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Visualizing a large-scale structure of production network
by N-body simulation

Yoshi Fujiwara

NiCT/ATR CIS Applied Network Science Lab

Our recent study of a nation-wide production network uncovered a community structure,
namely how firms are connected by supplier-customer links into tightly-knit groups with
high density in intra-groups and with lower connectivity in inter-groups. Here we propose a
method to visualize the community structure by a graph layout based on a physical analogy.
The layout can be calculated in a practical computation-time and is possible to be accelerated
by a special-purpose device of GRAPE (gravity pipeline) developed for astrophysical N-body
simulation. We show that the method successfully identifies the communities in a hierarchical
way by applying it to the manufacturing sector comprising tenth million nodes and a half
million edges. In addition, we discuss several limitations of this method, and propose a
possible way to avoid all those problems.

§1. Introduction

Production network, or supplier-customer network, in economics refers to a line
of economic activities in which firms buy intermediate goods from “upstream” firms,
put added-value on them, and sell the goods to “downstream” firms.

We recently studied a nation-wide production network comprising a million of
firms and millions of supplier-customer links in Japan by applying recent statistical
methods developed in complex networks (see Ref. 1)). In particular, we found that
firms cluster into tightly-knit groups with high density in intra-groups and with
lower connectivity in inter-groups, and that this community structure has sectoral
and regional modules.

In order to verify the intra-group and inter-group connectivities, we used a
method of visualization of the entire manufacturing sector by a graph layout based
on a physical simulation. Such a visualization of the large-scale network would be
not only useful to check the community structure, but also for visualizing several
influences that are taking place on the network including chain of bankruptcy, prop-
agation of demand, and influence of the variation in commodity-price.

In this paper, we fully explain the method of visualization, show that the re-
sulting layout successfully identifies the communities. In addition, we discuss about
the limitations of our method and also a possible solution. §2 briefly describes the
definitions of nodes and links as firms and supplier-customer relationships, and the
network to visualize. §3 compactly shows the method of community extraction and
its results. Then, in §4, we explain our formulation of N-body simulation for graph
drawing so as to show how the graph layout is related to the detected communities
in a hierarchical way. The graph layout is an energy-based placement of nodes. This
method alone has several limitations, as discussed in §5, where we shall also propose
a strategy of how to avoid them. §6 summarizes the paper.
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§2. A nation-wide production network

Let us say that a directional link is present as A→ B in a production network,
where firm A is a supplier to another firm B, or equivalently, B is a customer of
A. While it is difficult to record every transaction of supply and purchase among
firms, it is also pointless to have a record that a firm buys a pencil from another.
Necessary for our study are data of links such that the relation A → B is crucial
for the activity of one or both A and B. If at least one of the firms at either end of
a link rates the other firm as most important suppliers or customers, then the link
should be listed.

Our dataset for supplier-customer links is based on this idea. Tokyo Shoko
Research, Inc., one of the leading credit research agencies in Japan, regularly gathers
credit information on most of active firms. In the credit information of individual
firm, suppliers and customers that are most crucial for each firm are listed up to
the maximum of 24 firms respectively. We assume that the links playing important
roles in the production network are recorded at either end of each link as we describe
above, while we should understand that it is possible to drop relatively unimportant
links from the data.

We have a snapshot of production networks compiled in September 2006. In
the data, the number of firms is roughly a million, and the number of directional
links is more than four million. The set of nodes in the network covers essentially
most of the domestic firms that are active in the sense that their credit information is
required. See Ref. 1) for the study of statistical properties in the large-scale structure
of the production network including scale-free degree distribution, disassortativity,
correlation of degree to firm-size, low transitivity and so on, also for the relation to
chains of bankruptcies taking place on the network.

The global connectivity shows that basically all industries are highly entangled
among each other within the weakly or strongly connected component. Yet the con-
nectivity alone does not tell any modular structure, namely how dense or sparse the
stream of production is distributed depending on industrial or geographical groups,
which we shall focus in the next section.

§3. Community extraction

Nodes in complex networks often cluster into tightly knit groups with high den-
sity of intra-group edges and a lower density of inter-group edges. Such a hetero-
geneous structure is called community structure of the network. The production
network obviously has dense and sparse streams of production distributed inhomo-
geneously depending on industrial or geographical groups.

