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Abstract:

In the top-down approach to multi-name credit modeling, calculation of singe name sensi-
tivities appears possible, at least in principle, within the so-called random thinning (RT)
procedure which dissects the portfolio risk into individual contributions. We make an
attempt to construct a practical RT framework that enables efficient calculation of single
name sensitivities in a top-down framework, and can be extended to valuation and risk
management of bespoke tranches. Furthermore, we propose a dynamic extension of the
RT method that enables modeling of both idiosyncratic and default-contingent individ-
ual spread dynamics within a Monte Carlo setting in a way that preserves the portfolio
“top”-level dynamics. This results in a model that is not only calibrated to tranche and
single name spreads, but can also be tuned to approximately match given levels of spread
volatilities and correlations of names in the portfolio.

We would like to thank Andrew Abrahams, Anil Bangia, Tom Bielecki, Rama Cont, Kay Giesecke,
Andrei Lopatin, Philipp Schönbucher, Jakob Sidenius, Tolga Uzuner, Yury Volvovskiy and Michael Walker
for very helpful discussions. All remaining errors are our own.
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1 Introduction

Modeling of a dynamic credit portfolio can proceed according to two different paradigms.
In a bottom-up approach, we start with single name dynamics which are constructed to fit
individual credit spreads. At the second stage, one attempts to calibrate the dependence
structure (introduced via common factors or a copula) to portfolio pricing data such as
tranche prices. However, calibration to tranches across multiple strikes and maturities
can be quite challenging in this framework. Furthermore, the bottom-up approach makes
it difficult (though not impossible, see Collin-Dufresne et al (2003) [1] and Schönbucher
(2003) [2]) to introduce default clustering (contagion) in a tractable way.

In many applications, the portfolio loss (or spread-loss) process is all we need for
pricing and risk management. In particular, this is the case when one wants to price a
non-standard index tranche off standard ones, and risk-manage it using the same standard
tranches plus the credit index. Another example is an exotic portfolio derivative (such
as e.g. a tranche option) that is hedged using tranches written on the same portfolio. In
recognition of this fact, the alternative, top-down approach, suggested by Giesecke and
Goldberg (GG) (2005) [3], suggests that a portfolio-level (or economy-level) loss process,
rather than loss processes for individual names, should be the modeling primitive. Such a
process is generally much easier to calibrate to tranche prices than an aggregate portfolio
loss process obtained with the bottom-up approach. Moreover, credit contagion is built-in
in this approach by construction [3, 4]. Once a calibrated portfolio loss process is obtained,
it can be used to price vanilla and exotic derivatives referencing the same portfolio. (For
a further comparison between the bottom-up vs top-down paradigms and a brief review
of published models, see e.g. Bielecki, Crépey and Jeanblanc [5] and references therein.)

The two alternative approaches to modeling credit portfolios, i.e. the bottom-up and
top-down paradigms, are somewhat complimentary in the sense that typically, for practical
applications we chose one of them based on its appropriateness as well as practicality of its
use. If we are interested in pricing (and/or risk management using only a credit index and
its tranches), then a transition to a coarse-grained description of the top-down approach
can be justified, as eventually our payoffs are only functions of portfolio-level losses, not of
losses on individual names. Note, however, that the knowledge of the portfolio loss process
is not sufficient in more complicated (but common) situations, e.g. when a risk manager
chooses to use single names for hedging. Hedging on a single name basis is often done for
names in the portfolio whose spreads significantly widen. Obviously, calculation of single
name sensitivities is beyond the reach of a model whose only output is a portfolio-level
loss process.

In addition to the hedging issue, there exists another reason why single name calibra-
tion can be of substantial practical interest, which is the so-called “bespoke problem”.
The problem is that most exotic portfolio credit derivatives (forward-starting tranches,
tranche options, etc) reference customized (bespoke) portfolios, rather than standardized
index portfolios. If we work with a top-down model, we have to calibrate it to tranches
referencing this bespoke portfolio. However, such portfolios usually do not have enough
liquidity, which forces practitioners to mark prices of tranches on bespoke portfolios off
tranche quotes for index portfolios, using some sort of a mapping between the two port-
folios. Currently, the market standard is to use the base correlation methodology along
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with an adjustment to the difference in expected portfolio losses between the two port-
folios. However, this procedure is quite ad hoc and is neither consistent nor satisfactory.
In particular, it often violates no-arbitrage conditions, thus posing substantial practical
difficulties.

The bottom-up approach suggests, in principle, a natural method to deal with the
bespoke problem: once a model is calibrated to market data at both the single name and
tranche levels, arbitrary bespoke tranches can be priced with the same model by first
choosing parameters obtained by calibration to index tranche prices for names that are
common for the bespoke and index portfolios, and then relying on interpolation/extrapolation
for names that are not. However, this argument can also be applied to a top-down model
once we can calibrate it to single names in addition to tranches. In this case, the bespoke
problem would be resolved in the top-down approach in exactly the same way as in the
bottom-up approach.

With the top-down approach, information about single names can be recovered, at
least in principle, using the so-called random thinning (RT) procedure proposed by Giesecke
and Goldberg (2005) [3]. The idea of this approach is to allocate fractions of portfolio
default intensity calibrated within the “top” part of the model to individual names in
such a way that individual CDS spreads of names in the portfolio are matched. Once
this is done, the model becomes calibrated to both tranche and single name data. Var-
ious versions of the RT discussed in [3, 4, 6] use thinning of the portfolio intensity by
deterministic or piecewise-deterministic (ones that jump upon defaults in the portfolio)
processes. (This involves a number of subtle technical points, see BCJ [5] and also below
in Sect.2.3.)

In this paper, we take a probabilistic view of the problem of construction of single
name dynamics within the top-down framework. Note that the “top” part of a top-
down model can be viewed as producing “incomplete information” scenarios that yield
a forecast of the timing of sequential defaults in the portfolio, but lose information on
the defaulters’ identities. In a sense, our problem thus becomes a problem of inference,
where we probabilistically assign identities to all future defaulters. As will be clear in
what follows, our approach bears resemblance to the well-known statistical problem of
inference of a two-dimensional (2D) probability distribution when only its 1D marginals
(corresponding, in our case, to portfolio-level and individual names default forecasts,
respectively) are known.

The contribution of this paper is two-fold. First, we present a practical RT framework
that enables efficient calculation of single name sensitivities in a top-down framework,
and can be extended to valuation and risk management of bespoke tranches. Second,
we suggest a way of extending this framework to model dynamics of single names in a
way that preserves both the portfolio-level calibration and dynamics. This is achieved by
formulating and solving the problem of single name dynamics as a filtering problem1. We
construct an ”information process” to explicitly model the market filtration, and further
show how parameters of this process could be chosen to approximately (in the portfolio-
averaged sense) calibrate to a given set of single name spread volatilities and correlations.

1 The whole construction developed to this end can be viewed as an “inverse dynamic copula”: while
a dynamic copula constructs a multivariate dynamic process in a way consistent with dynamic marginals,
it is exactly the other way around in our construction.
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We note in this relation that most, if not all, of credit portfolio models usually concentrate
on matching individual CDS spreads of names in a portfolio as well as tranche spreads, but
not finer characteristics such as spread volatility. However, it can be expected that better
control of spread dynamics might be important for the pricing and risk management of
exotic portfolio credit derivatives. The particular framework employed in our construction
does allow one to have some control of single name spread dynamics, which thus might
be seen as an attractive feature of the top-down approach.

The paper is organized as follows. In Sect.2 we introduce the so-called top-down
(TD) matrices which serve as the basic modeling primitives of our approach. Sect.3
then introduces the iterative scaling algorithm for calculation TD-matrices calibrated to
single names. In Sect.4 we calculate single name sensitivities with our approach. Sect.5
describes the dynamics extension of our RT framework. A very short Sect.6 summarizes
the numerical Monte Carlo algorithm for simulation single name dynamics. In Sect.7
we outline a method of approximate calibration of parameters driving the single name
dynamics. The final Sect.8 presents some discussion and conclusions.

2 Top-down default time matrices

The following notation will be used throughout this paper:

• τi - default time of name i

• τ j - time of the j-th default in the portfolio

• [T (1), . . . , T (M)] - reference maturities2. We set T (0) = 0.

Next, we introduce our modeling primitives. For each interval m = 1, . . . ,M , we consider
the following matrix

P
(m)
ij (t) = P

[{
τ j = τi

}⋂{
T (m−1) ≤ τi ≤ T (m)

}
|Ft
]
. (1)

In words, this is the joint probability that the i-th name is the j-th defaulter, and this event
happens in the interval [T (m−1), T (m)], conditional on the currently available information
Ft. (Modeling of filtration Ft will be discussed below.) Note that we assume instantaneous
multiple default events are not possible. Clearly, we can equivalently write (1) as

P
(m)
ij (t) = P

[{
τi = τ j

}⋂{
T (m−1) ≤ τ j ≤ T (m)

}∣∣∣Ft] . (2)

In what follows, we will occasionally refer to (1) or (2) as Top-Down default time matrices,
or TD-matrices for short. The definitions (1), (2) are inspired by the formalism used in
the reliability theory and competing risks models3, where the object of inference is the

2 The choice of the grid [T (1), . . . , T (M)] is determined by the desired resolution in calibration to single
name default probabilities.

3We want to thank Philipp Schönbucher for showing one of us (I.H.) formulas nearly identical to (1),
(2). While the formalism based on joint probabilities (1) turns out to be equivalent to one previously
employed in [7] which instead uses conditional probabilities (see below), we find it convenient to start the
exposition by introducing them first.
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joint probability p(T,O) of the event T (e.g. a first failure in a system) and the type O
of risk among a set of alternatives O1, O2, . . . that could cause the failure. In our setting,
identities of defaulted names serve as risk types Oi, with an additional rule that they
cannot repeat in the default history of a portfolio4.

