Chow groups of weighted hypersurfaces.

Marco Leoni

Abstract

We extend a result of to Esnault-Levine-Viehweg concerning the Chow groups of hypersurfaces in projective space to those in weighted projective spaces.

1 Introduction

The purpose of this paper is to generalize to the case of weighted projective spaces over an algebraically closed field \mathbf{K} the following result from [ELV]:

Theorem 1.1 [ELV], Th. 4.6. Let $X \subset \mathbf{P}^{n}$ be a hypersurface of degree $d \geq 3$ and let $s \leq n-1$ be an integer such that:

$$
\binom{s+d}{s+1} \leq n .
$$

Then $\mathrm{CH}_{s}(X) \otimes \mathbf{Q}=\mathbf{Q}$.
Let $Q=\left(q_{0}, \ldots, q_{n}\right) \in \mathbf{N}^{n+1}$. Let $\mu_{a}:=\left\{z \in \mathbf{K} \mid z^{a}=1\right\}$ and set $\mu:=$ $\prod_{i=1}^{n} \mu_{q_{i}}$. The weighted projective space $\mathbf{P}(Q)$ can be realized either as the quotient \mathbf{P}^{n} / μ (with the action defined by componentwise multiplication) or as the quotient $\mathbf{K}^{n+1} / \mathbf{K}^{*}$, the action being defined by $t \cdot\left(x_{0}, \ldots x_{n}\right):=\left(t^{q_{0}} x_{0}, \ldots, t^{q_{n}} x_{n}\right)$. The map $\varphi_{Q}:\left[t_{0}: \ldots: t_{n}\right]_{\mu} \rightarrow\left[t_{0}^{q_{0}}, \ldots, t_{n}^{q_{n}}\right]_{\mathbf{K}^{*}}$ gives the isomorphism between the two representations. One deduces from this that there is a one to one correspondence between hypersurfaces $X:=\{f=0\}$ of $\mathbf{K}^{n+1} / \mathbf{K}^{*}$ and those of \mathbf{P}^{n} / μ defined by the zeroes of the polynomial $f^{\prime}\left(\left[t_{0}: \ldots ; t_{n}\right]_{\mu}\right):=f\left(\left[t_{0}^{q_{0}}, \ldots, t_{n}^{q_{n}}\right]_{\mathbf{K}^{*}}\right)$. If f^{\prime} is smooth, the hypersurface $\{f=0\}$ is seen to be quasismooth: the cone $\mathcal{C}_{X}:=\left\{x \in \mathbf{K}^{n+1} \mid f(x)=0\right\}$ has one singularity in the origin.

2 The Main Result.

Theorem 2.1 For a smooth irreducible weighted hypersurface X^{\prime} of degree $d \geq$ 3 in \mathbf{P}^{n} and $\forall l \in \mathbf{N}$ such that:

$$
\binom{d+l}{1+l} \leq \sum_{j=0}^{n} q_{j}-1
$$

one has:

$$
\mathrm{CH}_{l}(X) \otimes \mathbf{Q}=\mathbf{Q}
$$

where $X=X^{\prime} / \mu$.

Proof:

Let:

$$
\begin{gathered}
N:=\left(\sum_{j=0}^{n} q_{j}\right)-1 \\
N_{r}:=\left\{\begin{array}{cc}
0 & r=-1 \\
\sum_{j=0}^{r} q_{j} & \forall r=0, \ldots, n
\end{array}\right.
\end{gathered}
$$

Remark in particular that $N_{n}=N+1$, and that $N_{r}-N_{r-1}=q_{r} \forall r=0, \ldots, n$. Define a rational map:

$$
\sigma_{Q}: \mathbf{P}^{N} \rightarrow \mathbf{P}(Q)
$$

by:

$$
\left(\sigma_{Q}\left(\left[t_{0}: \ldots: t_{N}\right]\right)_{r}:=\prod_{j=N_{r-1}}^{N_{r}-1} t_{j} \forall r=0, \ldots, n\right.
$$

Set:

$$
\mathcal{J}_{Q}:=\left\{\left(j_{0}, \ldots, j_{n}\right) \in \mathbf{N}^{n+1}: N_{r-1} \leq j_{r} \leq N_{r}-1 \forall r=0, \ldots, n\right\}
$$

and consider $\forall J \in \mathcal{J}_{Q}$, the subvarieties:

$$
\begin{gathered}
Z_{J}:=\left\{t \in \mathbf{P}^{N}: t_{j_{0}}=\ldots=t_{j_{n}}=0\right\} \\
Z_{Q}:=\cup_{J \in \mathcal{J}_{Q}} Z_{J}
\end{gathered}
$$

It is clear that σ_{Q} is only defined on $\mathbf{P}^{N}-Z_{Q}$. This map is well-defined on $\mathbf{P}^{N}-Z_{Q}$: indeed, if one considers $l t_{j}$ instead of t_{j} for a nonzero l, one has:

$$
\prod_{j=N_{r-1}}^{N_{r}-1} l t_{j}=l^{q_{r}} \prod_{j=N_{r-1}}^{N_{r}-1} t_{j}
$$

so that modulo the weighted action of \mathbf{K}^{*} these two quantities coincide.
Also, σ_{Q} is onto, since if $x \in \mathbf{P}(Q)$ and $\left(x_{0}, \ldots, x_{n}\right)$ is a representative in $\mathbf{K}^{n+1^{*}}$, one may choose, $\forall r=0, \ldots, n$, some $q_{r}-1$ variables freely and the last one such that $x_{r}=\prod_{j=N_{r-1}}^{N_{r}-1} t_{j}$. So:

$$
\forall x \in \mathbf{P}(Q), \operatorname{dim}\left(\sigma_{Q}^{-1}(x)\right)=\sum_{r=0}^{n}\left(q_{r}-1\right)=N-n
$$