We focus, in this paper, on the manufacturing sector with 0.14 million firms,
in order to visualize the sector’s modular structure by excluding other dominant
sectors including wholesale and retail trade, which obviously have a different role
in the stream of production from the core of manufacturing sector. We regard
the entire manufacturing sector as an undirected graph, whose largest connected
component turns out to be consisted of 138,103 nodes (firms) and 421,893 edges
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(supplier-customer links).
We use the method of maximizing modularity, introduced by Ref. 2) and imple-

mented for large-scale graphs in Ref. 3) as a greedy optimization. While considerable
studies have been conducted to develop various methods for community extraction,
we use the modularity optimization for its clear interpretation in terms of statistical
hypothesis. Let epq be the fraction of edges in the network that connect nodes in
group p to those in group q, and let ap ≡

∑
q epq, bq ≡

∑
p epq. Then modularity Q

is defined by

Q =
∑

p

(epp − apbp) (3.1)

which is the fraction of edges that fall within groups, minus the expected value
of the fraction under the hypothesis that edges fall randomly irrespectively of the
community structure. The method is formulated as an optimization problem to find
a partition of nodes into mutually disjoint groups such that the corresponding value
of Q is maximum.

We apply the method of community extraction to the undirected subgraph whose
nodes consist of only firms in the manufacturing sector. The resulting modularity
(3.1) exceeds 0.55, which is considered to indicate strong community structure. The
number of extracted communities exceeds a thousand, whose sizes range from a
few to more than 10,000. From the data on the attributes of the firms, we found
that many of those small communities are each located in same geographical areas
forming specialized production flows. An example is a small group of flour-maker,
noodle-foods producers, bakeries, and packing/labeling companies in a rural area.

Because of a potential problem in the method of community extraction by mod-
ularity optimization (see Refs. 4), 5)), we checked the structure of detected commu-
nities by constraining modularity optimization on each single community, especially
for those with relatively large community-size. Indeed, five large communities ex-
ceed 10,000 in each size, being possibly subject to this problem of resolution. After
checking the sub-communities in the stated way, we obtained the communities as
tabulated in Table I (see Ref. 1) for more details).

Each firm is classified into one or more industrial sectors, and the major-group
classifications (2 digits; see Ref. 6)) Obviously a community contains those firms in
closely related industrial sectors. The annotations — heavy industries, materials,
automobile, etc. — are made by such observation. This recursive procedure reveals
a hierarchical structure in the communities, as we have actually done so for the com-
munities of so-annotated “electronics” (a)–(d), which constitute a single community
in the first stage of optimization.

We remark that these large firms in a same community do not form a set of nodes
that are mutually linked in nearly all possible ways, or a quasi-clique. Rather, with
their suppliers and customers, they form a quasi-clique in a corresponding bipartite
graph as follows. A supplier-customer link u→ v for a set of nodes V (u, v ∈ V ) can
be considered as an edge in a bipartite graph that has exactly two copies of V as
V1 and V2 (u ∈ V1 and v ∈ V2). Those large and competing firms quite often share
a set of suppliers to some extent, depending on the industrial sectors, geographical
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Table I. Communities extracted for the subgraph composed of manufacturing firms as nodes (about

0.14 million). Modularity optimization was recursively done for largest communities to obtain

the sub-communities, ten of which are shown here. In each of them are shown ten firms with

largest degrees are listed with names, major groups (primary/secondary/tertiary, if any in this

order) of industrial sectors (see Ref. 6)), and sub-community sizes.

annotation firms (major groups; primary/secondary/tertiary), . . . [community-size]

heavy indry. Mitsubishi Heavy Industries (30/26), Kawasaki Heavy Industries (26/30),

Kobe Steel (23/25), Ishikawajima-harima Heavy Industries (30/26), Sumit-

omo Heavy Industries (26), Nippon Steel (23), Kubota Industries (30/27/23),

Mitsui Engineering and Shipbuilding (30), Hitachi Zosen Shipbuilding (26),

Sumitomo Metal Industries (23), . . . [7,447]

automobile Honda (30/27), Nissan (30), Toyota Motor (30), Aisin (25/30/27), Mitsubishi

