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Computational complexity theory is applied to simulations of adiabatic quantum computation,
providing predictions about the existence of quantum phase transitions in certain disordered sys-
tems. Moreover, bounds on their entanglement entropy at criticality are given. Concretely, physical
consequences are drawn from the assumption that the complexity classes P and NP differ.
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I. INTRODUCTION

Global optimization is one of the most important com-
putational problems in science and technology. But be-
yond its practical implications, it is also of deep theo-
retical interest when viewed from the broader perspec-
tive of computational complexity theory1,2. Problems
are ranged into an intrincate classification by theoreti-
cal computer scientists. For example, problems in class
LIN are specially simple, since they can be solved in lin-
ear time by a Turing machine. Of special interest are
the complexity classes P and NP. Problems in P can be
solved in polynomial time. Problems in NP, on the other
hand, are characterized by the fact that every candidate

solution can be evaluated in polynomial time. It is intu-
itively clear that P⊆ NP. The important open question
is whether P=NP. It is widely believed by the scientific
community that the answer is no. The implications of a
positive answer to that question would be of utter practi-
cal importance. A subset of NP with special importance
is the set of NP-complete problems. Those are prob-
lems such that, if a polynomial solution is found for any
of them, then all NP problems will get immediately a
polynomial solution. Therefore, finding a polynomial so-
lution to any NP-complete problem would immediately
prove P=NP.

All those complexity classes are defined with respect
to an abstract computer, the Turing machine. Physical
devices designed to solve a particular problem need not
be subject to that restriction, i.e.: a NP-complete prob-
lem might be solved in polynomial time by a physical
device even if P6=NP. The reason is that Nature need

not be a Turing machine. Notwithstanding, simulations

of physical processes on classical computers are bound
by the previous hierarchy of classes, since they are (ap-
proximately) Turing machines. If P6=NP, any attempt
to solve a NP-complete problem in polynomial time with
a simulation of a physical process on a classical computer
must fail. The reasons for the failure will be deducible
from the simulation details, and insight about the under-
lying physical process might be obtained.

In this work we apply the results in complexity theory
to quantum many-body physics. Also, we will assume
that P6=NP, and extract physical consequences. These
consequences might not be found in experiments, thus

proving the assumption false. The main thesis is that, if
there were no quantum phase transitions (QPT) in cer-
tain adiabatic routes, or if they were not of the appropri-
ate kind, a classical computer simulating that physical
procedure would be able to solve NP-complete problems
in polynomial time. Thus, the existence of the aforemen-
tioned QPT is proved by contradiction.
This paper is divided as follows. In section II we

remind the basics of our model problem: spin-glasses,
along with the proposed physical approach to solution:
adiabatic quantum computation3 (AQC), also known as
quantum annealing4. Section III focuses on our simula-
tion procedure: quantum wavefunction annealing5. The
main thesis is exposed in section IV, along with the con-
clusions.

II. THE PHYSICAL SYSTEM: SPIN-GLASSES

AND ADIABATIC QUANTUM COMPUTATION

As an example throughout the discussion we will con-
sider the spin-glass problem6. Given a graph G and a
set of arbitrary coupling constants Jij attached to each
graph link, we define the (classical) spin-glass energy as

E = −
∑

〈i,j〉

Jijσiσj (1)

Where the σi are values in {−1,+1} attached to each
site. The classical spin-glass problem is to find the values
for σi which minimize the previous energy. Because of
the global Z2 symmetry the solution is (at least) doubly
degenerate.
If the graph is 1D, the problem is in LIN and, there-

fore, in P. If it is 2D, a non-trivial construction7 also
renders the problem polynomial. For higher dimensions,
or for random graphs of fixed connectivity, the problem
is NP-complete8. Even a 3D graph composed of two flat
layers is NP-complete7.
Among the many families of physical algorithms de-

signed for global optimization, we will focus on adiabatic

quantum computation (AQC)3, also known as quantum
annealing4,9. An AQC is implemented by a physical de-
vice which establishes an adiabatic route between two
hamiltonians, H0 and H1, such that the ground state
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(GS) of H0 is easy to obtain and the GS of H1 provides
the solution to some problem. A GS may be difficult
to achieve if the low energy spectrum is complex, as it
happens in many disordered systems, which is typically
the case with H1. The adiabatic theorem ensures that,
if the process is slow enough and the gap never vanishes,
the ground state of H1 will be obtained from that of H0.
AQC has been proved to be universal in the following
sense: the results of any standard quantum computation
can be simulated in polynomial time with an AQC10.
The AQC strategy for the spin-glass problem sets the

destination hamiltonian, H1, as the quantum counterpart
of eq. (1), promoting the {−1,+1} values of σi to spin-
1/2 operators11:

