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THE AMPLIFIED QUANTUM FOURIER TRANSFORM

(AMPLIFIED-QFT)

DAVID J. CORNWELL

Abstract. In this paper, we show how to use Grover’s algorithm to amplify
and enhance the period finding capability of the quantum Fourier Transform
(QFT).

In particular, we create a quantum algorithm, called the Amplified-QFT

algorithm, which solves the following problem:
The Local Period Finding Problem: Let L = {0, 1, ..., N − 1} be a set of
N labels, and let A be a subset of M labels of period P , i.e., a subset of the
form

A = {j : j = s+ rP, r = 0, 1, 2, . . . ,M − 1} ,

where P ≤
√
N and M << N and M is assumed known. Given a binary

oracle f : L −→ {0, 1} which is 1 on A and 0 elsewhere (i.e., which is the
characteristic function of A), find the period P .

The Amplified-QFT algorithm which solves this problem consists of three
steps. Step 1: Apply Grover’s algorithm without measurement to amplify
the amplitudes of the M labels of the set A. Step 2: Apply the QFT to the
resulting state. Step 3: Measurement.

We compare the probabilities of success of three algorithms that can be used
to recover the period P: (1) Amplified-QFT (2) QFT and (3) QHS algorithms.

Let the set SALG = {y : | y
N

− d
P
| ≤ 1

2P2
, (d, P ) = 1} be the set of ”successful”

y’s. That is SALG consists of those y’s which can be measured after applying
one of the three algorithms denoted by ALG and from which the period P can
be recovered by the method of continued fractions. We show that

N

4M
(

N

N −M
) ≥ Pr(SAmplified−QFT )

Pr(SQFT )
≥ N

4M
(

N

N −M
)(1 − 2M

N
)2

and

N

2M
(

N

N −M
) ≥ Pr(SAmplified−QFT )

Pr(SQHS)
≥ N

2M
(

N

N −M
)(1 − 2M

N
)2

This shows that the Amplified-QFT is approximately N
4M

times more suc-

cessful than the QFT and is N
2M

times more successful than the QHS. In
addition it also shows that the QFT is 2 times more successful than the QHS
in this problem. However, the success of the Amplified-QFT algorithm comes

with a penalty of an increased work factor of O(
√

N
M

). We also show how to

recover the offset s and to test whether the pair of values (s, P ) is correct.
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1. Introduction

We investigate the Amplified Quantum Fourier Transform (Amplified-QFT) al-
gorithm which solves the following problem with a run time complexity of
O(

√

N/M log(N) + log(N)):
The Local Period Finding Problem: Let L = {0, 1, ..., N − 1} be a set of N
labels, and let A be a subset of M labels of period P , i.e., a subset of the form

A = {j : j = s+ rP, r = 0, 1, 2, . . . ,M − 1} ,

where P ≤
√
N and M << N and M is assumed known Given a binary oracle

f : L −→ {0, 1} which is 1 on A and 0 elsewhere (i.e., which is the characteristic
function of A), find the period P. The problem is to determine the period P.

The Amplified-QFT begins by first applying Grover’s algorithm (without the
last measurement step) to the state |0 >. This procedure, known as amplitude
amplification, uniformly increases the magnitude of the amplitude of the M labels
in the set A while uniformly decreasing the magnitude of the amplitude of the
remaining N −M labels. The second step applies the quantum Fourier transform
(QFT). The third and final step measures the resulting state in order to produce a
y from which the period P can be recovered by the method of continued fractions.

In addition we compare the Amplified-QFT algorithm and with the generic QFT
when applied to the Oracle. We also compare the Amplified-QFT to the Quantum
Hidden Subgroup (QHS) algorithm when applied to the Oracle. In the tables below,
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we summarize our results, comparing the probability of measuring a y in the final
state arrived at after applying one of the three algorithms- Amplified-QFT, QFT
and QHS, where sin θ =

√

M/N and k =
⌊

π
4θ

⌋

:
Case 1 (Amplified-QFT):
The probability Pr(y) is given exactly by







































cos2 2kθ if y = 0

tan2θ sin2 2kθ if Py = 0modN, y 6= 0

1
M2 tan

2θ sin2 2kθ sin2(πMPy/N)
sin2(πPy/N)

if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise







































Case 2 (QFT):

The probability Pr(y) is given exactly by











































(

1− 2M
N

)2
if y = 0

4M2

N2 if Py = 0modN, y 6= 0

4
N2

sin2(πMPy/N)
sin2(πPy/N)

if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise











































Let y be fixed such that either
1. Py = 0modN, y 6= 0 or
2. Py 6= 0modNand MPy 6= 0modN
and define PrRatio(y) = Pr(y)Amplified−QFT /Pr(y)QFT then we have the fol-

lowing

N

4M
(

N

N −M
) ≥ PrRatio(y) ≥ N

4M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

4M

Case 3 (QHS):

