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00 Chow groups of weighted hypersurfaces.

Marco Leoni

Abstract — We extend a result of to Esnault-Levine-Viehweg concerning
the Chow groups of hypersurfaces in projective space to those in weighted pro-
jective spaces.

1 Introduction

The purpose of this paper is to generalize to the case of weighted projective
spaces over an algebraically closed field K the following result from [ELV]:

Theorem 1.1 [ELV], Th. 4.6. Let X ⊂ Pn be a hypersurface of degree d ≥ 3
and let s ≤ n − 1 be an integer such that:

(

s + d
s + 1

)

≤ n.

Then CHs(X) ⊗ Q = Q.

Let Q = (q0, . . . , qn) ∈ Nn+1. Let µa := {z ∈ K|za = 1} and set µ :=
∏n

i=1 µqi
. The weighted projective space P(Q) can be realized either as the quo-

tient Pn/µ (with the action defined by componentwise multiplication) or as the
quotient Kn+1/K∗, the action being defined by t·(x0, . . . xn) := (tq0x0, . . . , t

qnxn).
The map ϕQ : [t0 : . . . : tn]µ → [tq0

0 , . . . , tqn
n ]K∗ gives the isomorphism between

the two representations. One deduces from this that there is a one to one corre-
spondence between hypersurfaces X := {f = 0} of Kn+1/K∗ and those of Pn/µ
defined by the zeroes of the polynomial f ′([t0 : . . . ; tn]µ) := f([tq0

0 , . . . , tqn
n ]K∗).

If f ′ is smooth, the hypersurface {f = 0} is seen to be quasismooth: the cone
CX := {x ∈ Kn+1|f(x) = 0} has one singularity in the origin.

2 The Main Result.

Theorem 2.1 For a smooth irreducible weighted hypersurface X ′ of degree d ≥
3 in Pn and ∀l ∈ N such that:

(

d + l
1 + l

)

≤
n

∑

j=0

qj − 1

one has:

CHl(X) ⊗ Q = Q

where X = X ′/µ.
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Proof:

Let:

N := (
n

∑

j=0

qj) − 1

Nr :=

{

0 r = −1
∑r

j=0 qj ∀r = 0, . . . , n

Remark in particular that Nn = N +1, and that Nr −Nr−1 = qr ∀r = 0, . . . , n.
Define a rational map:

σQ : PN → P(Q)

by:

(σQ([t0 : . . . : tN ])
r

:=

Nr−1
∏

j=Nr−1

tj ∀r = 0, . . . , n.

Set:

JQ := {(j0, . . . , jn) ∈ Nn+1 : Nr−1 ≤ jr ≤ Nr − 1 ∀r = 0, . . . , n}

and consider ∀J ∈ JQ, the subvarieties:

ZJ :=
{

t ∈ PN : tj0 = . . . = tjn
= 0

}

ZQ := ∪J∈JQ
ZJ

It is clear that σQ is only defined on PN − ZQ. This map is well-defined on
PN − ZQ: indeed, if one considers ltj instead of tj for a nonzero l, one has:

Nr−1
∏

j=Nr−1

ltj = lqr

Nr−1
∏

j=Nr−1

tj

so that modulo the weighted action of K∗ these two quantities coincide.
Also, σQ is onto, since if x ∈ P(Q) and (x0, . . . , xn) is a representative in

Kn+1∗

, one may choose, ∀r = 0, . . . , n, some qr − 1 variables freely and the last
one such that xr =

∏Nr−1
j=Nr−1

tj . So:

∀x ∈ P(Q), dim(σ−1
Q (x)) =

n
∑

r=0

(qr − 1) = N − n

Let X ⊂ P(Q) be a weighted homogeneous hypersurface of Q-degree d ≥ 3.
If X is defined by the weighted homogeneous polynomial f = f(x0, . . . , xn), we
define X̃ in PN by the polynomial f̃ = f̃(t0 : . . . : tN ), of the same degree,

obtained by replacing xk by
∏Nk−1

j=Nk−1
tj . The map σQ induces a rational map:

σQ : X̃ → X.

Let R be the plane in PN defined by the equations:

tNr−1
= . . . = tNr−1 ∀r = 0, . . . , n
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The number of equations which define it is:

n
∑

r=0

(Nr − 1 − Nr−1) =

n
∑

r=0

qr − (n + 1) = N − n

Let S := R∩X̃ . Then this linear space has dimension n and has, by construction,
the fundamental property that S ∩ ZQ = ∅:

∀t ∈ ZQ, ∀r|0 ≤ r ≤ n, ∃i such that Nr−1 ≤ i ≤ Nr − 1 for which ti = 0

But then in S, tNr−1
= 0 also and all the other tj with j in the rth string are

also zero. This for every r.
Let

u : BlZQ
(X̃) → X̃

be the blow-up along ZQ turning σQ into a morphism:

BlZQ
(X̃)

σ̂Q

→ X
↓ u ||

X̃
σQ

→ X

Let:

l0 := max
l∈N

{(

l + d
l + 1

)

≤ N

}

∩ {l ∈ N|l ≤ n}

We know from [ELV], Theorem 4.6., that if s ≤ l0, then:

CHs(X̃) ⊗ Q = Q

So let’s take γ ∈ CHs(X) ⊗ Q where s ≤ l0. Set γ̃ := τ−1(γ), being
τ := σQ|S .

Certainly γ̃ is an s-cycle on X̃ which is supported on S. Therefore there is
some a ∈ Q and a Γ ∈ Gr(s + 1) such that:

γ̃ ∼X̃ [Γ ∩ X̃ ] = aΓ · X̃

Since CHs(P
N )⊗Q = Q, one can eventually replace Γ by another (s+1)-plane

which is transversal to ZQ. Therefore we may assume that the proper transform

of Γ under the blow-up along ZQ, which I denote by Γ̂, is isomorphic to Γ itself.

Certainly ˆ̃γ ≃ γ̃ because γ̃ ∩ ZQ = ∅. Therefore we deduce:

ˆ̃γ ∼BlZQ
(X̃) bΓ̂ · BlZQ

(X̃)

Since X ′ is smooth, and since µ is a finite group, by [FU], Ex 11.4.7., we have
a “moving lemma” on X = X ′/µ. Therefore we can move γ inside X in such a
way that that it is not in the ramification locus of σ̂Q. Hence σ̂Q is finite of a
certain nonzero degree, say e.

So we deduce:
σ̂Q∗

ˆ̃γ = eγ

while:
σ̂Q∗(Γ̂′ · BlZQ

(X̃)) = eHs+1 · eX

being Hs+1 the generator of CHs+1(P(Q)) ⊗ Q = Q.
Therefore γ ∼X be2Hs+1 · X = tHs, with Hs generator of P(Q) ⊗ Q = Q.

This shows CHs(X) ⊗ Q = Q ∀s ≤ l0.
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QED

Remark 2.1 In the preceding proof a moving Lemma is used; for this reason
X ′ should have at most quotient singularities. One can probably avoid this as
to arrive at the true generalization of the result in [ELV] valid irrespective of
the singularities.

Essentially the same method also works for complete intersections so that
appropriate analogues of [ELV] Prop. 3.5 and Thm. 4.6. hold. In view of
technical complications we preferred to state and give the proof for hypersurfaces
onl
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