Both the single name and portfolio probabilities are obtained by marginalization:∑
i

P
(m)
ij (t) = P

[
T (m−1) ≤ τ j ≤ T (m)

∣∣Ft] ,∑
j

P
(m)
ij (t) = P

[
T (m−1) ≤ τi ≤ T (m)

∣∣Ft] , (3)

where we used (2) and (1), respectively. Both the “top-down” and “bottom-up” forward
probabilities entering the RHS of Eqs.(3) can be easily calculated as follows:

P
[
T (m−1) ≤ τ j ≤ T (m)

∣∣Ft] = w
(m)
t (j)− w(m−1)

t (j),

P
[
T (m−1) ≤ τi ≤ T (m)

∣∣Ft] = Q
(m)
i,t −Q

(m−1)
i,t , (4)

where w
(m)
t (j) is the tail probability of having at least j defaults in the portfolio by time

T (m) (note that w
(0)
0 (j) = δj0), and Q

(m)
i,t is the cumulative default probability of the i-th

name by time T (m). Note that we explicitly show dependence on t for both w
(m)
t (j) and

Q
(m)
i,t to emphasize their dependence on the filtration Ft.

2.1 Dynamics of TD matrices

The TD matrices are dynamic because we condition on the currently available information
Ft. In fact, from their definition it is clear that for any i, j,m, P

(m)
ij (t) is a martingale in

the filtration (Ft)t≥0. In the remainder of this Section, as well as Sections 3 and 4, we
examine the TD matrices as seen at time zero, i.e. conditional on F0. In Section 5, we
show how the TD matrices are updated conditional on the information in (Ft)t≥0. This
must be done in a way that preserves the equations (3) and (4) as well as the martingale
property.

The primary filtration (Ft)t≥0 is constructed from the following definitions:

• (Gt)t≥0 is the natural filtration of the top-down default-counting process: Gt =
σ({τ j < t}; j = 1, . . . , N)

• (It)t≥0 is the filtration generated by the defaulters’ identities: It = σ({τ j = τi, τ
j <

t}; i, j = 1, . . . , N) (this will be obtained by simulation, see Sects. 2.3 and 5.1 below)

• (Ht)t≥0 is a background filtration containing external market information, and pos-
sibly generated by several “information processes”

• The filtrations (Gt)t≥0, (It)t≥0, and (Ht)t≥0 are assumed to be independent, and the
filtration (Ft)t≥0 is defined by

Ft = Gt ∨ It ∨Ht. (5)

4This rule is easy to impose in a Monte Carlo setting, see below.
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According to these definitions, the ordered default times τ j are G-stopping times, but the
single name default times τi are typically not. However, both τ j and τi are F -stopping
times.

The market filtration H is similar to that introduced by Brody, Hughston and Macrina
(BHM) [8], which they use to introduce bond price dynamics to their model. In their
paper, the filtration is generated by a Brownian bridge. By including this information in
our overall filtration F , we use similar techniques to enrich the dynamics of P

(m)
ij (t) (see

Section 5). In particular, by enlarging the filtration of interest, we are able to de-correlate
(to a certain extent) the individual forward default probabilities from the index’s; without
it, they would be perfectly correlated.

2.2 Relation to conditional forward matrices

Note that for m = 1, our TD matrix P
(1)
ij is simply related to a time-independent

matrix pij introduced by Ding, Giesecke and Tomecek [6] as a matrix of conditional

probabilities, provided we restrict it to the time horizon given by T (1), pij → p
(1)
ij (t) ≡

P
[
τ j = τi|τ j < T (1),Ft

]
. Indeed, in this case we obtain

P
(1)
ij (t) = P

[{
τ j = τi

}⋂{
0 ≤ τ j ≤ T (1)

}
|Ft
]

(6)

= P
[
τ j = τi|τ j ≤ T (1),Ft

]
P
[
τ j ≤ T (1)|Ft

]
≡ p

(1)
ij (t)w

(1)
t (j).

On the other hand, for a forward interval [T (m−1), T (m)], we can similarly introduce a
conditional forward TD-matrix

p
(m)
ij (t) ≡ P

[
τ j = τi|T (m−1) ≤ τ j ≤ T (m),Ft

]
. (7)

Using (4) leads to the relationship between the conditional and joint TD-matrices

P
(m)
ij (t) = p

(m)
ij (t)[w

(m)
t (j)− w(m−1)

t (j)]. (8)

Applying (3) leads to the marginal constraints for the conditional p-matrices:∑
i

p
(m)
ij (t) = 1,∑

j

p
(m)
ij (t)

[
w

(m)
t (j)− w(m−1)

t (j)
]

= Q
(m)
i,t −Q

(m−1)
i,t . (9)

These are exactly the formulas presented earlier in [7].
A comment is in order here. Eq.(8) demonstrates equivalence of the descriptions

based on the joint and conditional forward TD-matrices in the sense that as long as
tail probabilities {wj} are known from the “top” part of the model, conditional TD-
matrices are known once the joint matrices are known, and vice versa. However, as
will be discussed below, the joint TD-matrices are more convenient to work with when
calculating sensitivities in the present formalism.
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2.3 Relation to intensity-based formulation

For some applications, an equivalent formalism based on intensities, rather than prob-
ability matrices, may be preferred. To this end, we follow Giesecke and Goldberg [3]
and Ding, Giesecke and Tomecek [6] (see at the end of this section for a discussion) and
introduce the so-called Z-factors as the conditional probability that name i is the next
defaulter given an imminent default in the interval [t, t+ dt]:

Zi
t =

N∑
n=1

P [τn = τi|τn ≤ t+ dt,Ft] 1{τn−1≤t<τn}, (10)

Note that (10) yields the following relation between the single name and portfolio inten-
sities

λit = Zi
tλ
p
t , where

N∑
i=1

Zi
t = 1. (11)

As shown by Giesecke and Goldberg, the single name default probability is given by the
following relation:

P [t < τi ≤ T |Ft] =

∫ T

t

E
[
λis|Ft

]
ds =

∫ T

t

E
[
Zi
sλ

p
s|Ft

]
ds. (12)

In general, one can take the Z-factors to be any F -adapted stochastic processes satisfying
(11). To establish the relation with the probability-based formalism, we note that in our
case of piecewise constant probabilities we can use the conditional forward TD matrices
(7) in Eq. (10). This gives rise to the following ansatz for the Z-factors:

Zi
t =

N∑
n=1

[
p

(1)
in 1{τn−1≤t<τn}1{t≤T1} + p

(2)
in 1{τn−1≤t<τn}1{T1<t≤T2} + . . .

]
. (13)

Substituting this into the Giesecke-Goldberg formula (12), we obtain for the default prob-
ability at the first maturity:

Qi
T1
≡ P

[
0 < τ i ≤ T1

]
=

∫ T1

t

E
[
Zi
sλ

p
s

]
ds =

N∑
j=1

p
(1)
ij

∫ T1

0

E
[
λps1{Ns=j−1}

]
ds

=
n∑
j=1

p
(1)
ij w0,T1(j), (14)

and for the second maturity

Qi
T2
≡ P

[
0 < τ i ≤ T2

]
=

∫ T2

0

E
[
Zi
sλ

p
s

]
ds =

∫ T1

0

E
[
Zi
sλ

p
s

]
ds+

∫ T2

T1

E
[
Zi
sλ

p
s

]
ds

= QT1 +
n∑
j=1

P
(2)
ij (w0,T2(j)− w0,T1(j)) ≡ QT1 +

n∑
j=1

P
(2)
ij wT1,T2(j). (15)

In the general case, we reproduce (9).
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A comment is in order here. Recently, Bielecki, Crépey and Jeanblanc (BCJ) [5] have
pointed out that actual defaults in a credit portfolio are generally not stopping times
under the information set Gt generated by the history of a pure ”top”-dynamics. As
a consequence, hazard rates obtained with a ”classical” RT procedure (which only uses
filtration Gt) do not drop to zero upon defaults, and thus cannot be mapped on the actual
CDS spreads that do. Our approach to handle this potential issue with a RT approach is to
extend the model filtration Ft (see Sect. 2.1) by including defaulter identities. Fortunately,
in a Monte Carlo setting which we envision for applications of our framework, this can
be easily done by simulating identities of defaulters upon each portfolio-level default (see
below in Sect. 5.1). Note that by doing this, we effectively turn the point process of losses
in the top model into a marked point process, where the marker provides the defaulter’s
identity. Clearly, we should prevent multiple defaults of the same name, as well as ensure
that default intensity of a name drops to zero once it defaulted. We achieve both these
goals simultaneously within our Monte Carlo scheme as discussed further in Sect. 5.1.

3 Thinning by bootstrap and iterative scaling

In this section we present an algorithm that enables calculation of conditional TD-matrices
p

(m)
ij (t) (or, equivalently, joint TD matrices P

(m)
ij ) as seen today, at t = 05.

As the calibration scheme of TD matrices p
(m)
ij (0) is identical for all periods [Tm−1, Tm],

m = 1, . . . ,M , in this section we assume some fixed value of m, and denote pij ≡ p
(m)
ij (0),

wj ≡ w
(m)
0 (j)− w(m−1)

0 (j), and Qi ≡ Q
(m)
i,0 −Q

(m−1)
i,0 .