The probability Pr(y) is given exactly by











































1− 2M(N−M)
N2 if y = 0

2M2

N2 if Py = 0modN, y 6= 0

2
N2

sin2(πMPy/N)
sin2(πPy/N)

if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise










































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Let y be fixed such that either
1. Py = 0modN, y 6= 0 or
2. Py 6= 0modNand MPy 6= 0modN
and define PrRatio(y) = Pr(y)Amplified−QFT /Pr(y)QHS then we have the fol-

lowing

N

2M
(

N

N −M
) ≥ PrRatio(y) ≥ N

2M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

2M

Let SALG = {y : | yN − d
P | ≤ 1

2P 2 , (d, P ) = 1} be the set of ”successful” y’s.
That is SALG consists of those y’s which can be measured after applying one of the
three algorithms denoted by ALG and from which the period P can be recovered
by the method of continued fractions. Note that the set SALG is the same for each
algorithm. However the probability of this set varies with each algorithm. We can
see from the following that given y1 and y2, whose probability ratios satisfy the
same inequality, we can add their probabilities to get a new ratio that satisfies the
same inequality. In this way we can add probabilities over a set on the numerator
and denominator and maintain the inequality:

A >
P (y1)

Q(y1)
> B and A >

P (y2)

Q(y2)
> B

=⇒ A >
P (y1) + P2(y2)

Q(y1) +Q(y2)
> B

We see from the cases given above that

N

4M
(

N

N −M
) ≥ Pr(SAmplified−QFT )

Pr(SQFT )
≥ N

4M
(

N

N −M
)(1 − 2M

N
)2

where the difference between the upper bound and lower bound is exactly 1 and
that

N

2M
(

N

N −M
) ≥ Pr(SAmplified−QFT )

Pr(SQHS)
≥ N

2M
(

N

N −M
)(1 − 2M

N
)2

where the difference between the upper bound and lower bound is exactly 2.

This shows that the Amplified-QFT is approximately N
4M times more successful

than the QFT and N
2M times more successful than the QHS when M << N . In

addition it also shows that the QFT is 2 times more successful than the QHS
in this problem. However, the success of the Amplified-QFT algorithms comes

at an increase in work factor of O(
√

N
M ). We note that in the case that P is a

prime number that (d, P ) = 1 is met trivially. However when P is composite the
algorithms may need to be rerun several times until (d, P ) = 1 is satisfied.

Towards the end of the paper we show how to test whether a putative value of P ,
given s is known, can be tested to see if it is the correct value. We also investigate
the case where s is unknown but is from a small known set of values such that the
values of s can be exhausted over on a classical computer. We also show how s can
be recovered by using a quantum algorithm using amplitude amplification followed
by a measurement.
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2. The Three Step Amplified-QFT algorithm

Problem: We are given a binary valued Oracle f(x) on N labels {0, 1, ..., N−1},
where N = 2n , which takes the value 1 on a periodic subset A = {j : j = s+rP, r =
0, 1...,M − 1} of M labels, where s is a non-negative integer called the offset. We
wish to determine the period P with the smallest number of queries of the Oracle.

The Amplified-QFT algorithm is defined by the following three step procedure.
Step 1: Apply all of Grover’s algorithm in its entirety except for the last mea-

surement step to the starting state |0 >. The resulting state is given by |ψk >

(ref[4], ref[7],ref[1]) where k =

⌊

π

4 sin−1(
√

M/N)

⌋

:

|ψk >= ak
∑

z∈A

|z > +bk
∑

z /∈A

|z >

where

ak =
1√
M

sin(2k + 1)θ, bk =
1√

N −M
cos(2k + 1)θ

are the appropriate amplitudes of the states and where

sin θ =
√

M/N, cos θ =
√

1−M/N

Now we have , ref[7],
k =

⌊

π
4θ

⌋

=⇒ π
4θ − 1 ≤ k ≤ π

4θ =⇒ π
2 − θ ≤ (2k + 1)θ ≤ π

2 + θ
=⇒ sin θ = cos(π2 − θ) ≥ cos(2k + 1)θ ≥ cos(π2 + θ) = − sin θ

Notice that the total probability of the N-M labels that are not in A is

(N −M)(
1√

N −M
cos(2k + 1)θ)2 = cos2(2k + 1)θ

=⇒ cos2(2k + 1)θ ≤ sin2 θ = sin2(sin−1(

√

M

N
))

=⇒ cos2(2k + 1)θ ≤ M

N

whereas the total probability of the M labels in A is

M(
1√
M

sin(2k + 1)θ)2 = sin2(2k + 1)θ = 1− cos2(2k + 1)θ

=⇒ sin2(2k + 1)θ ≥ 1− M

N
.

Step 2: The QFT performs the following action

|z >→ 1√
N

N−1
∑

y=0

e−2πizy/N |y >

After the application of the QFT to the state |ψk > , letting ω = e−2πi/N , we
have

|φk >=
ak√
N

∑

z∈A

N−1
∑

y=0

ωzy|y > +
bk√
N

∑

z /∈A

N−1
∑

y=0

ωzy|y >
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After interchanging the order of summation, we have

|φk >=
N−1
∑

y=0

[

ak√
N

∑

z∈A

ωzy +
bk√
N

∑

z /∈A

ωzy

]

|y >

.
Step 3: Measure with respect to the standard basis to yield a integer y ∈

{0, 1, ..., N − 1} from which we can determine the period P using the continued
fraction method.

