ; t; q) = Exn
(γ−1

m ; t̃; q) for all m, n ∈ Z.

(ii) For all m, n ∈ Z and f ∈ AW , we have

f(γm) = B̃
(
f(z̃), E+

s(γm)

(
z; t; q

))
, f(xn) = B

(
f(z), E+

s(xn)

(
z̃; t̃; q

))
.

In particular, E+
s(γm)

(
xn; t; q

)
= E+

s(xn)

(
γm; t̃; q

)
for all m, n ∈ Z.

Proof. (i) The second statement follows from the first by taking f = Exn
(·; t̃; q)

in the first equality and f = Eγm
(·; t; q) in the second equality and using lemma

10.5(i).
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For the first equality, observe that

B̃
(
f(z̃), Eγm

(z)
)

= B̃
(
1, f(Y −1)Eγm

(z)
)

= B̃
(
1, (f(Y −1)Eγm

)(z)
)

= f(γ−1
m )B̃(1, Eγm

(z)
)

= f(γ−1
m )Eγm

(x−1
0 ) = f(γ−1

m )

by application of lemma 10.5(i), (ii) and (iii). The second equality is proved in a
similar manner.

(ii) The proof is similar to the proof of (i), taking account of the fact that
f(Y )E+

s(γ) = f(γ)E+
s(γ) for all f(Y ) ∈ C[Y + Y −1] by theorem 4.4 and proposition

5.3.

10.8. We write σ = {γm}m∈Z for the spectrum of the Dunkl operator Y ∈
H(S; t; q), see 3.5. We define an action of the affine Weyl group W on σ by
s0(γm) = γ−m−1 and s1(γm) = γ−m for all m ∈ Z.

The duality between the geometric and spectral parameter of the renormal-
ized non-symmetric Askey-Wilson polynomials can be used to explicitly compute
X(Eγ) for X ∈ H(S; t; q) as linear combination of non-symmetric Askey-Wilson
polynomials, cf. 4.1 and 4.2 for X = T1. Observe that Y (Eγ) = γEγ and that

T∨
0 = q−1/2Y −1(T∨

1 )−1 by theorem 2.22 and 8.4. Hence it suffices to expand
T1(Eγ) and T∨

1 (Eγ) as linear combination of renormalized non-symmetric Askey-
Wilson polynomials. The result is as follows.

Proposition. Let γ ∈ σ, then

T1(Eγ) = k1Eγ + k−1
1

(1 − k0k1γ
−1)(1 + k−1

0 k1γ
−1)

(1 − γ−2)

(
Es1γ − Eγ

)
,

T∨
1 (Eγ) = u1Eγ + u−1

1

(1 − u0u1q
1/2γ)(1 + u−1

0 u1q
1/2γ)

(1 − qγ2)

(
Es0γ − Eγ

)
.

Proof. The first formula is obviously correct for γ = γ0. Let γ0 6= γ ∈ σ. By
theorem 10.7 and lemma 10.5(ii) and (iii) we have

(T1Eγ)(x−1
m ) = B

(
Eγ(z), T̃1.Exm

(z̃; t̃; q)
)
.

By the commutation relation 2.21 between T1 and f(z) (f ∈ A) and by the identity

B(X, X̃T̃1) = k1B(X, X̃) (see lemma 10.5(i) and (iv)), we obtain

(T1Eγ)(x−1
m ) = k1B

(
Eγ(z), Exm

(z̃−1)
)

+
(k1 − k−1

1 ) + (k0 − k−1
0 )γ−1

(
1 − γ−2

)
(
B

(
Eγ(z), Exm

(z̃)
)
− B

(
Eγ(z), Exm

(z̃−1)
))

.

