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ANY 3-MANIFOLD 1-DOMINATES AT MOST

FINITELY MANY GEOMETRIC 3-MANIFOLDS

Shicheng Wang and Qing Zhou

§1 Introduction.

Maps between 3-manifolds has been studied by many people long times ago, and
become an active subject again after Thurston’s revolution on 3-manifold theory.
We refer to [BW], [LWZ1] for various results and references on the subject.

This paper addresses the following natural question which was raised around
1990, see also Kirby’s Problem List, [K, 3.100].

Question 1. Let M be a closed orientable 3-manifold. Are there at most finitely
many closed, irreducible and orientable 3-manifolds N such that there exists a
degree one map f : M → N?

Remarks on the conditions in Question 1.

(i) If Poincare Conjecture fails, i.e., there is a homotopy 3-sphere N which is
not S3, then one can get infinitely many reducible homotopy 3-spheres by doing
connected sums on N . Since there always exists degree one map from a 3-manifold
M to a homotopy 3-sphere, the condition “irreducible” on the target N is posed
to avoid this unclear case.

(ii) The condition “closed” is posed on M and N just for simplicity. Indeed
we can replace “closed” by “compact”, and meanwhile replace “degree one map”
by “degree one proper map”. A map f : M → N between compact manifolds is
proper if f−1(∂N) = ∂M .

For simplicity, we adapt the following definition from [BW]. Let M and N be
two compact orientable 3-manifolds. Say M (1-)dominates N if there is a proper
map f : M → N of non-zero degree (degree 1).

A closed orientable 3-manifold is called geometric if it admits one of the fol-

lowing geometries: H3 (hyperbolic), ˜PSL2(R), H2 × E1, Sol, Nil, E3, S2 × E1,
S3 (spherical). Thurston’s geometrization conjecture claims that any closed, irre-
ducible, and orientable 3-manifolds is either geometric or can be decomposed by
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the Jaco-Shalen-Johannson torus decomposition so that each piece is geometric.
(For details see [Th2], [Th3] or [Sc].) All geometric 3-manifolds are precisely the
Seifert manifolds except those carry hyperbolic geometry or Sol geometry, and all
geometric manifolds have infinite fundamental group except those carry spherical
geometry.

It is natural to study Question 1 when the targets are geometric first. There
are many partial results of Question 1:

(i) The answer is affirmative if both the domain and the target are Seifert
manifolds with infinite fundamental group [Ro], which is based on Waldhausen’s
3-manifold topology argument.

(ii) The answer is affirmative if the domain is non-Haken and the target is
geometric [RW], which is based on Culler-Shalen’s character variety theory of 3-
manifold groups. Since the domain is non-Haken, then the geometry of the target
must be either hyperbolic or spherical.

Note also that there are additional conditions posed on the domains in (i) and
(ii). Two substantial result to the Question 1 are obtained recently, where no
additional conditions are posed on the domains.

(iii) The answer is affirmative if the targets are hyperbolic [So], which is based
on the argument of Thurston’s original approach on the deformation of acylindrical
manifolds.

(iv) The answer is affirmative if the target are spherical [LWZ2], which is based
on the old knowledges of linking pair of 3-manifolds and of combinatorial groups.

In this paper we will prove the affirmative answer to Question 1 when the targets
are all the remaining geometric 3-manifolds. The main result of this paper is the
following.

Theorem 1. Any orientable closed 3-manifold M 1-dominates at most finitely
many closed orientable 3-manifolds which are either Seifert manifolds with infinite
fundamental group or Sol manifolds.

Combining Theorem 1 with the results of [So] and [LWZ2] we obtain the fol-
lowing assertion.

Corollary 1. Any closed orientable 3-manifold 1-dominates at most finitely many
geometric 3-manifolds.

If an irreducible 3-manifold has non-trivial JSJ-decomposition, then each de-
composition piece is either a hyperbolic 3-manifold or a Seifert manifolds with
torus boundary. From the proof of Theorem 1, we have the following corollary,
which should be useful in the discussion of non-trivial JSJ-torus decomposition
case.
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Corollary 2. Any compact orientable 3-manifold M dominates at most finitely
many Seifert manifolds with non-empty boundary or zero Euler number.