Motors (30), Denso (30/27), Fuji Heavy Industries (30), Toyota Industries

(30/26), Suzuki Motor (30), Isuzu Motors (30), . . . [5,769]

materials Sumitomo Osaka Cement (22), Air-Water Industrial Gas (17/18), Kyowa Con-

crete (22), Hokukon Concrete (22), Marukin Steel Materials (23), Mitsubishi

Construction Materials (25/22), Hinode Steel/Manhole (23/22), Nihon Kogyo

Industrial (22/13), Lafarge Aso Cement (22), Maeta Concrete (22), . . .[2,644]

electronics(a) Hitachi (28/29/27), Fujitsu (32/28), NEC (28/29), TDK (27/29), Oki Electric

(28/29), Hitachi High-Technologies (31/26), Rohm Semi-conductors (29), Mu-

rata Electronics (27), IBM Japan (28), Japan Radio Communication Equip-

ment (28/27), . . . [3,082]

electronics(b) Matsushita (Panasonic) (27/31), Sharp (29/27/28), Sanyo (27/25), Panasonic

Shikoku Electronics (29/27/28), Pioneer (27/28), Matsushita Battery (27),

Sanyo Tottori (28), Matsushita Refrigeration (27/26), Kenwood (28), CMK

Electronic Devices (29), . . . [2,921]

electronics(c) Canon (28/26/31), Seiko Epson (28/29), Omron (27), Nikon (31/26), Ricoh

(26/28), Fujinon Optics (31), Hoya Optics (31), Casio (26/31/28), Pentax

Optics (31/28), Sony EMCS Electronic (27/28), . . . [2,692]

electronics(d) Toshiba (27/28/29), Stanley Electric (27/26), Toshiba Lighting and Technol-

ogy (27/26/29), Ushio Electric (25/27/26), Hamamatsu Photonics (29/27),

Nippon Electric Glass (22), Toshiba Tec (26/27), GS Yuasa Industry (27/29),

Iwasaki Electric (27), Topcon Electric (31), . . . [2,320]

locations and so on.
For the case of electronics (a)–(d), those quasi-cliques are further separated into

groups. Namely, the suppliers belong to different groups of industrial organization for
historical development and the so-called keiretsu, and/or are located in divided geo-
graphical sectors. The sub-communities (a)–(d) can be considered as such separate
groups with mutually sparse links. The electronics (b), for instance, are originated
and developed in an urban area in the western Japan, not in the eastern urban area
of Tokyo, being different from the group (a).

In order to check the intra-group and inter-group connectivities, we resort to
visualization of the entire manufacturing sector by a graph layout based on a physical
simulation as shown in the next section.
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§4. Energy-based placement

We assume that the network is represented as an undirected graph neglecting
the direction of links, where nodes are firms and edges are supplier/customer links.
In general, desirable criteria for a readable graph layout are:

1. adjacent nodes are placed closely,
2. nodes spread well in the layout, and
3. layout should be static as an equilibrium state.

These criteria are very intuitive ones. Indeed, intuitive enough to give us a physical
analogy in Nature. A spring for an edge does not allow adjacent nodes to stay too
far apart nor too close, so the analogy of the spring force will help one to satisfy the
criterion 1. Similarly, if the nodes are given Coulomb charges, say plus, then they
will spread moderately in a space satisfying the criterion 2. If one combines such
spring and repulsive forces appropriately, then the system can have an equilibrium
or quasi-equilibrium state, which might be used as the solution for the criterion 3.

Indeed, the seminal paper7) is based on such a physical modeling in graph draw-
ing. There exists a huge literature of graph drawing, in which physical analogies
have been successfully employed (see Ref. 8), 9) for review).

Our method is based on the following physical modeling. Each node i is rep-
resented as a point-particle of mass mi, and has a Coulomb charge qi. Repulsive
forces are exerting between all pairs of nodes by assuming that qi has a same sign
for all i. Each edge for adjacent nodes i and j, denoted by 〈i, j〉, is replaced with
a spring whose natural length is `ij and a spring constant is Kij . The spring force
obeys the Hooke’s law, it attracts (or repels) the adjacent nodes if it is extended (or
compressed) than the natural length. In addition, a frictional force is exerting on
each node being proportional to its velocity with coefficient γi. The friction decreases
the total energy of the system, while nodes are not staying still, so one has a certain
quasi-equilibrium state having locally minimum-energy.