Here we have used lemma 10.5(ii), as well as the short-hand notation Exm
(z̃) =

Exm
(z̃; t̃; q). By lemma 10.5(ii), (iii) and theorem 10.7, we have

B
(
Eγ(z), Exm

(z̃−1)
)

= Exm
(γ; t̃; q) = Eγ−1(x−1

m ; t; q)

since γ 6= γ0. By theorem 10.7 it follows that the formula for (T1Eγ)(x) as stated
in the proposition is correct for x = x−1

m (m ∈ Z), hence it is correct as identity in
A.

For the second formula we proceed in a similar manner. First of all, observe that

(T∨
1 Eγ)(x−1

m ) = B
(
Eγ(z), T̃0.Exm

(z̃; t̃; q)
)
. We use now the commutation relation
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2.21 between T0 and f(z) (f ∈ A) and the identity B
(
X, X̃T̃0

)
= u1B

(
X, X̃),

which follows from lemma 10.5(i) and (iv). Then

(T∨
1 Eγ)(x−1

m ) = u1B
(
Eγ(z), Exm

(qz̃−1)
)

+
(u1 − u−1

1 ) + (u0 − u−1
0 )q1/2γ

(1 − qγ2)

(
B

(
Eγ(z), Exm

(z̃)
)
− B

(
Eγ(z), Exm

(qz̃−1)
)
.

By lemma 9.2(ii), (iii) and theorem 10.7, we have

B
(
Eγ(z), Exm

(qz̃−1)
)

= Exm
(qγ; t̃; q) = Es0γ(x−1

m ; t; q)

since qγn = γ−1
−n−1 for all n ∈ Z. It follows then by direct computations that the

formula for (T∨
1 Eγ)(x) as stated in the proposition is correct for x = x−1

m (m ∈ Z),
hence it is correct as identity in A.

10.9. The duality for the (non-)symmetric Askey-Wilson polynomials (see theorem
10.7) can also be used to derive recurrence relations for the (non-)symmetric Askey-
Wilson polynomials from the difference(-reflection) equations LE+

s(γ) = s(γ)E+
s(γ)

(respectively Y Eγ = γEγ). The Askey-Wilson q-difference equation LEs(γ) =
s(γ)Eγ then gives the three term recurrence relation [1, (1.24)–(1.27)] for the sym-
metric Askey-Wilson polynomials (see van Diejen [7, section 4] for the argument in
the higher rank setting).

11. The non-symmetric Askey-Wilson transform and its inverse

11.1. We assume in this section that the parameters (t, q) and (t̃, q) satisfy the
additional conditions 6.1.

Let σ′ be the spectrum of Y ′, so σ′ = {γ′
m}m∈Z with γ′

m = γ−1
m for all m ∈ Z,

see 3.5. Let F = Fk0,k1,q be the functions g : σ′ → C with finite support. By
the non-degeneracy of the bilinear form 〈.., .〉t,q on A and by the bi-orthogonality
relations 6.7 for the non-symmetric Askey-Wilson polynomials, we have a bijective
linear map F = Ft,q : A → F defined by

(
Ft,q(f)

)
(γ) := 〈f, E′

γ( · )〉t,q, f ∈ A, γ ∈ σ′,

where E′
γ( · ) = Eγ( · ; t−1; q−1) (γ ∈ σ′) are the renormalized non-symmetric Askey-

Wilson polynomials with respect to inverse parameters.

Definition. The bijective map F : A → F is called the non-symmetric Askey-

Wilson transform.

11.2. Recall the action of W on σ′ defined by s0γ
′
m = γ′

−m−1 and s1γ
′
m = γ′

−m

for all m ∈ Z. This induces a left action of W on F by (w g)(γ) = g(w−1γ) for

w ∈ W , g ∈ F and γ ∈ σ′. Let T̃i (i = 0, 1) and z̃ be the linear endomorphisms of
F defined by (z̃g)(γ) = γg(γ),

(
T̃0g

)
(γ) = u1g(γ) + u−1

1

(1 − u0u1q
1/2γ−1)(1 + u−1

0 u1q
1/2γ−1)

(1 − qγ−2)

(
(s0g)(γ) − g(γ)

)
,

(
T̃1g

)
(γ) = k1g(γ) + k−1

1

(1 − k0k1γ)(1 + k−1
0 k1γ)

(1 − γ2)

(
(s1g)(γ) − g(γ)

)

for all g ∈ F and all γ ∈ σ′. Observe that these formulas can be obtained from

the standard action of the generators T̃i (i = 0, 1) and z̃ of the double affine Hecke
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algebra H(S; t̃; q) on A (see 2.19 and 2.22) by formally replacing the W-module A
by the W-module F .