In Section 2, we first explain that in the proof of the main result, one need
only to deal with Seifert manifolds with orientable orbifold base and the torus
bundle over the circle with Anosov monodromy. Then we present various known
results about degree one map, Seifert manifolds, Thurston norm and volume of
representations, including the brief descriptions of Thurston norm and of volume
of representations. Those results will be used in the proof of the main results. The
proof of the main result is given Section 3.

§2. Reductions and preliminary results.

Each Seifert manifold has an orbifold base which is either orientable or non-
orientable.

Lemma 1. If there is a closed orientable 3-manifold 1-dominates infinitely many
closed orientable Seifert manifolds with non-orientable orbifold base, then there is a
closed orientable 3-manifold 1-dominates infinitely many closed orientable Seifert
manifolds with orientable orbifold bases.

Proof. Suppose fj : M → Nj is degree one map for all j ∈ N, pj : Nj → Oj is
the projection from the closed orientable Seifert manifolds onto the non-orientable
orbifold base Oj , and Ni and Nj are not homeomorphic if i 6= j. Let q̃j : Õj → Oj

be the unique orientable double cover of Oj and qj : Ñj → Nj be the double

covering which covers q̃j . Then Ñj is a closed orientable Seifert manifold with

orientable orbifold base Õj . Since fj : M → Nj is of degree one, fj∗ : π1(M) →
π1(Nj) is onto. This implies that the index of f−1

∗
(π1(Ñj)) in π1(M) is two. Let

M̃j be the double cover of M corresponding to the subgroup f−1
∗

(π1(Ñj)). Then

fj : M → Nj can be covered by a degree one map f̃j : M̃j → Ñj . Since any finitely
presented group has only finitely many subgroup of given index, π1(M) has only
finitely many subgroup of index 2. It follows that there are only finitely many
homeomorphic types among {M̃j; j ∈ N}. By passing to a subsequence, we may

assume all M̃j = M̃ and we have degree one map fj : M̃ → Ñj , j ∈ N. Since any
double covering is a regular covering, each orientable Seifert manifold double covers
at most finitely many Seifert manifolds by [MS]. It follows the homeomorphic types

of {Ñj} are infinite. �

Each Sol manifold is either a tours bundle over the circle or a union of two
twisted I-bundle over Klein bottle.

Lemma 2. If there is a closed orientable 3-manifold 1-dominates infinitely many
Sol manifold which are unions of two twisted I-bundle over Klein bottle, then there
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is a closed orientable 3-manifolds 1-dominates infinitely many Sol manifolds which
are torus bundle over S1.

Proof. Since each union of twisted I-bundle over Klein bottle is double covered by
a torus bundle over the circle, the rest of the proof is the exactly same as that we
did in the proof of Lemma 1. �

Let N be an orientable Seifert fibered space with orientable orbifold base Fg with
n exceptional fibers. Then N has the standard form (g, b; a1, b1; a2, b2; .....; an, bn),
ai > bi > 0. There are two invariants associated with N : the Euler characteristic
of the orbifold base

χN = 2 − 2g −
n
∑

i=1

(1 − 1

ai

),

and the Euler number of N

e(N) = −b −
n
∑

i=1

bi

ai

.

We now give a brief description for the volume of representation (see [Re], [Gr],
[Th3] for more details). Let G be a semisimple Lie group and X = G/K, where
K is the maximum compact subgroup of G. For any orientable closed manifold
M and any representation φ : π1(M) → G, there is a flat X-bundle over M ,

M ×φ X = M̃×X
π1(M)

, with structure group G, where M̃ is the universal cover of

M , π1(M) acting on the first factor M̃ by covering transformations, and by φ on
the second factor X . For simplicity, we assume that dimX = dimM = 3 and X
is contractible. Let ω′ be the G-invariant volume form on X , which is a closed
3-form. Let q : M̃ × X be the projection to the second factor. Then q∗(ω′) is

a π1(M)-invariant closed 3-form on M̃ × X , and which induces a 3-form ω on
M ×φ X . Let s : M → M ×φ X be a section. (Since X is contractible, such
a section exists and all such sections are homotopic.) We call

∫

M
s∗(ω) ∈ R the

volume of the representation φ, denoted by V ol(φ), clearly it is independent of the
choice of the section s. Define

V olG(M) = max{|V ol(φ)|; φ : π1(M) → G}.