The position xi of each node i obeys the equation of motion:

mi
d2xi

dt2
= Coulomb + Spring + Frictional , (4.1)

where

Coulomb = C qi

N∑
j 6=i

qj
xi − xj

|xi − xj |3
, (4.2)

Spring =
M∑
〈i,j〉

Kij (|xi − xj | − `ij) , (4.3)

Frictional = −γi
dxi

dt
, (4.4)

and N is the number of nodes (particles), M is the number of edges (springs), and
C is the constant of Coulomb interaction. xi is assumed to be a position in two
or three-dimensional Euclidean space. In the two-dimensional case, the expressions
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of Coulomb and spring forces may not be validated as “physically” correct, e.g.
Coulomb force would be inversely proportional to the distance, but not its square,
but we do not care about them here.

For a sparse graph, M � N2 by definition, so the computational cost is largest
for the calculation of Coulomb interaction being of the order O(N2). A straight-
forward calculation does not work for large N , and several techniques have been
invented in different disciplines of computational physics. If one replaces the charge
with a mass, and the Coulomb interaction with a gravitational interaction, then one
has an N-body calculation in gravitation. A well-known technique is the Barnes-Hut
algorithm,10) which reduces the number of particles in the summation (4.2) by re-
placing many forces from distant particles with a force from the center-of-mass of
them dividing the space recursively into quadtrees (for two-dimension) or into oct-
trees (for three-dimension). The computational cost becomes O(N logN). Another
well-known technique is a fast multipole method.11) We shall use the Barnes-Hut
algorithm∗).

The calculation can be further accelerated by a special-purpose device of hard-
ware, GRAPE (gravity pipeline), frequently used in astrophysical N-body simula-
tions (see Ref. 13) for review). Although the device was invented for the force
summation for gravity, it can be used directly for the summation (4.2) of Coulomb
force as well. The other calculation for the forces of spring and friction, integrating
the equations of motion, and so on are performed on a general-purpose computer.
We used a GRAPE-7 (model 600, K&F Computing Research Co.), which has the 120
pipelines on a board operating at 100MHz clock cycle (power consumption 30W),
so 12G floating-point operations per sec. Assuming that a pair of interaction needs
30 floating-point operations, the peak speed amounts to be 360Gflops. Such a sys-
tem has a superior performance in computational efficiency per cost of money, as
demonstrated by a finalist of the Gordon Bell Prize in Ref. 14).

We apply our method to the largest connected component in the subgraph for the
manufacturing sector described in §3. The parameters are mi = 1.0, qi = 2.7×10−3,
γi = 2.7, K = 8.4× 10−2, ` = 7.2× 10−6, where the spring constant and its natural
length are assumed to be constant. The computation takes only 10 minutes or so
on a general-purpose computer with CPU Intel Core2 Duo, 2.4GHz, and 2GB of
physical memory with a board of the device GRAPE-7 (see above for the spec) on a
PCI-X slot.

Our result is depicted by Fig. 1 where the position xi of each node is represented
as a point in a three-dimensional space. In each drawing, a community is represented
by black nodes that belong to the community, whereas the other nodes are gray
dots. The largest communities are shown from top to middle in the figure, which
are further analyzed by the community extraction based on modularity optimization

∗) Although the fast multipole method is of O(N) in the calculation cost being preferred to the

tree method theoretically, it may not be practically better for our purpose here, because it scales

as O(N p2) for the order p of multipole expansion whereas the tree code scales as O(N log Np) (see

Ref. 12)). Elongated and distorted configuration of nodes in the graph layout would require larger

p than the case in which Coulomb screening (plus and minus charges) is present. We remark that

a detailed study should be done for comparison, however.
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Fig. 1. (Color online) Three-dimensional visualization of the entire manufacturing sector with

138,103 nodes for firms and 421,893 edges for supplier-customer links. The nodes are depicted as

black or gray dots, and the edges are omitted for visibility. Different communities are shown in

each drawing by using black dots for nodes belonging to a same community. From top to middle

and from left to right, the communities are annotated respectively as heavy industries, mate-

rials, electronics and automobile. In the bottom are shown the sub-communities of electronics

(a)–(c). See Table I.
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as described in §3. This recursive detection of communities give sub-communities,
three of which are shown in the bottom of Fig. 1, corresponding to the electronics
(a), (b) and (c) annotated in Table I.

By the very nature of spring modeling, the nodes tend to cluster dense subgraphs,
most notably for communities. Because the drawings in Fig. 1 do not explicitly use
the information of community structure, the graph layout by our proposed method
alone successfully represent the clustering of nodes in its visualization. Moreover, if
one zoom into a subgraph, one can visually identify sub-communities in a hierarchical
way as we have shown here.

