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Abstract

We introduce a new class of groups with solvable word problem,
namely groups specified by a confluent set of short-lex-reducing Knuth–
Bendix rules which form a regular language. This simultaneously gen-
eralizes short-lex-automatic groups and groups with a finite confluent
set of short-lex-reducing rules. We describe a computer program which
looks for such a set of rules in an arbitrary finitely presented group.
Our main theorem is that our computer program finds the set of rules,
if it exists, given enough time and space. (This is an optimistic de-
scription of our result—for the more pessimistic details, see the body
of the paper.)

The set of rules is embodied in a finite state automaton in two
variables. A central feature of our program is an operation, which we
call welding, used to combine existing rules with new rules as they
are found. Welding can be defined on arbitrary finite state automata,
and we investigate this operation in abstract, proving that it can be
considered as a process which takes as input one regular language and
outputs another regular language.

In our programs we need to convert several non-deterministic finite
state automata to deterministic versions accepting the same language.
We show how to improve somewhat on the standard subset construc-
tion, due to special features in our case. We axiomatize these special
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features, in the hope that these improvements can be used in other
applications.

The Knuth–Bendix process normally spends most of its time in
reduction, so its efficiency depends on doing reduction quickly. Stan-
dard data structures for doing this can become very large, ultimately
limiting the set of presentations of groups which can be so analyzed.
We are able to give a method for rapid reduction using our much
smaller two variable automaton, encoding the (usually infinite) regu-
lar language of rules found so far. Time taken for reduction in a given
group is a small constant times the time taken for reduction in the
best schemes known (see [4]), which is not too bad since we are re-
ducing with respect to an infinite set of rules, whereas known schemes
use a finite set of rules.

We hope that the method described here might lead to the com-
putation of automatic structures in groups for which this is currently
infeasible.

Contents

To help readers find their way around the inevitably complex structure of
this paper, we start with a brief description of each section.
1. Introduction. This briefly sets some of the background for the paper
and describes the motivation for this work.
2. Our class of groups in context. We define the class of groups to
which this paper is devoted and prove various relations with related classes
of groups. Groups in our class satisfy our main theorem ( 6.13Correctness
of our Knuth–Bendix Proceduretheorem.6.13), which states that if the set
of minimal short-lex reducing rules is regular, then our program succeeds in
finding the finite state automaton which accepts these rules.
3. Welding. Here we describe one of the main new ideas in this paper,
namely welding. This process can be applied to any finite state automaton.
In our case it is the tool which enables us perform the apparently impos-
sible task of generating an infinite set of Knuth–Bendix rules from a finite
set. Welding has good properties from the abstract language point of view
(see 3.5Welding in our exampletheorem.3.5). Welding has some important
features. Firstly, if an automaton starts by accepting only pairs (u, v) such
that ū = v̄ in G, then the same is true after welding. Secondly, the welded
automaton can encode infinitely many distinct equalities, even if the original
only encoded a finite number. Thirdly, the welded automaton is usually much
smaller than the original automaton. At the end of this section we show that
any group determined by a regular set of rules is finitely presented.
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4. Standard Knuth–Bendix. In this section, we describe the standard
Knuth–Bendix process for string rewriting, in the form in which it is normally
used to analyze finitely presented groups and monoids. We need this as a
background against which to describe our modifications.
5. Our version of Knuth–Bendix. We give a description of our Knuth–
Bendix procedure. We describe critical pair analysis, minimization of a rule
and give some brief details of our method of reduction using a two-variable
automaton which encodes the rules.
6. Correctness of our Knuth–Bendix Procedure. We prove that our
Knuth–Bendix procedure does what we want it to do. The proof is not at
all easy. In part the difficulty arises from the fact that we have to not only
find new rules, but also delete unwanted rules, the latter in the interests
of computational efficiency, or, indeed, computational feasibility. Our main
tool is the concept of a Thue path (see 6.3Correctness of our Knuth–Bendix
Proceduretheorem.6.3). Although it is hardly possible that this is a new con-
cept, we have not seen elsewhere its systematic use to understand the progress
of Knuth–Bendix with time. One hazard in programming Knuth–Bendix is
that some clever manoeuvre changes the Thue equivalence relation. The key
result here is 6.5Correctness of our Knuth–Bendix Proceduretheorem.6.5,
which carefully analyzes the effect of various operations on Thue equiva-
lence. In fact it provides more precise control, enabling other hazards, such
as continual deletion and re-insertion of the same rule, to be avoided. It is
also the most important step in proving our main result, 6.13Correctness of
our Knuth–Bendix Proceduretheorem.6.13. This says that if our program is
applied to a group defined by a regular set of minimal short-lex rules, then,
given sufficient time and space, a finite state automaton accepting exactly
these rules will eventually be constructed by our program, after which it will
loop indefinitely, reproducing the same finite state automaton (but requiring
a steadily increasing amount of space for redundant information).
7. Fast reduction. We describe a surprisingly pleasant aspect of our data
structures and procedures, namely that reduction with respect to our prob-
ably infinite set of rules can be carried out very rapidly. Given a reducible
word w, we can find a rule (λ, ρ), such that w contains λ as a subword, in a
time which is linear in the length of w. Fast algorithms in computer science
are often achieved by using finite state automata, and the current situation
is an example. We explain how to construct the necessary automata and why
they work.
8. A modified determinization algorithm. Here we describe a modifi-
cation of the standard algorithm, to be found in every book about comput-
ing algorithms, that determinizes a non-deterministic finite state automaton.
Our version saves space as compared with the standard one. It is well suited
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to our special situation. We give axioms which enable one to see when this
improved algorithm can be used.
9. Miscellaneous details. A number of miscellaneous points are discussed.
In particular, we compare our approach to that taken in kbmag (see [4]).

1 Introduction

We give some background to our paper, and describe the class of groups of
interest to us here.

A celebrated result of Novikov and Boone asserts that the word problem
for finitely presented groups is, in general, unsolvable. This means that a
finite presentation of a group is known and has been written down explicitly,
with the property that there is no algorithm whose input is a word in the
generators, and whose output states whether or not the word is trivial. Given
a presentation of a group for which one is unable to solve the word problem,
can any help at all be given by a computer?

The answer is that some help can be given with the kind of presentation
that arises naturally in the work of many mathematicians, even though one
can formally prove that there is no procedure that will always help.

There are two general techniques for trying to determine, with the help
of a computer, whether two words in a group are equal or not. One is the
Todd–Coxeter coset enumeration process and the other is the Knuth–Bendix
process. Todd-Coxeter is more adapted to finite groups which are not too
large. In this paper, we are motivated by groups which arise in the study of
low dimensional topology. In particular they are usually infinite groups, and
the number of words of length n rises exponentially with n. For this reason,
Todd–Coxeter is not much use in practice. Well before Todd–Coxeter has
had time to work out the structure of a large enough neighbourhood of the
identity in the Cayley graph to be helpful, the computer is out of space.

On the other hand, the Knuth–Bendix process is much better adapted to
this task, and it has been used quite extensively, particularly by Sims, for
example in connection with computer investigations into problems related to
the Burnside problem. It has also been used to good effect by Holt and Rees
in their automated searching for isomorphisms and homomorphisms between
two given finitely presented groups (see [6]). In connection with searching
for a short-lex-automatic structure on a group, Holt was the first person
to realize that the Knuth–Bendix process might be the right direction to
choose (see [3]). Knuth–Bendix will run for ever on even the most innocuous
hyperbolic triangle groups, which are perfectly easy to understand. Holt’s
successful plan was to use Knuth–Bendix for a certain amount of time, de-
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cided heuristically, and then to interrupt Knuth–Bendix and make a guess as
to the automatic structure. One then uses axiom-checking, a part of auto-
matic group theory (see [2, Chapter 6]), to see whether the guess is correct.
If it isn’t correct, the checking process will produce suggestions as to how to
improve the guess. Thus, using the concept of an automatic group as a mech-
anism for bringing Knuth–Bendix to a halt has been one of the philosophical
bases for the work done at Warwick in this field almost from the beginning.
In addition to the works already cited in this paragraph, the reader may wish
to look at [6] and [5].

For a short-lex-automatic group, a minimal set of Knuth–Bendix rules
may be infinite, but it is always a regular language (see 2.11Recursive sets of
rulestheorem.2.11), and therefore can be encoded by a finite state machine.
In this paper, we carry this philosophical approach further, attempting to
compute this finite state machine directly, and to carry out as much of the
Knuth–Bendix process as possible using only approximations to this machine.

Thus, we describe a setup that can handle an infinite regular set of Knuth–
Bendix rewrite rules. For our setup to be effective, we need to make sev-
eral assumptions. Most important is the assumption that we are dealing
with a group, rather than with a monoid. Secondly, our procedures are
perhaps unlikely to be of much help unless the group actually is short-lex-
automatic. Our main theorem—see 6.13Correctness of our Knuth–Bendix
Proceduretheorem.6.13—is that our Knuth–Bendix procedure succeeds in
constructing the finite state machine which accepts the (unique) confluent
set of short-lex minimal rules describing a group, if and only if this set of
rules is a regular language.

Previous computer implementations of the semi-decision procedure to find
the short-lex-automatic structure on a group are essentially specializations of
the Knuth–Bendix procedure [7] to a string rewriting context together with
fast, but space-consuming, automaton-based methods of performing word
reduction relative to a finite set of short-lex-reducing rewrite rules. Since
short-lex-automaticity of a given finite presentation is, in general, undecid-
able, space-efficient approaches to the Knuth–Bendix procedure are desirable.
Our new algorithm performs a Knuth–Bendix type procedure relative to a
possibly infinite regular set of short-lex-reducing rewrite rules, together with
a companion word reduction algorithm which has been designed with space
considerations in mind.

In standard Knuth–Bendix, there is a tension between time and space
when reducing words. Looking for a left-hand side in a word can take a long
time, unless the left-hand sides are carefully arranged in a data structure that
traditionally takes a lot of space. Our technique can do very rapid reduction
without using an inordinate amount of space (although, for other reasons,
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we have not been able to save as much space as we originally hoped). This
is explained in 8A modified determinization algorithmsection.8.

We would like to thank Derek Holt for many conversations about this
project, both in general and in detail. His help has, as always, been generous
and useful.

2 Our class of groups in context

In this paper we study groups, together with a finite ordered set of monoid
generators, with the property that their set of universally minimal short-
lex rules is a regular language. In this section, we explain what this rather
daunting sentence means, and we set this class of groups in the context of
various other related classes, investigating which of these classes is included
in which. In the next section, we will prove that groups in this class are
finitely presented.

Throughout we will work with a group G generated by a fixed finite set
A, and a fixed finite set of defining relations. Formally, we are given a map
A → G, but our language will sometimes (falsely) pretend that A is a subset
of G. The reader is urged to remain aware of the distinction, remembering
that, as a result of the insolubility of the word problem, it is not in general
possible to tell whether the given map A → G is injective. We assume we
are given an involution ι : A → A such that, for each x ∈ A, ι(x) represents
x−1 ∈ G. By A∗ we mean the set of words (strings) over A. (Formally a
word is a function {1, . . . , n} → A, where n ≥ 0.) We also write ι : A∗ → A∗

for the formal inverse map defined by ι(x1 . . . xp) = ι(xp) . . . ι(x1).
We assume we are given a fixed total order on A. This allows us to define

the short-lex order on A∗ as follows. We denote by |u| the length of u ∈ A∗.
If u, v ∈ A∗, we say that u < v if either |u| < |v| or u and v have the
same length and u comes before v in lexicographical order. The short-lex
representative of g ∈ G is the smallest u ∈ A∗ such that u represents g. This
is also called the short-lex normal form of g. If u ∈ A∗, we write u ∈ G for
the element of G which it represents. If u is the short-lex representative of
u, we say that u is in short-lex normal form.

Suppose we have (G, A) as above. Then there may or may not be an
algorithm that has a word u ∈ A∗ as input and as output the short-lex
representative of u ∈ G. The existence of such an algorithm is equivalent to
the solubility of the word problem for G, since there are only a finite number
of words v such that v < u.

A natural attempt to construct such an algorithm is to find a set R
of replacement rules, also known as Knuth–Bendix rules. In this paper, a
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replacement rule will be called simply a rule, and we will restrict our attention
to rules of a rather special kind. A rule is a pair (u, v) with u > v Given
a rule (u, v), u is called the left-hand side and v the right-hand side. The
idea of the algorithm is to start with an arbitrary word w over A and to
reduce it as follows: we change it to a smaller word by looking in w for
some left-hand side u of some rule (u, v) in R. We then replace u by v in
w (this is called an elementary reduction) and repeat the operation until no
further elementary reductions are possible (the repeated process is called a
reduction). Eventually the process must stop with an R-irreducible word,
that is a word which contains no subword which is a left-hand side of R.

2.1 Thue equivalence. Given a set of rules R, we write u →R v if there is
an elementary reduction from u to v, that is, if there are words α and β over
A and a rule (λ, ρ) ∈ R such that u = αλβ and v = αρβ. Thue equivalence
is the equivalence relation on A∗ generated by elementary reductions.

There is a multiplication in A∗ given by concatenation. This induces a
multiplication on the set of Thue equivalence classes. We will work with rules
where the set of equivalence classes is isomorphic to the group G.

By no means every set of rules can be used to find the short-lex normal
form of a word constructively. We now discuss the various properties that a
set of rules should have in order that reduction to an irreducible always gives
the short-lex normal form of a word. First we give the assumptions that we
will always make about every set of rules we consider. When constructing a
new set of rules, we will always ensure that these assumptions are correct for
the new set.

2.2 Standard assumptions about rules.

1. [Condition] For each x ∈ A, x.ι(x) is Thue equivalent to the trivial
word ǫ. The preceding condition is enough to ensure that the set of
Thue equivalence classes is a group. If r = s is a defining relation for
G, then r is Thue equivalent to s. This ensures that the group of Thue
equivalence classes is a quotient of G.

2. [Condition] If (u, v) is a rule of R, then u > v and u = v ∈ G. This
ensures that the group of Thue equivalence classes is isomorphic to G.

2.3 Confluence. [Condition] This property is one which we certainly de-
sire, but which is hard to achieve. Given w, there may be different ways to
reduce w. For example we could look in w for the first subword that is a
left-hand side, or for the last subword, or just look for a left-hand side which
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is some random subword of w. We say that R is confluent if the result of
fully reducing w gives an irreducible that is independent of which elementary
reductions were used.

2.4 Lemma. [Lemma] If a set R of rules satisfies the conditions of 2.2
and 2.3 then the set of R-irreducibles is mapped bijectively to G and mul-
tiplication corresponds to concatenation followed by reduction. Under these
assumptions, an R-irreducible is in short-lex normal form, and conversely;
moreover, each Thue equivalence class contains a unique irreducible.

Proof: The homomorphism A∗ → G is surjective and, by 2.2.2Standard
assumptions about rulesItem.2, elementary reduction does not change the
image in G. It follows that the induced map from the set of irreducibles to
G is surjective. Suppose u and v are irreducibles such that u = v ∈ G. Then
u.ι(v) = 1G. Therefore u.ι(v) is equal in the free group generated by A (with
ι(x) equated to the formal inverse of x, for each x ∈ A) to a word s which
is a product of formal conjugates of the defining relators. Now u.ι(v) and
s reduce to the same word, using only reductions that replace x.ι(x), where
x ∈ A, by the trivial word ǫ. By Condition 2.2.1, s can be reduced to ǫ. It
follows from Condition 2.3 that u.ι(v)v can be reduced to v. It can also be
reduced to u, using Condition 2.2.1 again, and the fact that ι : A → A is an
involution. It follows from Condition 2.3 that u = v, as required.

The description of the multiplication of irreducibles follows from the fact
that multiplication in A∗ is given by concatenation and the fact that the
map A∗ → G is a homomorphism of monoids.

Since reduction reduces the short-lex order of a word, a word in short-lex
least normal form must be R-irreducible. Conversely, if u is R-irreducible,
let v be the short-lex normal form of u. Then v is also R-irreducible, as we
have just pointed out, and u and v represent the same element of G. Since
the map from irreducibles to G is injective, we deduce that u = v. Therefore
u is in short-lex normal form.

To show that each Thue equivalence class contains a unique irreducible,
we note that if there is an elementary reduction of u to v, then, in case of
confluence, any reduction of u gives the same answer as any reduction of v.

�

2.5 Recursive sets of rules. [Condition] Another important property
(lacked by some of the sets of rules we discuss) is the condition that the set
of rules be a recursive set. As opposed to the usual setup when discussing
rewrite systems, we do not require R to be a finite set of rules—in fact, in
this paper R will normally be infinite. To say that R is recursive means that
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there exists a Turing machine which can decide whether or not a given pair
(u, v) belongs to R.

2.6 Definition. [Definition] We denote by U the set of all rules of the form
(u, v), where u > v and u = v ∈ G. U is called the universal set of rules.
Note that a word is U -irreducible if and only if it is in short-lex normal form.

2

2.7 Lemma. The existence of a set of rules R satisfying the conditions of
2.2, 2.3 and 2.5 is equivalent to the solubility of the word problem in G and
in this case U defined in 2.6 is such a set of rules.

Proof: On the one hand, if we have such a set R, then we can solve the word
problem by reduction—according to Lemma 2.4 a word w reduces to the
trivial word if and only if w = 1G.

