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Abstract. In an incomplete semimartingale model of a financial market, we consider several

risk-averse financial agents who negotiate the price of a bundle of contingent claims. Assum-

ing that the agents’ risk preferences are modelled by convex capital requirements, we define

and analyze their demand functions and propose a notion of a partial equilibrium price.

In addition to sufficient conditions for the existence and uniqueness, we also show that the

equilibrium prices are stable with respect to misspecifications of agents’ risk preferences.
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1. Introduction

In complete market models, the price of a contingent claim is simply given by its replication cost. In

the more realistic, incomplete models, the arbitrage-free paradigm typically fails to produce a unique price

and yields only a price-interval. The presence of unhedgeable claims - due to the aforementioned market

incompleteness - necessitates the introduction of another fundamental principle whenever one wants to

produce a unique value for a given contingent claim. The long history of empirical inquiry into human

behavior under risk dictates that this additional component is related to some numerical measure of risk-

aversion, idiosyncratic to the agent valuing the claim. The majority of the existing literature uses agents’ risk
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preferences to induce a subjective “pricing” mechanism which provides bid and ask prices for a claim payoff

(consider for instance the indifference- or marginal-utility-based price concepts; see, e.g., the references in

[15]). In reality, however, the observed price of any claim is always a result of interaction among a number

of agents. In fact, the very notion of a “price” makes sense only as the observed quantity at which a

transaction between two (or more) agents already took place; consequently, what is called pricing in the

bulk of the contemporary literature should rather be referred to as valuation. We abstain from such a

renaming in order to keep in line with the already established terminology.

In the present paper, we consider several risk-averse financial agents who negotiate the price of a fixed

bundle of claims, and we propose a partial-equilibrium pricing scheme in the spirit of the classical general-

equilibrium theory. We place ourselves in a (liquid) financial market model driven by a locally-bounded

semimartingale, fix a time horizon T > 0 and assume that each agent’s risk preferences and investment goals

are abstracted in the notion of an acceptance set. Roughly speaking, this set includes all the positions with

maturity up to time T that the agent deems acceptable at time 0. Following the literature of convex risk

measures, we assume that each acceptance set satisfies certain standard properties, such as monotonicity

and convexity. An additional property that relates the agents’ acceptance sets to the liquid market and

the set of admissible strategies is also imposed (see Axiom Ax4 on page 5). Thus axiomatized acceptance

sets are naturally identified with capital requirements (or risk measures); intuitively, the (convex) capital

requirement of a payoff is the minimum amount of money which, when added to the payoff, creates a position

in the acceptance set.

The notion of risk measure was introduced to Mathematical Finance in the late nineties (see [3]) and

has captured a large part of the research activity in this field since (see, among others, [18] and [25], as

well as Chapter 4 in [27] and references therein). Convex risk measures in the context of a liquid financial

market were first studied in [16] and [25] (see also [26] and section 4.8 of [27]). In [25], a convex risk measure

is defined in the presence of a financial market, where the agent is allowed to trade in discrete time and

under specific convex constrains. In [16], a pricing scheme for non-replicable claims based on risk measures

is proposed in a finite-probability-space model. The abstract definition of a convex capital requirement and

its dual representation for a large family of models was given in [28] and [5]. For the dynamic version of

convex-risk-measure-based pricing in an incomplete market setting, we refer the reader to [36] and, for the

sufficient conditions for existence of an optimal trading strategy that makes a contingent claim acceptable,

to [46] and [41].

Having described the decision-theoretic set up, we focus on the interaction of I ≥ 2 agents, who have

access to (possibly) different financial markets, and we define mutually agreeable bundle. Given a bundle

of contingent claims B = (B1, B2, ..., Bn), we start by introducing the set of its allocations, i.e., the set of

matrices that represent the feasible ways of sharing B among agents. Then, we say that a pair (B, a), of a

bundle B and its allocation a, is mutually agreeable if there exists a price vector p, at which re-allocation

of B according to a is acceptable to every agent at price p. This is a generalized version of the notion of

mutually agreeable claims given in [2]. In section 3, we study its properties and relate it to the well-known

notion of Pareto optimality.
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For models that include uncertainty, the concept of a Pareto optimal allocation was first analyzed in the

insurance/reinsurance context in [8], [29], and [12] and further developed in [10], [11] and [45]. More recently,

the issues related to Pareto optimality and design of an optimal contract were studied in the more general

settings of convex (coherent) risk measures (see, e.g., [4], [6], [13], [24], [31] and [34]). In the presence of a

financial market, this problem was addressed in [5] and [36]. Recently, in [23] (see also [31]), the concept

of Pareto-optimality has been used to determine an equilibrium pricing rule, where the term “pricing rule”

refers to a finitely additive measure (an element of the dual of L∞). More precisely, the authors provide

sufficient and necessary conditions for the existence of a Pareto optimal allocation of agents’ endowments,

from which an equilibrium pricing rule is induced (in fact, the equilibrium pricing rule is the super-gradient

of the representative agent’s risk measure).

In this work, instead of establishing an equilibrium pricing rule from a Pareto optimal allocation, we take

a more direct approach and apply the classical market-clearing arguments to derive a partial equilibrium

price for a bundle B of claims (in addition to a liquid incomplete financial market). Provided that the

agents are not already in a Pareto-optimal configuration, an agent’s demand of the vector B at a price p

is defined as the number of units of B that the agent is willing to buy at price p. An equilibrium price

for B is, then, the price at which the sum of agents’ demands is equal to zero for each component of B

and the resulting re-allocation of the bundle B is called the partial equilibrium allocation. In section 4, we

give sufficient conditions for existence and uniqueness of the partial-equilibrium price and allocation and we

relate it to the notion of agents’ agreement. This result generalizes Theorem 5.8 in [2], where the case of two

agents with exponential utility functions is considered.

Having settled the problem of existence and uniqueness of the partial-equilibrium price, we turn to the

following question: How is the equilibrium price-allocation affected by (small) perturbations of the agents’

decision criteria? This problem is of considerable importance, since estimation of the shape of each agent’s

acceptance set is an extremely difficult task. It is therefore reasonable - in the spirit of Hadamard’s require-

ments (see [30]) - to ask that any result, which uses acceptance sets as exogenously given, should satisfy

adequate stability criteria. Despite its importance, the problem of stability of equilibrium prices with re-

spect various problem primitives has not been previously studied in the context of continuous-time finance.

Well-posedness of various “single-agent” optimization problems, on the other hand, has been extensively

studied and has always been an important part of the optimization theory (standard references on stability,

and, more generally, well-posedness of variational problems are [38], [43] and [21]). However, stability of the

agent’s investment decisions in the presence of a financial market has only recently been investigated, and

only for cases of utility function maximizers (see [14], [33], [35], [37]). Stability of problems related to the

more general notion of a convex risk measure has still not been studied. In our setting, as demonstrated

in Theorem 4.13, the problem of existence of the partial-equilibrium price can be viewed as a minimization

problem of the sum of the agents’ capital requirements. Considered as such, its stability can be guaranteed

by certain conditions on allowed perturbations of the agents’ acceptance sets. The central notion in this

analysis is the one of Kuratowski convergence; it is applied to sets of “acceptable” numbers of units of the

given bundle of claims and provides a framework for sufficient conditions for stability. As special cases, we

consider the set-ups of [32] and [35], where agents’ risk preferences are modelled by utility functions.
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The structure of the paper is as follows: In section 2, we describe the market model, introduce necessary

notation and state some properties of the agents’ acceptance sets and capital requirements. In section 3, we

define and discuss the notion of mutually agreeable claim-allocations and analyze its relation to the Pareto

optimality. Partial-equilibrium price-allocation is introduced in section 4, where an existence and uniqueness

result is provided and discussed. Finally, in section 5 we exhibit conditions on specification of the agents’

acceptance sets that yield stability of the equilibrium price.