3. Analysis of the Amplified-QFT Algorithm

We calculate the Pr(y) for the following cases:
a) y = 0
b) Py = 0modN and y 6= 0
c) Py 6= 0modN

The amplitude Amp(y) of |y > is given by

Amp(y) =
ak√
N

∑

z∈A

ωzy +
bk√
N

∑

z /∈A

ωzy

=
(ak − bk)√

N

∑

z∈A

ωzy +
bk√
N

N−1
∑

z=0

ωzy

=
(ak − bk)√

N

M−1
∑

r=0

ω(s+rP )y +
bk√
N

N−1
∑

z=0

ωzy

=
(ak − bk)√

N
ωsy

M−1
∑

r=0

ωrPy +
bk√
N

N−1
∑

z=0

ωzy

3.1. Amplified-QFT Analysis: y=0. We have

Amp(y) =
ak√
N

∑

z∈A

ωzy +
bk√
N

∑

z /∈A

ωzy

=
1√
N

(Mak + (N −M)bk)

=
1√
N

[

M√
M

sin(2k + 1)θ +
N −M√
N −M

cos(2k + 1)θ

]

=

√

M

N
sin(2k + 1)θ +

√

1− M

N
cos(2k + 1)θ

= sin θ sin(2k + 1)θ + cos θ cos(2k + 1)θ

= cos(2kθ)

We have

Pr(y = 0) = cos2(2kθ)
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3.2. Amplified-QFT Analysis: Py = 0modN, y 6= 0. Using the fact that

N−1
∑

z=0

ωzy =
1− ωNy

1− ωy
= 0, wy 6= 1

we have

Amp(y) =
(ak − bk)√

N
ωsy

M−1
∑

r=0

ωrPy +
bk√
N

N−1
∑

z=0

ωzy

=
(ak − bk)√

N
ωsy

M−1
∑

r=0

ωrPy

=
(ak − bk)√

N
ωsyM

=
Mwsy

√
NM

sin(2k + 1)θ − Mwsy

√

N(N −M)
cos(2k + 1)θ

= ωsy

√

M

N
(sin(2k + 1)θ −

√

M/N

1−M/N
cos(2k + 1)θ)

= ωsy

√

M

N
(sin(2k + 1)θ − sin θ

cos θ
cos(2k + 1)θ)

= ωsy tan θ sin 2kθ

We have

Pr(y) = tan2θ sin2 2kθ

Using k =
⌊

π
4θ

⌋

=⇒ π
4θ − 1 ≤ k ≤ π

4θ =⇒ π
2 − 2θ ≤ 2kθ ≤ π

2 =⇒ sin(π2 − 2θ) ≤
sin 2kθ ≤ 1 we have

sin2 θ

cos2 θ
≥ Pr(y) = tan2 θ sin2 2kθ ≥ tan2 θ sin2(

π

2
− 2θ)

=⇒ M

N

1

1− M
N

≥ Pr(y) ≥ tan2 θ sin2(
π

2
− 2θ)

=⇒ M

N
(

N

N −M
) ≥ Pr(y) ≥ sin2 θ

cos2 θ
cos2 2θ

=⇒ M

N
(

N

N −M
) ≥ Pr(y) ≥ sin2 θ

cos2 θ
(2 cos2 θ − 1)2

=⇒ M

N
(

N

N −M
) ≥ Pr(y) ≥ M

N
(

N

N −M
)(1− 2M

N
)2
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3.3. Amplified-QFT Analysis: Py 6= 0modN . Making use of the previous re-
sults we have

Amp(y) =
(ak − bk)√

N
ωsy

M−1
∑

r=0

ωrPy +
bk√
N

N−1
∑

z=0

ωzy

=
(ak − bk)√

N
ωsy

M−1
∑

r=0

ωrPy

=
(ak − bk)√

N
ωsy

[

1− ωMPy

1− ωPy

]

=
1

M

(ak − bk)√
N

ωsyM

[

1− ωMPy

1− ωPy

]

=
1

M
ωsy tan θ sin 2kθ

[

1− ωMPy

1− ωPy

]

Making use of the following identity

|1− eiθ|2 = 4 sin2(θ/2)

we have
∣

∣

∣

∣

1− ωMPy

1− ωPy

∣

∣

∣

∣

2

=
sin2(πMPy/N)

sin2(πPy/N)

and so

Pr(y) =
1

M2
tan2θ sin2 2kθ

sin2(πMPy/N)

sin2(πPy/N)

Using the previous result M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2 and

letting R = sin2(πMPy/N)
sin2(πPy/N)

we have

1

M2

M

N
(

N

N −M
)R ≥ Pr(y) ≥ 1

M2

M

N
(

N

N −M
)(1 − 2M

N
)2R and so

1

NM
(

N

N −M
)R ≥ Pr(y) ≥ 1

NM
(

N

N −M
)(1 − 2M

N
)2R

We notice that if in addition MPy = 0modN then Pr(y) = 0.

3.4. Amplified-QFT Summary. The probability Pr(y) is given exactly by







































cos2 2kθ if y = 0

tan2θ sin2 2kθ if Py = 0modN, y 6= 0

1
M2 tan

2θ sin2 2kθ sin2(πMPy/N)
sin2(πPy/N)

if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise






































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4. Applying the QFT to the Oracle.

In this section we just apply the QFT to the binary Oracle f, which is 1 on A
and 0 elsewhere.

We begin with the following state

|ξ >= 1√
N

N−1
∑

z=0

|z > ⊗ 1√
2
(|0 > −|1 >)

and apply the unitary transform for f, Uf , to this state which performs the following
action:

Uf |z > |c >= |z > |c⊕ f(z) >

to get the state |ψ >

|ψ >= Uf
1√
N

N−1
∑

z=0

|z > 1√
2
(|0 > −|1 >)

=
1√
N

[

(−1)
∑

z∈A

|z > +
∑

z /∈A

|z >
]

1√
2
(|0 > −|1 >)

=
1√
N

[

(−2)
∑

z∈A

|z > +

N−1
∑

z=0

|z >
]

1√
2
(|0 > −|1 >)

Next we apply the QFT to try to find the period P, dropping 1√
2
(|0 > −|1 >).