On the other hand, if the word problem is solvable, then the set U of
Definition 2.6 is recursive. The various conditions on a set of rules follow for
U . �

U can be difficult to manipulate, even for a very well-behaved group G and
a finite ordered set A of generators, and we therefore restrict our attention
to a much smaller subset, namely the set of U -minimal rules, which we now
define.

2.8 Definition. [Definition] Let R be a set of rules for a group G with
generators A. We say that a rule (u, v) ∈ R is R-minimal if v is R-irreducible
and if every proper subword of u is R-irreducible. 2

2.9 Proposition. [Proposition]

1. The set of U-minimal rules satisfies the conditions of 2.2 and 2.3. In
particular they are confluent.

2. Let (u, v) be a U-minimal rule and let u = u1 . . . un+r and v = v1 . . . vn.
Then the following must hold: 0 ≤ r ≤ 2; if n > 0, u1 6= v1; if n > 0,
then un+r 6= vn; if r = 0 and n > 0, then u1 > v1; if r = 2 and n > 0,
then u1 < v1 and u2 < ι(u1); if r = 2 and n = 0, then u1 ≤ ι(u2) and
u2 ≤ ι(u1).

3. The set of U-minimal rules is recursive if and only if G has a solvable
word problem.
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Proof: If w is U -reducible, let u be the shortest prefix of w which is U -
reducible. Then every subword of u which does not contain the last letter is
U -irreducible. Let v be the shortest suffix of u which is U -reducible. Then
every proper subword of v is U -irreducible. Let s be the short-lex normal
form for v. Then (v, s) is a U -minimal rule. Replacing v in w by s gives
an elementary reduction by a U -minimal rule. It follows that reduction of
w using only U -minimal rules eventually gives us a U -irreducible word, and
this must be the short-lex normal form of w. Therefore the conditions of 2.2
and 2.3 are satisfied by the set of U -minimal rules.

We now prove 2.9.2. Since u > v in the short-lex order, |u| ≥ |v|. So
r ≥ 0. If r > 2, then u = v gives rise to u2 . . . un+r = ι(u1)v1 . . . vn. Therefore
u2 . . . un+r is not in short-lex normal form. It follows that u2 . . . un+r is U -
reducible. Therefore (u, v) is not U -minimal. Similar arguments work for the
other cases. This completes the proof of 2.9.2.

Clearly U -minimality of a rule can be detected by a Turing machine if
the word problem is solvable. Conversely, if the set of U -minimal rules is
recursive, then the word problem can be solved by reduction using only U -
minimal rules. �

Now we have a uniqueness result for the set of minimal rules.

2.10 Lemma. Let R satisfy the conditions of 2.2 and 2.3. Suppose every
rule of R is R-minimal. Then R is equal to the set of U-minimal rules.

Proof: By Lemma 2.4, the R-irreducibles are the same as the words in short-
lex normal form. Let (u, v) be a rule in R. Then v is R-irreducible and
therefore in short-lex normal form. Also every proper subword of u is in
short-lex normal form. Therefore (u, v) is in U and is U -minimal.

Conversely, suppose (u, v) is U -minimal. Then v is the short-lex normal
form of u. By Lemma 2.4 for R, u must be R-reducible. Every proper
subword of u is already in short-lex normal form. It follows that there is a
rule (u, w) in R. Since this rule is R-minimal, w is R-irreducible. Therefore
w is the short-lex normal form of u. It follows that v = w. Therefore every
U -minimal rule is in R. �

We are interested in those pairs (G, A), where G is a group and A is an
ordered set of generators, such that the set of U -minimal rules is not only
recursive, but is in fact regular. We now explain what we mean by regular
in this context.

We recall that a subset of A∗ is called regular if it is equal to L(M), the
language accepted by some finite state automaton over A. (See Definition 3.2,
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where finite state automata are discussed.) We need to formalize what it
means for an automaton to accept pairs of words over an alphabet A. If
the pair of words is (abb, ccdc), then we have to pad the shorter of the two
words to make them the same length, regarding this pair as the word of
length four (a, c)(b, c)(b, d)($, c). In general, given an arbitrary pair of words
(u, v) ∈ A∗ × A∗, we regard this instead as a word of pairs by adjoining a
padding symbol $ to A and then “padding” the shorter of u and v so that
both words have the same length. We obtain a word over A∪{$}×A∪{$}.
The alphabet A ∪ {$} is denoted A+ and is called the padded extension of
A. The result of padding an arbitrary pair (u, v) is denoted (u, v)+. A word
w ∈ (A+)∗×(A+)∗ is called padded if there exists u, v ∈ A∗ with w = (u, v)+

(that is, at most one of the two components of w ends with a padding symbol
and there are no padding symbols in the middle of a word).

A set R of pairs of words over A is called regular if the corresponding set
of padded words is a regular language over the product alphabet A+ × A+.
We say that R is accepted by a two-variable finite state automaton over A.

2.11 Theorem. Let G be a group and let A be a finite set of generators,
closed under taking inverses. If (G, A) is short-lex automatic, then the set of
U-minimal rules is regular.

Having a finite confluent set of rules does not imply short-lex automatic.
A counter-example is given in [2, page 118]. So the converse of this theorem
is not true.

Proof: Since we have a short-lex automatic structure, the set L of short-
lex normal forms is a regular language. If x ∈ A, the automatic structure
includes the multiplier Mx, which is a two-variable automaton over A. The
language L(Mx) is the set of pairs (u, v), such that u, v ∈ L and ux = v.
It is not hard to construct from the union of the Mx an automaton whose
language P is the set of (u, v) such that u = v ∈ G, u ∈ L.A and v ∈ L.

We know that (L.A ∩ A.L) ∩ (A∗ \ L) is a regular language. Clearly,
this is the set of left-hand sides of U -minimal rules, since it is the set of
U -reducible words such that each proper subword is U -irreducible. The set
of pairs (u, v) ∈ P , such that u is a left-hand side of a U -minimal rule is
easily seen to be the set of all U -minimal rules. �

2.12 Question. Suppose (G, A) has a finite confluent set R of short-lex
reducing rules which define G. Then it is easy to construct from this a
finite confluent set R′ of R′-minimal rules defining G. The method is to use
minimization, as described in 5.7. This set of rules is equal to the set of
U -minimal rules by 2.10Recursive sets of rulestheorem.2.10.
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Suppose now that (G, A) has an infinite confluent set R of short-lex-
reducing rules defining G, and this set is regular. Is the set of U -minimal
rules also regular? We know that it is confluent and recursive by 2.9Recursive
sets of rulestheorem.2.9, since R provides a solution to the word problem.

If R contains all U -minimal rules, then the answer is easily seen to be yes.
The answer is not clear to us if R does not contain all minimal rules. There
is no loss of generality in making R smaller so that each proper subword
of each left-hand side is irreducible. But we see no way of changing R so
as to ensure that each right-hand side is irreducible, while maintaining R’s
property of being regular.

2.13 Objective. In this paper we present a procedure which, given a set
of rules satisfying the conditions of 2.2, changes the set of rules so that
it becomes “more confluent”. More precisely, the set of words for which
all reductions give the same irreducible, and this irreducible is in short-lex
normal form, increases with time. If we fix attention on a single word this
will eventually be included in the set. However, in general, because of the
insolubility of the word problem, it is not in general possible to know when
that time has been arrived at.

For a group where the set of all U -minimal rules (see Definition 2.6) is the
set of all pairs accepted by a two-variable minimal PDFA M (these concepts
are defined in 3.2), our procedure gives rise to M after a finite number of
steps.

For many undecidable problems, there is a “one-sided” solution. The
technical language is that a certain set is recursively enumerable, but not
recursive. For example, consider a fixed group for which the word problem is
undecidable. Given a word w in the generators, if you are correctly informed
that w = 1G, then this can be verified by a Turing machine. All that you
have to do is to enumerate products of conjugates of the defining relators,
reduce them in the free group on the generators, and see if you get w, also
reduced in the free group. If w represents the identity then you will prove
this sooner or later. If it’s not the identity, the process continues for ever.

We know that there is no algorithm which has as input a finite presen-
tation of a group and outputs whether the group is trivial or not (see [9]).
It follows easily that there is no algorithm which has as input a finite pre-
sentation and outputs either an FSA accepting the set of U -minimal rules or
correctly answers There is no such FSA. For, in the case of the trivial group,
the set of U -minimal rules is finite—for each element x ∈ A, we have the rule
(x, ǫ)—and so it is certainly regular.

But the situation is even worse than this. We do not even know of a
one-sided solution to the problem of whether the set of U -minimal rules is
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regular. If the set of U -minimal rules is regular, our procedure will eventually
produce a candidate with some indication that it is correct, but we will not
know for sure whether the answer is correct or incorrect.

What is at issue is whether there is an algorithm which has as its input
a regular set of short-lex rules for a group and outputs whether or not the
set of rules is confluent. For finite sets of rules the question of confluence is
decidable by classical critical pair analysis which we describe in 4Standard
Knuth–Bendixsection.4. However, for infinite rewriting systems the conflu-
ence question is, in general, undecidable. Examples exhibiting undecidability
are given in [8]. They are length-reducing rewriting systems R which are reg-
ular in a very strong sense: R contains only a finite number of right-hand
sides and for each right-hand side r, the set {l : (l, r) ∈ R} is a regular
language. These examples are in the context of rewriting for monoids. As
far as we know, there is no known example of undecidability if we add to the
hypothesis that the monoid defined by R is in fact a group.

In the special case where (G, A) is short-lex automatic, there is a test for
confluence of a set of rules satisfying the conditions of 2.2, namely the axiom-
checking procedure described in theory in [2] and carried out in practice in
Derek Holt’s kbmag programs [4].

3 Welding

[Section]
In this section we start with an example which motivates the operation

of welding. We then give a formal definition, and prove that the operation
gives rise to a function from the set of regular languages to the set of regular
languages. We then define the concept of a rule automaton—this is a finite
state automaton in two variables which can recognize when certain words in
the generators are equal in the associated group. We show that a welded rule
automaton is also a rule automaton.

3.1 A motivating example. We will use the standard generators x, y,
and their inverses X and Y for the free abelian group on two generators.
We will impose different orderings on this set of four generators, and, as
described in 2.13, see what kind of confluent sets of rules emerge.

Consider the alphabet A = {x, X, y, Y } with the ordering x < X < y <
Y , and denote the identity of A∗ by ǫ. Let R be the rewriting system on A∗

defined by the set of rules

{(xX, ǫ), (Xx, ǫ), (yY, ǫ), (Y y, ǫ), (yx, xy), (yX, Xy), (Y x, xY ), (Y X, XY )}.
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It is straightforward to see that R is a confluent system.
We now change the ordering of the set of generators to x < y < X < Y

and correspondingly interchange the sides of the sixth rule getting (Xy, yX)
and an order reducing set of rules. Once again the rules define the free abelian
group on two generators. But this time there can be no finite confluent set
of rules. To see this, we consider the set of words {xynX : n ∈ N}. None of
these is in short-lex normal form. By 2.4Confluencetheorem.2.4, each of these
words is reducible relative to any confluent set of rules. On the other hand,
each proper subword of one of the words xynX is clearly in short-lex normal
form and is therefore irreducible. It follows that a confluent set of rules must
contain each of the words xynX as a left-hand side. In this situation, the
classical Knuth–Bendix procedure (see 4Standard Knuth–Bendixsection.4)
will never terminate, and the same is true for any method of which generates
only a finite number of rules at each step.

We will now introduce a new procedure, which we call welding. This can
produce an infinite set of rules from a finite set of rules in a finite number
of steps. Welding is central to the main procedure of the computer program
described in this paper.

First we need to give some standard definitions.

3.2 Definition. [Definition] A finite state automaton (abbreviated FSA)
M over a finite alphabet A is a finite graph with directed edges and the
following additional properties. Each edge (called an arrow in this context)
is either labelled with an element of A or is unlabelled. Unlabelled arrows
are sometimes labelled with ǫ, which stands for the empty word, and are
called ǫ-transitions. The vertices of the graph are called states. Some of the
states are labelled as initial states and some as final states. The language
L(M) accepted by M is the set of words over A which are traced out by
paths of arrows which start at some initial state and end at some final state.
An FSA is said to be partially deterministic (abbreviated PDFA) if it has
no ǫ-transitions, if there is exactly one initial state and if, for each state s
and each x ∈ A, there is at most one arrow from s with label x. An FSA
is said to be trim if, for each state s, there is a path of arrows which starts
at an initial state, and ends at a final state, with s lying on the path. The
reversal of a finite state automaton is the same graph with the same labelling,
but with each arrow reversed, with each initial state changed to be a final
state and each final state changed to be an initial state. A non-deterministic
automaton NFA is an automaton with ǫ-transitions and/or some states s
having more than one arrow from s having the same label. 2
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3.3 Definition. An FSA is called welded if it is partially deterministic, trim
and has a partially deterministic reversal. These conditions imply that, given
x ∈ A and a state t, there is at most one x-arrow with target t and also that
there is exactly one initial state and one final state. 2

Given a trim non-empty FSA M , we can form a welded automaton from it
as follows. Given any ǫ-arrow (s, ǫ, t), we may identify s with t. Given distinct
initial states s1 and s2, we may identify s1 with s2. Given distinct final
states t1 and t2, we may identify t1 with t2. Given distinct arrows (s, x, t1)
and (s, x, t2), we may identify t1 with t2. Given distinct arrows (s1, x, t) and
(s2, x, t), we may identify s1 with s2. Immediately after any identification
of two states, we change the set of arrows accordingly, omitting any ǫ-arrow
from a state to itself. Since the number of states continually decreases, this
process must come to an end, and at this point the automaton is welded.

3.4 Welding in our example. Let us see how this works on the exam-
ple given in 3.1. For the moment we won’t try to justify the correctness of
our procedure, that is, that the new rules that welding produces are valid
rules; we will just carry out the procedure to show how it works. Justifica-
tion comes from the consideration of rule automata—see 3.9Welding in our
exampletheorem.3.9.

We consider the rule rn = (xynX, yn) for some n ∈ N. The corresponding
padded word r+

n gives rise to an (n + 3)-state PDFA M(rn) whose accepted
language consists solely of the rule rn. For n > 2 this PDFA is shown in
Figure 1.

- d
1

-
(x, y) d

2

-
(y, y) d

3

. . . d
n

-
(y, y) d

n + 1

-
(y, $) d

n + 2

- t
n + 3

(X, $)

Figure 1. The PDFA M(rn) for n > 2.

Continuing the discussion of the rules for a free abelian group on two
generators, we define Mn to be the disjoint union

⋃

{M(r1), . . . , M(rn)} of
the automata M(r1), . . . , M(rn), with set of initial (final) states equal to
the collection of initial (final) states for the various M(ri). If n > 1 then
Weld(Mn) is isomorphic to the PDFA given in Figure 2, and the accepted
language of this PDFA is the set of rules {ri : i ∈ N}. This is independent
of n if n > 1.
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So in this example, after only two steps, the welding procedure provides us
with a PDFA whose accepted language consists of an infinite set of identities
between words in the free abelian group. Moreover, by using this PDFA to
define a suitable reduction procedure, each of the words xynX with n ∈ N

can be reduced to the short-lex normal form.
For this group with the given ordering on the generators, it is not hard to

show that by welding the original defining rules for the group together with
the 4 rules {(xyX, y), (xy2X, y2), (yXY, X), (yX2Y, X2)}, we obtain a PDFA
whose accepted language is a confluent set of rules (provided we adjust the
automaton to ensure that only padded pairs of words (u, v)+ are accepted,
with u > v). Any reduction procedure using this infinite set of rules will
reduce any word to its short-lex normal form.

The next theorem is a general result about the welding of finite state
automata which need have nothing to do with groups. It’s a result which is
reassuring, but, logically, it is entirely unnecessary for understanding other
parts of this paper. Readers pressed for time should skip it.

3.5 Theorem. Given a trim non-empty FSA M , all welded automata ob-
tained from it as above (no matter in what order the states and arrows are
identified to each other) are the same, except that the names of the states
may be different. The automaton Q thus obtained is a minimal PDFA and Q
depends only on the language L(M), up to changing the names of the states.
It follows that welding can be regarded as an operation on regular languages,
independent of the automaton used to encode them.

Proof: For each x ∈ A, let x−1 be its formal inverse and let A−1 be the set
of these formal inverses. We form from M an automaton over A ∪ A−1 by
adjoining an arrow of the form (t, x−1, s) for each arrow (s, x, t) of M , and
adjoining an arrow (t, ǫ, s) for each arrow (s, ǫ, t) unless it’s already there.
We also adjoin (s1, ǫ, s2) if s1 and s2 are either both initial states or both final
states, unless these arrows are already there. We denote this new automaton
by N . N has the same initial and final states as M .

d
1

- - d
2

��
��<
(y, y)

(x, y) - d
3

(y, $) - t
4

(X, $)

Figure 2. A PDFA isomorphic to Weld(Mn), n > 1.
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Let F be the free group generated by A. We define a relation on the
set of states of N by s ∼ t if there is a path of arrows from s to t in N
whose label gives the identity element of F . This is clearly an equivalence
relation. Let Q be the automaton defined as follows. Each state of Q is one
of the equivalence classes above. The unique initial state of Q is the unique
equivalence class containing all initial states of N . The unique final state
of Q is the unique equivalence class containing all final states of N . Let S
be one equivalence class and T another, and let x ∈ A. We have an arrow
x : S → T in Q if there is an s ∈ S and a t ∈ T and an arrow x : s → t
in M . It is easy to see that Q is welded, and it follows that it is a partial
deterministic automaton.