Note if some φ : π1(M) → G is discrete and faithful, then M support the
geometry of (G, X) and V olG(M) = V ol(φ). We get the famous Gromov norm
in the case (G, X) = (PSL2(C), H3), and we are interested the case (G, X) =

(PSL2(R) ⋉ Z, ˜PSL2(R)) in this paper. For short we use SV (M) to denote
V olPSL2(R)⋉Z(M).
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Lemma 3. Let M and N be closed orientable 3-manifolds. If f : M → N is a
degree one map, then

(1) TorH1(M, Z) = A ⊕ TorH1(N, Z), where TorH1 is the torsion part of H1.
If f : M → N is a map of degree d 6= 0, then
(2) SV (M) > dSV (N).
(3) [π1(N) : f∗(π1(M))]|d.

Proof. For (1) see [Br, 1.2.5 Theorem]. For (2) see [BG] or [Re]. (3) is well-known
and can be obtained directly by applying covering space argument. �

Let N be a Seifert manifold with the standard form

(g, b; a1, b1; a2, b2; ......; an, bn), ai > bi > 0.

Lemma 4.

(1) N supporting the geometry of either P̃ SL2R, or Nil, or H2 × E1 is char-
acterized by either e(N) 6= 0 and χN < 0, or e(N) 6= 0 and χN = 0, or e(N) = 0
and χN < 0 respectively.

(2) If e(N) 6= 0, then the order of the torsion part of H1(M, Z),

|TorH1(N, Z)| =

∣

∣

∣

∣

∣

(

n
∏

i=1

ai

)(

b +
n
∑

i=1

bi

ai

)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

e(N)
n
∏

i=1

ai

∣

∣

∣

∣

∣

.

(3) If N supports the geometry of ˜PSL2(R), Then

SV (N) =

∣

∣

∣

∣

χ2
N

e(N)

∣

∣

∣

∣

.

(4) The equation χN = 2 − 2g −∑n

i=1(1 − 1
ai

) = 0 has only finitely many

solutions (g, a1, ..., an).
(5) If χN < 0, then χN 6 − 1

42 .

Proof. For (1) see [Sc]. For (2) see [LWZ1, 3.1]. For (3) see [BG]. (4) and (5) are
well-known and can be obtained by elementary algebra. �

Now we give a brief description on Thurston norm. In a closed oriented 3-
manifold N , each element y ∈ H2(N, Z) can be represented by an embedded
oriented surface F . Let χ−(F ) = max{0,−χ(F )} if F is connected, otherwise
χ−(F ) =

∑

χ−Fi, where Fi are components of F . Then let

X(y) = min{χ−(F ); F is an embedded surface representing y}.

Similarly we can define Xs(y) if we replace “embedded surfaces” by “singular
surfaces” in the definition of X (see [Th1] for details). X and Xs can be extended
to the second homology H2 with real coefficent and are often called Thurston norm
and Thurston singular norm respectively.
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Lemma 5.

(1) X is a pseudonorm on H2(M, R), in particular mX(y)−nX(z) 6 X(my +
nz) 6 mX(y) + nX(z).

(2) X = Xs.

Proof. For (1) see [Th1], and for (2) see [Ga]. �

Recall that there are only finitely many 3-manifolds support the geometries of
S2 × E1 and E3, and a torus bundle over the circle is a Sol manifold if and only
if the gluing map is Anosov. With Lemma 1 and Lemma 2, (1) of Lemma 4 to
prove Theorem 1, we need only to prove the following

Proposition 1. Any orientable closed 3-manifold M 1-dominates at most finitely
many closed orientable 3-manifolds Nj, where Nj belongs to one of the following
classes:

(a) Seifert manifolds with orientable orbifold bases with Euler number e = 0
and Euler characteristic χ < 0.