2. The Market Set-up

2.1. The Liquid Part of the Financial Market. Our model of the liquid part of the financial market is

based on a filtered probability space (Ω,F , F, P), F = (Ft)t∈[0,T ], T > 0, which satisfies the usual conditions of

right-continuity and completeness. There are d+1 traded assets (d ∈ N), whose discounted price processes are

modelled by an Rd+1−valued locally bounded semimartingale (S
(0)
t ;St)t∈[0,T ] = (S

(0)
t ; S

(1)
t , . . . , S

(d)
t )t∈[0,T ].

The first asset S
(0)
t plays the role of a numéraire security or a discount factor. Operationally, we simply set

S
(0)
t ≡ 1, for all t ∈ [0, T ], P−a.s. We also impose the assumption of no free lunch with vanishing risk (see

[20]). Namely, we define

Ma = {Q ≪ P : S is a local martingale under Q} and Me = {Q ≈ P : S is a local martingale under Q}

and make the following standing assumption.

Assumption 2.1. Me 6= ∅.

We allow the possibility that the liquid part of the financial market is incomplete, i.e., that Me is not a

singleton.

2.2. Admissible Strategies. For σ-algebra G ⊆ F , L0(G) denotes the set of all P−a.s. equivalence classes

of G-measurable random variables, and L∞(G) the set of all (classes of) essentially bounded elements of

L0(G). When the underlying σ-algebra G is omitted, it should be assumed that G = F . Shortcuts B + C =

{X + Y : X ∈ B, Y ∈ C}, −B = {−X : X ∈ B}, B+ = {X ∈ B : X ≥ 0, a.s.}, B− = {X ∈ B : X ≤

0, a.s.} for B, C ⊆ L0 = L0(F), will be used throughout.

A financial agent (with initial wealth x) invests in the market by choosing a portfolio strategy ϑ ∈ L(S),

where L(S) denotes the set of predictable stochastic processes integrable with respect to S. The resulting

wealth process, (Xx,ϑ
t )t∈[0,T ], is simply the stochastic integral:

(2.1) Xx,ϑ
t = x + (ϑ · S)t = x +

∫ t

0

ϑu dSu.

We say that a strategy ϑ admissible if the induced wealth process is uniformly bounded from below by a

constant and we denote the set of admissible strategies by Θ, i.e.,

(2.2) Θ = {ϑ ∈ L(S) : ∃c ∈ R such that c ≤ (ϑ · S)t, ∀t ∈ [0, T ], a.s.}

The collection of all wealth processes corresponding to the initial wealth x and admissible portfolio strategies

is denoted by X (x), i.e.,

X (x) =
{

(Xx,ϑ
t )t∈[0,T ] : ϑ ∈ Θ

}

.
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Furthermore, we define the sets X =
⋃

x∈R

X (x), X∞ = X ∩ L∞ and R = {X ∈ X : −X ∈ X}.

Remark 2.2.

(1) Local boundedness of the price process S implies that X ∈ R if and only if there exists x ∈ R and

ϑ ∈ Θ such that X = x + (ϑ · S)T and (ϑ · S)t is uniformly bounded. In particular, R ⊆ L∞.

(2) The lower bound on the losses of the admissible strategies is imposed to avoid pathologies that the

so-called doubling strategies create. Moreover, Assumption 2.1 excludes the existence of arbitrage

opportunities in the liquid market (see [20], Corollary 1.2). Note also that X ∈ X∞ does not imply

that −X ∈ X , since there exist admissible strategies such that (ϑ · S)T ∈ L∞ but (−ϑ · S)t is not

uniformly bounded from below.

2.3. The Acceptance Sets. Given the financial market (S(0);S) and the set of admissible strategies Θ, we

suppose that each agent’s risk preferences, investment goals, possible stochastic income, etc., are incorporated

in a set Ã ⊆ L0(F) called the acceptance set. We interpret Ã as the set that contains the discounted net

wealths of investment positions with maturity T that the agent deems acceptable at time t = 0.

In concordance with the standard postulates of the risk-measure theory, we assume that Ã satisfies the

following axioms:

Ax1. Ã + L0
+ ⊆ Ã.

Ax2. Ã is convex.

Ax3. Ã ∩ L0
−(F) = {0}.

Ax4. Ã − X (0) ⊆ Ã. .

For future use we set A = Ã ∩ L∞.

Remark 2.3. Axiom Ax1 simply states that every investment with payoff a.s. above the payoff of an acceptable

claim is also acceptable. Axiom Ax2 reflects the fact that diversified portfolios of acceptable investments

should also be acceptable, while Axiom Ax3 means that the “status quo” (i.e., no investment at all) is

an acceptable position and that the non-trivial investments which never make money are not acceptable.

Finally, axiom Ax4 is the one that provides a link between the liquid market and the agent’s acceptable

positions. One should think of Ã as an “already-optimized” representation of agent’s preferences, in the

sense that the fact that the liquid market stands at the agent’s disposal has already been taken into account.

One of the direct consequences of Ax4, and a more mathematical reformulation of the last sentence, is the

following property:

(2.3) If there exists X ∈ X (0) such that B + X ∈ Ã, then B ∈ Ã.

More directly, if a position can be improved to acceptability by costless trading, it should already be con-

sidered acceptable. The reader should note that the situation is not entirely symmetric: it can happen that

B − X is acceptable for some X ∈ X (0), but B is not. The reason is that X may not be bounded from

above so that there is no admissible strategy (with −X 6∈ X (0) being the prime candidate) which will bring

B into acceptability.
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An important, but by no means only, example of an acceptable set which satisfies Ax1-Ax4 can be

constructed using utility functions:

Example 2.4. A classical example of an acceptance set that satisfies the axioms Ax1 -Ax4 is the one

induced by a utility function, i.e., a mapping U : (a,∞) → R, a ∈ [−∞, 0], which is strictly concave, strictly

increasing, continuously differentiable and satisfies the Inada conditions

lim
x→a+

U ′(x) = +∞ and lim
x→+∞

U ′(x) = 0.

We also include a random endowment (illiquid investments, stochastic income) whose value at time T given

by E ∈ L∞(FT ). The agent’s investment goal is to maximize the expected utility by trading the market

assets and for every contingent claim B ∈ L0
+ − L∞

+ , the resulting indirect utility is defined by

(2.4) u(x|B) = sup
X∈X (0)

E[U(x + E + X + B)],

where x > 0 is the agent’s initial wealth. For sufficient assumptions that lead to the existence of the optimal

trading strategy, we refer the interested reader to [17], [32] for the case a > −∞ and [7] and [40] for a = −∞.

The set of acceptable claims is then given by

(2.5) ÃU (x) =
{

B ∈ L0
+ − L∞

+ : u(x|B) ≥ u(x|0)
}

.

It is straightforward to check that ÃU (x) indeed satisfies the axioms Ax1 -Ax4, for x > 0.

2.4. The Convex Capital Requirement. Given an acceptance set Ã, we call the map ρA : L∞ → R̄,

defined by

(2.6) ρA(B) = inf{m ∈ R : m + B ∈ Ã}, for every B ∈ L∞,

the agent’s convex capital requirement or convex risk measure induced by the acceptance set Ã. It follows

that ρA(·) is convex, non-increasing and cash invariant, i.e., ρA(B + m) = ρA(B) − m, for every B ∈ L∞

and m ∈ R.

Axioms Ax1 and Ax2 imply that ρA(0) = 0 and the inequality −‖B‖∞ ≤ B ≤ ‖B‖∞ together with axiom

Ax1 force ρA(B) ∈ [−‖B‖∞, ‖B‖∞] ⊆ R for every B ∈ L∞. The inclusion A ⊆ {B ∈ L∞ : ρA(B) ≤ 0}

holds trivially. If, in addition, the set A satisfies the following mild closedness property

(2.7) {λ ∈ [0, 1] : λm + (1 − λ)B ∈ A} is closed in [0, 1], for every m ∈ R+ and B ∈ L∞,

the inverse inclusion also holds (see Proposition 4.7 in [27]). Property (2.7) holds, in particular, if Ã ∩ V

is closed (with respect to any linear topology) for any finite-dimensional subspace V ⊆ L∞. In what

follows, with a slight abuse of terminology, when we mention the term acceptance set we will refer to the set

A = Ã ∩ L∞, for Ã that satisfies Ax1 -Ax4.