Proposition. There is a unique action of H(S; t̃; q) on F such that the generators

z̃ and T̃i (i = 0, 1) of H(S; t̃; q) act as the linear endomorphisms defined above.

Furthermore,

F(Xf) = µ(X)F(f), X ∈ H(S; t; q), f ∈ A,

where µ is the duality isomorphism defined in proposition 8.5.

Proof. By proposition 8.7 we have

F(Y f)(γ) = 〈f, (Y ′)−1E′
γ〉 = γ−1(Ff)(γ) =

(
z̃−1F(f)

)
(γ) =

(
µ(Y )F(f)

)
(γ)

for all f ∈ A and all γ ∈ σ′.
Again by proposition 8.7, we have F(T1f)(γ) = 〈f, (T ′

1)
−1E′

γ〉. Combined with

proposition 10.8, we derive that F(T1f) = T̃1F(f) = µ(T1)F(f) for all f ∈ A.
In a similar manner, we derive from proposition 8.7 and proposition 10.8 that

F(T∨
1 f) = T̃0F(f) = µ(T∨

1 )F(f) for all f ∈ A. The proposition now follows since
F is bijective and H(S; t; q) is generated as an algebra by Y , T1 and T∨

1 .

11.3. Observe that the weight function ∆(γ; t̃; q) (see 6.2) has simple poles at
γ ∈ σ′. We define now a linear map G = Gt,q : F → A by

Gt,q(g)(x) =
∑

γ∈σ′

g(γ)Eγ−1(x; t; q)w(γ; t̃; q), g ∈ F,

where w(γ) = w(γ; t̃; q) is defined by

w(γ; t̃; q) = Res
y=γ

(
∆(y; t̃; q)

y

)
sgn(γ), γ ∈ σ′

and sgn(γ′
m) = ǫ(m) for m ∈ Z (see 3.3 for the definition of ǫ). Observe that

w(γ; t̃; q) = α(γ; k1, k0)w+(γ; t̃; q) for all γ ∈ σ′, where w+(γ) = w+(γ; t̃; q) is
defined by

w+(γ; t̃; q) = Res
y=γ

(
∆+(y; t̃; q)

y

)
sgn(γ), γ ∈ σ′,

see 6.2. The weight functions w(γ) and w+(γ) can be written out explicitly in terms
of q-shifted factorials, see [1, section 2] or [8, section 7.5] for w+(γ).

11.4. In the following proposition we determine the intertwining properties of the
H(S; t̃; q)-action on F under the linear map G : F → A.

Proposition. We have

G(Xg) = µ−1(X)G(g), X ∈ H(S; t̃; q), g ∈ F,

where µ is the duality isomorphism defined in proposition 8.5.

Proof. We write T̃0 = u1 + φ̃0( · )(s0 − 1) and T̃1 = k1 + φ̃1( · )(s1 − 1) with

φ̃0(γ) = u−1
1

(1 − u0u1q
1/2γ−1)(1 + u−1

0 u1q
1/2γ−1)

(1 − qγ−2)
,

φ̃1(γ) = k−1
1

(1 − k0k1γ)(1 + k−1
0 k1γ)

(1 − γ2)
.
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The weight function w(γ; t̃; q) (γ ∈ σ′) satisfies the fundamental relations

φ̃i(γ)w(γ; t̃; q) = φ̃i(siγ)w(siγ; t̃; q), γ ∈ σ′, i = 0, 1.