If M starts out by being welded, then it is easy to see that Q = M , up
to the naming of states.

Consider the identifications of states and arrows made during welding
(see the passage following 3.3A motivating exampletheorem.3.3). Let M =
M0, M1, . . . , Mk be the sequence of automata obtained by identifying at each
step only one state with another state or deleting one arrow labelled x from a
state s to state t if there are several arrows labelled x from s to t or deleting
one ǫ-arrow from a state to itself. Here Mk, the last automaton in the list,
is a welded automaton.

We assign to each state s of Mi the set of all states of the original au-
tomaton M which are identified to make s. A state q of Q(Mi) is a set of
states of Mi, and this is a set of subsets of the state set of M . By taking the
union, we can instead regard q as a set of states of M . This loses some of
the structure, but only an irrelevant part.

With this interpretation, we see that the states of Q(Mi) are identical to
those of Q(Mi+1). Moreover, all arrows in Q(Mi) are inherited from M via
Mi. It follows that the automaton Q(Mi) is independent of i. So we have
Q = Q(M) = Q(Mk) = Mk. This shows that Q is independent of the order
in which the identifications are carried out. In fact Q can be characterized
as the largest welded quotient of M .

We claim that every element of L(Q) arises as follows, and that only
elements of L(Q) arise in this way. Let (w1, w2, . . . , w2k+1) be a (2k + 1)-
tuple of elements of L(M), where k ≥ 0. Now consider

w1w
−1
2 . . . w−1

2k w2k+1 ∈ F,

and write it in reduced form, that is, cancel adjacent formal inverse letters
wherever possible. If the result is in A∗, that is, if after cancellation there
are no inverse symbols, then it is in L(Q).

To prove this claim, we proceed as follows. For each state s of M , we fix
a path of arrows ps in M from an initial state to s and a path of arrows qs
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from s to a final state. If s is an initial state, we define ps to be the trivial
path. If s is a final state, we define qs to be the trivial path.

Start with an arbitrary element w ∈ L(Q). We must show that w can be
produced in the way described above. Now w is the label of a path of arrows
in Q, starting from the initial state of Q and ending at the final state of Q.
Recalling the definition of a state of Q, we can replace this path by a path
of arrows in N , which alternately traverses a path of arrows in N labelled by
a word over A ∪ A−1 ∪ {ǫ} which reduces to the identity element in F , and
an arrow of N labelled by a letter in w. The path in N starts at an initial
state of N and ends at a final state of N . We write the path as a composite
of arrows ui in N .

If ui : s → t is an arrow in M , we replace it by p−1
s (psuiqt) q−1

t . Otherwise,
if the inverse of ui : s → t is an arrow of M , we replace ui by qs

(

q−1
s uip

−1
t

)

pt.
(We consider the inverse of an ǫ-arrow to be an ǫ-arrow.) Otherwise s and t
are both initial states or both final states and ui is an ǫ-arrow and we leave
ui unaltered.

Each expression within parentheses in the preceding paragraph therefore
give either some wi ∈ L(M) (possibly empty) or the formal inverse of such a
word. Outside these parentheses we obtain expressions like ǫ, q−1

s qs, psp
−1
s ,

psqs or q−1
s p−1

s . In the first three cases, we omit the expressions. In the last
two cases, the expression represents either wi ∈ L(M), or the formal inverse
of such a word. The path starts at an initial state of N and ends at a final
state. So, if the set of initial states is disjoint from the set of final states, then
the expression of w as a product in the free group F of elements of L(M)
and their formal inverses must have an odd number of factors. If the set of
initial states meets the set of final states, then the trivial word is an element
of L(M), and we can use this to make sure that the number of factors is odd.
This completes the claim in one direction.

Conversely, suppose we are given the wi ∈ L(M) as in the claim. Then
wi is the label on a path of arrows in M from an initial state to a final state.
By inserting ǫ-arrows in N to join initial states or to join final states, we find
that w1w

−1
2 . . . w−1

2k w2k+1 is the label of a path of arrows in N from an initial
state to a final state. An elementary cancellation in F corresponds to the
fact that two states of N give rise to the same state of Q. Carrying out all
the elementary cancellations possible, if we are left only with a word over A,
we have defined a path of arrows in Q from the initial state of Q to the final
state of Q. So we have found an element of L(Q), as claimed.

A welded automaton is minimal. For let s and t be distinct states, and let
u and v be words over A which lead from s and t respectively to the unique
final state. Then u does not lead from t to the final state and v does not
lead from s to the final state (otherwise s and t would be equal). It follows
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that s and t remain distinct in the minimized automaton. �

If M is a non-empty trim FSA, we denote by Weld(M) the PDFA ob-
tained from it by welding. To compute Weld(M) efficiently, we first add
“backward arrows” to M . That is, for each arrow (s, x, t) in M , including
ǫ-arrows, we add the arrow (t, x′, s), where x′ represents a backwards version
of x. We also add ǫ-arrows to connect the initial states, and ǫ-arrows to con-
nect the final states. We then make use of a slightly modified version of the
coincidence procedure of Sims given in [10, 4.6]. When this stops we have a
welded automaton.

In practice, in the automata which we want to weld, backward arrows
are needed in any case for some algorithms which we need. The procedure
described in the preceding paragraph therefore fits our needs particularly
well.

For the welding procedure to be used in a general Knuth–Bendix situ-
ation, we need to show that any rules obtained are valid identities in the
corresponding monoid. We now show that if the monoid is a group (the
situation we are interested in), any rules obtained are valid identities.

3.6 Definition. [Definition] Let A be a finite inverse closed set of monoid
generators for a group G and, as before, denote images under the surjection
(A+)∗ → G by overscores. A rule automaton for G is a two-variable FSA
M = (S, A+ × A+, µ, F, S0) together with a function φM : S → G satisfying

1. F, S0 6= ∅.

2. If s is an initial or final state then φM(s) = 1G.

3. For any s, t ∈ S and (x, y) ∈ A+ × A+ with (s, (x, y), t) ∈ µ we have
φM(t) = x−1φM(s)y.

4. For any s, t ∈ S with (s, ǫ, t) ∈ µ we have φM(s) = φM(t). 2

3.7 Example. If A is a finite inverse closed set of monoid generators for a
group G and r = (u, v) ∈ A∗×A∗ satisfies u = v then, as in Figure 1, writing
r+ as a word (u1, v1) · · · (un, vn) ∈ (A+ × A+)∗, we obtain an (n + 1)-state
rule automaton M(r) = ({s0, . . . , sn}, A

+ × A+, µ, {s0}, {sn}) for G where
the arrows are given by

µ(si, (ui+1, vi+1)) = si+1, 0 ≤ i ≤ n − 1.

The function φ = φM(r) assigning group elements to states is defined induc-
tively by φ(s0) = 1G and φ(si) = ui

−1φ(si−1)vi for 1 ≤ i ≤ n. As usual, the
padding symbol is sent to 1G. The fact that u = v ensures that Condition 2
of 3.6Welding in our exampletheorem.3.6 is satisfied. 2
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3.8 Remark. For a two-variable FSA M which is a rule automaton, the
PDFA P obtained by applying the subset construction to the (non-empty) set
of initial states of M (and the sets that arise), is also a rule automaton for G,
where the map φP is induced from φM . The fact that this map is well-defined
follows from Conditions 2, 3 and 4 of 3.6Welding in our exampletheorem.3.6
and the fact that P is connected (by construction).

The same remark applies to the modified subset construction described
in Section 8. 2

3.9 Proposition. Let A be a finite inverse closed set of monoid generators
for a group G and suppose that M is a rule automaton for G. Then

1. Every pair (u, v) ∈ L(M) gives a valid identity u = v in G.

2. Weld(M) is a rule automaton for G.

Consequently every accepted rule (that is, an accepted pair (u, v) such that
u > v) of Weld(M) is a valid identity in G.

Proof: To prove 3.9.1, let r = (u, v) ∈ A∗×A∗ be an accepted rule of M and
write the padded word (u, v)+ as (u1, v1) · · · (un, vn). Then in the PDFA P
obtained from M (as in 3.8Welding in our exampletheorem.3.8), there exists
a sequence of states s0, . . . , sn of P , such that s0 is the initial state, sn a final
state, and, for each i, 1 ≤ i ≤ n, there is a arrow from si−1 to si labelled by
(ui, vi). Hence, from Condition 3 of 3.6Welding in our exampletheorem.3.6,
we have

φP (si) = ui
−1 · · ·u1

−1v1 · · · vi, for all i with 0 ≤ i ≤ n.

Condition 2 of 3.6Welding in our exampletheorem.3.6 tells us that φP (sn) =
e. It follows that u1 · · ·un = v1 · · · vn, and therefore the rule r is valid in G.

To prove 2, we need only show that when any of the operations described
just after 3.3A motivating exampletheorem.3.3 is applied to a rule automa-
ton M , we continue to have a rule automaton. This is obvious. The final
statement is now immediate. �

3.10 Corollary. Let A be a finite inverse closed set of monoid generators
for a group G and suppose that r1, . . . , rm ∈ A∗ × A∗ give valid identities
in G. Then any rule accepted by Weld(M(r1), . . . , M(rm)) also gives a valid
identity in G.
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Proof: For 1 ≤ k ≤ m let M(rk) be the rule automaton for G as in 3.7Weld-
ing in our exampletheorem.3.7. Then the disjoint union

⋃

{M(r1), . . . , M(rm)}
is also a rule automaton for G and so the result follows by 3.9. �

3.11 Remark. Given a rule automaton M for a group G, the map φM

may not be injective. In order to think of the matter constructively, we
specify the values of φM by representing them as words in the generators.
The undecidability of the word problem implies that the injectivity of φM

might be impossible to decide, though sometimes we are in a position to
know whether φM is injective or not. Even if φM is not injective, the rule
automaton M can still be useful for finding equalities in the group G. M may
not tell the whole truth, but it does tell nothing but the truth. However, if
φM(s) = φM(t) and we can somehow determine that this is the case, then we
can connect s to t by an ǫ-arrow, and we still have a rule automaton. If we
then weld, s and t will be identified. In this way, with sufficient investigation,
we can hope to make φM injective in particular cases, even though we know
that in general this is an impossible task. 2

3.12 Theorem. Let G be a group and let A be a finite set of generators,
closed under taking inverses. If G is determined by a regular set of short-lex-
reducing rules, then G is finitely presented.

Proof: Let M be the finite state automaton accepting the rules in our regu-
lar set. Then M can be given the structure of a rule automaton, associating
to each state of M a word over A. By 3.6Welding in our exampletheorem.3.6,
each arrow (x, y) : s → t in M gives rise to a relation of the form φM(t) = x−1φM(s)y.
There are only a finite number of these, and they can clearly be combined
to prove that ū = v̄ for any (u, v) accepted by M . It follows that this finite
set of relators is a defining set for G. �

4 Standard Knuth–Bendix.

[Section]
We recall the classical Knuth–Bendix procedure. Later we will explain

how our procedure differs from it. We continue to restrict to the short-lex case
and to groups. Suppose G is a group given by a finite set of generators and
relators. We define A to be the set of generators together with their formal
inverses. Our initial set of rules consists of all rules of the form (x.ι(x), ǫ) for
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x ∈ A, together with all rules of the form (r, ǫ), where r varies over the finite
set of defining relators for G.

After running the Knuth–Bendix procedure (which we are about to de-
scribe) for some time, we will still have a finite set R of rules. As always, we
assume that R satisfies Conditions 2.2.

To test for confluence of a finite set of rules, we need only do critical pair
analysis, as explained in 4.1, 4.2 and 4.3. The proof of this is as follows.

Suppose R is not confluent. Let w be the short-lex least word over A
for which there are two different chains of elementary reductions giving rise
to distinct irreducibles. Since w is shortest, it is easy to see that the first
elementary reductions in the two chains must overlap.

4.1 Critical pair analysis. A pair of rules (λ1, ρ1) and (λ2, ρ2) can overlap
in two possible ways. First, a non-empty word z may be a suffix of λ1 = s1z
and a prefix of λ2 = zs2 (or vice versa). Second, λ2 may be a subword of λ1

(or vice versa) and we write λ1 = s1λ2s2.
These cases are not disjoint. In particular, if one of s1 and s2 is trivial

in the second case, it can equally well be treated under the first case with z
equal either to λ1 or to λ2.

4.2 First case of critical pair analysis. In the first case, there are two
elementary reductions of u = s1zs2, namely to ρ1s2 and to s1ρ2. Further
reduction to irreducibles either gives the same irreducible for each of the two
computations, or else gives us distinct irreducibles v and w. From Condi-
tions 2.2 we deduce that v and w represent the same element of G. So, if v
and w are distinct, we augment R with the rule (v, w) if w < v or with (w, v)
if v < w. Clearly Conditions 2.2 are maintained.

Note that it is important to allow (λ1, ρ1) = (λ2, ρ2) in the case just
discussed, provided there is a z which is both a proper suffix and a proper
prefix of λ1 = λ2.

4.3 Second case of critical pair analysis. In the second case, there are
two elementary reductions of u = λ1 = s1λ2s2, namely to ρ1 and to s1ρ2s2.
If ρ1 and s1ρ2s2 reduce to distinct irreducibles v and w, we augment R with
either (v, w) or with (w, v), depending on whether v > w or w > v.

4.4 Omitting rules. In practice, it is important to remove rules which
are redundant, as well as to add rules which are essential. Omitting rules is
unnecessary in theory, provided that we have unlimited time and space at our
disposal. In practice, if we don’t omit rules, we are liable to be overwhelmed
by unnecessary computation. Moreover, nearly all programs in computa-
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tional group theory suffer from excessive demands for space. Indeed this is
one of the reasons for developing the algorithms and programs discussed in
this paper. So it is important to throw away information that is not needed
and doesn’t help.

For this reason, in Knuth–Bendix programs one looks from time to time
at each rule (λ, ρ) to see if it can be omitted. If a proper subword of the
left-hand side can be reduced, then we are in the situation of 4.3. If the two
reductions mentioned in 4.3 lead to the same irreducible, we omit (λ, ρ) from
the set of rules. If the two reductions lead to different irreducibles, then we
augment the set of rules as described in 4.3 and again omit (λ, ρ). We also
investigate whether the right-hand side ρ of a rule (λ, ρ) is reducible to ρ′. If
so, we can omit (λ, ρ) from R and replace it with the rule (λ, ρ′).

It is easy to see that such omissions do not change the Thue equivalence
classes. The process of analyzing critical pairs and augmenting or diminishing
the rule set while maintaining the conditions of 2.2 is called the Knuth–Bendix
Process.

If the Knuth–Bendix process terminates, every left-hand side having been
checked against every left-hand side in critical pair analysis without any new
rule being added, we know that we have a finite confluent system of rules.
Usually it does not terminate and it produces new rules ad infinitum.

4.5 Definition. [Definition] It is important that the process be fair. By this
we mean that if you fix your attention on two rules at any one time, then
either their left-hand sides must have already been, or must eventually be,
checked for overlaps; or one or both of them must eventually be omitted. If
the process is not fair, it might concentrate exclusively on one part of the
group: for example, in the case of the product of two groups, the process
might pay attention only to one of the factors. 2

4.6 The limit of the process. As the Knuth–Bendix process proceeds,
R changes and the set of R-reducibles steadily increases. This is obvious
when we add a rule as in 4.2 and 4.3. It is also easy to see when we omit
a rule—we need only check that if we omit (λ, ρ) from R as in 4.4, then λ
remains reducible.

Now let us fix a positive integer n. Eventually the set of reducibles of
length at most n stops increasing with time, and the set of irreducibles of
length at most n stops decreasing. Since the word problem is in general
insoluble, we will in general not know for sure at any one time or for any
fixed n whether the set of reducibles has stopped increasing. It may look
as though it has permanently stabilized and then suddenly start increasing
again.
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Once stabilized, we know by 4.5Omitting rulestheorem.4.5 that any two
reductions of a given word of length at most n will give the same irreducible
(otherwise a new rule would be added at some time, creating one of more
new reducibles of length at most n). It follows that if we take the limit of
the set of rules (the set of rules which appear at some time and are never
subsequently omitted), then we have a confluent set of rules. We deduce from
2.4Confluencetheorem.2.4 that, after stabilization of the set of reducibles of
length at most n, any irreducible of length at most n is in short-lex normal
form. In fact, at this point, the set of rules with left-hand side of length at
most n coincides with the set of U -minimal rules in U (defined in 2.6 and
2.8).

4.7 Knuth–Bendix pass. One procedure for carrying out the Knuth–
Bendix process is to divide the finite set S of rules found so far into three
disjoint subsets. The first subset, called Considered, is the set of rules whose
left-hand sides have been compared with each other and with themselves for
overlaps. The second set of rules, called Now, is the set of rules waiting to
be compared with those in Considered. The third set, called New, consists
of those rules most recently found. Here we only sketch the process. Fuller
details of our more elaborate form of Knuth–Bendix are provided in 5Our
version of Knuth–Bendixsection.5.

The Knuth–Bendix process proceeds in phases, each of which is called a
Knuth–Bendix pass. Each pass starts by looking at each rule in Considered

and seeing whether it can be deleted as in 4.4. Consideration of an existing
rule in Considered can lead to a new rule, in which case the new rule is added
to New.

