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CONTINUOUS IMAGES OF SETS OF REALS

TOMEK BARTOSZYNSKI AND SAHARON SHELAH

Abstract. We will show that, consistently, every uncountable set can be
continuously mapped onto a non measure zero set, while there exists an un-
countable set whose all continuous images into a Polish space are meager.

1. Introduction

Let J be a σ-ideal of subsets of a Polish space Y . Assume also that J contains
singletons and has Borel basis. Let non(J ) = min{|X | : X ⊆ Y & X 6∈ J }.

In this paper we are concerned with the family

NON(J ) = {X ⊆ R : for every continuous mapping F : X −→ Y, F”(X) ∈ J }.

Note that NON(J ) contains all countable sets. Moreover, NON(J ) is closed under
countable unions but need not be downward closed, thus it may not an ideal.
However, NON(J ) is contained in the σ-ideal

NON⋆(J ) = {X ⊆ R : for every continuous mapping F : R −→ Y, F”(X) ∈ J }.

It is also not hard to see that NON⋆(J ) consists of those sets whose uniformly
continuous images are in J .

Let N be the ideal of measure zero subsets of 2ω with respect to the standard
product measure µ, and let M be the ideal of meager subsets of 2ω (or other Polish
space Y ).

We will show that

• ZFC ⊢ NON(M) contains an uncountable set.
• It is consistent that NON⋆(N ) = NON(N ) = [R]≤ℵ0 .
• It is consistent that: NON⋆(J ) = [R]≤ℵ0 ⇐⇒ non(J ) < 2ℵ0 .

Observe that if NON⋆(J ) = [R]≤ℵ0 then non(J ) = ℵ1. On the other hand for all
σ-ideals J considered in this paper, continuum hypothesis implies that NON(J )
contains uncountable sets.

Finally notice that one can show in ZFC that there exists an uncountable uni-
versal measure zero set (see [7]), i.e. a set whose all homeomorphic (or even Borel
isomorphic) images are all of measure zero. Therefore one cannot generalize the
consistency results mentioned above by replacing the word “continuous” by “home-
omorphic” in the definition of NON(N ).
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2. Category

In this section we show that NON(M) contains an uncountable set. This was
proved in [9], the proof presented here gives a slightly stronger result.

For f, g ∈ ωω let f ≤⋆ g mean that f(n) ≤ g(n) for all but finitely many n. Let

b = min{|F | : F ⊆ ωω & ∀h ∈ ωω ∃f ∈ F f 6≤⋆ h}.

Theorem 1 ([9]). There exists a set X ⊆ R of size b such that

1. every continuous image of X into ωω is bounded,

2. every continuous image of X into a Polish space is meager,

3. if b ≤ non(N ) then every continuous image of X into R has measure zero.

Proof Let Z ⊆ (ω + 1)ω consist of functions f such that

1. ∀n f(n) ≤ f(n + 1),
2. ∀n

(

f(n) < ω → f(n) < f(n + 1)
)

.

Note that Z is a compact subset of (ω +1)ω thus it is homeomorphic to 2ω. For an
increasing sequence s ∈ (ω + 1)<ω let qs ∈ (ω + 1)ω be defined as

qs(k) =

{

s(k) if k < |s|
ω otherwise

for k ∈ ω.

Note that the set Q = {qs : s ∈ ω<ω} is dense in Z. Put X ′ = {fα : α < b} such
that

1. ∀α fα ∈ Z,
2. fα ≤⋆ fβ for α < β,
3. ∀f ∈ ωω ∃α fα 6≤⋆ f .

Let X = X ′ ∪ Q. We will show that X is the set we are looking for.
(1) Suppose that F : X −→ ωω is continuous. We only need to assume that F

is continuous on Q. Without loss of generality we can assume for every x ∈ X ,
F (x) ∈ ωω is an increasing function.

Lemma 2. There exists a function g ∈ ωω such that for every x ∈ X and n ∈ ω,

F (x)(n) ≤ g(n) if x(n) > g(n).