This follows easily from the explicit expression for the weight function ∆, see 6.2
(compare also with the proof of proposition 6.6). It follows that

G(T̃0g)(x) =
∑

γ∈σ′

(T̃0g)(γ)Eγ−1(x)w(γ)

=
∑

γ∈σ

g(γ−1)
(
u1Eγ(x) + φ̃0(γ

−1)(Es0γ(x) − Eγ(x))
)
w(γ−1)

=
∑

γ∈σ

g(γ−1)
(
T∨

1 Eγ

)
(x)w(γ−1) =

(
T∨

1 G(g)
)
(x)

for all g ∈ F by proposition 10.8. Similarly, we obtain G(T̃1g)(x) =
(
T1G(g)

)
(x)

for all g ∈ F by proposition 10.8. Furthermore, it is immediate that G(z̃g)(x) =(
Y −1(G(g)

)
(x) for all g ∈ F . We conclude that G(Xg) = µ−1(X)G(g) for all g ∈ F

if X = z̃ or X = T̃i for i = 0, 1. The proposition follows, since these elements
generate H(S; t̃; q) as an algebra.

11.5. Combining proposition 11.2 and proposition 11.4 leads to the following main
result of this section.

Theorem. (i) We have Gt,q ◦ Ft,q = ct,qIdA and Ft,q ◦ Gt,q = ct,qIdF with the

constant ct,q given by ct,q = w(γ−1
0 ; t̃; q) 〈1, 1〉t,q.

(ii) For all γ ∈ σ we have

〈Eγ , E′
γ−1〉t,q

〈1, 1〉t,q
=

w(γ−1
0 ; t̃; q)

w(γ−1; t̃; q)
.

Proof. (i) Let f ∈ A, then

G
(
Ff

)
= G

(
F(f(z)1)

)
= f(z)

(
G(F(1))

)

by proposition 11.2 and proposition 11.4, where 1 ∈ A is the function identically
equal to one. By the definitions of F and G and by the bi-orthogonality relations
for the non-symmetric Askey-Wilson polynomials (see proposition 6.7) we have
Gt,q(Ft,q(1)) = ct,q1 with the constant ct,q as given in the statement of the theorem.
Hence G ◦ F = c IdA. The identity F ◦ G = c IdF follows then immediately from
the fact that F : A → F is a bijection.

(ii) Let γ ∈ σ. By (i), we have G(F(Eγ)) = c Eγ . On the other hand, by
the explicit definitions of F and G and by the bi-orthogonality relations for the
non-symmetric Askey-Wilson polynomials (see proposition 6.7), we have

Gt,q(Ft,q(Eγ)) = w(γ−1; t̃; q)〈Eγ , E′
γ−1〉t,q Eγ .

Comparing coefficients of Eγ leads to the desired result.

11.6. Let FW ⊂ F be the W -invariant functions in F , i.e. the functions f ∈ F
satisfying f = s1f . Equivalently, FW consists of the functions f ∈ F satisfying

C̃+ f = f , where C̃+ = (1 + k2
1)

−1(1 + k1T̃1).
Let F+ be the restriction of the non-symmetric Askey-Wilson transform F to

AW ⊂ A and let G+ be the restriction of G to FW ⊂ F .
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Proposition. F+ is a linear bijection from AW to FW with inverse c−1G+, where

c = ct,q is the constant defined in theorem 11.5. Furthermore, the constant c can

be rewritten as c = 1
2 (1 + k2

1)
2 w+(γ−1

0 ; t̃; q)
(
1, 1

)
t,q

, and

F+(f)(γ) =
1

2
(1 + k2

1)
(
f, E+

s(γ)( ·; t; q)
)
t,q

,

G+(g)(x) = (1 + k2
1)

∑

m∈Z+

g(γ′
m)E+

s(γm)(x; t; q)w+(γ′
m; t̃; q)

for all f ∈ AW and all g ∈ FW .