Next, we look at each rule r in New to see if it is can be omitted or replaced
by a better rule, a process which we call minimization. The details of our
minimization procedure will be given in 5.7. If the minimization procedure
changes a rule, the old rule is either deleted or marked for future deletion.
The new rule is added to Now. Eventually New is emptied.

We then look at each rule in Now. Its left-hand side is compared with itself
and with all the left-hand sides of rules in Considered, looking for overlaps
as in 4.2. Any new rules found are added to New. Then r is moved into
Considered. Eventually Now becomes empty.

We then proceed to the next pass.

5 Our version of Knuth–Bendix.

[Section]
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In this section we consider a rewriting system which is the accepted lan-
guage of a rule automaton for some finitely presented group. We call the
automaton Rules. We describe a Knuth–Bendix type algorithm for such
a system. In light of the undecidability results mentioned in 2.13, our al-
gorithm does not provide a test for confluence. We can however use our
procedure together with other procedures which handle short-lex-automatic
groups, to prove confluence by an indirect route, provided the group is short-
lex-automatic. Details of the theory of how this is done can be found in [2].
The practical details are carried out in programs by Derek Holt—see [4].

We will introduce the concept of Aut-reduction, that is, reduction using a
two-variable automaton, which we call Rules, encoding our possibly infinite
set of rules. We prove some results about how reducibility may change with
time.

5.1 Properties of the rule automaton. The most important data struc-
ture is a small two-variable PDFA which we call Rules. Roughly speaking,
this accepts all the rules found so far. It has the following properties.

1. Rules is a trim rule automaton.

2. Rules has one initial state and one final state and they are equal.

3. Rules and its reversal Rev(Rules) are both partially deterministic.

4. Any arrow labelled (x, x), with either source or target the initial state,
has source equal to target. has source the initial state. If this condition
is not fulfilled, we can identify the source and target of the appropriate
(x, x)-arrows, and then weld. We will still have a rule automaton. Later
on (see Lemmas 7.2 and 7.3) we will show that (after any necessary
identifications and welding) we can omit such arrows without loss, and,
in fact, with a gain given by improved computational efficiency. Apart
from the passages proving these lemmas, we will assume from now on
that there are no arrows labelled (x, x) with source or target the initial
state of Rules.

The first three conditions imply that Rules is welded. Since Rules is
a rule automaton, Proposition 3.9 shows that each accepted pair (u, v) ∈
L(Rules) gives a valid identity ū = v̄ in G.

5.2 The automaton SL2. The automaton Rules may accept pairs (u, v)
such that u is shorter than v. We cannot consider such a pair as a rule and
so we want to exclude it. To this end we introduce the automaton SL2.
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This is a five state automaton, depicted in Figure 3, which accepts pairs
(u, v) ∈ A∗ × A∗, such that u and v have no common prefix, u is short-lex-
greater than v and |v| ≤ |u| ≤ |v| + 2. By combining SL2 with Rules, we
obtain a regular set of rules Set(Rules), which is possibly infinite, namely
L(Rules) ∩ L(SL2). An automaton accepting this set can be constructed
as follows. Its states are pairs (s, t), where s is a state of Rules and t is a
state of SL2. Its unique initial state is the pair of initial states in Rules and
SL2. A final state is any state (s, t) such that both s and t are final states.
Its arrows are labelled by (x, y), where x ∈ A and y ∈ A+. Such an arrow
corresponds to a pair of arrows, each labelled with (x, y), the first from Rules
and the second from SL2.
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Figure 3. The automaton SL2. Solid dots represent final states. Roman letters

represent arbitrary letters from the alphabet A and the labels on the arrows

indicate multiple arrows. For example, from state 2 to itself there is one arrow

for each pair in A × A.

5.3 Restrictions on relative lengths. The following discussion is closely
connected with 2.9Recursive sets of rulestheorem.2.9. The restriction |u| ≤
|v| + 2 needs some explanation. The point is that if we have a rule with
|u| > |v|+ 2, then we have an equality ū = v̄ in G. We write u = u′x, where
x ∈ A. The formal inverse X of x is also an element of A. We therefore have
a pair of words (u′, vX) which represent equal elements in G. If our set of
rules were to contain such a rule, then u = u′x would reduce to vXx, and
this reduces to v, making the rule (u, v) redundant. This leads to an obvious
technique for transforming any rule we find into a new and better rule with
|v| ≤ |u| ≤ |v| + 2. Since we take this into account when constructing the
automaton Rules, we are justified in making the restriction.

This analysis can be carried further. Let u = u1 · · ·ur+2 = u′ur+2 = u1u
′′
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and let v = v1 · · · vr. If u1 > v1, then the rule (u, v) can be replaced by the
better rule (u′, vu−1

r+2). If u2 > u−1
1 , then (u, v) can be replaced by (u′′, u−1

1 v).
We do in fact carry out these steps when installing new rules. The extra
information could have been included in the FSA SL2. However, it seems
that this would involve more complicated coding at various points, probably
without any gain in efficiency.

We could consider the steps just described as an attempt to force our
structures to define a set of rules which conforms to known properties (see
2.9Recursive sets of rulestheorem.2.9) of the set of U -minimal rules (see 2.6
for the definition of U). The most important reason for insisting on these
additional restrictions on our rules is to keep down the size of our data
structures.

5.4 The basic structures. The basic structures used in our procedure
are:

1. A two-variable automaton Rules satisfying the conditions laid down in
5.1. When we want to specify that we are working with the Rules au-
tomaton during the nth Knuth–Bendix pass (see 4.7 for the definition
of a Knuth–Bendix pass), we will use the notation Rules[n]. We ex-
tract explicit rules from Rules[n] by taking elements of the intersection
Set(Rules[n]) = L(Rules[n]) ∩ L(SL2). The two-variable automaton
SL2 was defined in Section 5.2 and is depicted in Figure 3.

2. A finite set S of rules, which is the disjoint union of several subsets of
rules : Considered, Now, New and Delete. One point of the separate
subsets is to avoid constantly doing the same critical pair analyses.
Another point is to ensure that our Knuth–Bendix process is fair (see
4.5Omitting rulestheorem.4.5). The reason for holding some rules in a
Delete list, rather than delete them immediately, is to make reduction
more efficient. This will be explained further in 5.8.3.

S will continually change, while Rules is constant during a Knuth–
Bendix pass. We change Rules at the end of each Knuth–Bendix pass.
We will perform the Knuth–Bendix process, using the rules in S for
critical pair analysis, as described in 4.1.

3. Considered is a subset of S such that each rule has already been com-
pared with each other rule in Considered, including with itself, to see
whether left-hand sides overlap. The consequent critical pair analysis
has also been carried out for pairs of rules in Considered. Such rules do
not need to be compared with each other again.
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4. Now is a subset of S (empty at the beginning of each Knuth–Bendix
pass) containing rules which we plan to use during this pass to compare
for overlaps with the rules in Considered, as in 4.2. These rules are
minimal for the current pass (see 5.7) and so should not be minimized
again.

5. New is a subset of S containing new rules which have been found during
the current pass, other than those which are output by the minimization
routine (see 5.7 for the meaning of “minimization”). Rules which are
output by the minimization routine are added to Now.

6. Delete is a subset of S containing rules which are to be deleted at the
end of this pass.

7. The two-variable automaton WDiff contains all the states and arrows
of Rules[n], and possibly other states and arrows. It satisfies the con-
ditions of 5.1. This automaton is used to accumulate appropriate new
rules which are output by the minimization routine. As rules are con-
sidered during the Knuth–Bendix pass, states and arrows of WDiff are
marked as needed. At the end of the pass, other states and arrows are
removed, and WDiff becomes the new Rules automaton Rules[n + 1].

8. A PDFA P (Rules) formed from Rules by a certain subset construc-
tion. This automaton accepts words which are Aut-reducible, that is,
words which contain a left-hand side of a rule in Set(Rules). The au-
tomaton is used as part of our rapid reduction procedure (see 7Fast
reductionsection.7). More details of P (Rules) are provided in 7.5.

9. A PDFA Q(Rules) which accepts the reversals of left-hand sides of rules
in Set(Rules). This is also formed from Rules by a subset construction
and is also used for rapid reduction. More details of Q(Rules) are
provided in 7.9.

5.5 Initial arrangements. Before describing the main Knuth–Bendix pro-
cess, we explain how the data structures are initially set up. Let R be
the original set of defining relations together with special rules of the form
(x.ι(x), ǫ) which make the formal inverse ι(x) into the actual inverse of x.

We rewrite each relation of R in the form of a relator, which we cyclically
reduce in the free group. We assume that each relator has the form l.ι(r),
where l and r are elements of A∗ and (l, r) is accepted by SL2.

For each rule (l, r), including the special rules (x.ι(x), ǫ), we form a rule
automaton, as explained in 3.7. These automata are then welded together
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to form the two-variable rule automaton WDiff satisfying the conditions of
5.1. Each state and arrow of WDiff is marked as needed. Each of these rules
is inserted into New. Considered, Now and Delete are initially empty. Set
Rules[1] = WDiff.

5.6 The main loop—a Knuth–Bendix pass. We now describe the pro-
cedure followed during the course of a single Knuth–Bendix pass.

A significant proportion of the time in a Knuth–Bendix pass is spent in
applying a procedure which we term minimization. Each rule encountered
during the pass is input (often after a delay) to this procedure and the output
is called a minimal rule. The details of this process are given in sections 5.7
and 5.8.

1. At the beginning of a Knuth–Bendix pass, Now is empty. If n >
0, save space by deleting previously defined automata P (Rules[n]),
Q(Rules[n]) and Rules[n]. Increment n. The integer n records which
Knuth–Bendix pass we are currently working on.

2. [Step] For each rule (λ, ρ) in Considered, minimize (λ, ρ) as in 5.7 and
handle the output rule (λ1, ρ1) as in 5.8. This may affect S and WDiff .

3. [Step] For each rule (λ, ρ) in New, minimize (λ, ρ) as in 5.7 and handle
the output as in 5.8. This may affect S and WDiff .

Since rules added to New during minimization are always strictly smaller
than the rule being minimized (see 5.10), it follows that the process of
examining rules in New does not continue indefinitely. As a result, we
can be sure that our process is fair (see 4.5).

4. For each rule (λ, ρ) in Now:

(a) Delete the rule from Now and add it to Considered.

(b) [Step] For each rule (λ1, ρ1) in Considered:

Look for overlaps between λ and λ1. That is we have
to find each suffix of λ which is a prefix of λ1 and each
suffix of λ1 which is a prefix of λ. Then Aut-reduce in two
different ways as in 4.2, obtaining a pair of words (u, v)
with u ≥ v. (Roughly speaking, Aut-reduction means the
use of rules in Set(Rules). More precision is provided in
5.10.) If u > v, (u, v) is inserted into New, unless it is
already in S.
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Note that we may have to allow λ = λ1 in order to deal
with the case where two different rules have the same left-
hand side. In this case, both the prefix and suffix of both
left-hand sides is equal to λ = λ1.

5. WDiff was possibly affected in 5.6.2The main loop—a Knuth–Bendix
passItem.26 and 5.6.3The main loop—a Knuth–Bendix passItem.27.
With WDiff in its present form, delete from WDiff all arrows and
states which are not marked as needed. Copy WDiff into Rules[n + 1]
and mark all arrows and states of WDiff as not needed.

6. Delete the rules in Delete.

7. This ends the description of a Knuth–Bendix pass. Now we decide
whether to terminate the Knuth–Bendix process. Since we know of
no procedure to decide confluence of an infinite system of rules (in-
deed, it is probably undecidable), this decision is taken on heuristic
grounds. In our context, a decision to terminate could be taken sim-
ply on the grounds that WDiff and Rules[n] have the same states and
arrows. In other words, no new word-differences or arrows between
word-differences have been found or deleted during this pass. If the
Knuth–Bendix process is not terminated, go to 5.6.1.

5.7 Definition. [Definition] We now provide the details of the minimization
routine. This processes a rule so as to create from it a minimal rule (see
2.8Recursive sets of rulestheorem.2.8), where, roughly speaking, minimality
is defined using the current set of rules. Since the set of rules is changing, this
is a bit difficult to pin down. So instead we make the following definition,
which is more precise, though the underlying concept is the same. Let (u, v) ∈
A∗ × A∗ and let u = u1 · · ·up and v = v1 · · · vq, where ui, vj ∈ A. We say
that (u, v) is a minimal rule if u 6= v, ū = v̄ in G and the following procedure
does not change (u, v). The procedure is called the minimization routine.
We always start the minimization routine with u > v, though this condition
is not necessarily maintained as u and v change during the routine. Here the
meaning of a “minimal rule” changes with time: a rule may be minimal at
one time and no longer minimal at a later time.

1. Aut-reduce (that is, reduce using the rules of Rules) the maximal
proper prefix u1 · · ·up−1 of u obtaining u′. Reduction may result in
rules being added to New as described in 7.14.5. If u 6= u′up, change u
to u′up and go to Step 5.7.3.
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2. Aut-reduce the maximal proper suffix u2 · · ·up of u obtaining u′′. Re-
duction may result in new rules being added to New. Replace u by
u1u

′′.

3. If u has changed since the original input to the minimization routine,
then Aut-reduce u as explained in 7.14. This may result in rules being
added to New as described in 7.14.5.

4. [Step] [Step] Aut-reduce v.

5. If v > u, interchange u and v.

6. If (a) p > q + 2 or (b) if p = q + 2, q > 0 and u1 > v1 or (c) if p = 2,
q = 0 and u1 > ι(u2), replace (u, v) by (u1 · · ·up−1, v1 · · · vqι(up)) and
repeat this step until we can go no further.

7. If p = q + 2 and u2 > ι(u1), replace (u, v) by (u2 · · ·up, ι(u1)v1 · · · vq).

8. If q > 0 and u1 = v1, cancel the first letter from u and from v and
repeat this step.

9. If q > 0 and up = vq, cancel the last letter from u and from v and
repeat this step.

10. If (u, v) has changed since the last time Step 5.7.4 was executed, go to
Step 5.7.4.

11. Output (u, v) and stop. 2

Note that the output could be (ǫ, ǫ), which means that the rule is redun-
dant. Otherwise we have output (u, v) with u > v. Note that the minimiza-
tion procedure keeps on decreasing (u, v) in the ordering given by using first
the short-lex-ordering on u and then, in case of a tie, the short-lex-ordering
on v. Since this is a well-ordering, the minimization procedure has to stop.

5.8 Handling minimization output. Suppose the input to minimization
is (λ, ρ) and its output is (λ1, ρ1).

1. If (λ1, ρ1) 6= (ǫ, ǫ), incorporate (by welding) (λ1, ρ1) into the language
accepted by WDiff . Insert (λ1, ρ1) into Now if it was not already in
Now or Considered. Remove it from New, if it was there previously.

2. If some proper subword of λ is Aut-reducible, then this will be dis-
covered during the first few steps of minimization. ((λ1, ρ1) = (ǫ, ǫ)
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turns out to be a special case of this, as we will see in 5.11.1.) In this
case, delete (λ, ρ) from S immediately the minimization procedure is
otherwise complete.

3. If, at the time of minimization, all proper subwords of λ were Aut-
irreducible and if (λ, ρ) was not minimal, move (λ, ρ) to the Delete list.
The reason for this possibly surprising policy of not deleting immedi-
ately is that further reduction during this pass may once again produce
λ as a left-hand side by the methods of 7 and 7.6. We want to avoid
the work involved in finding the right-hand side by the method which
will be explained in 7.13. For this, we need to have a rule in S with
left-hand side equal to λ—see 7.14.5.

5.9 Details on the structure of WDiff . At the beginning of Step 5.6.5,
each state s of WDiff is associated to a word ws ∈ A∗ which is irreducible
with respect to Set(Rules[n]). WDiff is a rule automaton: the rule automaton
structure is given by associating the element ws ∈ G to the state s. Whenever
a minimal rule r is encountered during the nth pass, it is adjoined to the
accepted language of WDiff by welding and the corresponding states and
arrows are marked as needed. State labels are calculated as and when new
states and arrows are added to WDiff.

At the end of the nth Knuth–Bendix pass, WDiff is an automaton which
represents the word-differences and arrows between them encountered dur-
ing that pass. At this stage the word attached to each state is irreducible
with respect to the rules in Set(Rules[n]) but not necessarily with respect to
the rules implicitly contained in WDiff . Before starting the next pass, we
Aut-reduce the state labels of WDiff with respect to Set(WDiff). If WDiff
now contains distinct states labelled by the same word we connect them by
epsilon arrows and replace WDiff by Weld(WDiff). We then repeat this
procedure until all states are labelled by distinct words which are irreducible
with respect to Set(WDiff). If during this procedure a state or arrow marked
as needed is identified with another which may or may not be marked as
needed, the resulting state or arrow is marked as needed.

5.10 Aut-reduction and inserting rules. Given a word w, we look for
an Aut-reducible subword λ such that all proper subwords of λ are Aut-
irreducible, by looking in Set(Rules). Later ( 7Fast reductionsection.7) we
will describe how to do this quickly, but, at the moment, the reader can
just think of a non-deterministic search in the automaton giving the short-
lex rules recognized by Rules. Having found a reducible subword λ of w,
with no reducible subword, we do not automatically use the corresponding
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right-hand side ρ, found from the exploration of Rules, because this naive
approach is computationally inefficient. Instead we look in S to see if there
is a rule (λ, ρ). If there is such a rule, then we can find it quickly given λ,
and we proceed with our reduction, replacing the subword λ in w with ρ.