§5. Discussion

Our proposed method directly solves the equations of motion to seek for a quasi-
equilibrium state of nodes placement. As described in the beginning of §4, there
are various methods based on physical analogies in the literature of graph draw-
ing. Those methods are roughly classified into two categories, namely force-directed
placement and energy-based placement. Our method belongs to the latter. See
chapter 4 in Ref. 9).

A frequently used as a routine by force-directed placement is due to Fruchterman-
Reingold.15) A force-directed placement means that each update of locations for
nodes is simply proportional to the total force. This implies that one solves an
equation of motion as if the mass were negligible in a certain limit, or in other
words, as if there were no inertia. A recent usage of GRAPE in a similar context as
ours in Ref. 17) is based on a force-directed placement.

As an energy-based placement, Kamada-Kawai16) is frequently used in many im-
plementations. This algorithm does not employ any repulsive forces between nodes,
but uses springs of different length and strengths between every pairs of nodes. It as-
sumes that the spring’s natural length is given by the shortest-path distance between
nodes, while the spring constant is inversely proportional to the squared distance. A
locally minimum energy is obtained by using a modified Newton-Raphson method.
A recent usage of the Barnes-Hut algorithm can be found in Ref. 18).

Our methods differ at least in the aspects that the direct solution for the equation
of motion, not force-directed, is performed and that repulsive and spring forces with
dissipation are used as described in the previous section. Although one may want
to compare those different methods in a unified way for a given set of test datasets,
it is actually the case that different methods can be ideal for different data because
networks have various properties in the topological features relevant to graph layout.
So it would not be very practical to attempt a systematic comparison. Rather, in
our opinion, a good criterion in choosing an algorithm would be then feasibility
and simplicity of a method even for large-scale graph, and we consider that our
proposed method is quite scalable (to astronomically large scale) and simple enough
to implement the code and the device (as done in astrophysical context).

Thus the N-body simulation with the Barnes-Hut algorithm accelerated by
GRAPE is satisfactory in generating the overall visualization and identifying com-
munity structure. Nevertheless, there are several obvious drawbacks in the present
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method.
Initially random configuration: Nodes are placed at random positions in the

initial configuration, and then it starts the calculation of dynamics for them. An
amount of calculation is necessary for the dynamical system to settle in a quasi-
stable state. If one has a good guess of what is the overall configuration, most of
the computation could be skipped in the calculation of dynamics.

Entangled final configuration: As a result, the quasi-stable state often yields a
twisted and entangled configuration of edges between nodes, even if the network
has a global structure such as a backbone and a tree, it is difficult to find such a
structure as a quasi-stable state.

Non-uniqueness: Starting from a different random configuration, one ends up
with another configuration as a final layout. This is highly undesirable, because
different layouts are generated from a same network in different simulation of the
dynamics.

Clustering: The present method involves spring-forces. Such a spring-type method
geometrically cluster dense subgraphs by its very nature. Although we have shown
that our method actually does so in the final layout to a certain degree, it would
be desirable that a more explicit mechanism is included in the dynamics so that
nodes in a same cluster are located nearby.

The first three points can be illustrated in Fig. 2. The power-grid shown in
Fig. 2 (a) has a backbone which can be observed as a big circular structure when one
ignores many small branches and trees hanging off from it. However, starting from
two random initial configurations, one ends up with (b) and (c) as typical results,
which are highly entangled configurations, and also look quite different from one
another. If one uses energy-based layout throughout from the starting configuration
to the final, it might be difficult to avoid these problems.

Fig. 2. (a) US power-grid with 4,941 nodes and 6,594 edges. (b) and (c) are quasi-stable configu-

rations resulting from two random configuration as an initial state of the same network.

However, these problems could be solved by an additional idea which follows
from the goal of graph-drawing itself. Although it is beyond the scope of the present
paper to elaborate it, let us mention about a basic idea. The elaboration will be
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published elsewhere.
Suppose a similarity measure δij is defined for any pair of nodes i and j. We

assume that it satisfies that δij ≥ 0, δij = δji, and δii = 0. Any graph naturally has
such a measure, namely, shortest-path lengths between nodes. The goal of graph-
drawing is, in general, to configure each node i at a location xi in a conventional
Euclidean space typically of two or three dimensions such that the distances between
any pairs of nodes approximate the similarities as well as possible:

|xi − xj | ≈ δij . (5.1)

As a result, similar nodes are located nearby, while dissimilar nodes will be put away
from each other. The most simple case would be that the similarity is a distance
between cities, then the resulting configuration of cities must be equal to exactly a
geographical location of the cities on a map. The problem of graph-drawing is much
more difficult, but can be stated as how to solve the equation (5.1) under a certain
criterion for the approximation so as to realize the low-dimensional embedding and
representation.