Proof. By lemma 6.4 we have 〈1, 1〉t,q = 1
2 (1 + k2

1)
(
1, 1

)
t,q

. Furthermore, we have

w(γ−1
0 ; t̃; q) = (1 + k2

1)w+(γ−1
0 ; t̃; q) since α(γ−1

0 ; k1, k0) = 1 + k2
1 . This gives the

alternative formula for the constant ct,q.

Observe that E+
s(γ)(x; t−1; q−1) = E+

s(γ)(x; t; q) by proposition 6.9 and by the

W -invariance of E+
s(γ). By lemma 6.4, 10.6 and the fact that C∗

+ = C′
+ (see the

proof of proposition 6.8), we then derive for f ∈ AW and γ ∈ σ′ that

F+(f)(γ) = 〈f, E′
γ〉t,q = 〈C+f, E′

γ〉t,q = 〈f, C′
+E′

γ〉t,q

= 〈f, E+
s(γ)〉t,q =

1

2
(1 + k2

1)
(
f, E+

s(γ)

)
t,q

.

In particular, we have F(AW ) ⊂ FW . For 0 6= m ∈ Z we have

w(γ′
m; t̃; q) + w(γ′

−m; t̃; q) = (1 + k2
1)w+(γ′

m; t̃; q).

Indeed, we use here that w+(γ; t̃; q) = w+(γ−1; t̃; q) by the W -invariance of the
weight function ∆+( · ; t̃; q), and that α(γ; k1, k0) + α(γ−1; k1, k0) = 1 + k2

1 , see 6.4.
Hence we obtain for g ∈ FW ,

G+(g)(x) = G(C̃+g)(x) =
(
C+G(g)

)
(x) =

∑

γ∈σ′

g(γ)E+
s(γ)(x; t; q)w(γ; t̃; q)

= (1 + k2
1)

∑

m∈Z+

g(γ′
m)E+

s(γm)(x; t; q)w+(γ′
m; t̃; q).

In particular, G(FW ) ⊂ AW . Combined with proposition 11.5, this completes the
proof of the proposition.

Definition. The bijection F+ : AW → FW is called the symmetric Askey-Wilson

transform.

11.7. We can repeat now the proof of theorem 11.5(ii) for the symmetric Askey-
Wilson transform F+, using the alternative descriptions for F+ and G+ as given
in proposition 11.6. This gives the following result on the quadratic norms of the
symmetric Askey-Wilson polynomials.

Corollary. For all γ ∈ σ we have

(
E+

s(γ), E
+
s(γ)

)
t,q(

1, 1
)
t,q

=
w+(γ−1

0 ; t̃; q)

w+(γ−1; t̃; q)
.
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12. The fundamental shift operator and the constant term

12.1. In theorem 11.5 and corollary 11.7 we have obtained explicit expressions
of 〈Eγ , E′

γ−1〉t;q and of
(
E+

s(γ), E
+
s(γ)

)
t,q

in terms of the constant term 〈1, 1〉t,q =
1
2 (1 + k2

1)
(
1, 1

)
t,q

for all γ ∈ σ. The constant term
(
1, 1

)
t,q

is the well-known

Askey-Wilson integral, which has been evaluated in many different ways, see for
instance [1], [9], [12] and [18]. We give in this section yet another proof for the
evaluation of

(
1, 1

)
using shift operators.

12.2. In the following lemma we define explicit linear maps from symmetric Lau-
rent polynomials to anti-symmetric Laurent polynomials and conversely in terms
of the Cherednik-Dunkl operator Y . Recall the definition of the idempotents
C± ∈ H0 ⊂ H = H(R; k0, k1), see 5.1.

Lemma. Let h±(Y ) = h±(Y ; k0, k1) ∈ H(R; k0, k1) be defined by

h±(Y ) = Y ∓1(Y ±1 − k0k1)(Y
±1 + k−1

0 k1).