H0 = −
∑

〈i,j〉

JijS
z
i S

z
j (2)

To obtain H0, we add to H1 a source of quantum fluc-
tuations, such as a uniform transverse magnetic field:
−Γ

∑
i S

x
i . Thus, Γ is the the tunable parameter which

connects both hamiltonians and, as a function of it,
we obtain the random Ising model in a transverse field
(RITF):

H(Γ) = −
∑

〈i,j〉

JijS
z
i S

z
j − Γ

∑

i

Sx
i (3)

where we see that H(∞) = H0 and H(0) = H1.
Let |Ψ(Γ)〉 denote the ground state of the previous

system as a function of Γ, which is only degenerate for
Γ = 0. If Γ → ∞, the ground state is found just by
making all spins point in the X-direction:

|Ψ(∞)〉 = ⊗N
i=1 (|+〉+ |−〉) (4)

In this state, all classical configurations get exactly
the same probability, so we may say that it is abso-
lutely disordered. For Γ → 0+, on the other hand, the
ground state provides the solution to the classical spin-
glass problem.
Thus, the AQC strategy is to take Γ → ∞, decrease it

until Γ = 0, and then read the solution. The adiabatic
theorem can be applied if the process is slow enough,
assuming that the gap never vanishes.
The main difficulty during an AQC is to ensure adia-

baticity. The probability of a jump to an excited state
decreases exponentially with the energy gap, as reflected
by the Landau-Zener formula11. Thus, if the system un-
dergoes a phase transition and the energy gap closes, the
velocity must be reduced in an appropriate way at that
point, thus increasing the computational time.
It is tempting to try to extract conjectures relating the

minimal gap along an AQC trajectory and the complex-
ity class of the problem at hand. But these inferences
are not valid, since the precise nature of the relation be-
tween the quantum and the classical complexity classes

is not straightforward. Recent results of Altschuler and
coworkers12 cast doubts on the possibility of solvingNP-
complete problems in polynomial time using quantum
computation, due to the very narrow gap distribution in
disordered systems which can be deduced by Anderson’s
theorem.

III. THE SIMULATION: QUANTUM

WAVEFUNCTION ANNEALING

As it was said before, in order to apply the results
of computational complexity theory, we have to analyse
algorithms running on Turing machines, not on arbitrary
physical devices. Therefore, we will study simulations of
adiabatic quantum computation running on a classical
computer.
A first simulation approach to AQC is the use of path

integral Monte-Carlo methods (PIMC)11. This technique
does not suffer from Landau-Zener level crossings. But
if an attempt is made to solve a NP-complete problem
using it, we find that, at some moment, the system un-
dergoes critical slowing down. This forces long relaxation
times and reduces the efficiency of the procedure. The
exact amount of this reduction is not easy to assess, due
to the different complexity classes of probabilistic com-
putation.
A different simulation procedure, quantum wavefunc-

tion annealing (QWA) is a fully deterministic classical
algorithm and lends itself more easily to analysis5. The
key feature of QWA simulation is that it computes the
full wavefunction of the involved ground states. Roughly
speaking, the QWA proceeds in this way:

• 1.- The initial hamiltonian, H0 (i.e.: for Γ → ∞) is
diagonalized, obtaining |Ψ(∞)〉 trivially.

• 2.- The transverse field Γ is decreased in a certain
amount, Γ → Γ−∆Γ.

• 3.- The ground state of H(Γ) is obtained, using the

previous ground state as a seed.

• 4.- Return to 2, if Γ > 0.

If this computation is done in a naive way, the number
of stored components is 2N , thus unfeasible. Instead,
the wavefunctions are stored as matrix product states
(MPS):

|Ψ〉 =
∑

s1···sN

Tr(As1 · · ·AsN ) |s1, · · · , sN〉 (5)

where the Asi are 2N matrices of sizem×m. The total
number of components in a MPS is, therefore, 2Nm2.
Of course, m must be chosen so that the ground state is

always accurately represented.
In order to obtain the ground state for a given value

of Γ given the ground state for a larger value we use the



3

density matrix renormalization group (DRMG). This is
just a variational scheme within the MPS subspace which
allows to have adaptable values of m.
How large will m be? In order to find out, some con-

cepts from quantum information theory are required. Let
S(i) be the entanglement entropy between sites {1, · · · , i}
and sites {i + 1, · · · , N} (in the DMRG literature they
are the left and right blocks). The maximal entropy for a
DMRG procedure is defined to be maxi S(i). Then, the
value of m scales as exp(S)13.
Provided that m is large enough to accomodate the