Remark 2.5. Similar definitions of the convex capital requirement have been given in [27] (page 207) and

[28]. In the former, a given acceptance set A is related to the market through a larger acceptance set Â,

defined by

(2.8) Â = {B ∈ L∞ : ∃ϑ ∈ Θ, A ∈ A such that (ϑ · S)T + B ≥ A, P − a.s.}.
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In our case, (2.3) implies that Â = A, which is yet another reformulation of the “already-optimized” property

of Remark 2.3. In [28], the authors define the generalized capital requirement by

ρ̂A(B) = inf {m ∈ R : ∃X ∈ X (m) such that X + B ∈ A} .

If the acceptance set Ã satisfies the axioms Ax1 -Ax4, it is straightforward to show that ρA(B) = ρ̂A(B). The

existence of an admissible strategy in the definitions of ρ̂A(·) and Â has been established in [46], Theorem

2.6.

2.5. A Robust Representation. It is shown in [25] that under the assumption that A is weak-∗ closed

(closed in the weak topology σ(L∞, L1)), the convex risk measure ρA(·) admits a robust representation in

the sense of [3] and [18]. The additionally imposed axiom Ax4 provides some further information about the

penalty function and, in particular, about its effective domain, denoted by MA. The following proposition

is similar, but not identical, to the results in [27] and [36].

Proposition 2.6. If A is a weak-∗ closed acceptance set, then

(1) ρA admits a robust representation of the following form

(2.9) ρA(B) = sup
Q∈Ma

{EQ[−B] − αA(Q)}

for every B ∈ L∞, where αA(Q) = sup
B∈A

{EQ[−B]}, i.e., MA ⊆ Ma, and

(2) the set of measures, denoted by ∂ρA(B), at which the supremum in (2.9) is attained, is non-empty.

Proof. Thanks to the results in [27] and [36], it is enough to show that for every Q /∈ Ma, αA(Q) = +∞.

For every such Q, there exists an admissible terminal wealth X ∈ X (x), such that EQ[X ] > x, i.e., there

exists a portfolio ϑ ∈ Θ, such that (ϑ · S)t is uniformly bounded from below and EQ[(ϑ · S)T ] > 0 (see

Theorem 5.6 in [20]). Then, for every k ∈ N, we define Bk = −((ϑ · S)T ∧ k), which belongs to L∞. Hence,

Bk +(ϑ ·S)T = ((ϑ ·S)T − k)1{(ϑ·S)T≥k} ≥ 0, which means that Bk +(ϑ ·S)T ∈ Ã for every k ∈ N. Also, by

(2.3) we have that λBk ∈ A, for all λ > 0. Thus, αA(Q) ≥ EQ[−λBk], for every k ∈ N. Finally, it is enough

to first let k → ∞ and use the Monotone convergence theorem to get that αA(Q) ≥ λEQ[(ϑ ·S)T ], and then

let λ → ∞. �

Corollary 2.7. If A is a weak-∗ closed acceptance set, then ρA(·) satisfies the following replication invariance

property: for every B ∈ L∞ and every C ∈ R ∩ X (x), we have ρA(B + C) = ρA(B) − x.

2.6. Risk-equivalence. The following definition (see also [2]) will be used extensively in the sequel:

Definition 2.8. Two random variables B, C ∈ L∞ are said to be risk-equivalent (or equivalent with respect

to risk), denoted by B ∼ C, if B − C ∈ R.

It is straightforward to check that the relation ∼ is indeed an equivalence relation in L∞. The condition

B ∼ C means that the claims with payoffs B and C carry the same unhedgeable risk. Moreover, it is easy

to see that the condition B ∼ C implies that

∀λ ∈ [0, 1], ρA(λB + (1 − λ)C) = λρA(B) + (1 − λ)ρA(C).(2.10)
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On the other hand, if B ≁ C, convex combinations of the payoffs B and C may lead to reduction of risk.

If any such combination of claims (which do not belong in the same equivalence class) reduces the risk, the

corresponding acceptance set A is called risk-strictly convex :

Definition 2.9. An acceptance set A is called risk-strictly convex if for all B, C ∈ A with B ≁ C and every

λ ∈ (0, 1), there exists a random variable E ∈ L∞
+ and Q ∈ ∂ρA(λB + (1 − λ)C) such that, Q(E > 0) > 0

and

λB + (1 − λ)C − E ∈ A.

Proposition 2.10. Let A be a weak-∗ closed acceptance set. Then, A is risk-strictly convex if and only if

for all B, C ∈ L∞ the condition (2.10) implies B ∼ C.

Proof. We first assume that A is risk-strictly convex and show the contrapositive of the stated implication.

For arbitrarily chosen B, C ∈ L∞ such that B ≁ C, we have that B + ρA(B), C + ρA(C) ∈ A. Hence, for a

given λ ∈ (0, 1), there exists E ∈ L∞
+ and Q ∈ ∂ρA(λB + (1 − λ)C) such that Q(E > 0) > 0 and

λB + (1 − λ)C + λρA(B) + (1 − λ)ρA(C) − E ∈ A.

This implies that ρA(λB +(1−λ)C−E) ≤ λρA(B)+ (1−λ)ρA(C), and so, by monotonicity of ρA, we have

ρA(λB + (1 − λ)C) = EQ[−λB − (1 − λ)C] − αA(Q) < EQ[−λB − (1 − λ)C + E] − αA(Q)

≤ sup
Q̃∈MA

{EQ̃[−λB − (1 − λ)C + E] − αA(Q̃)} = ρA(λB + (1 − λ)C − E)

≤ λρA(B) + (1 − λ)ρA(C).

Conversely, suppose that (2.10) implies B ∼ C, for all B, C ∈ L∞. Then for any pair B ≁ C and every

λ ∈ (0, 1) we must have that

ρA(λB + (1 − λ)C) < λρA(B) + (1 − λ)ρA(C),

so it is enough to take E = −ρA(λB + (1 − λ)C) in the definition of risk-strict convexity. �

Remark 2.11. An examination of the above proof reveals that the seemingly stronger condition where the

random variable E is replaced by a positive constant leads to the same concept as in Definition 2.9.

Under the assumption that the acceptance set A is risk-strictly convex, we can say a bit more about the

effective domain of the penalty function of the induced risk measure, MA.

Proposition 2.12. If the acceptance set A is weak-∗ closed and risk-strictly convex, then MA ⊆ Me.

Proof. Suppose, to the contrary, that there exists Q ∈ MA \Me. Since MA ⊆ Ma, there exists A ∈ F be

such that Q[A] = 0, but P[A] > 0. Then, since αA(Q) = supC∈L∞

(

EQ[−C] − ρA(C)
)

, we have

ρA(C − n1A) ≤ EQ[C] + αA(Q) < ∞,

for all n ∈ N, and all C ∈ L∞. By convexity,

ρ(C − 1A) ≤ 1
n
ρ(C − n1A) + (1 − 1

n
)ρ(C) ≤ 1

n
(EQ[C] + αA(Q)) + (1 − 1

n
)ρ(C)),
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for each n ∈ N, so ρ(C − 1A) = ρ(C). It follows now from Proposition 2.10 that 1A ∈ R, which is in

contradiction with the assumption of No Free Lunch with Vanishing Risk. �

Remark 2.13. In the terminology of [27] (see page 173), a risk measure ρ is called sensitive if ρ(−B) > 0

for every B ∈ L∞
+ \{0}. The fact, as stated in Proposition 2.12, that the minimizers of the penalty function

αA(·) are equivalent to P when A is risk-strictly convex, implies that a risk-strictly convex risk measures

are sensitive. Indeed, by (2.9), ρA(−B) = EQ[B] − αA(Q), for any Q ∈ ∂ρA(0). Clearly EQ[B] > 0 and

αA(Q)(B) ≤ 0, so ρA(−B) > 0.

Another direct property of risk-strictly convex acceptance set is the following:

Proposition 2.14. Let ρA be the risk measure corresponding to a weak-∗ closed, risk-strictly convex accep-

tance set A. Then,

ρA(B) + ρA(−B) > 0, for B ∈ L∞ \ R.