(i) We have h+(Y )C+ = C−h+(Y )C+ and h−(Y )C− = C+h−(Y )C− in H, i.e.

h±(Y )A± ⊆ A∓ under the action of the fundamental representation πt,q.

(ii) We have C±h±(Y )C∓ = −h∓(Y )C∓ in H.

Proof. This follows by a straightforward computation from Lusztig’s formula 2.16,
together with the fact that (T1 ∓ k±1

1 )C± = 0 in H0 ⊂ H .

12.3. By lemma 12.2 and lemma 7.1 we have well-defined linear endomorphisms
G±(t; q) : AW → AW defined by

(
G+f

)
(x) = δ(x)−1

(
h+(Y )f

)
(x),

(
G−f

)
=

(
h−(Y )(δ.f)

)
(x), f ∈ AW ,

where h±(Y ) act under the fundamental representation πt,q. Observe that G− can
be realized as the element h−(Y )δ(z) in H(S; t; q).

Proposition. For m ∈ N, we have

G+(t; q)P+
m(·; t; q) = h+(γm; k0, k1)P

+
m−1(x; k0, qk1, u0, u1; q),

G−(t; q)P+
m−1(·; k0, qk1, u0, u1; q) = h−(γm; k0, k1)P

+
m(x; t; q).

Proof. Let m ∈ N. Since A(m) = span{P+
m , P−

m} is an H-module with A−(m) =
A(m) ∩ A− = span{P−

m}, we have h+(Y ; k0, k1)P
+
m(·; t; q) = c+(m)P−

m(·; t; q) for
some constant c+(m), see theorem 4.4, proposition 5.3 and lemma 12.2. Compar-
ing leading terms using proposition 3.4, we see that c+(m) = h+(γm). By the
generalized Weyl character formula, see proposition 7.3, we obtain

G+(t; q)P+
m(·; t; q) = h+(γm)P+

m−1(·; k0, qk1, u0, u1; q).

The shift property of G− is proved in a similar manner.

12.4. In the remainder of this section we assume that the parameters satisfy the
additional conditions 6.1. We write

(
G+(t−1; q−1)f

)
(x) = δ′(x)−1

(
h+(Y ′; k−1

0 , k−1
1 )f

)
(x), f ∈ A

and G−(t−1; q−1) = h−(Y ′; k−1
0 , k−1

1 )δ′(z′) ∈ H(S; t−1; q−1) for the shift-operators
with respect to inverse parameters, where δ′(x) = δ(x; k−1

0 , k−1
1 ) (see 7.2). The two

shift operators G+ and G− are each-others adjoint in the following sense.
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Proposition. For all f, g ∈ AW , we have

(
G−(t; q)f, g

)
t,q

=
(
f, G+(t−1; q−1)g

)
k0,qk1,u0,u1,q

,
(
G+(t; q)f, g

)
k0,qk1,u0,u1,q

= k4
1

(
f, G−(t−1; q−1)g

)
t,q

.

Proof. Let f, g ∈ AW . By lemma 6.4, proposition 6.6 and lemma 7.1 we have

1

2
(1 + k2

1)
(
G−(t; q)f,g

)
t,q

= 〈G−(t; q)f, g〉t,q

= 〈δ(z)f, h−((Y ′)−1)g〉t,q = 〈δ(z)f, C′
−h−((Y ′)−1)C′

+g〉t,q,

where C′
± ∈ H(S; t−1; q−1) are the images of the primitive idempotents of H0(k

−1
1 )

under πt−1,q−1 , see 5.1 (compare with the proof of proposition 6.8). Now observe