The QFT applies the following action:

|z >→ 1√
N

N−1
∑

y=0

ωzy|y >

to get

|φ >=
N−1
∑

y=0

[

(−2)

N

∑

z∈A

ωzy +
1

N

N−1
∑

z=0

ωzy

]

|y >

4.1. QFT Analysis: y = 0. We have

Amp(y) =
(−2)

N

∑

z∈A

ωzy +
1

N

N−1
∑

z=0

ωzy

=
(−2)M

N
+
N

N

= 1− 2M

N

Therefore, in the QFT case, we have Pr(y = 0) is very close to 1 and is given by

Pr(y = 0) = 1− 4M

N
+ 4

M2

N2
=

(

1− 2M

N

)2
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whereas in the Amplified-QFT case we have Pr(y = 0) is given by

Pr(y = 0) = cos2 2kθ

4.2. QFT Analysis: Py = 0modN, y 6= 0. Using the fact that

N−1
∑

z=0

ωzy =
1− ωNy

1− ωy
= 0

we have

Amp(y) =
−2

N

∑

z∈A

ωzy +
1

N

N−1
∑

z=0

ωzy

=
−2

N
ωsy

M−1
∑

r=0

ωrPy

=
−2M

N
ωsy

Therefore in the QFT case we have Pr(y) is given by

Pr(y) = 4
M2

N2

whereas in the Amplified-QFT case we have Pr(y) is given by

Pr(y) = tan2θ sin2 2kθ

We can determine how the increase in amplitude varies with the number of iterations
k of the Grover step in the Amplified-QFT by examining the ratio of the amplitudes
of the Amplified-QFT case and QFT case. This ratio is given exactly by

AmpRatio(y) =

(ak−bk)√
N

ωsyM

−2M
N ωsy

=
(ak − bk)

−2

√
N

=
1

−2

[

√

N

M
sin(2k + 1)θ −

√

N

N −M
cos(2k + 1)θ

]

=
N

−2M
tan θ sin 2kθ

Using k =
⌊

π
4θ

⌋

and making use of M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2,

we have the following inequality for the PrRatio(y), the increase in the probability
due to amplification:

N

4M
(

N

N −M
) ≥ PrRatio(y) ≥ N

4M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

4M
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4.3. QFT Analysis: Py 6= 0modN . We have

Amp(y) =
−2

N

∑

z∈A

ωzy +
1

N

N−1
∑

z=0

ωzy

=
−2

N
wsy

M−1
∑

r=0

ωrPy

=
−2

N
wsy

[

1− ωMPy

1− ωPy

]

=
−2

N
wsy

[

1− ωMPy

1− ωPy

]

Once again, making use of the following identity

|1− eiθ|2 = 4 sin2(θ/2)

in the QFT case, we have Pr(y) is given by

Pr(y) =
4

N2

[

sin2(πMPy/N)

sin2(πPy/N)

]

whereas in the Amplified-QFT case we have Pr(y) is given by

Pr(y) =
1

M2
tan2θ sin2 2kθ

sin2(πMPy/N)

sin2(πPy/N)

We notice that if in addition MPy = 0modN then Pr(y) = 0.
The ratio of the amplitudes of the Amplified-QFT case and QFT case is given
exactly by

AmpRatio(y) =

(ak−bk)√
N

ωsy
[

1−ωMPy

1−ωPy

]

−2
N wsy

[

1−ωMPy

1−ωPy

]

=
(ak − bk)

−2

√
N

=
1

−2

[

√

N

M
sin(2k + 1)θ −

√

N

N −M
cos(2k + 1)θ

]

=
N

−2M
tan θ sin 2kθ

We note that this ratio is the same as in that given in the previous section and is
independent of y. The variables in this ratio do not depend in anyway on the QFT.

As in the previous section, we have the following inequality for the PrRatio(y),
the increase in the probability due to amplification when k =

⌊

π
4θ

⌋

and making use

of M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2
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N

4M
(

N

N −M
) ≥ PrRatio(y) ≥ N

4M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

4M

4.4. QFT Summary. The probability Pr(y) is given exactly by











































(

1− 2M
N

)2
if y = 0

4M2

N2 if Py = 0modN, y 6= 0

4
N2

sin2(πMPy/N)
sin2(πPy/N)

if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise











































5. Applying the QHS to the Oracle

The Quantum Hidden Subgroup algorithm (QHS) algorithm is a two register
algorithm as follows (see ref[13] for details). We begin with |0 > |0 > where the
first register is n qubits and the second register is 1 qubit and apply the Hadamard
transform to the first register to get a uniform superposition state, followed by the
unitary transformation for the Oracle f to get:

|ψ >= 1√
N

N−1
∑

x=0

|x > |f(x) >

Next we apply the QFT to the first register to get

|ψ >= 1√
N

N−1
∑

x=0

1√
N

N−1
∑

y=0

ωxy|y > |f(x) >

=

N−1
∑

y=0

1

N

N−1
∑

x=0

ωxy|y > |f(x) >

=
N−1
∑

y=0

1

N
|y >

N−1
∑

x=0

ωxy|f(x) >

=

N−1
∑

y=0

|||Γ(y) > ||
N

|y > |Γ(y) >
|||Γ(y) > ||

where

|Γ(y) >=
N−1
∑

x=0

ωxy|f(x) >

=
∑

x∈A

ωxy|1 > +
∑

x/∈A

ωxy|0 >
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and where

|||Γ(y) > ||2 =

∣

∣

∣

∣

∣

∑

x∈A

ωxy

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

Next we make a measurement to get y and find that the probability of this mea-
surement is

Pr(y) =
|||Γ(y) > ||2

N2

=
1

N2

∣

∣

∣

∣

∣

∑

x∈A

ωxy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

The state that we end up in is of the form

|φ >= |y > |Γ(y) >
|||Γ(y) > ||

So now we are interested in the probability of measuring y in the usual cases in
order to recover the period P .