In particular, A∩ (−A) = X (0) ∩R.

Proof. For any such B ∈ L∞ \ R, ρA(B) + B ∈ A and ρA(−B) − B ∈ A. By assumption (since 2B /∈ R),

there exists E ∈ L∞
+ \{0} such that

1

2
(ρA(B) + ρA(−B)) − E ∈ A.

Hence, 1
2 (ρA(B) + ρA(−B)) − ρA(−E) ≥ 0 and by monotonicity of ρA, we get that ρA(B) + ρA(−B) > 0.

The last statement follows from Corollary 2.7. �

3. Mutually-Agreeable Bundles

3.1. The Agents. We consider I ≥ 2 financial agents and suppose that each agent i has access to a sub-

market Si of S, i.e., she is allowed to invest only in (S
(0)
t ; S

(ji
1)

t , . . . , S
(ji

di
)

t )t∈[0,T ], where 1 ≤ ji
1 < · · · < ji

di
≤ d.

Note that the numéraire S(0) ≡ 1 is accessible to each agent. In order to take the whole market into account

and avoid trivialities, we also assume that each component of S is accessible to at least one agent. Note that

the Assumption 2.1 implies that Mi
a 6= ∅, for all i, where

Mi
a = {Q ≪ P : Si is a local martingale under Q} , i = 1, 2, . . . , I.

We define the sets Xi, Xi(x), Θi and Ri exactly as in section 2, with Si used in lieu of S. Moreover, each

agent is assumed to have an acceptance set Ãi which satisfies the axioms Ax1 -Ax4. The induced risk measure

ρAi
on L∞ will be denoted by ρi, and Mi will be the shortcut for MAi

, i.e., it will stand for the effective

domain of the corresponding penalty function αi, i = 1, 2, . . . , I. If we further assume that the intersection

Ãi ∩L∞, denoted by Ai, is weak-∗ closed and hence the induced risk measure ρi = ρAi
admits the following

robust representation

(3.1) ρi(B) = sup
Q∈Mi

{EQ[−B] − αi(Q)},

where Mi ⊆ Mi
a for all i. As above, ∂ρi(B) denotes the set of all maximizers in (3.1), for B ∈ L∞ and

i = 1, 2, ..., I.
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3.2. Bundles, Allocations and Agreement. For bundle of claims B = (B1, B2, ..., Bn) ∈ (L∞)n, n ∈ N,

a matrix (ai,k) = a ∈ RI×n is called a feasible allocation or simply an allocation, if
∑I

i=1 ai,k = 0 for all

k = 1, 2, ..., n. For convenience, the i-th row (ai,k)n
k=1 of a will be denoted by ai ; it counts the quantities of

each of the n components of B held by the agent i. The set of all feasible allocations is denoted by F, i.e.,

(3.2) F = {a ∈ RI×n such that

I
∑

i=1

ai = (0, 0, ..., 0)}.

We usually think of the elements of B as the claims (typically not replicable in the liquid market S) the

agents are trading among themselves. These claims are in zero net supply, i.e., some of the agents will be

taking positive and some negative positions in them. Clearly, the agents will be willing to share the bundle

of claims B according to an allocation a ∈ F only if there exists a price vector p ∈ Rn, for which the position

ai · B − ai · p is acceptable for each agent i. More precisely, we give the following definition:

Definition 3.1. The pair (B, a) ∈ (L∞)n × F of a bundle of claims and an allocation is called mutually

agreeable if there exists a (price) vector p ∈ Rn such that ai · B − ai · p ∈ Ai, for all i = 1, 2, ..., I.

For an allocation a, let Ga denote the set of all feasible allocations of B, acceptable for every agent:

Ga = {B ∈ (L∞)n : (B, a) is mutually agreeable}.

We also set R̂a = {B ∈ (L∞)n : ai · B ∈ Ri, ∀i = 1, 2, ..., I}, for a ∈ F.

Proposition 3.2. For every allocation a ∈ F, Ga is convex. If, additionally, Ai is weak*-closed and

risk-strictly convex for every i, then

Ga ∩ (−Ga) = R̂a, for all a ∈ F.

Proof. The convexity follows directly from the convexity of Ai’s.

For the second statement, suppose first that B ∈ Ga ∩ (−Ga), i.e., there exist p, p̂ ∈ Rn such that

ai ·B−ai ·p ∈ Ai and −ai ·B+ai ·p̂ ∈ Ai, for all i. The convexity of Ai then implies that 1
2ai ·(p̂−p) ∈ Ai,

which yields that ai · (p̂− p) ≥ 0, for all i = 1, 2, ..., I. Since
∑I

i=1 ai = 0, we conclude that for every agent

ai · p = ai · p̂. It follows that ρi(ai · B) ≤ −ai · p and also ρi(−ai · B) ≤ ai · p for all i. Consequently,

ρi(ai ·B) + ρi(−ai ·B) ≤ 0, which means (thanks to the risk-strict convexity of ρi) that ai · B ∈ Ri for all

i, i.e., B ∈ R̂a.

Conversely, let B ∈ R̂a so that ai · B ∈ Ri, for all i. We pick an arbitrary Q ∈ Ma and define

p = EQ[B] = (EQ[B1], . . . , E
Q[Bn]) ∈ Rn. Since Q ∈ Ma

i for all i, we have ai ·B ∈ Xi(ai ·p). By Corollary

2.7, ai · B − ai · p+ ∈ Ai, for all i, so that R̂a ⊆ Ga. It remains to observe that R̂−a = R̂a and that

G−a = −Ga. �

For a bundle B ∈ (L∞)n, the set GB is, in a sense, polar to Ga:

GB = {a ∈ F : (B, a) is mutually agreeable} .

Following the proof of Proposition 3.2, one can show that GB is convex, closed in Rn×I and that a ∈ GB∩G−B

implies that B ∈ R̂a. Another important notion in this setting is the inf-convolution of risk measures, first

introduced in [4].
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Definition 3.3. The inf-convolution of the risk measures ρ1, ρ2, ..., ρI is the map ρ1♦ . . . ♦ρI : L∞ →

R ∪ {−∞}, defined for C ∈ L∞ by

(3.3) (ρ1♦ . . . ♦ρI)(C) = inf

{

I
∑

i=1

ρi(Bi) : B1, . . . , BI ∈ L∞,

I
∑

i=1

Bi = C

}

.

Let M denote the intersection
⋂I

i=1 Mi. The following assumption is equivalent to (ρ1♦ . . . ♦ρI)(0) > −∞

(see [5]):

Assumption 3.4. M 6= ∅.

Remark 3.5. Thanks to the assumption that each component of S is available to at least one agent, we have

that
⋂I

i=1 M
i
e = Me. Hence, if Ai’s are risk-strictly convex, it holds that M ⊆ Me and hence Assumption

3.4 is a strengthening of Assumption 2.1.

The following Proposition is a mild generalization of Theorem 3.6 in [5], where the case of I = 2 is

addressed. The proof when I ≥ 2 is similar and hence omitted.

Proposition 3.6. If Ai is weak-∗ closed for every i = 1, 2, ..., I, the Assumption 3.4 implies that the map

ρ1♦ . . . ♦ρI : L∞ → R is a convex risk measure, with penalty function h(Q) =
∑I

i=1 αi(Q) whose effective

domain is M.

Definition 3.7. We say that the agents are in a Pareto-optimal configuration if

(ρ1♦ . . . ♦ρI)(0) = 0.

In words, Pareto optimality implies that there is no wealth-preserving transaction that will be acceptable

for everyone and strictly acceptable for at least one agent. The problem of Pareto-optimality is closely related

to the problem of optimal risk sharing (sometimes called Pareto optimal allocation), which was recently

addressed by many authors in the cases where agents use convex risk measures to value claim payoffs (see

[5], [6], [13], [24], [31], [34]). Below, we state a well-known characterization of the Pareto optimality in

terms of the minimizers of the penalty functions αi. We remind the reader that ∂ρi(B) stands for the set of

maximizers in the robust representation (3.1) of ρi(B) and omit the standard proof:

Proposition 3.8. The agents are in a Pareto-optimal configuration if and only if

∩I
i=1∂ρi(0) 6= ∅.