Using this notation, our problem is to find a matrix pij that satisfies the following row
and column constraints:

N∑
j=1

pijwj = Qi , i = 1, . . . , N, (16)

N∑
i=1

pij = 1 , j = 1, . . . , N. (17)

Note that this problem is ill-posed (and under-determined), as we have N2 unknowns but
only 2N constraints, therefore it can have an infinite number of solutions, or no solution at
all, which happens when the constraints are contradictory. Before presenting the solution,
we therefore want to analyze necessary conditions for the existence of a solution.

3.1 Consistency condition

If we sum Eq. (16) over i, we obtain

N∑
j=1

wj =
N∑
i=1

Qi. (18)

5 Some of the results of this section have been previously reported in [7].
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Note that the RHS of this equation
∑N

i=1Qi = 〈NT 〉(CDS) is the expected number of
defaults according to single-name (CDS) data, while the LHS gives the expected number
of defaults according to the top-down model:

N∑
j=1

wj =
N∑
j=1

N∑
n≥j

pn =
N∑
n=1

npn = 〈NT 〉(model). (19)

We thus have the following consistency condition:

〈NT 〉(model) = 〈NT 〉(CDS) = 〈NT 〉. (20)

Unless (20) is satisfied, no set of top-down matrices can match both the “top” and “down”
data. Note that the standard procedure of basis adjustment ensures that the theoretical
formula for the index par spread Sidx in terms of CDS par spreads Si and their risky
durations PV 01i:

Sidx =

∑
i SiPV 01i∑
i PV 01i

, (21)

holds by adding a uniform or proportional tweak to all spreads Si in the index portfolio.
This procedure does not guarantee that the constraint (20) is met, and indeed one typi-
cally finds a few percent difference between 〈N〉(model) and 〈N〉(CDS) even after the basis
adjustment is made. While alternative schemes of basis adjustment where (20) would be
enforced are certainly feasible, in this paper we choose to further adjust (basis-adjusted)
single name default probabilities so that (20) holds.

3.2 Choice of the initial guess

Obviously, a solution of an ill-posed problem defined by (16) and (17), if it exists, should
generally depend on an initial guess (a “prior”) qij for the TD matrix pij. Here we present
a few possible specifications of the prior matrix.

One possible choice is a factorized prior qij = qikj. Consider the first three steps of
the IS algorithm with this prior:

p
(1)
ij = qikj

Qi

qi
∑

j kjwj
=

kjQi∑
j kjwj

,

p
(2)
ij =

p
(1)
ij∑
i p

(1)
ij

=
kjQi∑
j kjwj

∑
j kjwj

kj
∑

iQi

=
Qi∑
iQi

=
Qi

〈NT 〉
, (22)

p
(3)
ij = p

(2)
ij

Qi∑
j p

(2)
ij wj

=
Qi

〈NT 〉
,

so that the algorithm converges to the solution pij = Qi/〈NT 〉, independently of the initial
guess. This solution suggests that the relative riskiness of a name stays the same (i.e.
independent of j) as defaults arrive. However, such a behavior looks unreasonable on
“physical” grounds, as riskier names are expected to default earlier than less risky ones.
We view this as an evidence against using factorized priors.
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A simple and reasonable alternative to factorized priors that conforms to one’s in-
tuition about the order of defaulters in the portfolio is obtained if we assume a linear
law for rows of conditional p-matrix, such that for a risky name the probability that it
defaults first, second, etc. will (linearly) decrease, while for tighter names it will increase.
We can further assume that once some sufficiently high default level n̄ is reached, the
conditional TD-matrix pij becomes uniform across names, so that n̄ can be referred to
as a “uniformization bound”. This is summarized in the following ansatz for the prior
matrix:

qij =

{
qi1 + αij i = 1, . . . , N, j ≤ n̄
1
N

i = 1, . . . , N, j > n̄,
(23)

where

αi =
1

n̄

(
1

N
− qi1

)
.

This ansatz parametrizes the p-matrix in terms of its first column. The latter can be
chosen according to current values of CDS spreads. Note that

∑
i qij = 1 as long as∑

i qi1 = 1. In Fig. 1 we show three rows in such a prior matrix for the first maturity
interval, corresponding to names with low, moderate and high spreads (resp., Baxter
International, GE and Citigroup).

Figure 1: Three rows of the prior matrix q
(1)
ij corresponding to low, moderate and high

spreads.

The ansatz (23) is certainly not the only possible model for the prior. Another method
to construct the prior will be presented below after we discuss the single name sensitivities
calculation.

3.3 Iterative scaling (IS) algorithm

We assume that an initial guess (a “prior”) qij ≡ p
(0)
ij for the solution is available using

e.g. a construction just presented (see below for an alternative choice). We then use
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the iterative scaling algorithm6 to find the matrix pij. With this method, the matrix is
updated iteratively p(0) → p(1) · · · → p(k) → p(k+1) · · · according to the following scheme:

p
(k+1)
ij =


p

(k)
ij

QiP
j p

(k)
ij wj

for k odd

p
(k)
ijP

i p
(k)
ij

for k even.
(24)

In other words, we alternatively rescale the matrix to enforce the row and column con-
straints until convergence. The equivalent scheme for joint TD-matrices Pij reads

P
(k+1)
ij =

 P
(k)
ij

QiP
j P

(k)
ij

for k odd

P
(k)
ij

wjP
i P

(k)
ij

for k even.
(25)

We have tested the above algorithm on several datasets, and found in each case fast
convergence (in less then 10 steps per maturity) to parameters matching single name CDS
spreads with relative errors below 1%. The whole calculation takes about 2-3 seconds on a
standard PC. An example of calibrated conditional thinning matrices is given in Fig. 2 for
CDX IG8 data on 03/03/2008 (the same dataset will be used for all numerical examples
in what follows). Tail probabilities needed for this calculation are produced by our own
version of a top-down model called BSLP (Bivariate Spread-Loss Portfolio) model [10],
however any other top-down model can be used to this end. Tail probabilities produced
by BSLP by calibrating to the same dataset are shown in Fig. 3.

Figure 2: Calibrated thinning matrices p
(1)
ij , p

(2)
ij , p

(3)
ij for intervals [0, 3Y ], [3Y, 5Y ], [5Y, 7Y ]

for CDX IG8 data on 03/03/2008, obtained with linear prior (23). (The fourth matrix is
similar and is not shown here to save space.)

3.4 Information-theoretic interpretation of IS algorithm

If we rescale our matrices pij → Npij and qij → Nqij so that now
∑

i,j pij =
∑

i,j qij = 1,
then {pij}, {qij} can be thought of as two-dimensional probability distributions. As was

6The method was originally developed in 1937 by Kruithof to estimate telephone traffic matrices. For
more information on the IS method and relation to information theory, see [13] and also below.
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Figure 3: Tail probabilities for horizons of 3,5,7 and 10Y for CDX IG8 data on 03/03/2008
calculated with the BSLP model.

shown by Ireland and Kullback [11] and Csiszár [12] (see also [13]), the IS algorithm can
be interpreted as an alternative minimization of the Kullback-Leibler divergence (relative
entropy, see e.g. [14]) between these two measures:

D[p||q] =
∑
ij

pij log
pij
qij
, (26)

subject to constraints
∑N

j=1 pijwj = 1
N
Qi and

∑N
i=1 pij = 1/N . The standard approach to

this problem uses the method of Lagrange multipliers to enforce the constraints, leading
to the following Lagrangian function

L = D[p||q]−
∑
j

λj

(∑
i

pij −
1

N

)
−
∑
i

ξi

(∑
j

pijwj −
Qi

N

)
, (27)

which can be solved using convex duality [14], with dimensionality of the problem be-
ing the number of Lagrange multipliers ξi, i.e. equal to the number of constraints. The
approach of Ireland and Kullback and Csiszár uses instead an alternative recursive mini-
mization of the KL distance (26) where we alternate between enforcing the row constraints
only at odd steps, and column constraints only at even steps. This can be shown to pre-
cisely correspond to the alternating rescaling of the IS algorithm. This method may be
computationally less expensive than the direct minimization of (27), especially for large
scale problems, and it allows one to prove convergence of the IS algorithm under certain
technical conditions.

We note that the information-theoretic reformulation of the problem can be easily
generalized to the case when one matches single name spreads approximately (e.g. in the
least square sense) rather than exactly, and thus can be used to ensure stability of single
name calibration. We will not pursue this approach further in this paper.
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4 Single name sensitivities

The TD-matrices calibrated as of today can be used for calculation of single name sensi-
tivities, as proposed by Giesecke and co-authors [3, 4, 6]. Specifically, once a calibrated
set of TD-matrices is found, sensitivity to a given name i is calculated as follows. First we
re-scale the i-th row in the unconditional TD-matrix to accommodate the new (bumped)
spread of the i-th name. Once this is done, summation of the new perturbed matrix over
i produces a new set of bumped tail probabilities, which is equivalent to bumping tranche
prices. The ratio of changes of the MTM of a given tranche to that of the underlying
names is the name delta of the tranche.

Let us consider the calculation in more details, focusing for simplicity on the first
maturity interval [0, T1]. Assume that we want to calculate sensitivity of tranche prices to

a given name i. To this end, we tweak only the i-th row of the joint TD matrix Pij = P
(1)
ij .

We consider the simplest proportional tweak of all elements in the i-th row7:

δPij = εPij. (28)

Using Eqs.(3), we obtain the following tweaks of the default probability Qi(T ) and tail
probabilities wj:

δQi =
N∑
j=1

δPij = ε
N∑
j=1

Pij = εQi,

δwj = δPij = εPij. (29)

Note that as long as the rule (28) of tweak of Pij is specified, the tweak of the conditional
TD-matrix pij is not arbitrary but is rather fixed by the relation

δPij = wjδpij + pijδwj. (30)

Substituting (28) and the second of Eqs.(29) and re-arranging, this yields

δpij = εpij (1− pij) . (31)

Eqs.(29) express the sought-after “duality” between tweaks of single name default
probability and the tail probability, which both stem from a tweak of the joint TD-matrix
Pij. It is exactly this duality that enables the whole calculation of single name sensitivities
in our framework8. What remains now for calculation of those single name sensitivities is
to establish a relation between changes of the market-to-market of name i and a tranche
with changes δQi and δwj, respectively.