desired ground state, DMRG convergence is always
achieved in a small number of sweeps, which does not
scale with N . Another issue is the speed at which we are
allowed to reduce Γ during the procedure. The number
of Γ points does not scale with N , either. Of course,
it is convenient that the region around criticality gets a
higher resolution. Thus, an optimum annealing schedule
will monitor the entanglement entropy as a function of
Γ. But the key property of the procedure is that conver-
gence is certain and fast if m is large enough and there
is significant overlap between the two ground states.
Thus, it can be shown5,14 that the total computing

time of a QWA algorithm is polynomial in m. In fact,
under mild assumptions it can be shown to scale like
TQWA(N) ≈ Nm2 ≈ N exp(2S). Therefore, entangle-
ment entropy, by itself, controls the efficiency of the pro-
cedure.
Other MPS simulation procedures have been proposed

for standard quantum computation14 or AQC15, in the
latter case using real time simulation (which may lead to
loss of adiabaticity).
How does this maximal entropy grow with the sys-

tem size? In homogeneous off-critical systems, the area

law states that the entanglement entropy between two
blocks of a system should grow as the number of broken
bonds16,17. In disordered systems, on the other hand, the
area law does not hold, yet it is a useful guide18,19.
Let us focus on 1D systems. For a non-critical system

it is known that S does not scale with N . But for a
critical system, S will scale with the system size. In
some cases, the size-dependence of S can be found via
conformal field theory13. It has been shown that, for
many critical 1D problems, S(N) ≈ α log(N) + β. Thus,
TQWA(N) ≈ N2α+1.
For higher dimension d > 1, if the area law holds,

the entropy will grow with the system size as S(N) ≈
N (d−1)/d, perhaps with logarithmic corrections at criti-
cality. Therefore, the QWA time will increase exponen-
tially. Nonetheless, for inhomogeneous systems, the area
law need not hold.
A key element of the DMRG technique in non-1D sys-

tem is the ordering of the sites, which we call the DMRG

path. Evidently, a clever DMRG path may decrease the
maximal entanglement entropy. A usual strategy is to
establish the path so that the number of bonds between
the left and right parts is always kept to a minimum20.
If the area law is fulfilled, this should give a lower entan-

glement entropy and, therefore, lower m. Unfortunately,
this is itself a difficult problem, so no attempt to achieve
the global minimum is made, only to get a good enough

solution.
Some recent works have been devoted to study the

efficiency of the computation of MPS. Finding the
ground states of a 1D quantum hamiltonian can be
even NP-complete21, although they are always nicely
approximable22. This means that, although the exact

problem may beNP-complete, it is always possible to get
an approximation, within a factor ǫ of the ground state
energy, polynomially both in time and in ǫ. The complex-
ity class which conveys this is called fully polynomial-
time approximation scheme (FPTAS)23. A problem
may belong to both classes if the number of metastable
states above the true ground state is really huge, within
any energy range.
In any case, our scheme for getting the MPS which rep-

resents the ground state of our hamiltonian at any step
of the adiabatic route is different. The adiabatic route
makes it very easy to find the ground state if the entan-
glement entropy is bounded, because it has been continu-

ously dragged from the ground state ofH0. The difficulty,
of course, is always to traverse the quantum phase tran-
sition which may appear at some stage of this adiabatic
route.

IV. PHYSICAL IMPLICATIONS OF

COMPLEXITY THEORY

We will start this section by obtaining two very ab-
stract implications of complexity theory in physics. After
that, more concrete examples will be studied. Through-
out this section we will adopt the notation that a hamil-
tonian belongs to a complexity class if the obtention of
its ground state is a problem in that complexity class.
Let us consider an AQC connecting two hamiltonians

H0 and H1, such that H0 is in LIN but H1 is not. E.g.,
H1 may be in P but with an exponent larger than one,
or perhaps with logarithmic corrections. This AQC must
find a quantum phase transition (QPT) along the adia-
batic path.
The reason can be stated as follows. Let us assume

that no quantum phase transition is found on the way.
Then, we can use a classical computer to run a QWA
simulation of the AQC procedure. This simulation will
take time TQWA(N) ≈ N exp(2S). If no QPT is found
along the adiabatic path, the maximal entropy S will be
bounded (i.e.: will not scale with N) and, therefore, the
QWA results in a linear algorithm to achieve the ground
state of H1, against the assumption.
In the same line, we state that, if H0 is P and H1

is NP-complete, and P6=NP, then any AQC connecting
the two hamiltonians will find a QPT whose maximal
entropy will grow faster than logarithmically.
Again the reason is easy to state. If the maximal

entropy grows logarithmically, S ≈ α log(N), then the
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QWA time will scale as TQWA ≈ N exp(2S) ≈ N2α+1.
Therefore, the ground state of the H1 hamiltonian would
be found in polynomial time, against the assumption.
In general terms, we may say that the adiabatic con-

nection of two hamiltonians with different complexity
classes puts restrictions on the physics along the path.
Nature’s way to avoid violations of the results of com-
plexity theory in AQC’s is the creation of QPT of certain
kinds. It can be regarded as a kind of quantum censorship

to prevent us from solving hard problems easily.