The following proposition states that if the agents are in Pareto-optimal configuration, the risk-strict

convexity assumption implies that transactions involving non-replicable claims result in strictly increased

risk for at least one of the agents involved in this transaction.

Proposition 3.9. Assume that Ai are weak-∗ closed and risk-strictly convex for all i = 1, 2, .., I and suppose

that (ρ1♦ . . . ♦ρI)(0) = 0. For any choice of B1, B2, ..., BI in L∞ with
∑I

i=1 Bi = 0, it holds that

I
∑

i=1

ρi(Bi) = 0 if and only if Bi ∈ Ri, for all i = 1, 2, ..., I.
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Proof. Assume that there exists k ∈ {1, 2, ..., I} such that Bk /∈ Rk. Then, by risk-strict convexity, for each

λ ∈ (0, 1) there exists E ∈ L∞
+ \{0} such that ρk(λBk−E) ≤ λρk(Bk). This implies that ρk(λBk) < λρk(Bk).

Since ρi(λBi) − λρi(Bi) ≤ 0, ∀i = 1, 2, ..., I, we have

I
∑

i=1

ρi(λBi) < λ

I
∑

i=1

ρi(Bi) = 0,

which contradicts the assumption (ρ1♦ . . . ♦ρI)(0) = 0. The converse implication follows from the fact that

when Bi ∈ Ri, we have ρi(Bi) = −EQ[Bi], for any Q ∈ Mi
a. �

Corollary 3.10. Assume that all Ai are weak-∗ closed and risk-strictly convex and pick a ∈ F and B ∈ Ga.

If ∩I
i=1∂ρi(0) 6= ∅ then, ai · B ∈ Ri, for every i = 1, 2, ..., I.

Proof. B ∈ Ga means that there exists a price vector p, such that ai · B − ai · p ∈ Ai, for all i. This

implies that
∑I

i=1 ρi(ai · B) ≤ 0, which, by the hypotheses and Proposition 3.9 yields that ai · B ∈ Ri for

all i = 1, 2, ..., I. �

Example 3.11. Suppose that all I agents are exponential-utility maximizers with possibly different risk-

aversion coefficients γi, i = 1, 2, . . . , I, i.e., Ui(x) = − exp(−γix) (for details on the set of admissible strate-

gies, we refer the reader to [19] and [39]). Let Ei, i = 1, 2, . . . , I, denote the agents’ random endowments. If we

follow the arguments of Proposition 3.15 in [2], we can conclude that in the case Si = S for all i ∈ {1, 2, ..., I},

the agents will be in the Pareto-optimal configuration if and only if γi

γj
Ei ∼ Ej , for all i, j = 1, 2, ..., I. A

special case of this condition occurs when the agents’ random endowments are replicable. However, this is

not the case when agents have access to different markets. To see that, let us consider the case I = 2, with

S1 6= S2 and E1 = E2 = 0. It follows from Theorem 2.2 in [19], that ∂ρ1(0) = ∂ρ2(0) (both are singletons

in this case) if and only if γ1(ϑ
(0)
1 · S1)T = γ2(ϑ

(0)
2 · S2)T , where ϑ

(0)
i is the optimal trading strategy in the

market Si of the agent i, i = 1, 2.

Example 3.12. The case where agents use power utility function, U(x) = 1
p
xp, where p 6= 0 is the relative

risk aversion coefficient, is similar to the previous example. Without going into details, let us mention that

it is known (see for instance [44]) that if all agents have access to the same market, ∂ρi(0) = ∂ρj(0), for all

i, j if and only if the agents’ relative risk aversion coefficients are equal, regardless of their initial wealths.

However, when agents have access to different markets, it is easy to construct counterexamples.

4. The Partial Equilibrium Price Allocation

4.1. The Demand Correspondence. Having introduced the setup consisting of I agents, their acceptance

sets and accessible assets, we turn to the partial-equilibrium pricing problem for a fixed bundle of claims

B ∈ (L∞)n. Our first task is to analyze single agent’s demand for B under the natural assumption that in a

set of payoffs, an agent will choose the one which minimizes the capital requirement. For linear combinations

of the components of B, we have the following, more precise, definition:
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Definition 4.1. For i ∈ {1, 2, ..., I}, the agent i’s demand correspondence Zi : Rn → 2Rn

is defined by

(4.1) Zi(p) = argmin
a∈Rn

{ρi(a · B − a · p)}

Definition 4.2. Let A be a weak-∗ closed acceptance set. For a bundle B ∈ (L∞)n, we say that A is strictly

convex with respect to B if for every (a, m), (δ, k) ∈ A(B), where

(4.2) A(B) = {(a, m) ∈ Rn × R : a · B + m ∈ A}

such that a 6= δ the following statement holds:

for every λ ∈ (0, 1) there exists a random variable E ∈ L∞
+ and Q ∈ ∂ρi(λa + (1 − λ)δ) · B), such that

Q(E > 0) > 0 and

λ(a · B + m) + (1 − λ)(δ · B + k) − E ∈ A.

Remark 4.3. Following the proof of Proposition 2.10 we can show that an acceptance set Ai is strictly convex

with respect to B if and only if the function Rn ∋ a 7→ ρi(a ·B) is strictly convex. Moreover, it is clear that

the requirements of Definition (4.2) are implied by risk-strict convexity defined above whenever a · B 6∈ Ri

for a 6= 0.

Before we proceed to our next auxiliary result, we set

MB

i =
⋃

δ∈Rn

∂ρi(δ · B) ⊆ Mi, PB

i =
{

EQ[B] : Q ∈ MB

i

}

⊆ Rn.

Lemma 4.4. Pick i ∈ {1, 2, . . . , I} and assume that that Ai is weak-∗ closed and strictly convex with respect

to B. Let {ak}k∈N be a sequence of the form ak = a0 + γkv ∈ Rn, for some v ∈ Rn \ {0}, a0 ∈ Rn, and a

sequence {γk}k∈N of positive constants with limk γk = ∞. If {Qk}k∈N is an arbitrary sequence of probability

measures with Qk ∈ ∂ρi(−ak · B), then

(4.3) lim
k→∞

EQk [v · B] = sup
Q∈Mi

EQ[v · B] = sup
p∈PB

i

v · p.

Proof. Our first claim is that

(4.4) lim
k→∞

ρi(−ak · B)

γk

≥ S, where S = sup
Q∈Mi

EQ[v · B].

For ε > 0 there exists Qε ∈ Mi such that

EQε

[v · B] ≥ S − ε/2,

and, for that choice of Qε, there exists K ∈ N such that for k ≥ K we have

α(Qε)+δ

γk
≤ ε/2 where δ = |ρi(−a0 · B)| + ||a0 · B||L∞ .
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Thanks to convexity of ρi, the ratio ρi(−an·B)−ρi(−a0·B)
γn

is nondecreasing, so its limit as n → ∞ exists in

(−∞,∞] and

lim
k→∞

ρi(−ak · B)

γk

= sup
k≥K

ρi(−ak · B) − ρi(−a0 · B)

γk

= sup
k≥K

sup
Q∈Mi

{

EQ[ak · B]

γk

−
αi(Q)

γk

−
ρi(−a0 · B)

γk

}

= sup
Q∈Mi

sup
k≥K

{

EQ[v · B] −
αi(Q) + ρi(−a0 · B) + EQ[−a0 · B]

γk

}

≥ EQε

[v · B] −
αi(Q

ε) + ρi(−a0 · B) + EQε

[−a0 · B]

γk

≥ S − ε,

and (4.4) follows.

We continue by noting that since Qk ∈ ∂ρi(−ak · B) and αi(·) ≥ 0, we have

1
γk

ρi(−ak · B) ≤ 1
γk

EQk [ak · B] ≤ EQk [v · B] + 1
γk
||a0 · B||,

and so

sup
Q∈Mi

EQk [v · B] ≤ lim
k→∞

ρi(−ak·B)
γk

≤ lim inf
k→∞

EQk [v · B] ≤ lim sup
k→∞

EQk [v · B]

≤ sup
Q∈MB

i

EQk [v · B].