In what follows, we establish approximate, rather than “exact”, relations for single
name sensitivities. Generalizations of formulae to follow to make them “exact” (i.e. in-
clude contributions of all cashflows) are straightforward, but lead to bulky expressions

7We choose a proportional tweak as another simple one-parametric scheme with an additive tweak
δPij = ε would lead to nearly equal sensitivities for different names, see a comment after Eq.(37).

8We note that such a tying of spread shifts to particular shifts of tail probabilities (and hence corre-
lation parameters) is akin to the local volatility approach in equity derivative modeling.

12



and hence will be omitted here. Furthermore, as will be shown later on, our approximate
formulas can be inverted, leading to some interesting insights (see Sect. 4.1).

We start with establishing relevant formulae for name i. Let us approximate a change
of MTM, δMTMi, of CDS referencing the i-th name by a change δDLi of its default leg.
(Note that this approximation becomes exact if the CDS premium is paid upfront rather
than as a running spread. Corrections to this approximation will be considered below.) In
turn, δDLi can be approximated by the (discounted) change in the expected loss on this
name (i.e. the default probability times (1 − R)/N , assuming a unit portfolio notional).
This yields

δMTMi '
1−R
N

B(0, T )δQi(T ), (32)

where B(0, T ) is a discount factor to time T 9.
We can now use the same approximation as above for the MTM change of the tranche,

so that the latter is approximated by the (discounted) change of the tranche expected
loss (EL). We assume an ordered set of strikes K1, . . . , KNtr expressed as a fraction of
the total portfolio notional, with K0 = 0 and KNtr = 1. Let ELk ≡ EL[Kk−1,Kk] (where
k = 1, . . . , Ntr) be the expected loss of the k-th tranche, expressed as a percentage of the
tranche notional, is defined as follows (here I = 1

N
is the CDS notional):

ELk =
Sk−1 − Sk
Kk −Kk−1

, (33)

where

Sk =
N∑
n=1

((1−R)nI −KkNI)+ ρn, (34)

and ρn is the probability of having n defaults by a given time horizon, which can be
expressed in terms of the tail probabilities {wn} defined in Sect.2:

ρn =

{
wn − wn+1 n = 1, . . . , N − 1
wN n = N .

(35)

After some algebra, we obtain for Sk

Sk =
1−R
N

1(K̂k<1)

 N∑
bK̂kNc

wn +
(
bK̂kNc − K̂kN

)
wbK̂kNc

 ' 1−R
N

1(K̂k<1)

N∑
n=bK̂Nc

wn,

where K̂k ≡ Kk/(1 − R) and bxc stands for the smallest integer equal or larger than x.
For the tranche expected loss with K̂k−1, K̂k < 1 we therefore have

ELk '
1−R

Kk −Kk−1

1

N

bK̂kNc∑
n=bK̂k−1Nc

wn. (36)

9Corrections to the RHS of this equation are O(r) where r is a short risk-free rate, and thus can be
neglected as long as r is small enough.
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Using (36), (32) and (29), we arrive at the following approximate formula for the single
name delta of the k-th tranche in the random thinning framework:

∆k
i ≡

(δMTM)ktranche
(δMTM)i

' 1

Kk −Kk−1

1

N

∑bK̂kNc
n=bK̂k−1Nc

δPin∑N
n=1 δPin

=
1

Kk −Kk−1

1

N

∑bK̂kNc
n=bK̂k−1Nc

wnpin∑N
n=1wnpin

. (37)

Note that this formula readily demonstrates that tweaks δPin = εwnpin should be different
for different names, as otherwise our approximation would produce the same deltas for
all names.

We can also calculate the index delta from all single name deltas as follows. If we
tweak all single names at once using a proportional tweak with the same ε for all names,
then the change of tranche MTM is

(δMTM)ktranche =
∑
i

∆k
i (δMTM)i, (38)

while on the other hand by definition it is equal to

(δMTM)ktranche = ∆k
idx(δMTM)idx. (39)

Comparing these two formulas and taking into account the relation

(δMTM)idx =
∑
i

1

N
(δMTM)i = ε(1−R)B(0, T )

N∑
i=1

N∑
n=1

wnpin, (40)

we obtain two relations for the index delta. The first one is a “bottom-up” formula
expressing the index delta as a weighted average of single name deltas:

∆k
idx = N

∑N
i=1 ∆k

i (δMTM)i∑N
i=1(δMTM)i

, (41)

and the second one is a “top-down” relation

∆k
idx =

(δMTM)ktranche
(δMTM)idx

' 1

Kk −Kk−1

∑N
i=1

∑bK̂kNc
n=bK̂k−1Nc

wnpin∑N
i=1

∑N
n=1wnpin

. (42)

Note that approximate deltas calculated according to (42), and rescaled by the tranche
widths Kk −Kk−1, sum up to 1 across all tranches in the capital structure, while single
name deltas sum up to 1/N . Also note the following simple relation between the index
delta and single name deltas:

∆k
idx '

∑
i

∆k
i , (43)

which follows from (41) as long as all spreads in the index portfolio are approximately
equal and tweaked in the same way (i.e. using the same value of ε).
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Tranche 0-3% 3-7% 7-10% 10-15% 15-30% 30-100%
BC delta 0.0546 0.0086 -0.0022 -0.0034 -0.0093 0.0109

RT delta (prior 1) 0.0521 0.0218 0.0152 0.0102 0.0085 0.0057
RT delta (prior 2) 0.0283 0.0035 0.0011 0.0005 0.0009 0.0101

Table 1: Single name sensitivities for a low spread name (Baxter).

Tranche 0-3% 3-7% 7-10% 10-15% 15-30% 30-100%
BC delta 0.0900 0.0314 0.0153 0.0136 0.0172 0.0006

RT delta (prior 1) 0.1180 0.0334 0.0175 0.0097 0.0056 0.0034
RT delta (prior 2) 0.1025 0.0345 0.0212 0.0159 0.0156 0.0014

Table 2: Single name sensitivities for a medium spread name (GE).

We would like to note that the accuracy of approximate formulas (37) and (43) can
be improved without adding complexity. This is done by assuming a continuous coupon,
and approximating the premium legs of a CDS and a tranche using the a constant riskless
rate r and a constant hazard rate hi so that the survival probability of name i reads

Qi(T ) = e−hiT . (44)

and a similar formula for the survival probability of a tranche. This yields the following
value for the premium leg of a tranche

PL[Kd,Ku] = s

∫ T

0

dte−rte−ht =
1

r + h

(
1− e−(r+h)T

)
' sT

(
1− 1

2
T (r + h)

)
' sT

(
1− 1

2
rT − 1

2
EL[Kd,Ku]

)
, (45)

where h is the continuous coupon rate. This produces the following refinement to the
approximate relation (37):

∆k
i '

1

Kk −Kk−1

1

N

B(0, T ) + 1
2
sktrT

B(0, T ) + 1
2
siT

∑bK̂kNc
n=bK̂k−1Nc

wnpin∑N
n=1wnpin

. (46)

Numerical experiments indicate that accuracy of the approximate formula (46) in compar-
ison with an “exact” expression that includes contributions of all cashflows is not worse
than 10%.

The results of single name sensitivities calculated using (46) are given in Tables 1, 2
and 3 for three names representing low, moderate and high spread names, respectively.

A few comments are in order here in regard to these numbers. The first row in these
tables labeled “BC delta” shows sensitivities calculated with the base correlation method.
Negative entries in Table 1 (and 3) clearly show that the base correlation methodology is
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Tranche 0-3% 3-7% 7-10% 10-15% 15-30% 30-100%
BC delta 0.1914 0.0487 0.0116 0.0028 0.0001 -4.75e-10

RT delta (prior 1) 0.1744 0.0433 0.0195 0.0093 0.0032 0.0013
RT delta (prior 2) 0.1725 0.0595 0.0316 0.0144 0.0021 0.0002

Table 3: Single name sensitivities for a high spread name (Sprint).

“wrong” in the sense that for positive asset correlations, all single name sensitivities in
a “right” model should be positive, not negative10. Nevertheless, in view of the absence
of a market-standard alternative to the base correlation methodology, we will keep base
correlation sensitivities as a reference point for our RT scheme. The second row (“RT
delta (Prior I)” in the tables refers to single name sensitivities calculated with the “linear”
prior (23), while the third row gives the RT delta calculated with the base correlation prior
which is explained below in Sect. 4.1. One sees that the RT method produces numbers of
the same order of magnitude as the base correlation model, with largest differences being
for mezzanine and senior tranches.

At this point, a question that could be asked is which set of deltas is the “right” one.
Generally, the ultimate answer to this question requires exploring the behavior of the
P&L distribution of the hedged position, where hedges are calculated according to the
model. While we do not pursue such an analysis in this paper, we note that RT deltas
are likely to be “less wrong” than base correlation deltas as they arise from a consistent,
arbitrage-free model. For example, unlike the latter, positivity of RT deltas is guaranteed
by construction. More on the comparison between RT sensitivities calculated with Prior
I and Prior II will be said in Sect. 4.1, after the “base correlation prior (“Prior II”) is
introduced.