Proof Fix n ∈ ω and for each s ∈ (ω +1)n let Is ⊆ (ω +1)ω be a basic open
set containing qs such that for x ∈ dom(F ) ∩ Is, F (x)(n) = F (qs)(n). For every s

the set Is↾n = {x↾n : x ∈ Is} is open (ω + 1)n and the family {Is↾n : s ∈ (ω + 1)n}
is a cover of (ω + 1)n. By compactness there are sequences s1, . . . , sk such that
(ω + 1)n = Is1

↾n ∪ · · · ∪ Isk
↾n. Find N so large that if x(n) > N then x ∈ Isj

for
some j ≤ k. Define

g(n) = max{N, F (qs1
)(n), . . . , F (qsk

)(n)}. �

Let g ∈ ωω be the function from the above lemma. Find α0 such that fα0
6≤⋆ g.

Let {un : n ∈ ω} be an increasing enumeration of {n : g(n) < fα0
(n)}. Put

h(n) = g(un) for n ∈ ω and note that for β > α0 and sufficiently large n we have

F (fβ)(n) ≤ F (fβ)(un) < g(un) = h(n).

Since the set {F (fβ) : β ≤ α0} ∪ {F (qs) : s ∈ ω<ω} has size < b we conclude that
F”(X) is bounded in ωω.
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(2) Suppose that F is a continuous mapping from X into a Polish space Y with
metric ρ. Observe that F is not onto and fix a countable dense set {qn : n ∈ ω}
disjoint with F”(X). For x ∈ X let fx ∈ ωω be defined as

fx(n) = min

{

k : ρ(f(x), dn) >
1

k

}

.

In particular,

f(x) 6∈ B

(

dn,
1

fx(n)

)

=

{

z : ρ(dn, z) <
1

fx(n)

}

.

Note that the mapping x 7→ fx is continuous and find a function h ∈ ωω such that
fx ≤⋆ h for x ∈ X . Put

G =
⋂

m

⋃

n>m

B

(

dn,
1

h(n)

)

and note that G is a comeager set disjoint from F”(X).

(3) Let Q ⊆ U be an open set. Define g ∈ ωω as

g(0) = min{k : ∀x x(0) > k → x ∈ U}

and for n > 0

g(n) = min
{

k : ∀x
(

(

∀j < n x(j) < g(j) & x(n) > k
)

→ x ∈ U
)}

.

Let α0 be such that fα0
6≤⋆ g. It follows that fβ ∈ U for β > α0.

Suppose that F : X −→ R is continuous (on Q). Let {qn : n ∈ ω} be enumeration
of Q. Let Ik

n ∋ qn be a basic open set such that F”(Ik
n) has diameter < 2−n−k.

Put H =
⋂

k

⋃

n Ik
n . It is clear that F”(H) has measure zero. Fix α0 such that for

all β > α0, fβ ∈ H . It follows that for β > α0, F (fβ) belongs to a measure zero
set F”(H). By the assumption, the remainder of the set F”(X) has size < non(N )
which finishes the proof. �

The set X constructed above is not hereditary, and for example X \ Q can be
continuously mapped onto an unbounded family. A hereditary set having property
(1) of theorem 1 cannot be constructed in ZFC. Miller showed in [6] that it is
consistent that every uncountable set has a subset that can be mapped onto an
unbounded family. This holds in a model where there are no σ-sets, i.e. every
uncountable set has a Gδ subset which is not Fσ.

It is open whether a hereditary set having property (2) of theorem 1 can be
constructed in ZFC.

3. Making NON(J ) small.

We will start with the following:

Definition 3. A set X ⊆ 2ω has strong measure zero if for every function g ∈ ωω

there exists a function f ∈ (ω<ω)ω such that f(n) ∈ 2g(n) for every n and

∀x ∈ X ∃∞n x↾g(n) = f(n).

Let SN denote the collection of all strong measure zero sets.