5.1. QHS Analysis: y = 0. We have

Pr(y) =
1

N2

∣

∣

∣

∣

∣

∑

x∈A

ωxy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

=
M2

N2
+

(N −M)2

N2
=
M2 +N2 − 2NM +M2

N2

= 1− 2M(N −M)

N2

whereas in the Amplified-QFT case we have Pr(y = 0) is given by

Pr(y = 0) = cos2 2kθ

5.2. QHS Analysis: Py = 0modN, y 6= 0. We have

Pr(y) =
1

N2

∣

∣

∣

∣

∣

∑

x∈A

ωxy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

=
1

N2

∣

∣

∣

∣

∣

ωsy
M−1
∑

r=0

ωrPy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

=
1

N2

∣

∣

∣

∣

∣

ωsy
M−1
∑

r=0

ωrPy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

−ωsy
M−1
∑

r=0

ωrPy +
1

N

N−1
∑

x=0

ωxy

∣

∣

∣

∣

∣

2

=
2M2

N2

where we have used the fact that
N−1
∑

x=0

ωxy = 0
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In the Amplified-QFT case we have Pr(y) is given by

Pr(y) = tan2θ sin2 2kθ

By comparing the results of the QHS and the Amplified-QFT algorithms we have
the following inequality for the PrRatio(y) = Pr(y)Amplified−QFT /Pr(y)QHS , the
increase in the probability due to amplification when k =

⌊

π
4θ

⌋

and making use of
M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2

N

2M
(

N

N −M
) ≥ PrRatio(y) ≥ N

2M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

2M

5.3. QHS Analysis: Py 6= 0modN . We have

Pr(y) =
1

N2

∣

∣

∣

∣

∣

∑

x∈A

ωxy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

=
1

N2

∣

∣

∣

∣

∣

ωsy
M−1
∑

r=0

ωrPy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

∑

x/∈A

ωxy

∣

∣

∣

∣

∣

2

=
1

N2

∣

∣

∣

∣

∣

ωsy
M−1
∑

r=0

ωrPy

∣

∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

∣

−ωsy
M−1
∑

r=0

ωrPy +
1

N

N−1
∑

x=0

ωxy

∣

∣

∣

∣

∣

2

=
1

N2

∣

∣

∣

∣

ωsy

[

1− ωMPy

1− ωPy

]
∣

∣

∣

∣

2

+
1

N2

∣

∣

∣

∣

−ωsy

[

1− ωMPy

1− ωPy

]
∣

∣

∣

∣

2

=
2

N2

sin2(πMPy/N)

sin2(πPy/N)

where we have used the fact that

N−1
∑

x=0

ωxy = 0

and that

|1− eiθ|2 = 4 sin2(θ/2)

In the Amplified-QFT case we have Pr(y) is given by

Pr(y) =
1

M2
tan2θ sin2 2kθ

sin2(πMPy/N)

sin2(πPy/N)

We notice that if in addition MPy = 0modN then Pr(y) = 0.
By comparing the results of the QHS and the Amplified-QFT algorithms we have

the following inequality for the PrRatio(y) = Pr(y)Amplified−QFT /Pr(y)QHS , the
increase in the probability due to amplification when k =

⌊

π
4θ

⌋

and making use of
M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2
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N

2M
(

N

N −M
) ≥ PrRatio(y) ≥ N

2M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

2M

5.4. QHS Summary. The Pr(y) in the QHS case is:











































1− 2M(N−M)
N2 if y = 0

2M2

N2 if Py = 0modN, y 6= 0

2
N2

sin2(πMPy/N)
sin2(πPy/N) if Py 6= 0modNand MPy 6= 0modN

0 if Py 6= 0modN and MPy = 0modN otherwise











































6. Recovering the Period P from an Observation y

As in Shor’s algorithm, we use the continued fraction expansion of y/N to find the
period P,where y is a measured value such that y/N is close to d/P and (d, P ) = 1
. See ref[2] and ref[3]for details which we provide below.

Let{a}N be the residue of amodN of smallest magnitude such that −N/2 <
{a}N < N/2. Let SN = {0, 1, ..., N−1}, SP = {d ∈ SN : 0 ≤ d < P} and Y = {y ∈
SN : |Py| ≤ P/2}. Then the map Y → SP given by y → d = d(y) = round(Py/N)
with inverse y = y(d) = round(Nd/P ) is a bijection and {Py}N = Py − Nd(y).
In addition the following two sets are in 1-1 correspondence {y/N : y ∈ Y } and
{d/P : 0 ≤ d < P}.

We make use of the following theorem from the theory of continued fractions
ref[5] (Theorem 184 p.153):

Theorem 1. Let x be a real number and let a and b be integers with b > 0.
If |x − a

b | ≤ 1
2b2 then the rational a/b is a convergent of the continued fraction

expansion of x.