4.1 “Base correlation” prior

Assume we are given some set of “target” single name sensitivities which we would like
to match as closely as possible. These sensitivities can come from any bottom-up model
such as CreditMetrics, approximately calibrated to tranche quotes of interest. Using the
results of the last section, we can then invert the relation (46) or (37) and construct
the p-matrices such that these deltas are approximately matched. We then use these p-
matrices as priors that need to be corrected by the IS algorithm to match the single-name
and portfolio data. The new “true” sensitivities are then calculated using the calibrated
TD-matrices.

Note that each row in the p-matrix has N elements (e.g. N = 125 for CDX.NA.IG
and iTraxx portfolios), while for the same portfolios we have only 6 deltas per name.
This means that the problem is severely underdetermined. To reduce the number of free
parameters, we assume that for each i and m, elements of p

(m)
ij are piecewise-constant

between default counts j that correspond to strikes of tranches in the calibration set11.

10This deficiency of the base correlation model is well known to practitioners.
11Note that these values of j are easily found as long as we assume a fixed recovery: jk = bK̂kNc.
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Thus, we set pin = p̄1
i for j ∈ [1, j1], pin = p̄2

i for j ∈ [j1 + 1, j2], etc. Eq. (37) with a
proportional tweak (δp)in = εpin produces the following formula for the delta of the k-th
tranche with respect to name i

∆k
i '

1

Kk −Kk−1

1

N

∑bK̂kNc
n=bK̂k−1Nc

wnpin∑N
n=1wnpin

=
1

Kk −Kk−1

1

N

∑bK̂kNc
n=bK̂k−1Nc

wnpin

Qi(T1)

=
1

Kk −Kk−1

1

N

p̄ki
∑bK̂kNc

n=bK̂k−1Nc
wn

Qi(T1)
=

1

Kk −Kk−1

1

N

p̄ki w̄
k

Qi(T1)
, (47)

where w̄k ≡
∑bK̂kNc

n=bK̂k−1Nc
wn. Inverting this relation, we obtain

p̄ki = ∆k
iQi(T1)

N(Kk −Kk−1)

w̄k
. (48)

Similar to Eq. (46), this relation can be improved by taking into account non-vanishing
spreads paid by a CDS and a tranche:

p̄ki = ∆k
iQi(T1)

N(Kk −Kk−1)

w̄k
B(0, T ) + 1

2
siT

B(0, T ) + 1
2
sktrT

. (49)

The result is shown in Fig. 4 for the same three names that were used for illustration of
our “linear” prior matrices. Resulting calibrated thinning matrices are shown in Fig. 5.

Figure 4: Three rows of the prior matrix q
(1)
ij corresponding to low, moderate and high

spreads, with the “base correlation” prior.

They can be compared with the profiles displayed in Fig. 4. One sees that the direction
behavior is similar in both cases.

Going back to comparison of sensitivity parameters obtained with different RT schemes
(see Tables 1-3), the numbers shown there for three selected names do not really demon-
strate that sensitivities obtained with the “base correlation prior” are considerably closer
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Figure 5: Calibrated thinning matrices p
(1)
ij , p

(2)
ij , p

(3)
ij obtained with the “base correlation

prior”.

to base correlation sensitivities than those obtained with the linear prior. That this is
indeed the case is illustrated in Fig. 6 where we show the relative difference between the
RT and BC equity delta across different names in the portfolio for both the “linear” and
“base correlation” choice for the prior12. What can be clearly seen though is that with
the first prior our equity delta is generally higher than the BC delta, while with “base
correlation” prior the situation is reversed.

Figure 6: Relative difference of equity delta obtained with the random thinning (RT) and
base correlation (BC) method, for the “linear” and “base correlation” choice of the prior.

Thus, our numerical experiment shows that the idea of having a sort of “calibration” of
TD matrices to base correlation deltas does not really work, as the the subsequent rescaling
of TD matrices (needed to match single name and portfolio data) substantially alternates
the prior matrices. While we are not aware of any compelling financial explanation of

12On average, RT sensitivities obtained with Prior II are in fact somewhat closer to base correlation
deltas than those obtained with Prior I, but this difference does not appear significant.
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this behavior, perhaps a more interesting practical conclusion that can be drawn from our
experiments with different priors is that single name deltas are not unique, and depend on
fine details of the model (in our case, the choice of the prior). As will be further discussed
in the concluding section, this situation is in fact quite common, and occurs not only in
top-down but in bottom-up models as well.

5 From statics to dynamics: filtering approach

To get the single name dynamics, we need to update the TD-matrices dynamically based
on observed information. Updating of TD-matrices is done in two ways: by zeroing
out rows and columns corresponding to “observed” (simulated) defaults, and by random
perturbation (done in a particular way, see below) of non-zero elements, to account for
single name spread volatility. Recall that if our TD-matrices are to be used for pricing
today, they must be updated in a fair way: in other words, they must be martingales.

In this section, we consider a particular framework for modeling the filtration Ft.
Recall from Sect. 2.1, the filtration Ft can be obtained by taking a combination of
the natural top-down model filtration (i.e. default times and losses upon defaults, but
not defaulters’ identities), the history of defaulters’ identities (obtained by simulation, see
below), and the filtration generated by observation of “information processes” (see below)
for all names. These three components of the filtration Ft will be used below update the
TD-matrices based on portfolio losses, and the “information process” dynamics.

5.1 Default history filtration

In this section we consider updating our TD-matrices based on defaults in the portfolio,
i.e. adaptation of TD-matrices to the natural filtration of a top-down model. This is the
most basic form of updating, and is necessary for simulation of defaulters’ identities. We
assume for now that there is no updating based on “information processes” (see the next
section) and so in the notation of Sect.2.1, the filtration Ft is generated purely by the
history of the portfolio-level default counting process, (Gt)t≥0, and the identities of the
defaulters, (It)t≥0. In this section we replace the time dependence of the TD-matrices
(representing the fact that we condition of Ft) by a dependence on the number of defaults
up to time t, k ∈ {0, 1, 2, . . . , N}.

We assume that the initial portfolio contains no defaulted names. Let us denote the
calibrated conditional TD-matrices as p

(m)
ij (k = 0). Assume we simulate the portfolio

dynamics using Monte Carlo, and the first default in the portfolio happens at time τ 1.
Conditional on the fact that a default has occurred, we independently simulate the identity
of the defaulter with probabilities that depend on the relation between τ 1 and the reference
maturities T (m). Let us first assume that τ 1 < T (1). In this case, we simulate the
identity I1 ∈ {1, 2, . . . , N} of the first defaulter according to the conditional distribution

{p(1)
i1 (k = 0), i = 1, . . . , N}:

P (I1 = i|τ 1 < T (1)) = p
(1)
i1 (k = 0). (50)

Note that we have some freedom here: instead of simulating from conditional probabilities
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as determined by the TD-matrices at time 0, we may alternatively simulate from TD-
matrices that have been dynamically updated as described in the next section to the time
of actual default. In the case when the first default happens in the interval [T (m−1), T (m)]
with m > 1, we have:

P (I1 = i|T (m−1) ≤ τ 1 < Tm) = p
(m)
i1 (k = 0). (51)

Note that the method in (50) (or (51)) is similar to that used previously by Duffie [9] (in
the context of a bottom-up approach) to probabilistically pick a defaulter identity in a
first-to-default basket where the simulated process is the aggregate portfolio default in-
tensity. Unlike Duffie who employs a one-period setting, in our framework the conditional
probabilities p

(m)
i are adapted to the model filtration in a dynamic way.

Conditional on the fact of “observing” (for this particular Monte Carlo scenario) de-

fault of name I1, we now want to update our p-matrices p
(m)
ij (k = 0) → p

(m)
ij (k = 1). In

other words, we want to calculate conditional probabilities

p
(m)
ij (k = 1) = P

[
τ j = τi|T (m−1) ≤ τi ≤ T (m), I1, τ

1
]
, j = 2, . . . , N, i = 1, . . . , N. (52)

We use the simplest possible “model” for these conditional probabilities:

p
(m)
ij (k = 1) =

{
P
[
τ j = τi|T (m−1) ≤ τi ≤ T (m), τ 1

]
if i 6= I1

0 if i = I1.
(53)

In words, we assume that all rows with i 6= I1 in the updated P-matrix do not depend
on the identity of the first defaulter for all j ≥ 2, while the row with i = I1 is zeroed
out. Note that our choice is related to the fact that the natural filtration of the top-down
model only contains default times but not identities of defaulters. Therefore, anything
more complicated than (53) would amount to some sort of a bottom-up, rather than
top-down, approach.