If the above property fails for some g then we say that g witnesses that X 6∈ SN .

For g ∈ ωω we will define a forcing notion Pg such that:
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1. Pg is proper,
2. there exists a family {Fn : n ∈ ω} ∈ VPg such that

(a) ∀n Fn : 2ω −→ 2ω is continuous,
(b) if X ⊆ 2ω, X ∈ V and g witnesses that X 6∈ SN then

VPg |=
⋃

n

Fn”(X) = 2ω.

Let L be the Laver forcing and suppose that g is a Laver real over V. It is well
known that:

Lemma 4. [5] If X ⊆ 2ω, X ∈ V is uncountable then V[g] |=”g witnesses that X

does not have strong measure zero.”

Theorem 5. It is consistent with ZFC that for every σ-ideal J

NON(J ) = [R]≤ℵ0 ⇐⇒ non(J ) < 2ℵ0 .

Proof Let 〈Pα, Q̇α : α < ω2〉 be a countable support iteration such that

α Q̇α ≃ L⋆Pġ for α < ω2. Suppose that J is a σ-ideal and VPω2 |= non(J ) = ℵ1.
It follows that for some α < ω2, VPω2 |= VPα ∩ 2ω 6∈ J .

Suppose that X ⊆ VPω2 ∩ 2ω is uncountable. Let β > α be such that X ∩
VPβ is uncountable. In VPβ⋆L the Laver real witnesses that X 6∈ SN and so
VPβ+1 |=

⋃

n Fn”(X) = 2ω. Hence VPω2 |=
⋃

n Fn”(X) 6∈ J which means that
VPω2 |= ∃n ∈ ω Fn”(X) 6∈ J . �

4. Defintion of Pg

Let us fix the following notation. Suppose that 〈Fn : n ∈ ω〉 are nonempty sets.

Let T max =
⋃

n

∏n−1
j=0 Fj . For a tree T ⊆ T max let T ↾n = T ∩

∏n−1
j=0 Fj . For t ∈ T ↾n

let succT (t) = {x ∈ Fn : t⌢x ∈ T } be the set of all immediate successors of t in T ,
and let Tt = {s ∈ T : s ⊆ t or t ⊇ s} be the subtree determined by t. Let stem(T )
be the shortest t ∈ T such that |succT (t)| > 1.

Fix a sequence 〈εk
j : j ≤ k} such that

1. ∀k 0 < εk
0 < εk

1 < · · · < εk
k < 2−k.

2. ∀k ∀j < k (εk
j+1)

3 > εk
j .

3. ∀k ∀j < k
εk

j+1

2k2 > εk
j .

4. ∀k ∀j < k
εk

j

εk
j+1

< εk
k.

For example εk
j = 2−k24k−j

for j ≤ k will work.
Suppose that a strictly increasing function g ∈ ωω is given. Fix an increasing

sequence 〈nk : k ∈ ω〉 such that n0 = 0 and

nk+1 ≥ g

(

(k + 1)2nk
2nk2nk

εk
0

)

for k ∈ ω.

For the choice of εk
j above nk+1 = g

(

21999nk
)

will be large enough.

Let Fk = {f : dom(f) = 2[nk,nk+1), range(f) = {0, 1}}. For A ⊆ Fk let

||A|| = max

{

ℓ :
|A|

|Fk|
≥ εk

ℓ

}

.
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Consider the tree

T max =
⋃

k

k
∏

j=0

Fj .

Let Pg be the forcing notion which consists of perfect subtrees T ⊆ T max such that

lim
k→∞

min{||succT (s)|| : s ∈ T ↾k} = ∞.

For T, S ∈ Pg and n ∈ ω define T ≥ S if T ⊆ S and T ≥n S if T ≥ S and

∀s ∈ S
(

||succS(s)|| ≤ n → succS(s) = succT (s)
)

.