In the spin-glass example, the obtention of the ground
state of the RITF hamiltonian when Γ → ∞ is a trivial
problem, taking time O(1). In 1D, the obtention of the
classical spin-glass minimum energy state is obviously in
LIN. Our results do not apply in this case, since QWA
takes always time ≥ N .
In 2D, on the other hand, a prediction can be done.

Solving the 2D classical spin-glass problem is inP. There-
fore, a QPT must exist for some value of Γ. But we
only can state that the maximal entropy must grow, at
least, logarithmically. In fact, recent results19 (cleverly
exploiting the properties of the infinite randomness fixed
point24, IRFP) show that it grows with a modified area
law: for a block division cutting l links, the entropy scales
as s(l) ≈ l log(log(l)). Maximal entropy, as it is defined
in this work, would be S(N) ≈ N1/2 log(log(N)), thus
rendering the time for the QWA simulation exponential.
Our theorem is, therefore, too weak.
Nonetheless, the previous expression for the block en-

tropy in a 2D quantum spin-glass is based on the average
number of clusters cut by the block division. A well de-
signed DMRG path might never cut more than one clus-
ter at a time, just sweeping them one by one. In that
case, the maximal entropy might grow much more slowly
with system size. But, in order to obtain such a path,
one should first solve the classical problem. Therefore,
again, our result is not violated.
In 3D, or for random graphs of fixed connectivity, the

NP-completeness of the problem forces the QPT to have
entropy growing faster than log(N). In this case, the
result is not surprising.
Other analysis25 have studied the entanglement en-

tropy along typical standard quantum computations, and
our general statements also hold. For example, the en-
tropy along Grover’s algorithm remains bounded, which
is consistent with the fact that the problem under con-
sideration (unsorted search) is in LIN. Also, an AQC to
solve the exact cover problem (which is NP-complete)
found a QPT with S ≈ N . Shor’s algorithm also shows
a similar behaviour, although it is not clear which is the
complexity class of the problem under study (i.e.: integer
factorization).
New predictions are easily made for AQC of problems

which have never been studied. Thus, an AQC designed
to test planarity of a graph, or 2-colorability need not find

a QPT, since these problems belong to class LIN. But an
AQC which orders a set of numbers, or which performs
the fast Fourier transform, will find a QPT, since their
running time is larger than linear. The maximal entropy
in those cases might increase very slowly with size, since
the (average) running time for the best algorithms are
T ≈ N log(N), so our only bound is that S should scale
at least like log(log(N)). On the other hand, if P6=NP,
any attempt to solve the traveling salesman problem, or
3-SAT, will always find a QPT with the maximal entropy
growing faster than logarithmically.

V. CONCLUSIONS

We have shown how to derivate physical inferences
from computational complexity theory. If a physical pro-
cess is devised in order to solve some problem, simulat-
ing that process in a computer is an algorithm to achieve
the solution. The efficiency of this algorithm may be re-
stricted by complexity theory, and this restriction is due
to have some physical counterpart which applies to the
real physical system.
Concretely, consider two hamiltonians, H0 and H1,

linked by an adiabatic route. If the obtention of their
ground states belongs to different complexity classes, this
process may constitute an adiabatic quantum computa-
tion. Simulation of this process on a classical computer
can not violate the time bounds which are established by
complexity theory on the solution of the respective prob-
lems. Therefore, a quantum phase transition (QPT) will
appear in the process in order to avoid such violation,
with given specific growth rates for the entanglement en-
tropy. Thus, another view is provided of the ubiquity of
quantum phase transitions in disordered systems.
The present derivation was performed using the MPS

and the DMRG, which are not specially well suited for
multidimensional systems, due to its left-right division
of the system for every step. Different generalizations
of MPS exist, such as multiscale entanglement Ansatz26

(MERA) or projected entangled pair states27 (PEPS),
which are altogether labeled as tensor product states28

(TPS). We expect that usage of these more sophisticated
tools will provide stronger predictions on the nature of
the QPT found when performing a quantum adiabatic
computation.
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