(b) Seifert manifolds with orientable orbifold bases with Euler number e 6= 0
and Euler characteristic χ 6 0.

(c) torus bundle over the circle with Anosov monodromy.

§3. Proof of the Theorems.

In this section we will prove Proposition 1. Suppose contrarily that there is
an orientable closed 3-manifold M 1-dominates infinitely many 3-manifolds Nj ,
where Nj is subject to the conditions in Theorem 1. By passing to a subsequence
we may assume that all Ni’s belong to one of the following classes:

(a) Seifert manifolds with orientable orbifold bases with Euler number e = 0
and Euler characteristic χ < 0.

(b) Seifert manifolds with orientable orbifold bases with Euler number e 6= 0
and Euler characteristic χ 6 0.

(c) torus bundle over the circle with Anosov monodromy.
We will show that none of those three cases can happen.
Let fj : M → Nj be a degree one map defining 1-domination. By (1) of Lemma

3, we have

(1) |TorH1(M, Z)| > |TorH1(Nj , Z)|.

In the first two case, we have the Seifert manifold

Nj = (gj, bj; aj1, bj1; ......ajnj
, bjnj

), aji > bji > 0.
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Since fi∗ : π1(M) → π1(Nj) is surjective by (3) of Lemma 3, the rank of π1(Nj)
is at most the rank of π1(M). The rank π1(Nj) is at least 2gj + nj − 2 [BZ], so
gj’s and nj ’s are bounded. Passing to a subsequence we may assume that gj = g
and nj = n and we have

(2) Nj = (g, bj; aj1, bj1; ......ajn, bjn), aji > bji > 0

Below we use ej to denote e(Nj) and χj to denote χNj
.

Proof of Case (a).
Each homology class y of H2(Nj, Z) can be presented by an incompressible sur-

face. Since Nj is irreducible Seifert manifold, each incompressible surface is either
a vertical torus (foliated by Seifert circles), or a horizontal surfaces (transversal to
all Seifert circles) [p. 109, J]. Since ej = 0, Nj admits horizontal surfaces.

Let Oj be the orbifold base of Nj and Cj be a regular fiber of Nj . Suppose also
that Oj , Cj and Nj are compatible oriented.

Let Fj be the horizontal surface of Nj , and pj : Fj → Oj is the branched
covering. Then we have χ(Fj) = |d|×χj < 0, where d = deg(pj) equals to Fj ∩Cj ,
the algebraic intersection number of Fj and a regular Seifert fiber of Nj . Note
that |Fj ∩Cj |, the absolute value of algebraic intersection number, is precisely the
geometric intersection number.

Suppose further Fj is a minimal genus horizontal surface of Nj , thus Fj is
characterized by that |Fj ∩ Cj | > 0 is minimal.

Let Xj be the Thurston norm on H2(Nj , R). Let Vj = {y ∈ H2(Nj , Z); Xj(y) =
0}, which is generated by vertical tori. Then Vj is a subgroup of H2(Nj , Z).

Lemma 6. H2(Nj , Z) = 〈[Fj ]〉 + Vj.

Proof. Pick any homology class y ∈ H2(Nj , Z). If Xj(y) = 0, then y ∈ Vj .
Suppose Xj(y) 6= 0. Let F be a oriented horizontal surface representing y with
−χ(F ) = Xj(y). We may assume that the degree of pj : F → Oj is positive
(otherwise replace y by −y). Then (l + 1)Xj([Fj ]) > Xj(y) > lXj([Fj ]) for some
positive integer l, that is

Fj ∩ Cj > (F − lFj) ∩ Cj > 0.