Corollary 1. If P 2 ≤ N and |{Py}N | ≤ P
2 then d(y)/P is a convergent of the

continued fraction expansion of y/N .

Proof. Since {Py}N = Py −Nd(y) we have
|Py −Nd(y)| ≤ P

2 or

| yN − d(y)
P | ≤ 1

2N ≤ 1
2P 2

and we can apply Theorem 1 so that d/P is a convergent of the continued fraction
expansion of y/N . �

Since we know y and N we can find the continued fraction expansion of y/N .
However we also need that (d, P ) = 1 in order that d/P is a convergent and enabling
us to read off P directly. The probability that (d, P ) = 1 is ϕ(P )/P where ϕ(P ) is
Euler’s totient function. If P is prime we get (d, P ) = 1 trivially.

By making use of the following Theorem it can be shown that ϕ(P )
P ≥ e−γ−ǫ(P )

ln 2
1

ln lnN
, where ǫ(P ) is a monotone decreasing sequence converging to zero.

Theorem 2. lim inf ϕ(N)
N/ ln lnN = e−γ
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where γ = 0.57721566 is Euler’s constant and where e−γ = 0.5614594836.
This may cause us to repeat the experiment Ω( 1

ln lnN ) times in order to get
(d, P ) = 1.

We note that we needed to add a condition on the period P that P 2 ≤ N or
P ≤

√
N in order for the proof of the corollary to work.

6.1. Testing if P1 = P when s is known or is 0. We can easily test if s = 0 by
checking to see if f(0) = 1.

Now given a putative value of the period P1 and a known offset or shift s, how
can we test whether P1 = P ?

Assuming we have access to the Oracle to test individual values, we can confirm
f(s) = 1 since s is known. We will show that if f(s+P1) = 1 and f(s+(M−1)P1) =
1 then P1 = P.

Case 1: If P1 > P then s + (M − 1)P1 > s + (M − 1)P. But s + (M − 1)P
is the largest index x such that f(x) = 1. Therefore if P1 > P we must have
f(s+ (M − 1)P1) = 0.

Case 2: If 0 < P1 < P then s < s + P1 < s + P but between s and P there
are no other values x such that f(x) = 1.Therefore if 0 < P1 < P we must have
f(s+ P1) = 0.

Therefore if f(s) = 1, f(s + P1) = 1 and f(s + (M − 1)P1) = 1 we must have
P1 = P.

6.2. Testing if (s1, P1) = (s, P ) when s is from a small known set and s 6= 0.
If we assume s is unknown and s 6= 0 but is from a small known set of possible
values such that we can exhaust over this set on a classical computer and we are
given a putative value of the period P1, how can we test whether a pair of values
(s1, P1) is the correct pair (s, P ) ?

We need only test whether f(s1) = 1, f(s1+P1) = 1 and f(s1+(M − 1)P1) = 1
where M is assumed known.

Case 1: If s1 < s then f(s1) = 0 since s is the smallest index x with f(x) = 1.
Case 2: If s1 > s and f(s1) = 1 then s1 = s+ rP with r > 0 . If f(s1 + P1) = 1

then s1 + P1 = s+ tP = s1 + (t− r)P with t > r > 0. Hence P1 = (t− r)P > 0. If
f(s1+(M−1)P1) = 1 then s1+(M−1)P1 = s+rP+(M−1)(t−r)P > s+(M−1)P
which is the largest index x with f(x) = 1. Therefore f(s1 + (M − 1)P1) = 0.

Hence if f(s1) = 1, f(s1 + P1) = 1 and f(s1 + (M − 1)P1) = 1 we must have
s1 = s and then by following the case when s is known we must also have P1 = P.

Therefore if one or more of the values f(s1), f(s1 + P1), f(s1 + (M − 1)P1) is
zero, either s1 or P1 is wrong. For a given P1 we must exhaust over all possible
values of s before we can be sure that P1 6= P. For in the case that P1 6= P, we
will have for every possible s1 that at least one of the values f(s1), f(s1 + P1),
f(s1 + (M − 1)P1) is zero. In such a case we must try another putative P1.

6.3. Finding s 6= 0 using a Quantum Computer. We can assume s 6= 0 as the
case s = 0 is trivial and was considered above. Let s = α+ βP where α = smodP
so that 0 ≤ α ≤ P − 1 and 0 ≤ α+ βP + (M − 1)P ≤ N − 1.

We assume we are given the correct value of P. If P is wrong, it will be detected
in the algorithm.

Step 1:
We create an initial superposition on N values
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|ψ1 >=
1√
N

N−1
∑

x=0

|x >

and apply the Oracle f and put this into the amplitude. We then apply Grover
without measurement to amplify the amplitudes and we have the following state

|ψ1 >= ak
∑

×∈A

|x > +bk
∑

x/∈A

|x >

where

ak =
1√
M

sin(2k + 1)θ, bk =
1√

N −M
cos(2k + 1)θ

are the appropriate amplitudes of the states and where

sin θ =
√

M/N, cos θ =
√

1−M/N

Next we measure the register and with probability exceeding 1 −M/N we will
measure a value x1 ∈ A where x1 = s + r1P with 0 ≤ r1 ≤ M − 1. Note that the
total probability of the set A is given by