We conclude the proof by noting that since MB
i ⊆ Mi, all the inequalities above are, in fact, equalities. �

Lemma 4.5. For i ∈ {1, 2, ..., I}, let B ∈ (L∞)n be a bundle of claims for which there is no a ∈ Rn such

that a ·B ∈ Ri. If Ai is weak-∗ closed and strictly convex with respect to B, then the expectation EQ[a ·B]

is the same for all Q ∈ ∂ρi(a · B), the function ri : Rn → R, defined by

ri(a) = ρi(a · B)(4.5)

is continuously differentiable and

∇ri(a) = EQ[−B], for any Q ∈ ∂ρi(a · B).

Proof. Thanks to convexity of ri and Proposition I.5.3 in [22], it will be enough to show that EQ[−B] is

the unique subgradient of ri at a for any Q ∈ ∂ρi(a · B). To proceed, we suppose that a∗ ∈ Rn satisfies

ri(δ) ≥ ri(a) − a∗ · (a − δ), i.e.

(4.6) ρi(δ · B) ≥ ρi(a · B) − a
∗ · (a − δ),

for all δ ∈ Rn, and that a∗ 6= EQ[−B]. Consider, first, the case when −a∗ ∈ Pi(B), i.e., when there exists

δ̂ ∈ Rn such that δ̂ 6= a and a∗ = EQ̂[−B] for some Q̂ ∈ ∂ρi(δ̂). If we substitue δ̂ for δ in (4.6) we get

ρi(δ̂ · B) + EQ̂[δ̂ · B] ≥ ρi(a · B) + EQ̂[a · B].

Note, however, that

ρi(a · B) ≥ EQ̂[−a · B] − αi(Q̂) = EQ̂[−a · B] + ρi(δ̂ · B) + EQ̂[δ̂ · B],
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and the equality holds if and only if Q̂ ∈ ∂ρi(a · B). This implies that

1

2
(ρi(a · B) + ρi(δ̂ · B)) = ρi

(

(δ̂ + a) · B

2

)

,

which contradicts the assumption of strict convexity with respect to B.

It is left to show that if a∗ = (a∗
1, . . . , a

∗
n) ∈ Rn satisfies (4.6), then −a∗ ∈ Pi(B). We argue by

contradiction and assume that this is not the case. By Lemma 4.4 this means that there exists a component

l ∈ {1, 2, ..., n} such that either a∗
l ≥ sup

Q∈Mi

{EQ[−Bl]} or a∗
l ≤ inf

Q∈Mi

{EQ[−Bl]}. We can assume without loss

of generality that the former holds and that l = 1. The inequality (4.6), in which a1 = (a1 + 1, a2, a3, ..., an)

is substituted for δ, implies that

ρi(a
1 · B) + inf

Q∈Mi

EQ[B1] ≥ ρi(a · B).

On the other hand, for Q1 ∈ ∂ρi(a
1 · B), we have

ρi(a · B) ≥ EQ1

[−a · B] − αi(Q
1) = ρi(a

1 · B) + EQ1

[B1] > ρi(a
1 · B) + inf

Q∈Mi

{EQ[B1]},

a contradiction. �

Remark 4.6. If for B ∈ (L∞)n there is no a ∈ Rn such that a · B ∈ Ri and if Ai is strictly convex with

respect to B, the demand correspondence is Zi(p) is non-empty only when p ∈ Pi(B). Indeed, thanks to

its definition as a minimizer of a differentiable convex function, the set Zi(p), consists of the solutions a, of

the equation

∇ri(a) = p,(4.7)

where ri is defined in (4.5) above. Lemma 4.5 states, however, that ∇ri(a) ∈ Pi(B). Moreover, when

p ∈ Pi(B), Zi(p) is a singleton; this follows directly from strict convexity of ri. Finally, it follows easily

from (4.7) that Zi is an injection on Pi(B).

Proposition 4.7. Let i ∈ {1, 2, ..., I} and B ∈ (L∞)n be a bundle for which there is no a ∈ Rn such that

a · B ∈ Ri. If Ai is weak-∗ closed and strictly convex with respect to B, then the demand function Zi is

continuous in Pi(B) and satisfies the monotonicity property

(Zi(p1) − Zi(p2)) · (p1 − p2) < 0,

for every p1,p2 ∈ Pi(B) with p1 6= p2.

Proof. The continuity is a direct application of the Berge’s Maximum Theorem (see, for instance, Theorem

17.31 in [1]). To establish monotonicity, we recall that the properties of Zi exposed in Remark 4.6 above

imply that

ρi(Zi(pj) · B) + Zi(pj) · pj < ρi(a · B) + a · pj

for every a ∈ Rn with a 6= Zi(pj), for j = 1, 2. Since Zi(p1) 6= Zi(p2), we have

ρi(Zi(p1) · B) − ρi(Zi(p2) · B) + (Zi(p1) − Zi(p2)) · p1 < 0
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and

ρi(Zi(p2) · B) − ρi(Zi(p1) · B) − (Zi(p1) − Zi(p2)) · p2 < 0.

The required monotonicity follows when we add the above inequalities. �

4.2. Equilibrium. Our goal in this subsection is to prove existence and uniqueness of a partial-equilibrium

price for a given bundle B ∈ (L∞)n. We follows the classical paradigm: the price vector p is a partial-

equilibrium price of B, if, when B trades at p, demand and supply for each of its components offset each

other, i.e., the market for B clears. It should be noted that we do not require that the agents’ positions in

the liquid markets clear as well. A mathematically precise formulation of the above principle, where we also

consider the equilibrium allocation, is given in the folowing definition:

Definition 4.8. We say that the pair (p, a) ∈
(
⋂I

i=1 Pi(B)
)

× F is a partial-equilibrium price-allocation

(PEPA), if ai = Zi(p) for every 1 ≤ i ≤ I, i.e., if

(4.8)
I
∑

i=1

Zi(p) = 0 ∈ Rn.

The following two assumptions will be in effect throughout the section:

Assumption 4.9. The acceptance set Ai is weak-∗ closed and strictly convex with respect to B, for all

i = 1, 2, ..., I.

Assumption 4.10. For each δ ∈ Rn \ {0}

inf
Q∈M

EQ[δ · B] < sup
Q∈M

EQ[δ · B].

Remark 4.11. Assumption 4.10 implies, in particular, that for every i = 1, 2, ..., I, there is no δ ∈ Rn \ {0}

such that δ · B ∈ X∞
i . That means, further, that there is no δ ∈ Rn \ {0} such δ · B ∈ Ri.

Remark 4.12. If Assumptions 4.9 and 4.10 hold true and the agents are in a Pareto optimal configuration

then the pair (p, a) ∈
(
⋂I

i=1 Pi(B)
)

× F is a PEPA if and only if a = 0. To see this, assume that there

exists an a ∈ F\{0} such that (p, a) is a PEPA. Then, by the definition of Zi, we have ρi(ai ·B)+ai ·p ≤ 0

for all i, and, due to the strict convexity of the risk measures, the inequality is strict for at least two agents.

This implies that
∑I

i=1 ρi(ai ·B) < 0, which contradicts the assumption of Pareto optimality. The economic

interpretation of the above statement is clear - the agents will not engage in trade if they are already in a

configuration which cannot be improved upon.

The following theorem contains the main result of the section:

Theorem 4.13. Under Assumptions 3.4, 4.9 and 4.10, there exists a unique PEPA (p̂, â) ∈
(
⋂I

i=1 Pi(B)
)

×

F.

Proof. We first define the strictly convex function f : R(I−1)×n → R by

(4.9) f(a) = ρ1(a1 · B) + ρ2(a2 · B) + ... + ρI−1(aI−1 · B) + ρI((−
I−1
∑

i=1

ai) · B).
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If for some ã = (ã1, . . . , ãI−1) ∈ R(I−1)×n we have ∇f(ã) = 0, then ã is the unique minimizer of f .