It may however turn out that we can find an Aut-reducible subword λ of
w, with no Aut-reducible subwords, and yet there is no rule of the form (λ, ρ)
in S. In this case, we have to spend time finding such a rule in Set(Rules).
Once found, we immediately insert it into S, otherwise the logic of the Knuth–
Bendix procedure can go wrong.

In this way, reduction of a single word can result in the insertion of several
new rules into S.

It follows from the above description that the Aut-reducibility of a word
w depends only on Rules. Since Rules does not change during a Knuth–
Bendix pass, exactly the same subset of A∗ will be Aut-reducible throughout
such a pass. However, because we may use rules in the changing set S, the
result of Aut-reduction may change during a pass.

Another, more conventional, source of rules to insert into S come from
critical pair analysis in 5.6.4.bThe main loop—a Knuth–Bendix passItem.30.

Minimization also results in rules being added to S, both directly, as the
output of the minimization procedure, but also indirectly because minimiza-
tion uses reduction, and, as we will see in 7.13. reduction can add rules to S.
It is important to note that any rules added to S during the minimization of
a rule (λ, ρ) are strictly smaller than (λ, ρ), if we order such pairs by using λ
first and then ρ in case of a tie. We used this fact when discussing 5.6.3The
main loop—a Knuth–Bendix passItem.27.

5.11 Deleting rules. Deletion of rules happens only at the end of each
minimization step, and at the end of each pass, when rules marked for dele-
tion are actually deleted. During a Knuth–Bendix pass, deletion does not
occur after the beginning of Step 5.6.4. Suppose that the output from mini-
mization of (λ, ρ) ∈ S is (λ1, ρ1).

1. [Case] If every proper subword of λ is Aut-irreducible, then λ1 is a non-
trivial subword of λ. This follows by going through the successive steps
of minimization ( 5.7The main loop—a Knuth–Bendix passtheorem.5.7).
These change λ and ρ, while maintaining the inequality λ > ρ. In par-
ticular λ1 > ρ1, so that λ1 6= ǫ. If (λ1, ρ1) 6= (λ, ρ), then we delete (λ, ρ)
after a delay. The mechanism is to mark it for deletion by moving it
to the Delete list and actually delete it only at the end of the current
Knuth–Bendix pass (Step 5.6.6).
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2. [Case] If some proper subword of λ is reducible, then (λ, ρ) is imme-
diately deleted from S at Step 5.8.2 at the end of the minimization
procedure. (Aut-reducibility of some proper subword of λ is discovered
at Step 5.7.1 or 5.7.2.)

5.12 Lemma. Suppose that, for some n ∈ N, there is a rule (α, β) ∈ S

during the n-th Knuth–Bendix pass, before the beginning of Step 5.6.4. Then
there is a non-trivial subword λ of α such that some rule (λ, ρ) is output from
some instance of the minimization procedure during the n-th pass. If λ = α,
then ρ ≤ β. The rule (λ, ρ) is a rule in S at the beginning of the (n + 1)-st
pass and is accepted by Rules[n + 1].

Proof: By examining 5.6, we see that (α, β) must be the input to the min-
imization routine at some time during the n-th pass. (We check the four
possibilities, namely that it is in Considered, Now, New or Delete, one by one.
If it is in Delete, it must have been the input to the minimization procedure
at some earlier stage during the n-th pass.)

We first deal with the case where some proper subword of α is Aut-
reducible during the n-th pass. During the first three steps of minimization
( 5.7The main loop—a Knuth–Bendix passtheorem.5.7), an Aut-reducible
subword λ of α is found, with the property that all the proper subwords of λ
are Aut-irreducible. Minimization then either finds a rule of the form (λ, ρ)
already in S, or such a rule is added to New by the reduction process—see
7.14.5. In any case, it will either be minimized during this pass, or it has
already been minimized (and possibly moved to the Delete list.

At the moment when (λ, ρ) is minimized during the n-th pass, we must
be in Case 5.11.1. So the output (λ1, ρ1) from the minimization procedure
with input (λ, ρ) gives the required rule. λ1 is a subword of λ and λ is a
proper subword of α.

Alternatively, all proper subwords of α are Aut-irreducible during the n-
th pass, in which case we set (λ, ρ) to be the output from minimization of
(α, β). By 5.11.1, λ is a non-trivial subword of α. If λ = α, then ρ ≤ β. �

5.13 Lemma. Suppose that, for some n ∈ N, there is a rule (α, β) ∈ S

during the n-th Knuth–Bendix pass, after the beginning of Step 5.6.4. Then
there is a non-trivial subword λ of α such that some rule (λ, ρ) is output from
some instance of the minimization procedure during the (n + 1)-st pass. If
λ = α, then ρ ≤ β.
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Proof: If (α, β) is in the Delete list, then it must have been input to the mini-
mization procedure at some earlier time during the n-th pass. By 5.11.2Delet-
ing rulesItem.49, every proper subword of α must have been found to be
Aut-irreducible during the n-th pass. Let (α′, β ′) be the output from mini-
mization. By 5.11.1Deleting rulesItem.48, α′ is a non-trivial subword of α,
and, if α′ = α, then β ′ < β. Now (α′, β ′) is in S at the beginning of the
(n + 1)-st pass. We apply 5.12Deleting rulestheorem.5.12 to (α′, β ′) at the
(n + 1)-st pass.

If (α, β) is not on the Delete list, then it must be in S at the beginning of
the (n+1)-st pass. Once again, we can apply 5.12Deleting rulestheorem.5.12.

�

The following result is often applied with w = α.

5.14 Proposition. Let w ∈ A∗ be a word which contains the left-hand side
α of a rule (α, β) input to the minimization routine during the n-th Knuth–
Bendix pass. Then, for m ≥ n, w contains the left-hand side of a rule which
is input to the minimization procedure during the m-th Knuth–Bendix pass.
Moreover w is Aut-reducible for m > n.

Proof: We assume inductively that if m > n then w contains a subword α,
such that a rule of the form (α, β) is input to the minimization procedure
during the (m − 1)-st pass. Since minimization happens only before the
beginning of Step 5.6.4, 5.12Deleting rulestheorem.5.12 gives a rule (λ, ρ),
such that λ is a non-trivial subword of α. Moreover, (λ, ρ) is minimal during
the (m− 1)-st pass and is contained in S at the beginning of the m-th pass.
Therefore (λ, ρ) is input to the minimization procedure during the m-th pass,
as required.

The rule (λ, ρ) is welded into WDiff during the (m − 1)-st pass and is
therefore accepted by Rules[m]. It follows that w is Aut-reducible during the
m-th pass. Inductively this is true for all m > n. �

6 Correctness of our Knuth–Bendix Proce-

dure

In this section we will prove that the procedure set out in Section 5 does what
we expect it to do. One hazard in programming Knuth–Bendix is that some
seemingly clever manoeuvre changes the Thue equivalence relation. The key
result here is 6.5Correctness of our Knuth–Bendix Proceduretheorem.6.5,
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which carefully analyzes the effect of our various operations on Thue equiv-
alence. In fact it provides more precise control, enabling other hazards, such
as continual deletion and re-insertion of the same rule, to be avoided. It is
also the most important step in proving our main result, 6.13Correctness
of our Knuth–Bendix Proceduretheorem.6.13. This says that if our program
is applied to a group defined by a regular set of minimal rules, then, given
sufficient time and space, a finite state automaton accepting exactly these
rules will eventually be constructed by our program, after which the program
will loop indefinitely, repeatedly reproducing the same finite state automaton
(but requiring a steadily increasing amount of space for redundant informa-
tion).

6.1 Definition. [Definition] For a discrete time t, we denote by S(t) the
rules in S at time t in our Knuth—Bendix procedure. We take t to be the
number of elementary steps since the start of the program, assuming the
program is expressed in some sort of pseudocode. Any other similar measure
of time would do equally well. 2

6.2 Definition. A quintuple (t, s1, s2, λ, ρ), where t is a time, and s1, s2, λ
and ρ are elements of A∗, is called an elementary S(t)-reduction u →S(t) v
from u to v if (λ, ρ) is a rule in S(t), u = s1λs2 and v = s1ρs2. We call (λ, ρ)
the rule associated to the elementary reduction. 2

We now define the main technical tool that we will use in this section.

6.3 Definition. Let t ≥ 0. By a time-t Thue path between two words w1

and w2, we mean a finite sequence of elementary S(t)-reductions and inverses
of elementary S(t)-reductions connecting w1 to w2, such that none of the
rules associated to the elementary reductions is in Delete at time t. We talk
of the words which are the source or target of these elementary reductions
as nodes. The path is considered as having a direction from w1 to w2. The
elementary reductions in our path will be consistent with this direction and
will be called rightward elementary reductions. The inverses of elementary
reductions in our path will be in the opposite direction and will be called
leftward elementary reductions. 2

All our insertions and deletions of rules have been organized so that the
following result holds.

6.4 Proposition. Let 〈A/R〉 be the finite presentation of a group G at the
start of the Knuth–Bendix process. Then the group defined by subjecting the
free group generated by A to all relations of the form λ = ρ as (λ, ρ) varies
over S(t) is at all times t isomorphic to G with the isomorphism being induced
by the unchanging map A → G.
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6.5 Proposition. Let t ≥ 0 and suppose that we have a Thue path from u
to v in S(t) with maximum node w. Then for any time s ≥ t, there exists a
time-s Thue path from u to v with each node less than or equal to w.

Proof: Note that, given a Thue path, we may assume, if we wish, that no
node is repeated, because we could shorten the path to avoid repetition. We
show by induction on s that, if at some time t ≤ s there is a Thue path
between words u and v with all nodes no bigger than max(u, v), then there
is also such a Thue path at time s. So suppose that we have proved this
statement for all times s′ < s.

We first consider the special case where r0 = (u, v) is a rule being input
to the minimization routine (see Definition 5.7) at time t, and s is the time
at the end of the subsequent invocation of the minimization handling routine
5.8. There is a Thue path (of length one) from u to v at time t. By induction
we are assuming that at time s − 1 there is a Thue path from u to v with
maximum node u. We must show that there is such a Thue path at time s.

One possibility is that r0 is already minimal, in which case there is a
Thue path of length one from u to v, both at the beginning and at the end
of minimization. So we assume that r0 is not minimal. Then the last step
in 5.8 is that either r0 is placed in the Delete list or else r0 is simply deleted
immediately.

What we need to show therefore is that the Thue path p from u to v, which
exists at time s−1, does not use an elementary reduction coming from r0. It
is part of our inductive hypothesis that the largest node occurring on p is u,
and we have already pointed out that we can assume there is no repetition
of nodes along p.

Each step of minimization takes an input pair of words and outputs a
possibly different pair of words which is used as the input to the next step.
The initial input is r0 = (u, v) and the final output is either rn = (ǫ, ǫ) or
a minimal rule rn = (u′, v′). Let r0, r1, r2, . . . , rn be the sequence of such
inputs and outputs in the minimization of (u, v). By considering each step
of minimization in turn, we will show that for each i, 1 ≤ i ≤ n, if there is a
time-s Thue path between the two sides of ri with maximum node no bigger
than either side of ri, then there is a time-s Thue path between the two
sides of ri−1 with maximum node no bigger than either side of ri−1. We then
obtain the desired time-s Thue path between u and v by using descending
induction on i. This is a subsidiary induction to our main induction on s.
The base case i = n is true, since at time s the rule rn has been installed in
S.

To make the task of checking the proof easier, we use the same numbering
and notation here as in Definition 5.7.
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1. At the end of the current step, there is a sequence of elementary reduc-
tions from u1 . . . up−1 to u′, but this may not constitute a Thue path
since some of the associated rules may be in Delete. However, any such
rule (λ, ρ) in Delete will, at some time s′ < s, have been in S but not in
Delete. Therefore, by our induction on s, at time s− 1 there is a Thue
path p from λ to ρ with maximum node λ. Now λ ≤ u1 . . . up−1 < u
and so λ is smaller than the left-hand side of r0. Therefore r0 cannot be
used in p. So p continues to be a Thue path at time s. This completes
the downward induction step on i in this case.

2. This step is analogous to the previous step.

3. The sequence of Aut-reductions of u to the current left-hand side does
not use the rule r0 and so the required Thue path exists by induction
on s.

4. Let v′ be the Aut-reduction of v. Immediately after this step there is a
Thue path from v to v′ with maximum node v which does not use r0.
By the induction hypothesis on s, there is such a Thue path at time
s − 1. Since it does not use r0, it continues to be a Thue path at time
s. Hence a time-s Thue path from u to v′ with maximum node either
u or v′ yields a time-s Thue path from u to v with maximum node u
or v. (Recall that, because of previous steps which may shorten u, u
may be smaller than v at this point.) This completes the downward
induction step on i in this case.

5. If there is a Thue path from u to v with maximum node either u or v,
then the reverse of this path is a Thue path from v to u.

6. Suppose that the input to this step is (u′x, v). Then the output is
either the same as the input or is equal to (u′, v.ι(x)), with u′ > v.ι(x).
In the first case there is nothing to prove. In the latter case, we have
by our downward induction on i a time-s Thue path from u′ to v.ι(x)
with maximum node u′. This will give a time-s Thue path from u′x to
v.ι(x)x with maximum node u′x. Furthermore, at the beginning of the
Knuth–Bendix process, there was a Thue path of length one from ι(x)x
to ǫ with maximum node equal to ι(x)x. Therefore, by our induction
hypothesis, there is such a path at time s − 1, just before possible
deletion of r0. Now u′x > v.ι(x)x ≥ ι(x)x. So the time-(s − 1) Thue
path from ι(x)x to ǫ cannot use r0, and it remains a Thue path at time
s. It follows that there is a Thue path from u′x to v with maximum
node u′x at time s.
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7. This step is analogous to the previous step.

8. If the input to this step is (xu′, xv′) then the output is (u′, v′). A time-s
Thue path from u′ to v′ with maximum node u′ yields a time-s Thue
path from xu′ to xv′ with maximum node xu′.

9. This step is analogous to the previous step.

This completes the induction on s for the special case where r0 = (u, v) is
a rule being input to the minimization routine (see Definition 5.7) at time t,
and s is the time at the end of the subsequent invocation of the minimization
handling routine 5.8. Now consider the general case, again assuming the
induction statement true at time s − 1. The only reason why a Thue path
at time s − 1 between u and v will not work at time s is if some elementary
reduction used in this path has an associated rule (λ, ρ) in S(s− 1) which is
deleted at time s. Since deletion only takes place as a result of minimization,
we know that what must be happening is that we are right at the end of
minimizing (λ, ρ), with minimization completing exactly at time s. But the
special case already proved shows that there is a time-s Thue path between λ
and ρ with no node bigger than λ. Therefore the time-(s−1) Thue path can
always be replaced by a time-s Thue path without increasing the maximum
node. �

6.6 Lemma. If a word is S(t)-reducible, it is S(s)-reducible for all s > t.

Proof: If u is S(t)-reducible, there is an elementary S(t)-reduction u →S(t) v.
This means that v < u. By Proposition 6.5, for each time s > t, there is a
Thue path from u to v with maximum node u. The first elementary reduction
in this path has the form u → w at time s. This proves the result. �

6.7 Lemma. At any time t, S(t) is a list of rules which contains no du-
plicates. If a rule is deleted from S, it will never be re-inserted. (Here we
mean actual deletion, not just placing the rule on the Delete list for future
deletion.)

Proof: The first statement follows by looking through 5.6 and checking where
insertions of rules take place. We always take care not to insert a rule a second
time if it is already present.

Let (α, β) be a rule which is deleted at time s. We assume by contradiction
that it is re-inserted at a later time t. We choose m and n so that time s
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occurs during the m-th Knuth–Bendix pass and time t during the n-th. Then
m ≤ n.

We note that all proper subwords of α are Aut-irreducible during the
m-th pass. For otherwise 5.14Deleting rulestheorem.5.14 shows that α is
Aut-reducible during the n-th pass. But no rule with left-hand side α could
then be introduced during the n-th pass, a contradiction.

It follows that we are in Case 5.11.1. Therefore (α, β) was input to the
minimization procedure during the m-th pass and was then moved to Delete.
The actual deletion took place at the end of the m-th pass. It follows that
n > m. The output from the minimization procedure was a rule (λ, ρ), where
λ is a subword of α. The rule (λ, ρ) is welded into WDiff and is accepted
by Rules[m + 1]. As in the preceding paragraph, we see that λ cannot be
a proper subword of α, and so λ = α and ρ < β. We write βm−1 = β and
βm = ρ.

Proceeding in this way, we see that between times s and t, rules of the
form (α, βi−1) (m ≤ i ≤ n) are input to the minimization procedure during
the i-th Knuth–Bendix pass, with output (α, βi) where βi ≤ βi−1 and βm <
βm−1. The rule (α, βi) is produced during the i-th Knuth–Bendix pass and
is accepted by Rules[i + 1] for m ≤ i ≤ n.