It is easy to see that Pg satisfies Axiom A, thus it is proper.
Suppose that G ⊆ Pg is a generic filter over V. Let

⋂

G = 〈f0, f1, f2, . . .〉 ∈
∏

k Fk. Define FG : 2ω −→ 2ω as

FG(x)(k) = fk

(

x↾[nk, nk+1)
)

for x ∈ 2ω, k ∈ ω.

First we show that Pg is ωω-bounding. The arguments below are rather standard,
we reconstruct them here for completeness but the reader familiar with [8] will see
that they are a part of a much more general scheme.

Lemma 6. Suppose that I ⊆ V is a countable set, n ∈ ω and T Pg
ȧ ∈ I. There

exists S ≥n T and k ∈ ω such that for every t ∈ S↾k there exists at ∈ I such that

St Pg
ȧ = at.

Proof Let S ⊆ T be the set of all t ∈ T such that Tt satisfies the lemma. In
other words

S = {t ∈ T : ∃kt ∈ ω ∃T ′ ≥n Tt ∀s ∈ T ′↾kt ∃as ∈ I T ′
s Pg

ȧ = as}.

We want to show that stem(T ) ∈ S. Notice that if s 6∈ S then

||succS(s)|| ≤ ε|s|n .

Suppose that stem(T ) 6∈ S and by induction on levels build a tree S̄ ≥n T such
that for s ∈ S̄,

succS̄(s) =

{

succT (s) if ||succT (s)|| ≤ n

succT (s) \ succS(s) otherwise
.

Clearly S̄ ∈ Pg since ||succS̄(s)|| ≥ ||succT̄ (s)|| − 1 for s containing stem(T ). That is
a contradiction since S̄ ∩ S = ∅ which is impossible. �

In our case we have even stronger fact:

Lemma 7. Suppose that T Pg
Ȧ ⊆ 2<ω. There exists S ≥ T such that for all but

finitely many n, for every t ∈ S↾n there exists At ⊆ 2n such that St Pg
Ȧ↾n = At.

In particular, if T Pg
ẋ ∈ 2ωthen there exists S ≥ T such that for every for all

but finitely many n, for every t ∈ S↾n there exists st ∈ 2n such that St Pg
ẋ↾n = st.

Proof It is enough to prove the first part. By applying lemma 6 we can
assume that there exists an increasing sequence 〈kn : n ∈ ω〉 such that for every

t ∈ T ↾kn there exists At ⊆ 2<n such that Tt Pg
Ȧ↾n = At.

Let n0 = |stem(T )|. Build by induction a family of trees {Tn,l : n > n0, n ≤ l ≤
kn} such that

∀s ∈ Tn,l↾l ∃As ⊆ 2n (Tn,l)s Pg
Ȧ↾n = As.
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Let Tn0+1,kn0
= T and suppose that Tn,l has been constructed. If l = n let

Tn+1,kn+1
= Tn,n, otherwise construct Tn,l−1 as follows – by the induction hypoth-

esis for s ∈ Tn,l↾l − 1 and every f ∈ succTn,l
(s), there exists As⌢f ⊆ 2n such

that

(Tn,l)s⌢f Pg
Ȧ↾n = As⌢f .

Fix A such that {f : As⌢f = A} has the largest size and put

succTn,l−1
(s) =

{

{f ∈ succTn,l
(s) : As⌢f = A} if s ∈ Tn,l↾l − 1

succTn,l
(s) otherwise

Finally let S =
⋂

n Tn,n. Clearly S has the required property provided that it is a
member of Pg. Note that for an element s ∈ S↾k,

|succS(s)| ≥
|succTk,k

(s)|

2k2
.

By the choice of sequence 〈εk
l : k, l〉, it follows that ||succS(s)|| ≥ ||succT (s)|| − 1 if

|s| > |stem(S)|. Thus S ∈ Pg which finishes the proof. �

Next we show that Pg adds a continuous function which maps sets that do not
have strong measure zero onto sets that are not in J .

Let Q = {x ∈ 2ω : ∀∞n x(n) = 0} be the set of rationals in 2ω.