Since Fj ∩Cj is minimal among all positive intersections, we have (F − lFj) ∩Cj

is zero, and therefore the minimal genus incompressible surface which represents
[F−lFj ] must be a union of tori. That is [F−lFj ] ∈ Vj and y = [lFj]+[F−lFj ]. �

Lemma 7. If f : M → N is a map of degree d 6= 0, then f∗ : H∗(M, R) →
H∗(N, R) is surjective.
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Proof. Recall that Poincare duality P : Hn−q(N, R) → Hq(N, R) is given by
zn−q → zn−q ∩ [N ], where [N ] ([M ]) is the fundamental class class of Hn(N, R)
(Hn(M, R)) and we also have the formula

(3) f∗(f
∗zp ∩ [M ]) = zp ∩ f∗[M ]

for any map f : M → N .
Let zq ∈ Hq(N, R). Let yq = 1

d
f∗ ◦ P−1(zg) ∩ [M ]. Then by (3) we have

f∗(yq) = f∗(
1

d
f∗ ◦ P−1

N (zq) ∩ [M ])

=
1

d
P−1(zq) ∩ f∗[M ] =

1

d
P−1(zq) ∩ d[N ] = zq . �

Let XM be the Thurston norm on H2(M, R), and Xsj be the Thurston singular
norm on H2(Nj, R). Let z1, ..., zm be a basis of H1(M, Z) and Si be a surface
representing zi with χ−(Si) = XM (zi), for i = 1, ..., n.

Let yi = [fj(Si)] = lji[Fj ] + vij , where vij ∈ Vj . By (1) of Lemma 5, we have

(4) Xj(yi) = Xj(lji[Fj ] + vji) 6 lijXj([Fj]) − Xj(vji) = lijXj([Fj ])

Then by (2) of Lemma 5 and the definition of Thurston singular norm, we have

(5) Xj(yi) = Xsj(yi) 6 χ−(Si) = XM (zi)

Combine (4) and (5), we have

(6) XM (zi) > Xj(yi) > ljiXj([Fj ]).

Let L = max{XM (zi); i = 1, ..., m}. If Xj([Fj ]) > L, then (6) implies that lji =
0, and therefore yi = [fj(Si)] = vij . It follows that fj∗(H2(M, Z)) ⊂ Vj . It
contradicts Lemma 7 that fj∗ : H2(M, R) → H2(Nj, R) is surjective.

So L > Xj(Fj) > 0. By passing to a subsequence we may assume that all Xj(Fj)
are the same, therefore all Fj ’s have the same homeomorphic types, denoted by S.

Cutting Nj along the horizontal surface S, we obtained an I-bundle over S,
and therefore Nj can be presented as a surface bundle over S1 with fiber S and
monodromy gj : S → S. Since Nj is a Seifert manifold, gj must be a periodic map
[VI. 26., J]. However it is well-known that there are only finitely many periodic
maps on the given surface S up to conjugacy. Since any two conjugated gluing map
provide the homeomrphic 3-manifolds, there are only finitely many homeomorphic
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types among all Nj ’s. We reach a contradiction. We have proved that Case (a)
cannot happen. �

Proof of Corollary 2. First note that Lemma 7 is stated for any degree d 6= 0, and
is still true for proper maps between manifolds with non-empty boundaries. Then
note that for manifolds with boundary, Thurston norm was established and Lemma
5 is still valid ([Th1] and [Ga]). Finally note that if Nj is a Seifert manifold with
boundary, then Nj always contains a horizontal embedded surface. With those
three facts. The proof of Corollary 2 is the same as the proof of Case (a). �

Proof for Case (b).
By (2) of Lemma 4, we have

(7) |TorH1(Nj , Z)| =

∣

∣

∣

∣

(

∏

aji

)

(

bj +
∑ bji

aji

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ej

n
∏

i=1

aji

∣

∣

∣

∣

∣

If all aji’s are uniformly bounded, then all bji’s are uniformly bounded. Since
we assume that all Nj ’s are in different homeomorphic type, we must have that bj

is unbounded.
Since

∏

aji > 1 and |∑ bji

aji
| 6 n, we have

(8)

∣

∣

∣

∣

(

∏

aji

)

(

bj +
∑ bji

aji

)
∣

∣

∣

∣

> |bj − n|

By (1) we have |TorH1(Nj , Z)| is bounded for all j, and by (7) and (8) we have
|TorH1(Nj , Z)| is unbounded. We reach a contradiction.