What remains now is to come up with a method to calculate the conditional proba-
bilities in (53). Again, note that we aim at a simplest possible dynamic model consistent
with the portfolio-level dynamics of the top-down model and its natural filtration. To this
end, we note that the new updated probabilities should still satisfy the first of constraints
(3), where the new right hand side can now be calculated for all j ≥ 2 using the top-down
model. Respectively, we obtain a simplest model for (53) by a uniform rescaling of all

probabilities p
(m)
ij (k = 0) for all j ≥ 2 and i 6= I1 so that the first constraint in (9) is

re-enforced:

p
(m)
ij (k = 1) =

p
(m)
ij (k = 0)

1− p(m)
I1j

(k = 0)
, i 6= I1, j = 2, . . . , N. (54)

Note that after this rescaling is done, we get different marginal forward default prob-
abilities P

[
T (m−1) ≤ τi ≤ T (m)

∣∣Ft] for surviving names, which are obtained if we sum

the product of the new conditional probabilities p
(m)
ij (k = 1) with the newly calculated

tail probabilities over j. Extending the above analysis to the second, third, etc. defaults,
we have the following scheme for simulation of defaulters’ identities and updating the
conditional p-matrices. For each sequential default, we simulate the defaulter’s identity
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from the current p-matrices, as in (50), and then zero out the corresponding column and
row in the current p-matrices. We then rescale the current p-matrices so that the column-
constraints are satisfied. The new re-scaled p-matrices are used in conjunction with the
tail probabilities w

(m)
k (j) to calculate the new forward marginal default probabilities for

surviving names.
Qualitatively, the impact of defaults on default intensities of surviving names can be

described as an interplay between three effects. To explain them, consider a particular
scenario where we observed n-th default at time t. Assuming the identity of this defaulter
is It, we zero out the It-th row in all forward matrices, and rescale all columns of pij
for all j > n to re-establish the column constraints. This has an effect of bumping all
probabilities pij for any fixed j > n. However, we have also to take into account the
fact that when a default occurs, the “next-to-default” column in the p-matrices moves
one step to the right. Therefore, the impact of this default on short-term spreads of
surviving names will be determined by a combined effect of three factors: 1) we move one
column to the right in the p− (or P−) matrices, 2) we rescale this column to re-enforce
the column constraint, and 3) we multiply the result by the new portfolio-level intensity
λn corresponding to n defaults in the portfolio, instead of a previous multiplication by
λn−1. As λn is generally an increasing function of n, the net effect will be largely driven
by the first two factors. This implies, in particular, that for the simple model with a
“uniformization bound” for names with low spread we will have a relation pi,j+1 > pij, so
the net effect will be to increase the default intensity. For names with high initial spreads,
we have an inverse relation pi,j+1 < pij, and therefore the resulting change of their default
intensity can be of any sign, depending on the relative strength of two effects. This is
largely consistent with what is observed in the markets: upon defaults, low-spread names
(especially those in the same industry/sector) are expected to go up due to informational
contagion, while high spread names do not necessarily widen - they may already be wide
enough to start with.

Examples of default updating of low spread and high spread names for a scenario with
three defaults happening at 2, 4 and 6 years are displayed in Figs. 7 and 8 where we
show updating of a single row in conditional TD-matrices upon portfolio defaults for low-
and high-spread names, respectively13. The resulting jumps in single name intensities (as
expected, more pronounced for a low spread name) manifest the credit contagion at the
single name level.

5.2 Spread dynamics

Applying the default updating procedure above leads to matrices p
(m)
ij that are piecewise

constant between defaults. From Sect.2, this implies that the forward default probabilities
of the single names are perfectly correlated with the index, which is unrealistic. In order
to remedy this, we must condition on additional information; in addition to observing
defaults and the identities of defaulting names, we now assume that for each name i,

13In addition to portfolio defaults, matrices are updated to a background “information” process in
a way explained below in Sect. 5.2. Two figures for each case correspond to regimes of low and high
volatility of information process.
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Figure 7: Default updating of conditional TD-matrices: a row corresponding to a low
spread names for matrices p

(m)
ij for all maturity intervalsm = 1, 2, 3, 4. (Note that each line

flattens out at the end of its maturity interval. The lowest and top-most lines correspond
to m = 1 and m = 4, respectively.) The two graphs correspond to regimes of low and
high volatility of background “information” process. One sees that adding volatility does
not completely wash out jumps resulting from the default updating.

we observe an “information process” Xi driven by a Brownian motion14. The filtration
(Ht)t≥0 introduced in Sect. 2.1 is assumed to be generated by the joint history of the
information processes {Xi} for all names. We note that the processes {Xi} may be
correlated with each other, and for each name i, its process Xi can be correlated with
market observables such as the equity price. While many functional forms for Xi are
possible (e.g. Xi could be a GBM or OU process), we restrict ourselves below to a
simplest case of a Brownian diffusion with an unknown random drift.

To model stochasticity in the TD-matrices, we assume that information about the
order of defaulting names (first to default, etc) is encoded in the drifts of the Xi’s, while
the accuracy of our information about the i-th name is described by the volatility of
the Xi. For simplicity, we concentrate on modeling stochasticity of the next-to-default
intensities (i.e. the nearest “active” columns pmi (t) ≡ p

(m)
ik (t) (with i = 1, . . . , N) of the

conditional TD-matrices in a scenario where we have (k − 1) previous defaults).
We assume that for a given Monte Carlo scenario, some names have already defaulted

by a previous time s < t, and that pmi (s) was already adapted to filtration Fs.
Let Xt be an n-dimensional Itô process described by the following stochastic differen-

tial equation (SDE):
dXt = Θtdt+ ΓdWt, (55)

where the volatility matrix Γ, with elements Γij = σij, satisfies the constraints

(ΓΓ′)ij = Σij = ρijσiσj, (56)

14 Our “information process” is similar to that introduced by Brody, Hughston and Macrina (BHM)
[8], but we are not forced to use a Brownian bridge in our modeling framework, and can instead proceed
with the usual Brownian motion.
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Figure 8: Default updating of conditional TD-matrices: a row corresponding to a high
spread names. (Note that ordering of lines is reversed in comparison to Fig. 7: the top-
most line corresponds to m = 1, and the line at the bottom corresponds to m = 4.) The
two graphs correspond to regimes of low and high volatility of background “information”
process. One sees that the only clearly seen jump occurring for matrix p

(1)
ij is washed out

when volatility is added.

(here Σ stands for the covariance matrix), and the n-dimensional drift Θt follows a N -
state continuous time Markov chain over states {Θ1,Θ2, . . . ,ΘN} with generator matrix
Λ. In our case, we set n = N , i.e. the dimension of the information process is equal to
the size of the portfolio. We will, however, keep using different symbols N and n in the
formulas below in order to clarify whether we operate on hidden (N) or observable (n)
degrees of freedom. The unobservable vector-valued drift Θt with values

Θi =


Θi1

Θi2
...

Θin

 =


δi1
δi2
...
δin

 , i = 1, . . . , N, (57)

describes the identity of the next defaulter: if name 1 is to default next, then Θ = Θ1 =
(1, 0, . . . , 0)′, if name 2 is the next defaulter, then Θ = Θ2 = (0, 1, . . . , 0)′, etc.

We assume that the market filtration Ft is generated by continuous observation of the
process X. We are therefore faced with the problem of inference on a hidden state Θt

given the observation of X. In other words, we want to calculate the posterior probability

πi(t) = P [Θt = Θi|Ft] , (58)

given the prior probabilities
πi(0) = π̂i. (59)
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5.2.1 Continuous time formulation

As shown by Liptser and Shiryaev [15], the posteriors (58) satisfy the following system of
stochastic differential equations:

dπi(t) =
N∑
j=1

πj(t)λjidt+ πi(t)Γ̂idW̃t. (60)

Here Γ̂i =
(

Γ̂i1, . . . , Γ̂in

)
with elements

Γ̂ij =
Θij − Θ̄j√∑n

m=1 σ
2
jm

=
δij − Θ̄j

σj
, (61)

is the matrix of volatilities of beliefs,

Θ̄ =


Θ̄1

Θ̄2
...

Θ̄n

 =
∑
i=1

Θiπi(t) =
∑
i=1

πi(t)


Θi1

Θi2
...

Θin

 =


π1

π2
...
πn

 , (62)

is the expected drift, and W̃t =
(
W̃ 1
t , . . . , W̃

n
t

)′
is a Ft-adapted n-dimensional Brownian

motion (“innovation process”) with components

dW̃ j
t =

1√∑n
k=1 σ

2
jk

(
dXj

t − Θ̄jdt
)
, j = 1, . . . , n, (63)

that is assumed to be observable by investors. Its covariance is calculated as follows:

〈dW̃ j
t dW̃

k
t 〉 =

∑
n σjnσkn√∑

n σ
2
jn

∑
m σ

2
km

dt ≡
(ΓΓ′)jk
σjσk

dt = ρjkdt, (64)

where we used (56). The instantaneous lognormal volatility σ̂i of πi is given by:

σ̂2
i =

∑
j,k

Γ̂ijΓ̂ij
〈dW̃ j

t dW̃
k
t 〉

dt
=
∑
j,k

δij − πj
σj

δik − πk
σk

ρjk. (65)

In our setting, we take Λ = 0, i.e. we consider the identity of the next defaulter to be a
random variable rather than a random process. Eq. (60) in this case reduces to

dπi(t) = πi(t)Γ̂idW̃t. (66)

A few comments on the structure of Eqs.(66) and (60) are in order here. First, we
observe that the posterior probabilities πi specified by (66) are martingales. Second, both
Eqs.(60) and (66) ensure conservation of probability

∑
i dπi(t) = 0. Third, we note that

the diffusion term in both (60) and (66) vanishes in both limits πi → 0 and πi → 1: the
first result holds as the diffusion term is proportional to πi, and the second results follows
by the structure of (65)15 . Lastly, note that in the limit where σi →∞ for all i, Eq. (60)
reduces to the forward Kolmogorov equation as it should, since in this case, observation
of the “information process” is useless for inference of the hidden Markov chain.

15When πi → 1, we have πj → 0 for all j 6= i, and thus the factor (δij − πj) vanishes for all j.
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5.2.2 Discrete time formulation

In practice, simulation using Eq. (60) or (66) can be somewhat tricky as discretization
may lead to spurious negative probabilities, non-conservation of probability, etc, similar
(but more involved) to problems arising in discretization of e.g. a CIR process. In this
view, it may still be preferable to use a discrete-time formulation based on Bayes’ theorem
for simulation, while retaining the SDE formulation for calibration (see below on this).