Theorem 8. Suppose that g witnesses that X ⊆ V ∩ 2ω, X ∈ V does not have

strong measure zero. Then Pg
FĠ”(X) + Q = 2ω.

In particular,

V Pg |= ∃q ∈ Q Fq”(X) 6∈ J ,

where Fq : 2ω −→ 2ω is defined as Fq(x) = FĠ(x) + q for x ∈ 2ω.

Proof We start with the following:

Lemma 9. Suppose that 1
2 > ε > 0, I ⊆ ω is finite and A ⊆ 22I

,
|A|

|22I |
≥ ε. Let

Z =

{

s ∈ 2I : ∃is ∈ {0, 1}
|{f ∈ A : f(s) = is}|

|22I |
< ε3

}

.

Then |Z| ≤
1

ε
.

Proof Suppose otherwise. By passing to a subset we can assume that |Z| =
1

ε
. Let

A′ = {f ∈ A : ∀s ∈ Z f(s) = is}.

By the assumption
|A′|

|22I |
≥ ε −

1

ε
· ε3 = ε − ε2 >

ε

2
.

On the other hand the sets Is = {f ∈ 22I

: f(s) = 0}, s ∈ 2I are probabilistically

independent and have “measure”
1

2
. It follows that

|A′|

|22I |
≤

1

2
1
ε

<
ε

2
,

which gives a contradiction. �
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Lemma 10. Suppose that T Pg
ż ∈ 2ω. There exists a sequence 〈Jk : k ∈ ω〉 such

that for every k ∈ ω

1. Jk ⊆ 2[nk,nk+1),

2. |Jk| ≤
2nk2nk

εk
0

,

and if x ∈ V∩2ω and x↾[nk, nk+1) 6∈ Jk for all but finitely many k then there exists

S ≥ T such that

S Pg
FĠ(x) =⋆ ż.

Proof Suppose that T Pg
ż ∈ 2ω. Let k0 = |stem(T )|. By lemma 7, we can

assume that

∀k > k0 ∀t ∈ T ↾k ∃it ∈ {0, 1} Tt Pg
ż(k) = it.

For k > k0 and s ∈ T ↾k let

Js
k = {x ∈ 2[nk,nk+1) : ∃i ∈ {0, 1} ||{f ∈ succT (s) : f(x) = i}|| < ||succT (s)|| − 1}.

By lemma 9, |Js
k | ≤

1
εk
0

. Put Jk =
⋃

s∈T ↾k Js
k and note that

|Jk| ≤
1

εk
0

k−1
∏

i=0

22ni+1−ni

≤
2nk2nk

εk
0

.

Suppose that x↾[nk, nk+1) 6∈ Jk for k ≥ k⋆ ≥ k0. Define S ≥ T

succS(t) =

{

{f ∈ succT (t) : f(x↾[nk, nk+1) = it} if s ∈ T ↾k and k > k⋆

succT (s) otherwise
.

By the choice of x, ||succS(s)|| ≥ ||succT (s)|| − 1 for s ∈ S. Thus S ∈ Pg, and

S P ∀k > k⋆ FĠ(x)(k) = ż(k). �

Suppose that T Pg
ż ∈ 2ω and let {Jk : k ∈ ω} be the sequence from lemma

10. Let

U = {s ∈ 2<ω : ∃k |s| = nk+1 & s↾[nk, nk+1) ∈ Jk}.

Let s1, s2, . . . be the list of elements of U according to increasing length. Note that
by the choice of g, |sk| ≥ g(k) for k ∈ ω. Since g witnesses that X 6∈ SN (and any
bigger function witnesses that as well) there is x ∈ X such that

∀∞k x↾dom(sk) 6= sk.

Since initial parts of s′ks exhaust all possibilities it follows that for sufficiently large
k ∈ ω,

x↾[nk, nk+1) 6= sl↾[nk, nk+1) for all l such that |sl| = nk+1.