Pr(x ∈ A) =M(
1√
M

sin(2k + 1)θ)2 = sin2(2k + 1)θ = 1− cos2(2k + 1)θ

=⇒ Pr(x ∈ A) = sin2(2k + 1)θ ≥ 1− M

N

Now using our measured value x1 = s+ r1P with 0 ≤ r1 ≤M − 1 we check that
f(x1) = 1 and f(x1 − P ) = 1. If f(x1 − P ) = 0 then either the value of P we are
using is wrong or we have r1 = 0 and x1 = s. If we test f(s) = 1, f(s+P ) = 1 and
f(s+ (M − 1)P ) = 1 then we have the correct P and s otherwise P is wrong. So
assuming f(x1 − P ) = 1 we must have either the correct P or a multiple of P . We
can use the procedure in Step 2 or Step 2’ to find s. The method in Step 2 uses the
Exact Quantum Counting algorithm to find s (See ref[11] for details). The method
in Step 2’ uses a method of decreasing sequence of measurements to find s.

Step 2 (using the Exact Quantum Counting algorithm):

Let T be such that T ≥M is the smallest power of 2 greater than M . We form
a superposition

|ϕ1 >=
1√
T

T−1
∑

x=0

|x > |0 >

and apply the function g(x) = Max(0, x1 − (x + 1)P ) where x1 = s + r1P is our
measured value, with 0 ≤ r1 ≤ M − 1and put the values of g(x) into the second
register to get

|ϕ2 >=
1√
T

T−1
∑

x=0

|x > |g(x) >
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Notice that as x increases from 0, g(x) is a decreasing sequence s + rP with r =
(r1 − x− 1). When g(x) dips below 0 we set g(x) = 0 to ensure g(x) ≥ 0. Now we
apply f to g(x) and put the results into the amplitude to get

|ϕ3 >=
1√
T

T−1
∑

x=0

(−1)f(g(x))|x > |g(x) >

Notice that f(g(x)) = 1 when s ≤ g(x) < s + r1P and is 0 elsewhere. We
apply the exact quantum counting algorithm which determines how many values
f(g(x)) = 1.Let this total be R. If P is correct we expect R = r1 and we can
determine s = x1−RP = s+r1P−RP.We can then test if we have the correct pair
of values s, P by testing whether f(s) = 1, f(s+P ) = 1 and f(s+ (M − 1)P ) = 1.
If this test fails then P must be an incorrect value and we must repeat the period
finding algorithm.

We use Theorem 8.3.4 of ref[11]: The Exact Quantum Counting algorithm re-

quires an expected number of applications of Uf in O(
√

(R+ 1)(T −R+ 1) and
outputs the correct value R with probability at least 2/3.

Step 2’ (decreasing sequence of measurements method):
Let T be such that T ≥M is the smallest power of 2 greater than M . We form

a superposition

|ϕ1 >=
1√
T

T−1
∑

x=0

|x > |0 >

and apply the function g(x) =Max(0, x1 − (x+ 1)P ) where x1 = s+ r1P with
0 ≤ r1 ≤M − 1and put these values into the second register to get

|ϕ2 >=
1√
T

T−1
∑

x=0

|x > |g(x) >

Notice that as x increases from 0, g(x) is a decreasing sequence s + rP with
r = (r1 − x− 1). When g(x) dips below 0 we set g(x) = 0 to ensure g(x) ≥ 0. Now
we apply f to g(x) and put the results into the third register and then into the
amplitude.

|ϕ3 >=
1√
T

T−1
∑

x=0

(−1)f(g(x))|x > |g(x) >

Notice that f(g(x)) = 1 when s ≤ g(x) < s+ r1P and is 0 elsewhere.
We then run Grover without measurement to amplify the amplitudes and mea-

sure the second register containing g(x).
With probability close to 1 we will measure a new value x2 = s + r2P with

0 ≤ r2 < r1. We test the values f(x2) = 1 and f(x2 − P ) = 1. If f(x2 − P ) = 0
then either the value of P we are using is wrong or we have r2 = 0 and x2 = s.
If we test f(s) = 1, f(s + P ) = 1 and f(s + (M − 1)P ) = 1 then we have the
correct P and s otherwise P is wrong. So assuming f(x2 − P ) = 1 we must have
either the correct P or a multiple of P . We repeat this algorithm and go to Step 2’
replacing the value x1 in the function g(x) with x2 etc. As we repeat the algorithm
we will measure a decreasing sequence of values x1, x2... that converges to s. This
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procedure will eventually terminate with the correct pair of values P and s or we
will determine that we have been using an incorrect value of P and we must repeat
the quantum algorithm for finding putative P and repeat the process.

How many times do we expect to repeat Step 2’? When we make our first
measurement we expect r1 = M/2. For our second measurement we expect r2 =
r1/2 etc. Therefore we expect to repeat this algorithm O( ln2(M)) times.

7. Replacing the QFT With a General Unitary Transform U

In general, if we had any Oracle f which is 1 on a set of labels A and 0 else-
where and we replaced the QFT with any unitary transform U which performs the
following

|z >→ 1√
N

N−1
∑

y=0

α(z, y)|y >

we can compute the AmpRatio(y) = Amplitude(Amplified−U)
Amplitude(U) as follows.