LetDt be the data that becomes available at time t; in our caseDt = {X i
t}). Therefore,

we use Bayes’ theorem

p(Inext = i|Dt,Fs) = p(Inext = i|Fs)
P (Dt|Inext = i,Fs)∑

i p(Inext = i|Fs)P (Dt|Inext = i,Fs)
, (67)

to adapt our probabilities to filtration generated by information processes {X i
t}. We thus

get the updating rule:

pmi (t+ ∆t) = pmi (t)
P [∆Xt|Θt = Θi]∑

i P [∆Xt|Θt = Θi]P [Θt = Θi]
, (68)

where

P [∆Xt|Θt = Θi] ∼ exp

(
− 1

2∆t
(∆Xt −Θi∆t)

T Σ−1 (∆Xt −Θi∆t)

)
. (69)

This can be generated by simulating the defaulter identity k and a standard normal
random variable Zj

t :
∆Xt = ∆tΘk +

√
∆tW. (70)

Simplifying, we obtain

pmi (t+ ∆t) =
pmi (t)Li (∆Xt)∑
i p

m
i (t)Li (∆Xt)

, (71)

where the likelihood Li is given by

Li (∆Xt) = exp

[(
Σ−1∆Xt

)
i
− ∆t

2
Σ−1
ii

]
. (72)

6 Numerical algorithm

Start by setting k = 1, where the index k enumerates the number of the next default.
Then for k ≥ 1:

1. Default Simulation (τ k): Given k ≥ 1, simulate τ k according to the top-down model,
and find the index m of the forward interval such that τ k ∈ [T (m−1), T (m)].

2. Identity Simulation (Ik): Simulate the identity of the kth defaulter by sampling
from the k-th column of the p-matrix for the m-th forward interval.

3. Information Updating (on [τ k−1, τ k], optional): Use information process filtering to
update the p-matrices to time τ k. The Bayesian update ensures the dynamics of
the p-matrices are consistent with the identity simulation step above.
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4. Default Updating (at τ k): This step ensures that future identities are simulated
consistently with the identity simulation step above (i.e. no repeat defaulters).

(a) Zero out the Ik-th row of all p-matrices.

(b) Zero out the k-th column of all p-matrices.

(c) Re-enforce column constraints for the p-matrices.

5. Repeat: If τ k is less than the final maturity, increment k → k+ 1 and go to Step 1.

Note that as soon as some τ k > Tm, the m-th p-matrix can be dropped from any
future updating steps, as the simulation has progressed beyond the point at which this
matrix applies.

7 Marking parameters of the information updating

As discussed above, volatility and correlation parameters of the information processes
impact the volatilities and correlation of the resulting single name spreads. Therefore,
one can attempt to mark those parameters in such a way that the model-implied behavior
of single name spreads will be roughly consistent with the empirical behavior. In this
section we present a semi-quantitative analysis toward this goal. Note that there are a
few reasons why we will not discuss an accurate calibration. First, empirical variances
and especially covariances are subject to large measurement errors, and ideally should
be “noise-undressed” before the use. Second, the relation between vols and correlations
of the driving Brownian motions and vols and correlation of observable spreads is highly
non-linear and hard to work with unless a number of approximations are made.

In principle, the task of approximate calibration/marking of correlation parameters can
be done using two alternative approaches. The first one is to work with probabilities, i.e.
conditional forward TD matrices and tail probabilities coming from the top-down model.
The second way is to use spot default intensities as proxies for finite maturity spreads,
and work with them. We choose the second route as it appears simpler technically.

Consider again formulas (11) and (13), which we repeat here for convenience :

λit = Zi
tλ
p
t , Zi

t = p
(1)
i,Nt

1(t≤T1) + p
(2)
i,Nt

1(T1<t≤T2) + . . . (73)

Assume that we want to calibrate volatility structure of Brownian motion in the no-default
environment for t < 3Y . We can then identify the thinning parameters Zi

t with the first
column πi ≡ pmi1 of the first (m = 1) conditional p-matrix. From (73) we obtain (omitting
the time index and denoting λpt ≡ λ to ease the notation)

dλi
λi

=
πidλ+ λdπi

πiλ
=
dλ

λ
+
dπi
πi
, (74)

which yields

〈dλi
λi

dλk
λk
〉 = 〈

(
dλ

λ

)2

〉+ 〈dλ
λ

dπk
πk
〉+ 〈dπi

πi

dλ

λ
〉+ 〈dπi

πi

dπk
πk
〉. (75)

26



As we assume independence between the Y -process and Brownian motion W̃t, the cross
terms in this formula vanish, and we obtain

Cπ
ijdt ≡ 〈

dπi
πi

dπj
πj
〉 = 〈dλi

λi

dλj
λj
〉 − σ2

Y dt. (76)

Note that this matrix is orthogonal to the vector π:∑
j

Cπ
ijπjdt = 〈dπi

πi

∑
j

dπi〉dt = 0, (77)

because
∑

j dπj = 0 according to Eq. (66).
We use (76) as a constraint on the covariance of posterior probabilities πi(t) by ap-

proximating the first term in the right hand side by the empirical covariance matrix of
spread returns (times dt)16. On the other hand, we can calculate the covariance matrix
of dπi/πi using Eq. (66):

〈dπi
πi

dπk
πk
〉 =

∑
j,l

Γ̂ijΓ̂kl〈dW̃ j
t dW̃

l
t 〉 =

(
Γ̂ρΓ̂′

)
ik
dt ≡ (γRγ′)ik dt, (78)

where γij = δij−πj and Rij =
ρij

σiσj
. Note that matrix γ is degenerate, therefore we cannot

directly invert Eq. (78) to find matrix R from Cπ. However, a solution to this equation
can be easily found as long as the orthogonality relation Cπ = 0 holds. Indeed, in this
case we find

γCγ′ = (1− 1 · π′)C (1− π · 1′) = C, (79)

which shows that R = C is a solution of (78) as long as Cπ = 0. Note that in theory,
matrix C is indeed orthogonal to π as shown in (77). However, in our treatment we
approximate matrix C using observable spreads, see again (76). In doing so, the orthogo-
nality property is generally lost, and thus such an estimated matrix C does not solve (78)
anymore.

This observation prompts a way of solving Eq. (78) approximately (in the least square
sense) rather than exactly. Namely, for a given empirical matrix C, we find a matrix Ĉ
such that Ĉ is as close as possible to C (e.g. in the sense of Frobenius norm), while on
the other hand satisfying the orthogonality constraint Ĉπ = 0. Once such a matrix Ĉ is
found, the approximate solution of (78) is given by R = Ĉ.

A candidate solution satisfying the orthogonality relation can be presented17:

Ĉ
(1)
ij = Cij −

(Cπ)i (π
′ · C)j

π′Cπ
, (80)

however it does not guarantee that matrix Ĉ defined in this way is the closest possible to
C. The matrix closest to C is instead given by the usual projector

Ĉ
(2)
ij = Cij −

πj
||π||2

∑
k

Cikπk. (81)

16Note that by doing this, we tacitly assume time stationarity of a process driving credit spreads.
17We thank Yury Volvovskiy for a discussion of Eq.(78) and suggesting the candidate solution (80).
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numRuns meanVol stdVol meanCor stdCor
500 1.63± 0.10 1.08± 0.02 0.63± 0.02 0.34± 0.01
1000 1.64± 0.08 1.09± 0.01 0.62± 0.01 0.34± 0.01

Table 4: Monte Carlo output volatilities and correlations of posterior probabilities {πi}.

However, such a matrix Ĉ cannot be the right solution as it is non-symmetric. We have
therefore set up a recursive algorithm where we alternate between the first step that
calculates the orthogonal projection (81), and the second step where the resulting matrix
is made symmetric and positive definite by truncating (zeroing out) any possible negative
eigenvalues. As the second step can be viewed as a projection on a convex set of positive-
definite symmetric matrices, our procedure amounts to alternating projections on two
convex sets, which is known to converge.

In practice, with our particular dataset that we used to test our method (see below),
we found that doing 10 to 20 iteration of such procedure provides a matrix that is ap-
proximately orthogonal to π with a good accuracy, while being symmetric and positive

definite. The Frobenius norm of the difference ||Ĉ − C||2 =
∑

ij

(
Ĉij − Cij

)2

calculated

with this method was found to be about 3 times smaller than the norm of the difference
calculated according to (80).

To check accuracy of these approximations and to provide a numerical example, we
have analyzed one year of daily tranche and single name data for CDX IG8 ending at
03/03/08. We present our results for averages across all names in the portfolio, rather
than individual names. Using (76) for all names and assuming σY = 0.35, we find that the
portfolio-average volatility of {πi} is 1.71, with a minimum of 1.33, maximum of 7.68, and
the standard deviation (std) of 0.6. The portfolio-average correlation between different
πi’s is 0.58, with std of 0.1318. We then use the procedure described above to calibrate
the parameters of the Brownian motions. This produces the average volatility of 0.68,
with the minimum and maximum of 0.13 and 1.93, respectively, and std 0.08. The mean
correlation of Brownian motions is 0.48 and std is 0.28. We then simulate the information
updating scheme using these parameters of the Brownian motion, and compute output
volatility and correlations of posterior probabilities {πi}.

Results are displayed in Table 7. One sees that the agreement between the input
and output parameters is reasonable though not exact. Factors that contribute to the
mismatch are noise in the data, possible non-stationarity of credit spreads dynamics,
and potential loss of accuracy in proxying the covariance matrix of πi’s by the empirical
covariance matrix. Furthermore, we found it necessary to truncate small eigenvalues in
the resulting covariance matrix of Brownian motions calculated as described above19. The

18Note that for the lack of relevant risk-neutral data, we use here historical values for single name vols
and correlations, while the value σY = 0.35 is chosen to be approximately equal to the implied index
volatility as obtained from short-dated (6M and 1Y) index options. We are interested, of course, in
estimations relevant for the risk-neutral world.