Moreover, such ã satisfies ∇ρi(ãi ·B) = ∇ρI(−
(

∑I−1
i=1 ãi

)

·B), for every i = 1, 2, ..., I−1. The latter means

that for any Qi ∈ ∂ρi(ãi · B), 1 ≤ i ≤ I − 1 and any QI ∈ ∂ρi(−(
∑I−1

i=1 ãi) · B), we have

EQi [B] = EQI [B].

Therefore, the price vector p̂ = EQi [B] satisfies Zi(p̂) = ãi for every i = 1, 2, ..., I−1 and ZI(p̂) = −
∑I−1

i=1 ãi.

In other words, if â denotes the allocation whose rows are given by âi = ãi, for i = 1, 2, ..., I − 1 and

âI = −
∑I−1

i=1 ãi, the pair (p̂, â) is a partial equilibrium price allocation. In fact, it is the unique one, since if

we assume the existence of another PEPA (p̌, ǎ) 6= (p̂, â), we get that p̌ = EQ[B], for any Q ∈ ∂ρi(ǎi · B),

which, in turn, implies that ∇f(ǎ) = 0. The latter equation contradicts the uniqueness of the minimizer of

the function f .

We are left with the task of showing that ∇f(a) has a root, and assume, per contra, that this is not

the case. Then, by the continuity of f , we deduce that for, each m ∈ N, there exists a(m) ∈ Dm = {a ∈

R(I−1)×n : ||a||1 =
∑(I−1)

k=1

∑n
j=1 |ak,j | ≤ m} such that f(a(m)) ≤ f(a) for all a ∈ Dm. Furthermore, by the

strict convexity of f , it follows that ||a(m)||1 = m. Hence, thanks to the results of, e.g., Chapter 1 in [9], a

contradiction would be reached if the following coercivity condition held:

(4.10) F = lim inf
m→∞

f(a(m))

m
> 0.

By passing to a subsequence (if necessary), we can assume without loss of generality that the limits F =

lim
k→∞

f(a(k))
k

∈ R and a
(0)
i = lim

a
(k)
i

k
∈ Rn, i = 1, 2, . . . , I − 1 exist. Since

∣

∣

∣

∣

∣

ρi(a
(k)
i · B)

k
−

ρi(ka
(0)
i · B)

k

∣

∣

∣

∣

∣

≤ ||
a

(k)
i

k
− a

(0)
i || ||B||(L∞)n → 0,

Lemma 4.4 implies that

lim
k→∞

ρi(a
(k)
i · B)

k
= sup

Q∈Mi

EQ[a
(0)
i · B], for 1 ≤ i ≤ I − 1, and

lim
k→∞

ρI(−
∑I−1

j=1 a
(k)
j · B)

k
= sup

Q∈MI

EQ[−
I−1
∑

j=1

a
(0)
j · B].

Consequently, (4.10) follows from

F =

I−1
∑

j=1

sup
Q∈Mj

EQ[a
(0)
j · B] + sup

Q∈MI

EQ[−
I−1
∑

j=1

a
(0)
j · B]

≥ sup
Q∈M

EQ[

I−1
∑

j=1

a
(0)
j · B] − inf

Q∈M
EQ[

I−1
∑

j=1

a
(0)
j · B] > 0,

where the strictness of the last inequality follows from Assumption 4.10. �

Remark 4.14. It follows from Theorem 4.13 that the PEPA corresponding to a bundle B is of the form

(p̂, a) with a 6= 0 if and only if the agents are not in a constrained Pareto-optimal configuration; meaning

that the marginal prices EQi

[B] are not all equal. A simple consequence of this statement is that, in that

case, GB 6= {0}.
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5. The well-posedness of the equilibrium pricing

The exact shape of agents’ acceptance sets, which incorporate their risk preferences, endowments and

investment goals, is extremely difficult to estimate in practice. It is therefore natural to ask whether the

induced equilibrium pricing is stable with respect small perturbation in the agents’ acceptance sets. To be

more precise, we want to check whether the equilibrium pricing scheme, presented in section 4, is a well-posed

problem in the sense of Hadamard (see [30]), i.e., if its solution exists, is unique and stable with respect to the

input data (the agents’ acceptance sets in this case). Having solved the problem of existence and uniqueness

(see Theorem 4.13), we turn our attention to the following question: can we specify a convergence (concept)
⊛
−→ for I-tuples of the weak-∗ closed acceptance sets

(

A
(m)
i

)I

i=1
=
(

A
(m)
1 ,A

(m)
2 , ...,A

(m)
I

)

, for which

(5.1)
(

A
(m)
1 ,A

(m)
2 , ...,A

(m)
I

)

⊛
−→ (A1,A2, ...,AI) =⇒

(

p̂(m), â(m)
)

→ (p̂, â),

where (p̂(m), â(m)) is the PEPA obtained by the acceptance sets
(

A
(m)
i

)I

i=1
and (p̂, â) is the corresponding

to (Ai)
I
i=1 PEPA?

As we shall explain shortly, it turns out that the right notion is related to Kuratowski convergence (see

Chapter 8 in [38] and Chapter 7 in [43] for a further analysis):

Definition 5.1. A sequence of closed subsets Cm ⊆ Rl, l ∈ N, converges to the subset C in Kuratowski

sense (and we write Cm
K
−→ C) if

(5.2) Ls Cm ⊆ C ⊆ Li Cm,

where

Li Cm =
{

c ∈ Rl : c = lim ck, ck ∈ Ck eventually
}

and

Ls Cm =
{

c ∈ Rl : c = lim ck, ck ∈ Cnk
, nk a subsequence of integers

}

.

We say that a sequence {fm}m∈N of lower semi-continuous functions fm : Rl → R converges to a function

f in the Kuratowski sense (and we write fm
K
−→ f) if epi(fm)

K
−→ epi(f). We remind the reader that the

epigraph of a function f : Rn → R is the set epi(f) = {(a, c) ∈ Rn × R : f(a) ≤ c}. A characterization of

the Kuratowski convergence for sequences of functions is given by Theorem 8.6.3 in [38] (see also Proposition

7.2 in [43]); fm
K
−→ f if and only if the following two conditions hold:

(a) For every x ∈ Rk and every sequence xn such that xn → x, lim inf fn(xn) ≥ f(x) and

(b) For every x ∈ Rk there exists a sequence xn such that xn → x and lim sup fn(xn) ≤ f(x).

The Kuratowski convergence and its versions for more general topological spaces have been extensively used

in the study of the well-posedness of a variety of variational problems (see [43] for problems in Rn and [21]

and [38] for general spaces).

In what follows, for each agent i, we consider a sequence of weak-∗ closed acceptance sets A
(m)
i and a

limiting weak-∗ closed acceptance set Ai, all of which satisfy the axioms Ax1 -Ax4. The induced convex

capital requirements are denoted by ρ
(m)
i (·) and ρi(·) respectively, and M

(m)
i and Mi stand for the effective

domains of the corresponding penalty functions, α
(m)
i and αi.
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In the effort to show that the Kuratowski convergence allows for a positive answer to our central question,

we establish the following auxiliary result:

Lemma 5.2. For a given bundle of claims B, if A
(m)
i (B)

K
−→ Ai(B) for every i ∈ {1, 2, ..., I}, then the

sequence of functions a ∋ Rn 7→ ρ
(m)
i (a · B) converges point-wise to the function a ∋ Rn 7→ ρi(a · B).

Proof. By (2.6), for a bundle B ∈ (L∞)n, the set A(B) is the epigraph of the function Rn ∋ a 7→ ρA(a ·B) ∈

R. Hence, A
(m)
i (B)

K
−→ Ai(B) is equivalent to the Kuratowski convergence of the sequence of functions

a ∋ Rn 7→ ρ
(m)
i (a · B).