that h−((Y ′)−1; k0, k1) = −k2
1h−(Y ′; k−1

0 , k−1
1 ), hence

C′
−h−((Y ′)−1)C′

+ = −k2
1C

′
−h−(Y ′; k−1

0 , k−1
1 )C′

+ = k2
1h+(Y ′; k−1

0 , k−1
1 )C′

+

by lemma 12.2. Consequently, we obtain

1

2
(1 + k2

1)
(
G−(t; q)f, g

)
t,q

= k2
1〈δ(z)f, h+(Y ′; k−1

0 , k−1
1 )g〉t,q

= k2
1〈δ(z)f, δ′(z′)G+(t−1; q−1)g〉t,q

=
1

2
(1 + k2

1)
(
f, G+(t−1; q−1)g

)
k0,qk1,u0,u1,q

where the last equality follows from lemma 7.2. The second formula is proved in a
similar manner.

12.5. We write ν(f) = νa,b,c,d(f) =
(
f, f

)
t,q

for the “quadratic norm” of f with

respect to the bilinear form
(
., .

)
t,q

, where (a, b, c, d) is the reparametrized multi-

plicity function, see 5.7. We use the short-hand notation

νa,b,c,d(P
+
m) = νa,b,c,d(P

+
m(·; a, b, c, d)), m ∈ Z+.

Corollary. For m ∈ N, we have

νa,b,c,d(P
+
m) =

(1 − qm)(1 − qm−1cd)

(1 − qmab)(1 − qm−1abcd)
νqa,qb,c,d(P

+
m−1).

Proof. This is an immediate consequence of proposition 12.3, proposition 12.4 and
proposition 6.9.

12.6. Observe that the Askey-Wilson second order q-difference operator L (see 5.8)
and its eigenvalues γm + γ−1

m (m ∈ Z+) are symmetric in a, b, c, d. It follows that
the symmetric Askey-Wilson polynomials P+

m(x; a, b, c, d) (m ∈ Z+) are symmetric
in the four parameters a, b, c, d. Hence corollary 12.5 can be reformulated with the
special role of (a, b) replaced by an arbitrary pair of the four parameters a, b, c, d.
This leads to the following result.
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Corollary. Let k, l, m, n ∈ Z+ and set t = k + l + m + n. Then

νa,b,c,d(P
+
t )

νq2ka,q2lb,q2mc,q2nd(1)
=

(
q, q2t−1abcd, q2k+2lab, q2k+2mac, q2k+2nad, q2l+2mbc, q2l+2nbd, q2m+2ncd; q

)
∞(

qt+1, qt−1abcd, qtab, qtac, qtad, qtbc, qtbd, qtcd; q
)
∞

.

Proof. We write

νa,b,c,d(P
+
k )

νq2a,b,c,d(P
+
k−1)

=
νa,b,c,d,q(P

+
k )

νqa,qb,c,d(P
+
k−1)

νqa,qb,c,d(P
+
k−1)

νqa,b,q−1c,d(P
+
k )

νqa,b,q−1c,d(P
+
k )

νq2a,b,c,d(P
+
k−1)

for k ∈ N and use the symmetry in the parameters a, b, c, d and corollary 12.5 to
obtain

νa,b,c,d(P
+
k )

νq2a,b,c,d(P
+
k−1)

=
(1 − qk)(1 − qk−1bc)(1 − qk−1bd)(1 − qk−1cd)

(1 − qk−1abcd)(1 − qkab)(1 − qkac)(1 − qkad)

for k ∈ N. Now use again the symmetry in the parameters a, b, c, d and complete
induction with respect to k, l, m and n to obtain the desired result.

12.7. Corollary 12.6 relates the quadratic norm ν(P+
m) to the constant term ν(1),

but it can also be used to evaluate the Askey-Wilson integral ν(1) itself. The Askey-
Wilson integral was evaluated for the first time by Askey and Wilson [1, theorem
2.1] (see also e.g. [9], [12] and [18] for alternative proofs).

Theorem (Constant term evaluation). We have

νa,b,c,d(1) =
2
(
abcd; q

)
∞(

q, ab, ac, ad, bc, bd, cd; q
)
∞

.