As before, we have the following state after applying Uf :

|ψ >= 1√
N

[

(−2)
∑

z∈A

|z > +

N−1
∑

z=0

|z >
]

Next we apply the general unitary transform U to obtain the state

U |ψ >=
N−1
∑

y=0

[

(−2)

N

∑

z∈A

α(z, y) +
1

N

N−1
∑

z=0

α(z, y)

]

|y >

In the Amplified-U case we apply Grover without measurement followed by U we
obtain the state

|φk >=
N−1
∑

y=0

[

(ak − bk)√
N

∑

z∈A

α(z, y) +
bk√
N

N−1
∑

z=0

α(z, y)

]

|y >

If
∑N−1

z=0 α(z, y) = 0 and
∑

z∈A α(z, y) 6= 0 we get the same AmpRatio(y) formula
that we obtained when U = QFT
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AmpRatio(y) =

(ak−bk)√
N

∑

z∈A α(z, y) +
bk√
N

∑N−1
z=0 α(z, y)

(−2)
N

∑

z∈A α(z, y) +
1
N

∑N−1
z=0 α(z, y)

=

(ak−bk)√
N

∑

z∈A α(z, y)

(−2)
N

∑

z∈A α(z, y)

=

(ak−bk)√
N

(−2)
N

=
(ak − bk)

−2

√
N

=
1

−2

[

√

N

M
sin(2k + 1)θ −

√

N

N −M
cos(2k + 1)θ

]

=
N

−2M
tan θ sin 2kθ

This gives

PrRatio(y) =
N2

4M2
tan2 θ sin2 2kθ

As in the case when U=QFT, we have the following inequality for the PrRatio(y)
for a general U, the increase in the probability due to amplification when k =

⌊

π
4θ

⌋

and making use of M
N ( N

N−M ) ≥ tan2 θ sin2 2kθ ≥ M
N ( N

N−M )(N−2M
N )2

N

4M
(

N

N −M
) ≥ PrRatio(y) ≥ N

4M
(

N

N −M
)(1− 2M

N
)2

=⇒ PrRatio(y) ≈ N

4M

References
[1] Nakahara and Ohmi, “Quantum Computing: From Linear Algebra to Physi-

cal Realizations”, CRC Press (2008).
[2] S. Lomonaco, “Shor’s Quantum Factoring Algorithm,” AMS PSAPM, vol.

58, (2002), 161-179.
[3] P. Shor, “Polynomial time algorithms for prime factorization and discrete

logarithms on a quantum computer”, SIAM J. on Computing, 26(5) (1997) pp1484-
1509 (quant-ph/9508027).

[4] L. Grover, “A fast quantum mechanical search algorithm for database search”,
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC
1996), (1996) 212-219.

[5] Hardy and Wright “An Introduction to the Theory of Numbers”, Oxford
Press Fifth Edition (1979).

[6] S. Lomonaco and L. Kauffman, “Quantum Hidden Subgroup Algorithms: A
Mathematical Perspective,” AMS CONM, vol. 305, (2002), 139-202.

[7] S. Lomonaco, “Grover’s Quantum Search Algorithm,” AMS PSAPM, vol. 58,
(2002), 181-192.

http://arxiv.org/abs/quant-ph/9508027


THE AMPLIFIED QUANTUM FOURIER TRANSFORM (AMPLIFIED-QFT) 21

[8] S. Lomonaco and L. Kauffman, “Is Grover’s Algorithm a Quantum Hidden
Subgroup Algorithm?,” Journal of Quantum Information Processing, Vol. 6, No.
6, (2007), 461-476.

[9] G. Brassard, P. Hoyer, M. Mosca and A. Tapp, ”Quantum Amplitude Am-
plification and Estimation”, AMS CONM, vol 305, (2002), 53-74.

[10] M. Nielsen and I. Chuang, ”Quantum Computation and Quantum Informa-
tion”, Cambridge University Press (2000).

[11] P. Kaye, R. Laflamme and M. Mosca, ”An Introduction to Quantum Com-
puting”, Oxford University Press (2007).

[12] N. Yanofsky and M. Mannucci, ”Quantum Computing For Computer Sci-
entists”, Cambridge University Press (2008).

[13] S. Lomonaco, ”A Lecture on Shor’s Quantum Factoring Algorithm Version
1.1”,quant-ph/0010034v1 9 Oct 2000.

Current address: David J. Cornwell (PhD Student), Department of Mathematics, University
of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

E-mail address: David J. Cornwell: dave.cornwell@yahoo.com

http://arxiv.org/abs/quant-ph/0010034

	1. Introduction
	2. The Three Step Amplified-QFT algorithm
	3. Analysis of the Amplified-QFT Algorithm
	3.1. Amplified-QFT Analysis: y=0
	3.2. Amplified-QFT Analysis: Py=0modN,y=0
	3.3. Amplified-QFT Analysis: Py=0modN
	3.4. Amplified-QFT Summary

	4. Applying the QFT to the Oracle.
	4.1. QFT Analysis: y=0
	4.2. QFT Analysis: Py=0modN,y=0
	4.3. QFT Analysis: Py=0modN
	4.4. QFT Summary

	5. Applying the QHS to the Oracle
	5.1. QHS Analysis: y=0
	5.2. QHS Analysis: Py=0modN,y=0
	5.3. QHS Analysis: Py=0modN
	5.4. QHS Summary

	6. Recovering the Period P from an Observation y
	6.1. Testing if P1=P when s is known or is 0
	6.2. Testing if (s1,P1)=(s,P) when s is from a small known set and s=0
	6.3. Finding s=0 using a Quantum Computer

	7. Replacing the QFT With a General Unitary Transform U