It follows that α is Aut-reducible during the n-th pass. Therefore no rule
with left-hand side α could be introduced into S as a result of critical pair
analysis. We see from 5.10 that any rule with left-hand side equal to α which
is introduced into S as a result of Aut-reduction during the n-th pass must
be of the form (α, γ), where γ ≤ βn < β. This completes the proof of the
contradiction. �

6.8 Definition. We say that a word u is permanently irreducible if there
are arbitrarily large times t for which u is S(t)-irreducible. By Lemma 6.6
this is equivalent to saying that u is S(t)-irreducible at all times t ≥ 0. A
rule (λ, ρ) in S is said to be permanent if ρ and every proper subword of λ is
permanently irreducible. 2

6.9 Lemma. A permanently irreducible word is permanently Aut-irreducible.
A permanent rule of S is never deleted. A permanent rule is accepted by
Rules[n + 1] provided it is present in S when the n-th Knuth–Bendix pass
begins; it is then accepted by Rules[m] for all m > n.

Proof: Let u be permanently irreducible. Aut-reduction of u can only take
place if, immediately after the Aut-reduction, u is S-reducible, conceivably
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as a result of some rule being added to S during the Aut-reduction. But this
is impossible by hypothesis.

A rule (λ, ρ) is deleted only as a result of being the input to the minimiza-
tion procedure. By Lemma 6.5, there would have to be a Thue path from
λ to ρ with largest node λ. The first elementary reduction must therefore
be rightward (see Definition 6.3) λ →S(t) µ. We are assuming that (λ, ρ)
is a permanent rule of S. Since every proper subword of λ is permanently
irreducible, it is permanently Aut-irreducible, as we have just seen. So this
first elementary reduction must be associated to a rule (λ, µ).

Either µ = ρ, in which case the rule (λ, ρ) has not been deleted, or
else, when (λ, ρ) was input to the minimization routine, ρ was Aut-reducible.
However, it is permanently Aut-irreducible which is a contradiction.

It follows that if (λ, ρ) is present in S at the start of the n-th Knuth–
Bendix pass, it will be sewn into WDiff at some point during the n-th Knuth-
Bendix pass and accepted by Rules[n+1]. Since (λ, ρ) is a permanent rule, it
will subsequently remain in S and will be presented for minimization during
each pass. The same rule will be output and used to mark states and arrows of
WDiff as needed. Therefore, (λ, ρ) is accepted by Rules[m] for each m ≥ n.

�

6.10 Lemma. Let u be a fixed word. Then there is a t0 depending on u,
such that, for all t ≥ t0, each elementary S(t)-reduction of u is associated to
a permanent rule. If all proper subwords of u are permanently irreducible,
then, for t ≥ t0, there is at most one elementary reduction of u, and this is
associated to a permanent rule (u, w).

Proof: There are only finitely many subwords of u. So we need only prove
that, given any word v, there is a t0 such that for all t ≥ t0, each rule in
S(t) with left-hand side v is permanent. If there is a proper subword of v
which is not permanently irreducible, then at some time s0 it becomes S(s0)-
reducible. By Lemma 6.6, it is S(s)-reducible for s ≥ s0. By Lemma 5.14,
it becomes Aut-reducible at the beginning of the next Knuth–Bendix pass
after s0. During this pass all rules with left-hand side v will be deleted.
Also, since this proper subword of v is now permanently Aut-reducible, no
rule with left-hand side equal to v will ever be inserted subsequently. In this
case, the result claimed about v is vacuously true.

So we assume that each proper subword of v is permanently irreducible,
and that v itself is S-reducible at some time t. A rule (v, w) will be permanent
if w is permanently irreducible. Otherwise it will disappear as a result of
minimization and, by Lemma 6.7, never reappear. There cannot be two
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permanent rules (v, w1) and (v, w2) with w1 > w2. For critical pair analysis
would produce a new rule (w1, w2) during the next Knuth–Bendix pass, and
so w1 would not be permanently irreducible. �

6.11 Theorem. Let u be a fixed word in A∗ and let v be the smallest element
in its Thue congruence class. Then, for large enough times, there is a chain
of elementary reductions from u to v each associated to a permanent rule.
After enough time has elapsed, Aut-reduction of u always gives v. (Recall
that v is the short-lex representative of u.)

Proof: We start by proving the first assertion. By hypothesis, we have, for
each time t, a time-t Thue path pt from u to v, and we can suppose that pt

contains no repeated nodes by cutting out part of the path if necessary. The
only reason why we couldn’t take pt+1 to be pt is if some rule (λ, ρ), used
along the Thue path pt, is deleted at time t. By Lemma 6.5 we can, however,
assume that each node of pt+1 is either already a node of pt or is smaller than
some node of pt.

Let h0 be the largest node on p0, and suppose that we have already proved
the theorem for all pairs u and v which are connected by a Thue path with
largest node smaller than h0. By induction on t, using 6.5Correctness of our
Knuth–Bendix Proceduretheorem.6.5, we can assume that h0 is the largest
node on pt for all time t. If v = h0 then since v is the smallest element in
its congruence class, there are no elementary reductions starting from v, and
we must have u = v in this case.

By Lemma 6.10, we may assume that t0 has been chosen with the property
that, for all words w ≤ h0 and for all t ≥ t0, all elementary S(t)-reductions of
w are associated to permanent rules which are accepted by Rules[n] provided
n is sufficiently large.

Let h0 = µtαtνt →S(t) µtβtνt be the rightward elementary reduction of
h0 at time t. Our construction of pt+1 from pt, as in 6.5Correctness of
our Knuth–Bendix Proceduretheorem.6.5, makes αt+1 a subword of αt. The
construction also ensures that, if αt+1 = αt, then βt+1 ≤ βt. The rule (αt, βt)
is therefore independent of t for large values of t. Then (αt, βt) is permanent
and αt is Aut-reducible for large enough t. If u 6= h0, the same argument
applies to the unique elementary leftward reduction with source h0 at time
t.

If h0 = u, let u →S(t) w be the first rightward elementary reduction
for large values of t. By our induction hypothesis, there is a Thue path of
elementary reductions from w to v, each associated to a permanent rule, and
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with no node larger than w, and so we have the required Thue path from u
to v.

Suppose now that h0 6= u, so that we get two permanent rules, associ-
ated to the leftward and rightward elementary reductions of h0. If the two
elementary reductions are identical, that is, if the two permanent rules are
equal and if their left-hand sides occur in the same position in h0, then pt

contains a repeated node which we are assuming not to be the case. So the
two elementary reductions occur in different positions in h0. Now choose t to
be large enough so that the two rules concerned have already been compared
in a critical pair analysis in Step 5.6.4.b during some previous Knuth–Bendix
pass.

If these two rules have left-hand sides which are disjoint subwords of h0,
then we can interchange their order so as to obtain a Thue path from u to v
where all nodes are strictly smaller than h0—see Figure 4. The first assertion
of the theorem then follows by the induction hypotheses in this particular
case.

λ1 λ2

h0

�������9
ρ1 λ2

XXXXXXXz
λ1 ρ2

XXXXXXXz

�������9
ρ1 ρ2

Figure 4. Removing the node h0 when the leftward and rightward reductions are

obtained from rules having disjoint left-hand sides.

If the two left-hand sides do not correspond to disjoint subwords of h0

then, by assumption, there is some time t′ < t, such that a critical pair
(u′, v′, w′) was considered. Here u′ →S(t′) v′ and u′ →S(t′) w′ are elementary
S(t′)-reductions given by the two rules, and u′ is a subword of h0. After the
critical pair analysis, at time t′′ ≤ t, the Thue paths illustrated in Figure 5
are possible. As a consequence of 6.5Correctness of our Knuth–Bendix
Proceduretheorem.6.5, it is straightforward to see that for all times s ≥ t′′,
v′ and w′ can be connected by a time-s Thue path in which all nodes are
no larger than the largest of v′ and w′. In particular, this applies at time
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t so that the targets of the two elementary S(t)-reductions from h0 can be
connected by a time-t Thue path in which all nodes are strictly smaller than
h0. This completes the inductive proof of the first assertion of the theorem.

We have arranged that t is large enough so that, for all w ≤ u, all elemen-
tary S(t)-reductions of w are associated to permanent rules, and such a w
can be permanently Aut-reduced to the least element in its Thue congruence
class. It follows that such a w is Aut-irreducible if and only if it is minimal
in its Thue class. In particular Aut-reduction of u must give v. �

h0

λ1 λ2

u′

1
u′

2
u′

3

ρ1

u′

3

�������9

u′

1

ρ2

XXXXXXXz

z1 z2

∨⋆S(t′′) ∨⋆S(t′′)

⋆

S(t′′)

Figure 5. When the leftward and rightward reductions from h0 are obtained from

rules (λ1, ρ1) and (λ2, ρ2) having overlapping left-hand sides, this diagram shows

the time-t′′ Thue paths that exist after the resulting critical pair analysis.

6.12 Corollary. (i) The set of permanent rules in Aut is confluent. (ii) The
set of such rules is equal to P =

⋂

t

⋃

s≥tS(s). (iii) A word u is smallest in
its Thue congruence class if and only if it is permanently irreducible and this
is equivalent to being in short-lex normal form. (iv) Each permanent rule
is a U-minimal rule and each U-minimal rule is accepted by Rules[n] for n
sufficiently large.

Proof: The first and third statements are obvious from Theorem 6.11. For
the second statement, each permanent rule is contained in P by Lemma 6.9.
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Conversely, if we have a rule r in S which is not permanent, then for all
sufficiently large times s either its right-hand side or a proper subword of
its left-hand side is S(s)-reducible. Theorem 6.11 ensures that this reducible
word is Aut-reducible for all sufficiently large times s. Therefore r will be
minimized and deleted from S. Hence from Lemma 6.7 we see that r is not
contained in P.

To prove the fourth statement, suppose (λ, ρ) is U -minimal. By 6.11Cor-
rectness of our Knuth–Bendix Proceduretheorem.6.11, a Thue path from λ
to ρ will eventually be generated by our Knuth–Bendix procedure and each
elementary reduction in the path will be rightward and associated to a per-
manent rule. The first elementary reduction must have the form (λ, ρ′),
because each proper subword of λ is permanently irreducible. But then
ρ′ = ρ, for otherwise ρ′ > ρ and 6.11Correctness of our Knuth–Bendix
Proceduretheorem.6.11 applies to show that ρ′ is not permanently irreducible.
But then (λ, ρ′) would not have been a permanent rule. Therefore (λ, ρ) is a
permanent rule.

Conversely, suppose that (λ, ρ) is a permanent rule. This means that
ρ and every proper subword of λ is permanently irreducible. By 6.11Cor-
rectness of our Knuth–Bendix Proceduretheorem.6.11, this mens that ρ and
every proper subword of λ are in short-lex normal form. It follows that (λ, ρ)
is U -minimal. �

The next result is the main theorem of this paper.

6.13 Theorem. [Theorem] Let G be a group with a given finite presenta-
tion and a given ordering of the generators and their inverses. Suppose
that the set of U-minimal rules is regular (for example if (G, A) is short-
lex-automatic). Then the procedure given in 5.6 will stabilize at some n0

with Rules[n + 1] = Rules[n] if n ≥ n0. P (defined in 6.12Correctness
of our Knuth–Bendix Proceduretheorem.6.12) is then the language of a cer-
tain two-variable finite state automaton and the automaton can be explicitly
constructed. (Unfortunately we do not have a method of knowing when or
whether we have reached n0.)

Proof: By hypothesis there is a two-variable automaton accepting the set of
all U -minimal rules. By welding, we obtain a two-variable rule automaton M .
By amalgamating states, we may assume that each state of M corresponds
to a different word-difference.

Given any arrow in M , there is a U -minimal rule (λ, ρ) which is accepted
by M and which uses that arrow. By 6.12Correctness of our Knuth–Bendix
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Proceduretheorem.6.12. (λ, ρ) is a permanent rule which is eventually gen-
erated by our Knuth–Bendix procedure. By 6.9Correctness of our Knuth–
Bendix Proceduretheorem.6.9, such a rule is never deleted. Since there are
only a finite number of arrows in M , we see that, for large enough n, each
(λ, ρ) in this finite set of rules may be traced out in Rules[n]. We record the
states and arrows reached as being required by this finite set of rules.

We may also assume that the states in Rules[n] which have been recorded
as just explained, are all associated to different word-differences. To see this,
first note that any equality of word-differences between different states is
eventually discovered according to 6.11Correctness of our Knuth–Bendix
Proceduretheorem.6.11. Then, as in 5.9, the corresponding states are amal-
gamated. It follows that, for n large enough, there is a copy of M inside
Rules[n].

Subsequently, arrows and states lying outside M will not be used in Aut-
reduction. They will not be marked as needed and will be deleted. It follows
that Rules[n] = M for n sufficiently large.

Finally, knowing M , we can easily change it to a finite state automaton
accepting exactly the minimal rules—this involves making sure that if (u, v)
is accepted, then u > v, v is irreducible and every proper subword of u is
irreducible. �

7 Fast reduction

[Section]
In this section, we show how to rapidly reduce an arbitrary word, using the

rules in Set(Rules)together with the rules in S. We assume the properties
made explicit in 5.1. The time taken to carry out the first reduction is
bounded by a small constant times the length of the word. This efficiency is
possible because of the use of finite state automata to do the reduction.

7.1 Rules for which no prefix or suffix is a rule. At the moment, it is
possible for an element (u, v)+ of Set(Rules) to have a prefix or suffix which
is also a rule. This is undesirable because it makes the computations we will
have to do bigger and longer without any compensating gain.

Recall that the automaton recognizing Set(Rules) is the product of Rules
with SL2, the initial state being the product of initial states and the set of
final states being any product of final states. By 5.1, there is only one initial
and one final state of Rules; these are equal and the state is denoted by s0.

We remove from Rules any arrow labelled (x, x) from the initial state to
itself. We then form the product automaton, as described above, with two
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restrictions. Firstly, we omit any arrow whose source is a product of final
states. Secondly, we omit the state with first component equal to s0, the
initial state of Rules, and second component equal to state 3 of SL2 (see
Figure 3) and any arrow whose source or target is this omitted state. We
call the resulting automaton Rules′.

7.2 Lemma. The language accepted by Rules′ is the set of labels of accepted
paths in the product automaton, starting from the product of initial states and
ending at a product of final states, such that the only states along the path
with first component equal to s0 are at the beginning and end of the path.

Proof: First consider an accepted path α in Rules′. The only arrows in Rules′

with source having first component s0 are those with source the product of
initial states. In SL2 it is not possible to return to the initial state. It follows
that α has the required form.

Conversely any such path in the product automaton also lies in Rules′

because it avoids all omitted arrows. �

7.3 Lemma. The language accepted by Rules′ is the subset of Set(Rules)
which has no proper suffix or proper prefix in Set(Rules).

Proof: If α is an accepted path in Rules′, then it is clearly in Set(Rules).
Moreover if it had a proper suffix or proper prefix which was in Set(Rules),
there would be a state in the middle of α with first component s0. We have
seen that this is impossible in Lemma 7.2.

Conversely, we must show that if α is an accepted path in the product
automaton such that no proper prefix and no proper suffix of α would be ac-
cepted by the product automaton, then no state met by α, apart from its two
ends, has s0 as a first component. Let α = ((s0, 1), (u1, v1), q1, . . . , (un, vn), qn),

First suppose u1 < v1. Since α is accepted by SL2, |u| > |v| and we
must have vn = $. Let r < n be chosen as large as possible so that the
first component of qr is s0. Then (ur+1, vr+1) . . . (un, vn) will be accepted by
Rules and will be accepted by SL2 because vn = $. Since this cannot be a
proper suffix of α by assumption, we must have r = 0. Hence qi has a first
component equal to s0 if and only if i = 0 or i = n.

Next note that we cannot have u1 = v1. This is because there is no
arrow labelled (u1, u1) in SL2 with source the initial state, so α would not
be accepted by the product automaton.

Now suppose that u1 > v1 and let r > 0 be chosen as small as possible so
that the first component of qr is s0. Since u1 > v1, the second component of
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qr will be a final state (see Figure 3). Since α has no accepted proper prefix,
we must have r = n. Hence qi has a first component equal to s0 if and only
if i = 0 or i = n.

So we have proved the required result for each of the three possibilities.

�

Reduction with respect to Set(Rules) is done in a number of steps. First
we find the shortest reducible prefix of w, if this exists. Then we find the
shortest suffix of that which is reducible. This is a left-hand side of some rule
in Set(Rules). Then we find the corresponding right-hand side and substitute
this for the left-hand side which we have found in w. This reduces w in the
short-lex-order. We then repeat the operation until we obtain an irreducible
word. The process is explained in more detail in 7.14.

Our first objective is to find the shortest reducible prefix of w, if this
exists. To achieve this, we must determine whether w contains a subword
which is the left-hand side of rule belonging to Set(Rules).

Let Rules′′ be the automaton obtained from Rules′ (see Lemmas 7.2 and
7.3) by adding arrows labelled (x, x) from the initial state to the initial state.

We construct an FSA RbleN (Rules) in one variable by replacing each
label of the form (x, y) on an arrow of Rules′′ by x. Here x ∈ A and y ∈
A+. The name of the automaton RbleN (Rules) refers to the fact that the
automaton accepts reducible words, and does so non-deterministically. We
obtain an FSA with no ǫ-arrows. However there may be many arrows labelled
x with a given source. Let LHS(Rules) be the regular language of left-hand
sides of rules in Set(Rules) such that no proper prefix or proper suffix of the
rule is itself a rule.

7.4 Lemma. A∗.LHS(Rules) = L(RbleN (Rules)).

Proof: Because of the extra arrows labelled (x, x) from initial state to initial
state, inserted into Rules′′, the inclusion A∗.LHS(Rules) ⊂ L(RbleN (Rules))
is clear.