In particular,

∀∞k x↾[nk, nk+1) 6∈ Jk.

By lemma 10 we conclude that Pg
FĠ(x) =⋆ ż. Since ż was arbitrary, it follows

that Pg
FĠ”(X) + Q = 2ω. As J is a σ-ideal we conclude that

Pg
∃q ∈ Q FĠ”(X) + q 6∈ J . �
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5. Measure

Theorem 5 is significant only if in the constructed model there are some inter-
esting σ-ideals J such that non(J ) < 2ℵ0 . We will show some examples of such
ideals, the most important being the ideal of measure zero sets N .

Definition 11. A family A ⊆ [ω]ω is called a splitting family if for every infinite

set B ⊆ ω there exists A ∈ A such that

|A ∩ B| = |(ω \ A) ∩ B| = ℵ0.

We say that A is strongly non-splitting if for every B ∈ [ω]ω there exists C ⊆ B

which witnesses that A is not splitting.

Let

S = {X ⊆ [ω]ω : X is strongly non-splitting}.

It is easy to see that S is a σ-ideal.

Theorem 12. It is consistent that for every uncountable set X ⊆ 2ω there exists

a continuous function F : 2ω −→ 2ω such that F”(X) does not have measure zero.

In particular, it is consistent that

NON(N ) = NON(S) = SN = [R]≤ℵ0 .

Proof Let VPω2 be the model constructed in the proof of theorem 5. To
show the first part it is enough to show that VPω2 |= non(N ) = ℵ1. Since is well
known that non(S) ≤ non(N ), it follows that NON(S) = [R]≤ℵ0 . This was known to
be consistent (see [1]). Finally, it is well known that if X ∈ SN and F : X −→ 2ω

is uniformly continuous then F”(X) ∈ SN ⊆ N . Thus SN = [R]≤ℵ0 .
To finish the proof we have to show that VPω2 |= non(N ) = ℵ1. By theorem

6.3.13 of [2], in order to show that it suffices to show that both Pg and L satisfy
certain condition (preservation of ⊑random) which is an iterable version of preserva-
tion of outer measure. Theorem 7.3.39 of [2] shows that L satisfies this condition.
Exactly the same proof works for Pg provided that we show:

Theorem 13. If X ⊆ 2ω, X ∈ V and V |= X 6∈ N then VPg |= X 6∈ N .

Proof The sketch of the proof presented here is a special case of a more
general theorem (theorem 3.3.5 of [8]).

Fix 1 > δ > 0 and a strictly increasing sequence 〈δn : n ∈ ω〉 of real numbers
such that

1. supn δn = δ.
2. ∀∞n δn+1 − δn > εn

n.

Suppose that Pg
X 6∈ N . Without loss of generality we can assume that X

is forced to have outer measure one. Let Ȧ be a Pg-name such that Pg
Ȧ ⊆

2<ω & µ([A]) ≥ δ and suppose that T Pg
X ∩ [Ȧ] = ∅. Let n0 = |stem(T )|. By

lemma 7, we can assume that

∀n > n0 ∀t ∈ T ↾n ∃At ⊆ 2n Tt Pg
Ȧ↾n = At.

Fix n > n0 and define by induction sets {An
t : t ∈ T ↾m, n0 ≤ m ≤ n + 1} such

that

1. An
t ⊆ 2n+1 for t ∈ T ,

2. |An
t | · 2

−n−1 ≥ δm for t ∈ T ↾m.
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For t ∈ T ↾n + 1 let An
t = At. Suppose that sets An

t are defined for t ∈ T ↾m,
m > n0. Let t ∈ T ↾m − 1 and consider the family {An

t⌢f : f ∈ succT (t)}. By the

induction hypothesis, |An
t⌢f | · 2

−n−1 ≥ δm Let

An
t = {s ∈ 2n+1 : ||{f : s ∈ At⌢f || ≥ ||succT (t)|| − 1}.