It is shown in [43], Theorem 7.17, that for any sequence (fm)m∈N of convex functions on Rn, fm
K
−→ f

implies that fm → f point-wise in Rn, provided that f is a convex, lower semi-continuous function and its

effective domain has non-empty interior. It is, therefore, enough to observe that the function a ∋ Rn 7→

ρi(a · B) is convex and lower semi-continuous in Rn, since ρi : L∞ → R is convex and σ(L∞, L1)-lower

semi-continuous risk measure. �

As the reader can easily check, Kuratowski convergence will not, in general, preserve strict convexity. In

order to guarantee that the limiting acceptance set Ai is strictly convex with respect to the fixed bundle of

claims B, we must assume that the strict convexity of A
(m)
i with respect to B satisfies a certain uniformity

criterion.

Definition 5.3. A sequence of acceptance sets (A(m))m∈N is uniformly strictly convex with respect to a

bundle B ∈ (L∞)n, if for every (a, c), (δ, k) ∈ A(m)(B) such that a 6= δ, the following statement holds:

for every λ ∈ (0, 1) there exists a random variable E ∈ L∞
+ , such that Q[E > 0] > 0, for some Q ∈

∂ρ
(m)
i ((λa + (1 − λ)δ) · B) and

λ(a · B + c) + (1 − λ)(δ · B + k) − E ∈ A(m),

for all m ∈ N.

It follows from the definition of Kuratowski convergence, that if (A
(m)
i )m∈N is uniformly strictly convex

with respect to B and A
(m)
i (B)

K
−→ A(B), then Ai is also strictly convex with respect to B. This fact and

Lemma 4.5 imply, in particular, that the function a ∋ Rn 7→ ρi(a · B) is strictly convex and differentiable

on Rn, if we further assume that B is not redundant, i.e., there is no δ ∈ Rn, such that δ · B ∈ Ri.

Assumption 5.4. The sequence {A
(m)
i }m∈N of acceptance sets is uniformly strictly convex with respect to

the bundle B.

Assumption 5.5. ∅ 6=
⋂I

i=1 M
(m)
i ⊆ M, for all m ∈ N.

Assumption 5.6. For each m ∈ N and δ ∈ Rn \ {0}

inf
Q∈M(m)

EQ[δ · B] < sup
Q∈M(m)

EQ[δ · B].

It follows from Theorem 4.13 that under the Assumptions 5.4, 5.5 and 5.6 there exists a unique PEPA,

(p̂(m), â(m)), for every m ∈ N. Furthermore, the induced strict convexity of Ai with respect to B means that
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the conditions for existence and uniqueness of PEPA hold even for the limiting risk measures ρi. Moreover,

it turns out that those same conditions guarantee that the problem is well posed:

Theorem 5.7. Under Assumptions 5.4, 5.5 and 5.6, for each m ∈ N there exists a unique PEPA (p̂(m), â(m))

for agents with acceptance sets
(

A
(m)
i

)I

i=1
. Also, the convergence

A
(m)
i (B)

K
−→ Ai(B)

for every i ∈ {1, 2, ..., I} implies that

(i) There exists a unique PEPA (p̂, â) for agents with acceptance sets (Ai)
I
i=1 and

(ii) (p̂(m), â(m)) −→ (p̂, â) in Rn × Rn×I .

Proof. The existence and the uniqueness of the PEPA for agents with acceptance sets
(

A
(m)
i

)I

i=1
follows

directly from Theorem 4.13. By Lemma 5.2, the Kuratowski convergence A
(m)
i (B)

K
−→ Ai(B) implies that

ρ
(m)
i (a ·B) → ρi(a ·B), for every a ∈ Rn and that the function a ∋ Rn 7→ ρi(a ·B) is strictly convex. Then,

the existence and the uniqueness of the PEPA (p̂, â), for agents with acceptance sets (Ai)
I
i=1 is guaranteed

again by Theorem 4.13.

Following the lines of the proof of Theorem 4.13, for each m ∈ N we define the strictly-convex function

fm : Rn×(I−1) → R by

(5.3) fm(a) = ρ
(m)
1 (a1 · B) + ρ

(m)
2 (a2 · B) + ... + ρ

(m)
I−1(aI−1 · B) + ρ

(m)
I ((−

I−1
∑

i=1

ai) · B),

and note that it admits a unique minimizer, ã
(m) ∈ Rn×(I−1) (where in fact, ã

(m)
i = â

(m)
i for every i =

1, 2, ..., I − 1). Similarly, we define the function

(5.4) f(a) = ρ1(a1 · B) + ρ2(a2 · B) + ... + ρI−1(aI−1 · B) + ρI((−
I−1
∑

i=1

ai) · B).

which is also strictly convex and has a unique minimizer ã ∈ Rn×(I−1) (where, ãi = âi for every i =

1, 2, ..., I − 1). Note that the point-wise convergence ρ
(m)
i (a ·B) → ρi(a ·B), trivially implies that fm(a) →

fm(a), for every a ∈ Rn×(I−1). In order to show that â
(m) → â, as m → ∞, we first recall a well-known

result (see for instance Example I.7 in [21]) that if f is a convex, lower-semicontinuous function and has a

minimizer ã, then for every sequence δ
(m) ∈ Rn×(I−1) such that

f(δ(m)) → f(ã),

it holds that δ
(m) → ã. In other words, the problem of minimizing f in Rn×(I−1) is well posed in the sense

of Tykhonov. This implies that for every ε > 0 there exists b ∈ R+ such that

(5.5)
{

a ∈ Rn×(I−1) : f(a) ≤ b + f(ã)
}

⊆
{

a ∈ Rn×(I−1) : ||a − ã|| < ε
}

.

By Lemma II.21 in [21], for every b ∈ R+ and sufficiently large m we have

(5.6)
{

a ∈ Rn×(I−1) : fm(a) ≤ b + fm(ã(m))
}

⊆
{

a ∈ Rn×(I−1) : f(a) ≤ 2b + f(ã)
}

.
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Combination of (5.6) and (5.5) yields the convergence ã
(m) → ã, which trivially implies the convergence of

partial equilibrium allocations, â
(m) → â. The definition of the equilibrium price yields that

∇ρ
(m)
i (â

(m)
i · B) = −p̂(m),

for every m ∈ N. Theorem 25.7 in [42] implies that the convergence ρ
(m)
i (a ·B) → ρi(a ·B) for every a ∈ Rn

and the fact that the limiting function a ∋ Rn 7→ ρi(a · B) is differentiable in Rn yield that

∇ρ
(m)
i (a · B) → ∇ρi(a · B),

for every a ∈ Rn and every i = {1, 2, ..., I}. Furthermore, the same Theorem states that this convergence is

uniform on compacts in Rn, so

p̂(m) = ∇ρ
(m)
i (â

(m)
i · B) −→ ∇ρi(âi · B) = p̂.

�

We conclude with an example in which we show what Kuratowski convergence looks like in a familiar

setting:

Example 5.8. We consider the utility-based acceptance sets discussed in Example 2.4 for the agent i (see [32]

for technical details) and we consider a sequence of utility functions
(

U
(m)
i

)

m∈N
, a sequence of probability

measures
(

P(m)
)

m∈N
, and a sequence of initial wealths

(

x
(m)
i

)

m∈N
. For every B ∈ L∞, x ∈ R+ and m ∈ N,

we define the indirect utility

u
(m)
i (x|B) = sup

X∈X
EP(m)

[U
(m)
i (X + B)],

where X is a set of admissible strategies (see page 848 in [32] for the exact definition). The corresponding

sequence of acceptance sets is then given by

A
(m)
i =

{

B ∈ L∞ : u
(m)
i (x

(m)
i |B) ≥ u

(m)
i (x

(m)
i |0)

}

.

for every m ∈ N. It was proved in [35], Theorem 1.5, that the following convergence conditions

P(m) → P in total variation, U
(m)
i → Ui point-wise in R+ and x

(m)
i → xi,

(together with some additional technical assumptions), yield that for every non-redundant bundle B ∈

(L∞)n, we have that

(5.7) u
(m)
i (x

(m)
i |a(m) · B) → ui(xi|a · B),

for every sequence a(m) ∈ Rn that converges to some a ∈ Rn. It is, then, straightforward to get that

(5.7) imply that A
(m)
i (B)

K
−→ Ai(B), which in turn guarantees that the equilibrium price-allocation of B

is well-posed.
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