By (4) of Lemma 4, we have ruled out the situation that χ = 0. Below we

assume that χj < 0, i.e., all Nj support the P̃ SL2R geometry.
Now we assume that some aji tends to infinite as j tends to infinite up to a

subsequence. Then |∏ aji| tends to infinite as j tends to infinite. To be not
contradicted with (1) and (7), We must have

(9) |ej | =

∣

∣

∣

∣

bj +
∑ bji

aji

∣

∣

∣

∣

→ 0 as j → ∞

Since χj < 0, we have χj 6 − 1
42 by (5) of Lemma 4, and then |χj | > 1

42 . Then
by (5) of Lemma 4, we have

SV (Nj) =

∣

∣

∣

∣

∣

χ2
j

ej

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

1

(42)2ej

∣

∣

∣

∣

,
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which is tends to infinite as j tends to infinite. But by (2) of Lemma 4 we have

(11) SV (M) > SV (Nj)

i.e. SV (Nj) is uniformly bounded for all j. We reach a contradiction again. We
have proved that Case (b) cannot happen. �

Proof of Case (c).
Now Nj is a torus T bundle over the circle with Anosov map gj , denoted as

(T, gj) sometimes. Fix a basis of H1(T, Z). Let SL2(Z) be the group of 2 by 2
invertible integer matrices. Let Aj ∈ SL2(Z) presents gj under the chosen basis

of H1(T, Z). Then Aj has two real eigenvalues of λj and λ−1
j , with |λj | > 1.

Using HHN extension one can calculate directly that

TorH1(Nj , Z) =
H1(T, Z)

〈I − Aj〉
,

where I is the unit of SL2(Z), and the first Betti number of Nj is 1.
Then by linear algebra we have

(12) |TorH1(Nj, Z)| = |I − Aj | = |(1 − λj)(1 − λ−1
j )| = |(2 − (λj + λ−1

j )|

By (1), |TorH1(Nj , Z)| is uniformly bounded, then by (12), the absolute value of

the trace Ai, |λj + λ−1
j |, is uniformly bounded, say by some constant k > 0.

Let (T, g) and (T, g′) be two torus bundles over the circle with Anosov maps g
and g′. Let A and A′ are matrices associated with g and g′ under the given basis
of H1(T, Z). If A = BA′B−1, for some B ∈ SL2(Z), then g = hg′h−1, is induced
by h : T → T is a homeomorphism realizing B. It follows easily that (T, g) and
(T, g′) are homeomorphic.

Now a contradiction in this case will follows by the following lemma.

Lemma 8. There are only finitely many conjugacy classes in SL2(Z) representing
Anosov maps with the absolute values of the traces are bounded by k > 0.

Proof. Let A =

(

a b
c d

)

. Since A represents an Anosov map, bc 6= 0. Suppose

|a| > k. Since |a + d| 6 k, we have |d| < 2|a|, and then |ad| < 2a2. The fact
ad − bc = 1 implies that |bc| < 2a2 + 1. In particular, either |b| or |c| is at most
√

2|a|. If |b| 6
√

2a, let C =

(

1 0
±1 1

)

, where we chose 1 if ab > 0 and −1 if

ab < 0. Then CAC−1 =

(

a ∓ b ∗
∗ ∗

)

and we can make |a± b| 6 |a|. If |c| 6
√

2a,
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let C =

(

1 ±1
0 1

)

, CAC−1 =

(

a ∓ c ∗
∗ ∗

)

and we can make |a ± c| 6 |a|. This

concludes that if |a| > k, we always can get A1 =

(

a1 b1

c1 d1

)

which is conjugate

to A in SL2(Z) and |a1| < |a|.
Therefore to prove the Lemma, we may assume that |a| 6 k. Then similarly

since |a + d| 6 k we have |d| 6 2k, and then |ad| 6 2k2. Since ad − bc = 1,
|bc| 6 2k2 + 1. In particular all entries are bounded by 2k2 + 1. Clearly there are
only finitely many such elements in SL2(Z).

We have proved that Case (c) cannot happen. �

We have completed the proof of Proposition 1, and therefore the proof of The-
orem 1.
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