A straightforward computation (recall Fubini theorem) shows that the requirement
that we put on the sequence 〈δn : n ∈ ω〉 implies that |An

t | · 2−n−1 ≥ δm−1. In
particular, An

stem(T ) · 2−n−1 ≥ δn0
for all n. Let B = {x ∈ 2ω : ∃∞n x↾n + 1 ∈

An
stem(T )}. Clearly µ(B) ≥ δn0

, so B ∩ X 6= ∅. Fix x ∈ B ∩ X . We will find S ≥ T

such that S Pg
x ∈ [Ȧ], which will give a contradiction.

For each n such that x ∈ An
stem(T ) let Sn ⊆ T ↾n be a finite tree such that

1. stem(Sn) = stem(T ),
2. for every t ∈ Sn, n0 < |t| < n, ||succSn

(t)|| ≥ ||succT (t)||,
3. for every t ∈ Sn, |t| = n, x ∈ At.

The existence of Sn follows from the inductive definition of An
t ’s. By König lemma,

there exists S ⊆ T such that for infinitely many n, S↾n = Sn. It follows that S ∈ Pg

and S Pg
∃∞n x↾n ∈ Ȧ↾n. Since Ȧ is a tree we conclude that s Pg

x ∈ [Ȧ]. �

6. More on NON(J )

In this section we will discuss the model obtained by iterating the forcing Pg

alone.

Theorem 14. It is consistent with ZFC that for every σ-ideal J such that non(J ) <

2ℵ0 ,

NON(J ) ⊆ NON(SN ) ⊆ [R]<2ℵ0

.

Proof Elements of NON(SN ) are traditionally called C′-sets. As we re-
marked earlier, SN = NON⋆(SN ). However, in [3] it is proved that assuming CH,
NON(SN ) ( SN .

Let V be a model satisfying CH and let {gα : α < ω1} ⊆ ωω be a dominating
family. Let {Sα : α < ω1} be such that

1. Sα ∩ Sβ = ∅ for α 6= β,
2. Sα ⊆ {ξ < ω2 : cf(ξ) = ω1},
3. Sα is stationary for all α.

Let 〈Pα, Q̇α : α < ω2〉 be a countable support iteration such that for β ∈ Sα,

β Q̇β ≃ Pgα
. If β 6∈

⋃

α Sα let Q̇β be trivial forcing.
Suppose that J is a σ-ideal and VPω2 |= non(J ) = ℵ1. It follows that for some

α < ω2, VPω2 |= VPα ∩ 2ω 6∈ J .
Suppose that X ⊆ VPω2 ∩ 2ω is uncountable.

Case 1 |X | = ℵ1 and VPω2 |= X 6∈ NON(SN ).
Let β > α be such that

1. X ∈ VPβ ,
2. there is a continuous function H : X −→ 2ω, H ∈ VPβ such that VPβ |=

H”(X) 6∈ SN ,
3. β ∈ Sγ and VPω2 |= gγ witnesses that H”(X) 6∈ NON(SN ).
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It follows from the properties of Pgγ
that VPβ+1 |=

⋃

n Fn”(H”(X)) = 2ω. Hence

VPω2 |=
⋃

n Fn”(H”(X)) 6∈ J , which means that VPω2 |= ∃n ∈ ω Fn”(H”(X)) 6∈
J .

Case 2 |X | = 2ℵ0 = ℵ2.
It is well known (see [4] or theorem 8.2.14 of [2]) in a model obtained by a

countable support iteration of ωω-bounding forcing notions there are no strong
measure zero sets of size 2ℵ0 . In particular, VPω2 |= X 6∈ SN . Let gβ be a witness
to that. Let Xβ = X ∩ VPβ . Standard argument shows that

C = {γ < ω2 : VPγ |= Xγ 6∈ SN}

is a ω1-club. Fix δ ∈ C ∩ Sβ and argue as in the Case 1. �
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[1] Tomek Bartoszyński. Splitting families. Proceedings of the American Mathematical Society,
125:2141–2145, 1997.
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