It turns out that this problem has exactly the same essence in multi-dimensional
scaling (MDS) (see Ref. 19) for example). Indeed, the energy-based placement by
Kamada and Kawai,16) one of the most frequently used spring-layouts, can be
interpreted as a kind of MDS (see Chapter 4 in Ref. 9) and also references therein).
This interpretation can lead one to the following idea. If one could solve the equation
(5.1) by using one of the MDS methods that is applicable to a large number of nodes,
then one can use the solution as an initial configuration for the dynamics which then
follows exactly in the same way shown in this paper∗). Moreover, by appropriately
designing the similarity measure to include clustering of nodes (the fourth problem
above), then it would be possible to resolve those problems.

Therefore, we conclude this discussion to say that our approach could be aug-
mented by a better initial configuration, which might be given potentially by an
MDS solution to perform a practically fast visualization in the same way as in this
paper overcoming the problems discussed here.

§6. Summary

In order to visualize communities in a nation-wide production network, stud-
ied in the paper,1) we propose an N-body simulation of Coulomb repulsive forces
between nodes, Hook’s spring forces along edges and dissipation for relaxation. We
showed that the method successfully identifies the communities in a hierarchical way.
The calculation for the graph layout is done in a practical computation-time and is
possible to be accelerated by a special-purpose device of GRAPE (gravity pipeline)
for astrophysical N-body simulation. In addition, we discuss the limitations of the
method, and argue that all the problems could be solved by using an appropriate
calculation of initial configuration of nodes in a multi-dimensional scaling.

∗) This is actually the method by which Fig. 2 (a) was obtained.
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5) J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész, Eur. Phys. J. B 56 (2007), 41.
6) Japan Standard Industrial Classification, http://www.stat.go.jp/index/seido/sangyo/

index.htm, Rev. 11, March 2002.
7) P. Eades, Congressus Numerantium 42 (1984), 149.
8) G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for

the Visualization of Graphs (Prentice Hall, Upper Saddle River, 1998).
9) M. Kaufmann and D. Wagner (Eds.), Drawing Graphs: Methods and Models, Lecture Notes

in Computer Science no. 2025, (Springer-Verlag, Berlin, 2001).
10) J. Barnes and P. Hut, Nature 324 (1986), 446.
11) L. Greengard and V. Rokhlin, J. Comput. Phys. 73 (1987), 325.
12) J. Makino, Bulletin of the Japan Society for Industrial and Applied Mathematics 8 (1998),

277.
13) J. Makino and M. Taiji, Scientific Simulations with Special-Purpose Computers (John

Wiley and Sons, Chichester, 1998).
14) A. Kawai and T. Fukushige, $158/GFLOPS astrophysical N-body simulation with recon-

figurable add-in card and hierarchical tree algorithm, in Proceedings of the SC06 (High
Performance Computing, Networking, Storage and Analysis) CDROM, 2006.

15) T. M. J. Fruchterman and E. M. Reingold, Software – Practice and Experience 21 (1991),
1129.

16) T. Kamada and S. Kawai, Information Processing Letters 31 (1989), 7.
17) T. Matsubayashi and T. Yamada, International Journal of Electronics, Circuits and Sys-

tems 1 (2007), 116.
18) E. Quigley and P. Eades, FADE: Graph drawing, clustering, and visual abstraction, in

Proceedings of Graph Drawing 2000, Lecture Notes in Computer Science no. 1984, pp.
197–210.

19) I. Borg and P.J.F. Groenen, Modern Multidimensional Scaling: Theory and Applications
(Springer-Verlag, Berlin, 2005).

http://arxiv.org/abs/0806.4280
http://www.stat.go.jp/index/seido/sangyo/index.htm
http://www.stat.go.jp/index/seido/sangyo/index.htm

	Introduction
	A nation-wide production network
	Community extraction
	Energy-based placement
	Discussion
	Summary