Conversely, if u is accepted by RbleN (Rules), there is a corresponding
pair (u, v) accepted by Rules′′. We find a maximal common prefix p of u
and v, so that u = pu′ and v = pv′. Rules′′ remains in the initial state while
reading (p, p). Since the initial state of SL2 is not a final state, (u′, v′) must
be non-empty. Since there is no way of returning to the initial state of SL2,
once Rules′′ starts reading (u′, v′), it can never return to the initial state, and
therefore (u′, v′) must be accepted by Rules′. Therefore u′ ∈ LHS(Rules), as
claimed. �
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7.5 The automaton P . To find the shortest reducible prefix of a given
word w we could feed w into the FSA RbleN (Rules). However, reading
a word with a non-deterministic automaton is very time-consuming, as all
possible alternative paths need to be followed.

For this reason, it may at first sight seem sensible to determinize the
automaton. However, determinizing a non-deterministic automaton poten-
tially leads to an exponential increase in size. The states of the determinized
automaton are subsets of the non-deterministic automaton, and there are
potentially 2n of them if there were n states in the non-deterministic au-
tomaton.

For this reason, we use a lazy state-evaluation form of the subset con-
struction. The lazy evaluation strategy (common in compiler design—see for
example [1]) calculates the arrows and subsets as and when they are needed,
so that a gradually increasing portion P (Rules) of a determinized version
RbleD(Rules) of RbleN (Rules) is all that exists at any particular time.

Lazy evaluation is not automatically an advantage. For example, if in
the end one has to construct virtually the whole determinized automaton
RbleD(Rules) in any case, then nothing would be lost by doing this imme-
diately. In our special situation, lazy evaluation is an advantage for two
reasons. First, during a single pass of the Knuth–Bendix process (see 4.7),
only a comparatively small part of the determinized one-variable automaton
RbleD(Rules) needs to be constructed. In practice, this phenomenon is par-
ticularly marked in the early stages of the computation, when the automata
are far from being the “right” ones. Second, this approach gives us the op-
portunity to abort a pass of Knuth–Bendix, recalculate on the basis of what
has been discovered so far in this pass, and then restart the pass. If an abort
seems advantageous early in the pass, very little work will have been done in
making the structure of a determinized version of RbleD(Rules) explicit.

At the start of a Knuth–Bendix pass we let P (Rules) be the one-variable
automaton containing only one state and no arrows. The state is an ini-
tial state of P (Rules) which is a singleton set whose only element is the
ordered pair of initial states of Rules and SL2. At a subsequent time during
the pass, P (Rules) may have increased, but it will always be a portion of
RbleD(Rules). Each state of P (Rules) is a set of pairs (s, t), where s is a
state of Rules and t is a state of SL2.

The transition with source s, a state in P (Rules), and label x ∈ A may or
may not already be defined. If it is defined, we denote by µ(s, x) the target
of this arrow.

Suppose now that we wish to find the shortest prefix of the word w =
x1 · · ·xn ∈ A∗ which is Set(Rules)-reducible. Suppose that s0, s1, . . . , sk

are states of P (Rules), where 0 ≤ k ≤ n − 1, that s0 is the start state of
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P (Rules), and that, for each i with 1 ≤ i ≤ k, the arrow with source si−1 and
label xi has been constructed, with target µ(si−1, xi) = si. Suppose that the
target of the arrow with source sk and label xk+1 has not yet been defined.

The conventional subset construction applied to the state sk of P (Rules)
under the alphabet symbol xk+1 yields a set, which we denote by µ1(sk, xk+1).
This is how µ1(sk, xk+1) is defined. For each (s′, t′) ∈ sk, we look for all arrows
in RbleN (Rules) labelled xk+1 with source (s′, t′). If (s, t) is the target of such
an arrow, then (s, t) is an element of µ1(sk, xk+1). Note that this subset is
always non-empty, because the initial state of RbleN (Rules) is an element of
each si.

In the standard determinization procedure one would now look to see
whether there is already a state sk+1 of P (Rules) which is equal to µ1(sk, xk+1).
If not, one would create such a state sk+1. One would then insert an arrow
labelled xi+1 from sk to sk+1, if there wasn’t already such an arrow. A new
state is defined to be a final state of P (Rules) if and only if the subset con-
tains a final state of RbleN (Rules). Of course, one does not need to determine
the subset µ1(sk, xk+1) if there is already an arrow in P (Rules) labelled xk+1

with source sk, because in that case the subset is already computed and
stored.

In our procedure we improve on the procedure just described. The point is
that µ1(sk, xk+1) may contain pairs which are not needed and can be removed.
From a practical point of view this has the advantage of saving space and
reducing the amount of computation involved when calculating subsequent
arrows. Specifically, we remove a pair (p, q′) from µ1(sk, xk+1) if q′ is state 3
of SL2 (see Figure 3) and µ1(sk, xk+1) also contains the pair (p, q) where q is
state 2 of SL2(same p as in (p, q′)) Removing all such pairs (p, q′) yields the
set µP (sk, xk+1) and we add the corresponding arrow and state to P (Rules),
creating a new state if necessary. We make the state a final state if the subset
contains a final state of RbleN (Rules). The validity of this modification
follows from Theorem 8.2, and we see that some prefix of w arrives at a final
state of P (Rules) if and only if w is Set(Rules)-reducible.

When finding the corresponding left-hand side of a rule inside w, we
need never compute beyond a final state of P (Rules). As a space-saving
and time-saving measure our implementation therefore replaces each final
state of P (Rules), as soon as it is found, by the empty set of states. As re-
marked above, the standard determinization of RbleN (Rules) never produces
an empty set of states, so there is no possibility of confusion.

Reading w can be quite slow if many states need to be added to P (Rules)
while it is being read. However, reading w is fast when no states need to
be built. In practice, fairly soon after a Knuth–Bendix pass starts, reading
becomes rapid, that is, linear with a very small constant.
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7.6 Finding the left-hand side in a word. We retain the hypotheses
of Section 7. Namely, we have a two-variable automaton Rules satisfying
the conditions of Paragraph 5.1. We are given a word w = x1 · · ·xn, and we
wish to reduce it. In the previous section we showed how to find the mini-
mal reducible prefix w′ = x1 · · ·xm of w with respect to the rules implicitly
specified by Rules. We now wish to find the minimal suffix of w′ which is a
left-hand side of some rule in Set(Rules). The procedure is quite similar to
that of the previous section.

We will now give the basic construction. However, the details will later
need to be modified so as to achieve greater computational efficiency in find-
ing the associated right-hand side, if this is necessary. Our reason for in-
cluding the simpler version is to lead the reader more gently and with more
understanding to the actual more complex version.

We form the two-variable automaton Rev(Rules), which we combine with
Rev(SL2). The first automaton is, by hypothesis, partially deterministic. If
we determinize the second automaton, we obtain another PDFA. Figure 6
shows the determinization of Rev(SL2), where the subsets of states of SL2
are explicitly recorded.
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Figure 6. This PDFA arises by applying the accessible subset construction to

Rev(SL2) in the case where the base alphabet has more than one element.

Each state is a subset of the state set of Rev(SL2) and final states have a

double border. This PDFA, when reading a pair (u, v) from right to left, keeps

track of whether u is longer than v or not, which it discovers immediately since

padding symbols if any must occur at the right-hand end of v. Note that this

automaton is minimized.

We take the product of the two automata Rev(Rules) and Rev(SL2).
A new state is a pair of old states. An arrow is a pair of arrows with the
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same label (x, y). The initial state in the product is the unique pair of initial
states. A final state in the product is a pair of final states.

To form the one-variable non-deterministic automaton RevN (LHS(Rules))
without ǫ-arrows, we use the same states and arrows as in the product au-
tomaton, but replace each label of the form (x, y) in the product automaton
by the label x. The deterministic one-variable automaton RevD(LHS(Rules))
can then be constructed using the subset construction.

As we have already warned the reader, we use not the construction just
described, but a related construction which we describe below. The point of
what we do may not become fully apparent until we get to 7.13.

7.7 Reversing the rules. We first describe a two-variable PDFA M which
accepts exactly the reverse of each rule (λ, ρ)+ in Set(Rules) such that no
proper suffix and no proper prefix of (λ, ρ)+ is in Set(Rules) (cf. Lemma 7.3).
We assume that we have a two-variable automaton Rules satisfying the con-
ditions of Paragraph 5.1.

A state of M is a triple (s, i, j), where s is a state of Rev(Rules), i ∈
{0, 1, 2} and j ∈ {+,−}. The intention is that in a state (s, i, j), i represents
the number of padded symbols occurring in any path of arrows from the
initial state of M to (s, i, j). By 5.3, the padded symbols must be of the
form (x, $), where x ∈ A. There are zero, one or two padded symbols in any
rule, and, if padded symbols appear, they are at the right-hand end of a rule.
This means that they are the first symbols read by M . The j component is
intended to represent whether an arrow is permitted with source (s, i, j) and
label a padded symbol. We take j = + if a padded symbol is permitted, and
j = − if a padded symbol is not permitted.

M has a unique initial state (s0, 0, +) where s0 is the unique initial state
of Rev(Rules). In addition, M has three final states f0 = (s0, 0,−), f1 =
(s0, 1,−) and f2 = (s0, 2,−). We do not allow states of M of the form
(s0, i, j), except for the initial state and the three final states just mentioned.
We will construct the arrows of M to ensure that any path of arrows accepted
by M has first component equal to s0 for its initial state and its final state
and for no other states. (Compare this with Lemma 7.2.)

The following conditions determine the arrows in M .

1. Each arrow of M is labelled with some (x, y), where x ∈ A and y ∈ A+.

2. (s, i, j)(x,$) is defined if and only if 1) t = s(x,$) is defined in Rev(Rules),
and 2a) (s, i, j) = (s0, 0, +), the initial state, or 2b) (i, j) = (1, +). In
case 2a) the target is (t, 1, +), unless t is the final state of Rev(Rules),
in which case the target is f1 = (s0, 1,−). In case 2b), the target is

52



(t, 2,−), which may possibly be equal to f2. The final state f1 arises in
case 2a) when we have a rule (x, ǫ), which means that the generator x
of our group represents the trivial element. The final state f2 arises in
case 2b) when we have a rule (x1x2, ǫ). This kind of rule arises when
x1 and x2 are inverse to each other, usually formal inverses.

3. For i = 0, 1, 2, there are no arrows with source fi.

4. Suppose (s, i, j) is not a final state. Then (s, i, j)(x,y) with x, y ∈ A is
defined if and only if 1) t = s(x,y) is defined in Rev(Rules), and 2) if
t = s0 then 2a) i = 0 and x > y or 2b) i > 0 and x 6= y. We then have
(s, i, j)(x,y) = (t, i,−). This condition corresponds to the requirement
that (u, v) can only be a rule if a) u and v have the same length and
u1 > v1, where these are the first letters of u and v respectively, or b)
if u is longer than v and u1 6= v1.

7.8 Lemma. The language accepted by M is the set of reversals of rules
(λ, ρ)+ ∈ Set(Rules) such that no proper suffix and no proper prefix of (λ, ρ)+

is in Set(Rules).

The proof of this lemma is much the same as the proofs of Lemmas 7.2 and
7.3. We therefore omit it.

Using the above description of M , we now describe how to obtain a
non-deterministic one-variable automaton RevN (LHS(Rules)) from M in
an analogous manner to that used to obtain RbleN (Rules) from Rules′′ in
Section 7. RevN (LHS(Rules)) accepts reversed left-hand sides of rules in
Set(Rules) which do not have a proper prefix or a proper suffix which is in
Set(Rules). RevN (LHS(Rules)) has the same set of states as M and the
same set of arrows. However, the label (x, y) with x ∈ A and y ∈ A+ of
an arrow in M is replaced by the label x in RevN(LHS(Rules)) The two
automata, M and RevN (LHS(Rules)), have the same initial state and the
same final states. Hence RevN (LHS(Rules)) accepts all reversed left-hand
sides λR of rules (λ, ρ) whose reversals ((λ, ρ)+)R are accepted by M .

7.9 The automaton Q. The one-variable automaton Q(Rules) is formed
from RevN (LHS(Rules)) by a modified subset construction, using lazy eval-
uation. Q(Rules) is part of the one-variable PDFA RevD(LHS(Rules)), the
determinization of RevN(LHS(Rules)). As we shall see, a word is accepted
by Q(Rules) only if its reversal λ is the left-hand side of a rule in Set(Rules)
and no proper subword of λ has this property.
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7.10 Note. In order to construct states and arrows in Q(Rules), one only
needs to have access to Rev(Rules), that is, neither M nor RevN(LHS(Rules))
has to be explicitly constructed. 2

7.11 The algorithm for finding the left-hand side. Suppose we have
a word x1 · · ·xn ∈ A∗ and we know it has a suffix which is the left-hand side
of some rule in Set(Rules). Suppose no proper prefix of x1 · · ·xn has this
property. We give an algorithm that finds the shortest such suffix.

We read the word from right to left, starting with xn. We assume that
xk+1xk+2 · · ·xn has been read so far and that as a result the current state of
Q(Rules) is Sk, where Sk is a state of Q(Rules) (so Sk is a subset of the set
of states of RevN (LHS(Rules))).

We start the algorithm with k = n and the current state of Q(Rules)
equal to the singleton {(s0, 0, +)} whose only element is the initial state of
M , where s0 is the initial state of Rev(Rules). Q(Rules) has three final
states, namely the singleton sets {fi} for i = 0, 1, 2.

The steps of the algorithm are as follows:

1. Record the current state as the k-th entry in an array of size n, where
n is the length of the input word.

2. If the current state is not a final state, go to Step 7.11.3. If the current
state is a final state, then stop. Note that the initial state of Q(Rules)
is not a final state, so this step does not apply at the beginning of the
algorithm. If the current state is a final state, then the shortest suffix
of x1 · · ·xn which is the left-hand side of a rule in Set(Rules) can then
be proved to be xk+1xk+2 · · ·xn.

3. If the arrow labelled xk with source the current state is already de-
fined, then redefine the current state to be the target of this arrow and
decrease k by one.

4. If the preceding step does not apply, we have to compute the target T
of the arrow labelled xk with source the current state Sk. We do this by
looking for all arrows labelled xk in RevN(LHS(Rules)) with source in
Sk. We define T to be the set of all targets of such arrows. Note that
this set of targets cannot be empty since we know that some suffix of
x1 · · ·xn is accepted by RevN (LHS(Rules)).

5. There are two modifications which we can make to the previous step.

(a) Firstly, if the set of targets contains some final state fj , then we
look for the largest value of i = 0, 1, 2 such that fi ∈ T and redefine
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T to be {fi}. We then insert into Q(Rules) an arrow labelled xk

from Sk to this final state. If we have found that T is a final state,
we set Sk−1 equal to T , decrease k by one, and go to Step 7.11.1.

(b) Secondly, if, while calculating the set T , we find that a state s
of Rev(Rules) occurs in more than one triple (s, i, j), then we
only include the triple with the largest value of i. For this to be
well-defined, we need to know that (s, i, +) and (s, i,−) cannot
both come up as potential elements of T—this is addressed in
the proof of Theorem 7.12 along with justifications of the other
modifications.

6. Having found T , see if it is equal to some state T ′ of Q(Rules) which
has already been constructed. If so, define an arrow labelled xk from
S to T ′.

7. If T has not already been constructed, define a new state of Q(Rules)
equal to T and define an arrow labelled xk from S to T .

8. Set the current state equal to T and decrease k by one. Then go to
Step 7.11.1.

7.12 Theorem. Suppose x1 · · ·xn has a suffix which is the left-hand side
of a rule in Set(Rules) and suppose no prefix of x1 · · ·xn has this property.
Then the above algorithm correctly computes the shortest such suffix.

Proof: We first show that the modification in Step 7.11.5.b is well-defined in
the sense that triples (s, i, +) and (s, i,−) cannot both occur while calculating
T . The reason for this is that the third component can only be + if either
none of x1 · · ·xn has been read, in which case the only relevant state is
(s0, 0, +), or else only xn has been read, in which case the possible relevant
states are (f, 1,−), (s, 1, +) with s 6= f , and (s, 0,−). So a state of the
form (s, i, j) with a given s occurs at most once in a fixed subset with the
maximum possible value of i.

The effect of Step 7.11.5.a in the above algorithm is to ensure that ter-
mination occurs as soon as a final state of Rev(Rules) appears in a cal-
culated triple. Since we know that x1 · · ·xn contains a left-hand side of a
rule in Set(Rules) as a suffix we need only show that the introduction of
Step 7.11.5.b does not affect the accepted language of the constructed au-
tomaton. This will be a consequence of Theorem 8.2, as we now proceed to
show.
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Consider a triple t = (s, i, j) arising during the calculation of a subset
T , and suppose that s is a non-final state of Rev(Rules). If j = + then
T cannot contain both (s, 0, +) and (s, 1, +) and so t will not be removed
from T as a result of Step 7.11.5.b. Therefore we only need to consider the
case j = −. For k = 0, 1, 2, let Lk ⊆ A∗ × A∗ be the language obtained
by making (s, k,−) the only initial state of M , and observe that there can
be no padded arrows in any path of arrows from (s, k,−) to a final state of
M . Now by considering the definition of the non-padded transitions in M
given in 7.7.4, it is straightforward to see that L0 ⊆ L1 = L2. Therefore, since
RevN (LHS(Rules)) has no ǫ-arrows, we have just shown that the hypotheses
of Theorem 8.2 apply to Step 7.11.5.b. Hence the omission in Step 7.11.5.b
does not affect the accepted language of Q(Rules). �

As with P (Rules), reading a word into Q(Rules) from right to left can
be slow in the initial stages of a Knuth–Bendix pass, but soon speeds up to
being linear with a small constant.