19 Here by truncation we mean a SVD-type truncation, where we zero out small eigenvalues in the
covariance matrix, and simultaneously zero out corresponding inverse eigenvalues in the inverse matrix
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need for this procedure arises because when an unadjusted covariance matrix obtained as
described above is used for simulation, in a substantial fraction of Monte Carlo scenarios
we find the phenomenon of a “super-fast learning”, where the identity of the next defaulter
is learned too fast, so that spread volatilities drop to zero after a short (1-2 years) initial
period of high volatility, which is clearly not a desirable behavior. The origin of this
behavior can be traced back to Eq.(72) defining the likelihood function: when small
eigenvalues are present in the covariance matrix, the likelihood becomes large, and the
hidden state is learned almost with certainty. A truncation of small eigenvalues of the
covariance matrix makes the process more stationary and thus fixes this problem, albeit
perhaps not in a way most attractive from a theoretical standpoint20. We would like to
note, however, that adding actual defaults to sample paths is able to mitigate the effect
of super-fast learning as a name will likely default before filtering will show this name
as a sure next defaulter. Therefore, we believe that in practice, incorporating defaults
together with a truncation of eigenvalues provides a satisfactory solution to the problem
of possible super-fast learning. A few more related comments will be made in the next
section.

We show in Fig. 9 sample paths of the short-term default intensity (elements of the
next-to-default columns in the conditional TD-matrices) for high- and low-spread names.

Figure 9: Sample paths for simulated p-matrices with calibrated parameters for high- and
low-spread names (the left and right graphs, respectively). These sample paths produce
no portfolio defaults. Shown are the next-to-default elements of corresponding rows of
matrices p

(1)
ij to p

(4)
ij .

appearing in (72). The number of eigenvalues to keep was found empirically to be around 40 by looking
for the best match of input parameters by the Monte Carlo simulation.

20We note that a similar phenomenon of a “super-fast learning” can also occur in the BHM model [8],
which is not surprising given the fact that both their and our approaches use the idea of learning a fixed
unknown state, rather than a dynamic process.
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8 Summary and discussion

In summary, we have presented a practically-oriented random thinning (RT) framework,
with an attempt geared toward flexibility, accuracy and numerical efficiency. In particu-
lar, our parametrization of TD-matrices is tailored to a very fast (as compared to more
traditional inner point methods that would be required with a different parametrization)
iterative scaling (IS) method. Furthermore, we have attempted to extend this approach
to a dynamic single name setting by developing a scheme for the default and “information
process” updating, and have presented a numerical scheme for marking model parameters.

Our proposed dynamic scheme is not free of drawbacks. In particular, we are only
able to match CDS spread volatilities and correlations in the portfolio-averaged sense but
not on the name-by-name basis. We believe that this still can be considered (modest)
progress in the right direction, given the fact that most, if not all, bottom-up models,
either struggle in calibrating to these data, or give it up altogether. Better control of
volatilities and correlations of spreads in a basket is likely to be important for derivatives
that are sensitive to both spread and default dynamics of a credit portfolio.

Another drawback of our approach is a potential “super-fast learning” (see the dis-
cussion at the end of last section). The possibility of a super-fast learning stems from a
combination of high volatilities of credit spreads (i.e. the current market environment),
and the fact that we learn a fixed, albeit unknown, hidden state, i.e. a random variable,
not a random process21. We have found a way to semi-empirically tackle this issue by
truncating small eigenvalues of the Brownian covariance matrix, however a more princi-
pled approach would be clearly desirable. A possibility of changing the scheme so that
a hidden process, rather than a hidden state would be learned, in a way that respects
no-arbitrage martingale constraints, is currently an open question.

In conclusion, we would like to discuss a few further issues that are related to the
model presented here.

8.1 Valuing bespoke tranches

The problem of pricing and risk management of bespoke tranches off liquid index tranches
is of acute interests for practitioners. The current industry-standard methods typically in-
volve some form of mapping base correlations for index tranches onto correlation numbers
for the bespoke portfolio. As the index and bespoke portfolios typically have different over-
all risk levels, the same values of strikes for the index and bespoke portfolio have different
meanings, which precludes the straightforward use of base correlations to price bespoke
tranches. Instead, practitioners rely on mapping the strikes of the two portfolio onto each
other using some relative measure of tranche riskiness such as “moneyness” or “distance
to default”. Because of the ambiguity of such a procedure, the whole bespoke pricing
methodology becomes quite ad hoc. In practice, it leads at times to negative bespoke
tranche prices, which is not surprising given that interpolation in the base correlations
space does not respect no-arbitrage constraints.

21It appears that in the current setting of learning a hidden stage, a multi-dimensional distribution
with fatter tails than a Gaussian could help in preventing a super-fast learning. We have experimented
with a Student’s t-distribution, but found no substantial improvement over the Gaussian case.
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The approach based on the random thinning technique offers an alternative way to
bridge the gap between the index and bespoke portfolio. Consider a particular bespoke
that is obtained by substituting some name A in the index portfolio with another name B
which is not a part of the index portfolio. The p-matrix corresponding to such a bespoke
portfolio can be obtained in the same way as in the above calculation of single name
sensitivities, i.e. we change a row i0 corresponding to name A in such a way that the
row is now calibrated to name B, and then rescale all columns in the p-matrix keeping
the i0-th column intact to retain the column constraints. The same idea can be applied
in more complex situations as well, when the number of substituted names is larger than
one, or when a name is added to the index portfolio rather than replacing another name.
We want to emphasize that this procedure, while being very simple, respects no-arbitrage
constraints and also makes sense in terms of adjustment to the risk level of the bespoke
portfolio. To illustrate this point, consider again our first example with a substitution of
one name. In this case, if the substituted name has a higher spread than the withdrawn
name, then (δp)in > 0 which translates into (δw)n > 0, i.e. tail probabilities increase.
Therefore, our framework produces the correct directional effect of the name substitution
in the bespoke portfolio. A more detailed analysis of implication of random thinning
technique to the bespoke problem will be presented elsewhere.

8.2 Non-uniqueness of hedge ratios

As should by clear by now from the previous sections, single name hedge ratios obtained
within the top-down approach are not unique. Their non-uniqueness has two sources: the
dependence on the initial guess in the construction of TD-matrices, and non-uniqueness
of the rule of tweaking these matrices. Non-uniqueness of hedges might appear to be a
drawback of the top-down modeling paradigm. However, it is important to acknowledge
that such a non-uniqueness is by no means specific to top-down models. In fact, it is
exactly the same two sources of non-uniqueness of hedge ratios that also exist in bottom-
up models, once we move away from over-simplified static models such as the Gaussian
copula model. Indeed, consider e.g. a dynamic bottom-up factor model where for a given
name i the clean spread λi is modeled as follows:

λi(t) = ai λ̄(t) + εi(t), (82)

where λ̄(t) is a common non-negative process, e.g. a Feller (CIR) diffusion, and εi(t) is an

idiosyncratic non-negative process (which can e.g. be another Feller diffusion). Let ~̄Θ and
~Θi be vectors of parameters for these two processes, respectively. Calibration of the model

amounts to choosing a set of parameters ai,
~̄Θ and ~Θi for all names i that provide the best

fit to single names and tranches spreads. As a rule rather than exception, the resulting
objective function has multiple local minima, which in practice lead to dependence on
the initial guess for these parameters22. As a result, calibration in a bottom-up model is
typically non-unique for all practical purposes.

22In principle, a global optimization algorithm would be able to find the absolute minimum, but such
algorithms are rarely used in practice due to their lower speed. Instead, local search algorithms are used,
which generally retain the dependence on the initial guess.
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The second source of non-uniqueness, namely, the non-uniqueness of a rule of tweaking
parameters, is also an issue for bottom-up models as well. Indeed, for a given choice of
parameters in (82), there is an infinite number of possible ways a combination of tweaks

of ~̄Θ and ~Θi can be chosen such that they produce the same tweak of the CDS spread for
name i.

Note that the choice of the split between tweaks of ~̄Θ and ~Θi implies a particular
way the correlation structure of the model changes upon a tweak of the CDS spread.
Hence, while we calibrate the single name dynamics and the correlation structure to
single name and tranche data, the resulting single name sensitivities are only unique up
to specification of the law of change of the correlation structure. This, of course, is not
unexpected. Indeed, a single name delta is defined as a ratio of changes of a tranche
MTM to a CDS MTM under a bump of the CDS spread, provided nothing else changes.
But the latter notion is too vague: it can mean e.g. that the absolute correlation level
stays the same, or, probably more sensible, that the tranche riskiness stays the same. In
the latter case, we have to adjust the correlation parameter when bumping a CDS spread
as long as the base correlation curve is non-flat23. Thus, in a general case, a bump of a
CDS spread is accompanied by a rule of changing correlation parameters, i.e. correlation
changes are driven by spread changes.

In practice, the correlation skew (in particular, ATM base correlation) is known to
be negatively correlated with the index level, but not perfectly. This implies two things.
On the one hand, it means that the optimal way to define the rules for calculation of
sensitivity parameters can (and should) be tuned using empirical correlation between the
skew and index level, so that single name hedges will pick up a part of correlation risk
attributable to (driven by) index level moves. On the other hand, this means that there is
a residual correlation risk that cannot be hedged using single names alone. To hedge this
exposure, we should add some tranches to the hedge portfolio24. If single name hedges
are chosen optimally, the notional amount of correlation hedges might be smaller than in
a sub-optimal situation, and hence the hedge will be cheaper. We hope to return to this
problem elsewhere.

23The latter point is well known to practitioners, see e.g. Ref. [16] which discusses resulting ambiguities
within the base correlation framework.

24For an analysis of correlation risk hedging in the context of a pure “top” model, see an interesting
paper by Walker [17].
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