Proof. Let (a, b, c, d) = (1,−1, q
1
2 ,−q

1
2 ), then we have ∆+(x) ≡ 1 for the corre-

sponding weight function of the bilinear form
(
., .

)
. Hence P+

k (x) = xk + x−k

(k ∈ N) for the corresponding symmetric Askey-Wilson polynomial. Furthermore,

ν
1,−1,q

1
2 ,−q

1
2
(Pk) = 2, k ∈ N.

Combined with corollary 12.6 this implies that the theorem is correct for all pa-

rameter values (a, b, c, d) =
(
q2k,−q2l, q

1
2
+2m,−q

1
2
+2n

)
with k, l, m, n ∈ Z+ and

k + l + m + n ∈ N (we use here that the formula in corollary 12.6 extends to this
particular choice of parameter values by continuity). The proof is now completed
by analytic continuation.

12.8. The constant term evaluation (theorem 12.7) and corollary 12.5 yield an
explicit evaluation of νa,b,c,d(P

+
m) for m ∈ Z+ which is in accordance with Askey

and Wilson’s result [1, theorem 2.2]. As remarked in 7.5, this then yields explicit
evaluations for all the diagonal terms in the bi-orthogonality relations of proposition
6.7 and proposition 6.8.

Another way to obtain the diagonal terms explicitly is by using corollary 11.7 and
10.3 (respectively theorem 11.5 and proposition 10.2) to reduce the diagonal terms
for the (non-)symmetric Askey-Wilson polynomials to the constant term evaluation
(theorem 12.7). Explicitly, we obtain the following formulas for the diagonal terms:

(
P+

m , P+
m

)
=

2
(
q2m−1abcd, q2mabcd; q

)
∞(

qm+1, qmab, qmac, qmad, qmbc, qmbd, qmcd, qm−1abcd; q
)
∞



34 MASATOSHI NOUMI AND JASPER V. STOKMAN

for m ∈ Z+,

〈Pm, P ′
m〉 =

(
q2mabcd, q2mabcd; q

)
∞(

qm+1, qm+1ab, qmac, qmad, qmbc, qmbd, qmcd, qmabcd; q
)
∞

for m ∈ Z+,

〈P−m, P ′
−m〉 =

(
q2m−1abcd, q2m−1abcd; q

)
∞(

qm, qmab, qmac, qmad, qmbc, qmbd, qm−1cd, qm−1abcd; q
)
∞

for m ∈ N and finally

〈P−
m , P−′

m 〉 =
ab − 1

ab

(
q2m−1abcd, q2mabcd; q

)
∞(

qm, qm+1ab, qmac, qmad, qmbc, qmbd, qm−1cd, qmabcd; q
)
∞

for m ∈ N.

12.9. There is yet another way to relate the diagonal terms of the non-symmetric
Askey-Wilson polynomials to the constant term 〈1, 1〉. This method is based on
the Rodrigues type formula for the non-symmetric Askey-Wilson polynomial (see
proposition 9.3), which allows us to compute the diagonal terms by induction with
respect to the degree of the non-symmetric Askey-Wilson polynomial. For the
induction step, one needs the following two additional properties of the intertwiners.
The first property is that S∗

0 = q−1S′
0 and S∗

1 = S′
1, where S′

0, S
′
1 ∈ H(S; t−1; q−1)

are the intertwiners with respect to inverse parameters, cf. proposition 8.7. The
second property is

S2
0 = q−1u2

1

∏

ξ=±1

(1 − u−1
0 u−1

1 qξ/2Y ξ)(1 + u0u
−1
1 qξ/2Y ξ),

S2
1 = k2

1

∏

ξ=±1

(1 − k−1
0 k−1

1 Y ξ)(1 + k0k
−1
1 Y ξ)

which are most easily proved in the image of the duality isomorphism µ, see Sahi
[19, corollary 5.2] in the higher rank setting. We leave the details to the reader.
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