7.13 Finding the right-hand side of a rule. We retain the hypotheses
of Section 5.1. Namely, we have a two-variable rule automaton Rules which is
welded and satisfies various other minor conditions. We are given a word w =
x1 · · ·xn, and we wish to reduce it relative to the rules implicitly contained
in Rules. So far we have located a left-hand side λ which is a subword of w.
In this section we show how to construct the corresponding right-hand side.

We first go into more detail as to how we propose to reduce w. In outline
we proceed as follows.

7.14 Outline of the reduction process.

1. Feed w one symbol at a time into the one-variable automaton P (Rules)
described in Section 7, storing the history of states reached on a stack.

2. If a final state is reached after some prefix u of w has been read by
P (Rules), then u has some suffix which is a left-hand side. Moreover,
this procedure finds the shortest such prefix.

3. Feed u from right to left into Q(Rules). A final state is reached as
soon as Q(Rules) has read the shortest suffix λ of u such that there is
a rule (λ, ρ) ∈ Set(Rules). We now have u = pλ and w = pλq, where
p, q ∈ A∗, every proper prefix of pλ and every proper suffix of λ is
Set(Rules)-irreducible.
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4. Find ρ, the smallest word such that there is a rule (λ, ρ) in S (see 4.7).
If there is no such rule in S, find ρ by a method to be described in 7.15,
such that ρ is the smallest word such that (λ, ρ) ∈ Set(Rules).

5. If (λ, ρ) is not already in S, insert it into the part of S called New.

6. Replace λ with ρ in w and pop |λ| levels off the stack so that the
stack represents the history as it was immediately after feeding p into
P (Rules).

7. Redefine w to be pρq. Restart at Step 1 as though p has just been read
and the next letter to be read is the first letter of ρ. The history stack
enables one to do this.

Note that other strategies might lead to finding first some left-hand side
in w other than λ. Moreover, there may be several different right-hand sides
ρ with (λ, ρ) ∈ Set(Rules). A rule (λ, ρ) in Set(Rules) gives rise to paths in
Rules, SL2 and RevD(SL2). We will find the path for which right-hand side
ρ is short-lex-least, given that the left-hand side is equal to λ.

Let λ = y1 · · · ym. Recall that a state of the one-variable automaton
Q(Rules) used to find λ is a set of states of the form (s, i, j), where s is a
state of Rules, i ∈ {0, 1, 2} and j ∈ {+,−}. When finding λ we kept the
history of states of Q(Rules) which were visited—see Step 7.11.1. Let Qk

be the set of triples (s, i, j) comprising the state of Q(Rules) after reading
the word yk+1 · · · ym from right to left. Q0 = {fi} = {(s0, i,−)} where s0 is
the unique initial and final state of Rules, and i is the difference in length
between λ and the ρ that we are looking for.

7.15 Right-hand side routine. Inductively, after reading y1 · · · yk we will
have determined z1 · · · zk, the prefix of ρ. Inductively we also have a triple
(sk, ik, jk), where s is a state of Rules, ik is 0 or 1 or 2 and jk is + or −.
Note that we always have m − k ≥ ik.

1. If m − k = ik, then we have found ρ = z1 · · · zk and we stop. So from
now on we assume that m > ik + k. This means that the next symbol
(yk+1, zk+1) of (λ, ρ) does not have a padding symbol in its right-hand
component.

2. We now try to find zk+1 by running through each element z ∈ A in
increasing order. Set z equal to the least element of A.

3. If k = 0 and i0 = 0, then λ and ρ will be of equal length, so the first
symbol of (λ, ρ) must be (y1, z1), where y1 > z1. So at this stage we
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can prove that we have y1 > z, since we know that there must be some
right-hand side corresponding to our given left-hand side.

If k = 0 and i0 > 0, then the first symbol of (λ, ρ)+ is (y1, z1) with
z1 ∈ A and y1 6= z1. If k = 0, i0 > 0 and y1 = z, we increase z to the
next element of A.

4. Here we are trying out a particular value of z to see whether it allows

us to get further. We look in Rules to see if s
(yk+1,z)
k = sk+1 is defined.

If it is not defined, we increase z to the next element of A and go to
Step 7.15.3.

5. If sk+1 is defined in Step 7.15.4, we look in Qk+1 for a triple (sk+1, ik+1, jk+1)
which is the source of an arrow labelled (yk+1, z) in the automaton M ,
defined in Section 7.6. Note that, by the proof of 7.12The algorithm
for finding the left-hand sidetheorem.7.12, Qk+1 contains at most one
element whose first coordinate is sk+1. As a result, the search can be
quick.

6. If (sk+1, ik+1, jk+1) is not found in Step 7.15.5, increase z to the next
element of A and go to Step 7.15.3.

7. If (sk+1, ik+1, jk+1) is found in Step 7.15.5, set zk+1 = z, increase k and
go to Step 7.15.1.

The above algorithm will not hang, because each triple (sk, ik, jk) that we
use does come from a path of arrows in M which starts at the initial state of
M and ends at the first possible final state of M . Therefore all possible right-
hand sides ρ such that (λ, ρ) ∈ Set(Rules), are implicitly computed when we
record the states of Q(Rules) (see Step 7.11.1). Since ik does not vary during
our search, we will always find the shortest possible ρ, with |λ| − |ρ| being
equal to this constant value of ik. Since we always look for z in increasing
order, we are bound to find the lexicographically least ρ.

8 A modified determinization algorithm

[Section]
In this section we discuss a useful modification to the usual determiniza-

tion algorithm for turning an NFA into a DFA. Let N be an NFA. The usual
proof that N can be determinized, is to form a new automaton M each state
of which is a subset σ of the set S(N) of states of N such that σ is ǫ-closed.
That is to say, if s ∈ σ ⊂ S(N), then each ǫ-arrow with source s also has
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target in σ. The initial state of M is the ǫ-closure of the set of all initial
states in N . The effect of an arrow labelled x ∈ A on σ is to take each s ∈ σ,
apply x in all possible ways, and then to take the ǫ-closure of the subset of
S(N) so obtained. A final state of M is any subset of S(N) containing a
final state of N .

In practice, to find M , we start with the ǫ-closure of the set of initial
states of N and proceed inductively. If we have found a state s of M as a
subset of the set of states of N , we fix some x ∈ A, and apply x in all possible
ways to all t ∈ s, where t is a state of N . We then follow with ǫ-arrows to
form an ǫ-closed subset of states of N . This gives us the result of applying x
to s. The modification we wish to make to the usual subset construction is
now explained and justified.

We will denote by M ′ the modified version of M thus obtained. M ′ is a
DFA which accepts the same language as M and N , but the structure of M ′

might be simpler than that of M .
Suppose p is a state of the NFA N . Let Np be the same automaton as

N , except that the only initial state is p. Suppose p and q are distinct states
of N and that L(Np) ⊂ L(Nq). Suppose also that the ǫ-closure of q does not
include p. Under these circumstances, we can modify the subset construction
as follows. As before, we start with the ǫ-closure of the set of initial states of
N . We follow the same procedure for defining the arrows and states of M ′ as
for M , except that, whenever we construct a subset containing both p and
q, we change the subset by omitting p.

8.1 Required conditions. The situation can be generalized. We suppose
that we have a partial order defined on the set of states of N , such that, if
p < q, then L(Np) ⊂ L(Nq). We assume that if p < q, p′ < q′ and p′ is
contained in the ǫ-closure of q, then p′ = q.

We follow the same procedure for defining the arrows and states of M ′ as
for M , except that, whenever we construct a subset containing both p and q
with p < q, we change the subset by omitting p.

8.2 Theorem. Under the above hypotheses, L(M ′) = L(N).

Proof: Consider a word w = x1 · · ·xn ∈ A∗ which is accepted by N via the
path of arrows in N

(v0, ǫ∗, u1, x1, v1, · · · , vn−1, ǫ∗, un, xn, vn, ǫ∗, un+1).

This means that, for each i with 0 ≤ i ≤ n, there is an xi-arrow in N from
ui to vi and ui+1 is in the ǫ-closure of vi. Moreover v0 is an initial state and
un+1 is a final state.
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Our proof will be by induction on i. The i-th statement in the induction
is that we have states s0, . . . , si of M ′ such that s0 is the initial state and,
for each j with 0 < j < i, there is an arrow xj : sj−1 → sj in M ′, so that,
after reading x1 · · ·xi−1, M ′ is in state si−1. Our induction statement also
says that we have a path of arrows in N

(ui
i, xi, v

i
i, ǫ∗, u

i
i+1, · · · , u

i
n, xn, v

i
n, ǫ∗, u

i
n+1),

such that ui
i ∈ si−1 and ui

n+1 is a final state of N .
The induction starts with i = 1 and s0 the initial state of M ′. We form

s0 by taking all initial states of N , and taking their ǫ-closure. If this subset
of states of N contains both p and q with p < q, then p is omitted from s0,
the initial state of M ′. If u1 /∈ s0, then we must have u1 = p, with q ∈ s0

and p < q. So q must be a maximal element of s0 with respect to the partial
order. Now w ∈ L(Np) ⊂ L(Nq). It follows that we can take u1

1 in the ǫ-
closure of q and then define the rest of the path of arrows for the case i = 1.
Since q ∈ s0 and u1

1 is in the ǫ-closure of q, it is not the case that there is
a q′ such that u1

1 < q′ ∈ s0, according to 8.1. So u1
1 ∈ s0 (that is, it is not

omitted in our construction) and the induction can start.
Now suppose the induction statement is true for i. We prove it for i + 1.

we have a path of arrows

(ui
i, xi, v

i
i, ǫ∗, u

i
i+1, · · · , u

i
n, xn, v

i
n, ǫ∗, u

i
n+1),

in N such that ui
i ∈ si−1 and ui

n+1 is a final state of N . We define si from
si−1 in the manner described above. First we apply xi in all possible ways
to all states in si−1, obtaining vi

i as one of the target states, and then take
the ǫ-closure, obtaining ui

i+1 as one of the targets of an ǫ-arrow. Finally, if si

contains both p and q, with p < q then p is deleted from si before si becomes
a state of M ′.

It now follows that either ui
i+1 ∈ si, or else, for some p < q, ui

i+1 = p,
q ∈ si and p /∈ si. In the first case we define ui+1

j = ui
j and vi+1

j = vi
j for j > i

and the induction step is complete. In the second case, using the fact that
xi+1 · · ·xn ∈ L(Np) ⊂ L(Nq), we see that we can take ui+1

i+1 in the ǫ-closure
of q and then define the rest of the path of arrows. Since q ∈ si and ui+1

i+1

is in the ǫ-closure of q, 8.1 shows that it is not possible to have q′ ∈ si and
ui+1

i+1 < q′. Therefore ui+1
i+1 ∈ si. This completes the induction step.

At the end of the induction, M ′ has read all of w and is in state sn. We
also have the final state un+1

n+1 ∈ sn, so that w is accepted by M ′.
Conversely, suppose w is accepted by M ′. It follows easily by induction

that if M ′ is in state si after reading the prefix x1 · · ·xi of w, then each state
u ∈ si can be reached from some initial state of N by a sequence of arrows
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labelled successively x1, . . . , xi, possibly interspersed with ǫ-arrows. Now sn

must contain a final state, and so w is accepted by N . �

8.3 Remark. The practical usage of this theorem clearly depends on having
an efficient way of determining when the condition L(Np) ⊂ L(Nq) is satis-
fied. In this paper we have seen several examples of such tests which cost
virtually nothing to implement but have the potential to save an appreciable
amount of both space and time. 2

9 Miscellaneous details

In this section we present a number of points which did not seem to fit
elsewhere in this paper.

9.1 Aborting. It is possible that we come to a situation where the proce-
dure is not noticing that certain words are reducible, even though the nec-
essary information to show that they are reducible is already in some sense
known. It is also possible that reduction is being carried out inefficiently,
with several steps being necessary, whereas in some sense the necessary in-
formation to do the reduction in one step is already known. An indication
that our procedure is not proceeding as well as one hoped might be that
WDiff is constantly changing, with states being identified and consequent
welding, or with new states or arrows being added. In this case it might be
advisable to abort the current Knuth–Bendix pass.

To see if abortion is advisable, we can record statistics about how much
WDiff has changed since the beginning of a pass. If the changes seem exces-
sive, then the pass is aborted. A convenient place for the program to decide
to do this is just before another rule from New is examined at Step 5.6.3.

If an abort is decided upon then all states and arrows of WDiff are marked
as needed. At this point the program jumps to Step 5.6.1.

9.2 Priority rules. A well-known phenomenon found when using Knuth–
Bendix to look for automatic structures, is that rules associated with finding
new word differences or new arrows in WDiff should be used more inten-
sively than other rules. Further aspects of the structure are then found more
quickly. This is not a theorem—it is observed behaviour seen on examples
which happen to have been investigated.

A new rule associated with new word differences or new arrows in WDiff
is marked as a priority rule. When a priority rule is minimized, the output
is also marked as a priority rule. If a priority rule is added to one of the lists
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Considered, Now or New, it is added to the front of the list, whereas rules are
normally added to the end of the list. Just before deciding to add a priority
rule to New, we check to see if the rule is minimal. If so, we add it to the
front of Now instead of to the front of New.

When a rule is taken from Now at Step 5.6.4 during the main loop, it is
normally compared with all rules in Considered, looking for overlaps between
left-hand sides. In the case of a priority rule, we compare left-hand sides not
only with rules in Considered, but also with all rules in Now. If a normal rule
(λ, ρ) is taken from Now and comparison with a rule in Considered gives rise
to a priority rule, then the rule (λ, ρ) is also marked as a priority rule. It
is then compared with all rules in Now, once it has been compared with all
rules in Considered.

Treating some rules as priority rules makes little difference unless there
is a mechanism in place for aborting a Knuth–Bendix pass when WDiff has
sufficiently changed. If there is such a mechanism, it can make a big differ-
ence.

9.3 An efficiency consideration. During reduction we often have a state
s in a two-variable automaton and an x ∈ A, and we are looking for an arrow
labelled (x, y) with certain properties, where y ∈ A+. It therefore makes a
big difference if the arrows with source s are arranged so that we have rapid
access to arrows labelled (x, y) once x is given.

9.4 The present. Many of the ideas in this paper have been implemented
in C++ by the second author. But some of the ideas in this paper only
occurred to us while the paper was being written, and the procedures and
algorithms presented in this paper seem to us to be substantial improvements
on what has been implemented so far. An unfortunate result of this is that we
are unable to present experimental data to back up our ideas, although many
of our ideas have been explored in depth with actual code. Our experimental
work has been essential in enabling us to come to the better algorithms which
are presented here.

9.5 Comparison with kbmag. Here we describe the differences between
our ideas and the ideas in Derek Holt’s kbmag programs [4]. These programs
try to compute the short-lex-automatic structure on a group. Our program
is a substitute only for the first program in the kbmag suite of programs.

In kbmag, fast reduction is carried out using an automaton with a state
for every prefix of every left-hand side. In our program we also keep every
rule. However, the space required by a single character in our program is
less by a constant multiple than the space required for a state in a finite
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state automaton. Moreover, compression techniques could be used in our
situation so that less space is used, whereas compression is not available in
the situation of kbmag.

The other large objects in our set-up are the automata P (Rules[n]) de-
fined in 7.5 and Q(Rules[n]) defined in 7.9. In kbmag, there has also to be an
automaton like P (Rules[n]), and it is possible to arrange that this automa-
ton is only constructed after the Knuth–Bendix process is halted. In kbmag
there is no analogue of our Q(Rules[n]). So these are advantages of kbmag.

In kbmag, reduction is carried out extremely rapidly. However, as new
rules are found, the automaton in kbmag needs to be updated, and this is
quite time-consuming. In our situation, updating the automata is quick, but
reduction is slower by a factor of around three, because the word has to be
read into two or three different automata. Moreover we sometimes need to
use the method of Section 7.13 which is slower (by a constant factor) than
simply reading a word into a deterministic finite state automaton.

In kbmag, there is a heuristic, which seems to be inevitably arbitrary, for
deciding when to stop the Knuth–Bendix process. In our situation there is
a sensible heuristic, namely we stop if we find Rules[n + 1] = Rules[n].

In the case of kbmag, there are occasional cases where the process of
finding the set of word differences oscillates indefinitely. This is because re-
dundant rules are sometimes unavoidably introduced into the set of rules,
introducing unnecessary word differences. Later redundant rules are elimi-
nated and also the corresponding word differences. This oscillation can con-
tinue indefinitely. Holt has tackled this problem in his programs by giving
the user interactive modes of running them.

In our case, the results in Section 6 show that, given a short-lex-automatic
group, the automaton Rules[n] will eventually stabilize, as proved in 6.13Cor-
rectness of our Knuth–Bendix Proceduretheorem.6.13, given enough time and
space.

We believe that the main advantage of our approach for computing au-
tomatic structures will only become evident (if it exists at all) when looking
at very large examples. We plan to carry out a systematic examination of
short-lex-automatic groups generated by Jeff Weeks’ SnapPea program—see
[11]—in order to carry out a systematic comparison.
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