Let $X \subset \mathbf{P}(Q)$ be a weighted homogeneous hypersurface of Q-degree $d \geq 3$. If X is defined by the weighted homogeneous polynomial $f=f\left(x_{0}, \ldots, x_{n}\right)$, we define \tilde{X} in \mathbf{P}^{N} by the polynomial $\tilde{f}=\tilde{f}\left(t_{0}: \ldots: t_{N}\right)$, of the same degree, obtained by replacing x_{k} by $\prod_{j=N_{k-1}}^{N_{k}-1} t_{j}$. The map σ_{Q} induces a rational map:

$$
\sigma_{Q}: \tilde{X} \rightarrow X
$$

Let R be the plane in \mathbf{P}^{N} defined by the equations:

$$
t_{N_{r-1}}=\ldots=t_{N_{r}-1} \quad \forall r=0, \ldots, n
$$

The number of equations which define it is:

$$
\sum_{r=0}^{n}\left(N_{r}-1-N_{r-1}\right)=\sum_{r=0}^{n} q_{r}-(n+1)=N-n
$$

Let $S:=R \cap \tilde{X}$. Then this linear space has dimension n and has, by construction, the fundamental property that $S \cap Z_{Q}=\emptyset$:
$\forall t \in Z_{Q}, \forall r \mid 0 \leq r \leq n, \exists i$ such that $N_{r-1} \leq i \leq N_{r}-1$ for which $t_{i}=0$
But then in $S, t_{N_{r-1}}=0$ also and all the other t_{j} with j in the r th string are also zero. This for every r.

Let

$$
u: \mathrm{Bl}_{Z_{Q}}(\tilde{X}) \rightarrow \tilde{X}
$$

be the blow-up along Z_{Q} turning σ_{Q} into a morphism:

Let:

$$
l_{0}:=\max _{l \in \mathbf{N}}\left\{\binom{l+d}{l+1} \leq N\right\} \cap\{l \in \mathbf{N} \mid l \leq n\}
$$

We know from [ELV], Theorem 4.6., that if $s \leq l_{0}$, then:

$$
\mathrm{CH}_{s}(\tilde{X}) \otimes \mathbf{Q}=\mathbf{Q}
$$

So let's take $\gamma \in \mathrm{CH}_{s}(X) \otimes \mathbf{Q}$ where $s \leq l_{0}$. Set $\tilde{\gamma}:=\tau^{-1}(\gamma)$, being $\tau:=\left.\sigma_{Q}\right|_{S}$.

Certainly $\tilde{\gamma}$ is an s-cycle on \tilde{X} which is supported on S. Therefore there is some $a \in \mathbf{Q}$ and a $\Gamma \in \operatorname{Gr}(s+1)$ such that:

$$
\tilde{\gamma} \sim_{\tilde{X}}[\Gamma \cap \tilde{X}]=a \Gamma \cdot \tilde{X}
$$

Since $\mathrm{CH}_{s}\left(\mathbf{P}^{N}\right) \otimes \mathbf{Q}=\mathbf{Q}$, one can eventually replace Γ by another $(s+1)$-plane which is transversal to Z_{Q}. Therefore we may assume that the proper transform of Γ under the blow-up along Z_{Q}, which I denote by $\hat{\Gamma}$, is isomorphic to Γ itself. Certainly $\hat{\tilde{\gamma}} \simeq \tilde{\gamma}$ because $\tilde{\gamma} \cap Z_{Q}=\emptyset$. Therefore we deduce:

$$
\hat{\tilde{\gamma}} \sim_{\mathrm{Bl}_{Z_{Q}}(\tilde{X})} b \hat{\Gamma} \cdot \mathrm{Bl}_{Z_{Q}}(\tilde{X})
$$

Since X^{\prime} is smooth, and since μ is a finite group, by [FU], Ex 11.4.7., we have a "moving lemma" on $X=X^{\prime} / \mu$. Therefore we can move γ inside X in such a way that that it is not in the ramification locus of $\hat{\sigma}_{Q}$. Hence $\hat{\sigma}_{Q}$ is finite of a certain nonzero degree, say e.

So we deduce:

$$
\hat{\sigma}_{Q *} \hat{\tilde{\gamma}}=e \gamma
$$

while:

$$
\hat{\sigma}_{Q *}\left(\hat{\Gamma^{\prime}} \cdot \operatorname{Bl}_{Z_{Q}}(\tilde{X})\right)=e H_{s+1} \cdot e X
$$

being H_{s+1} the generator of $\mathrm{CH}_{s+1}(\mathbf{P}(Q)) \otimes \mathbf{Q}=\mathbf{Q}$.
Therefore $\gamma \sim_{X} b e^{2} H_{s+1} \cdot X=t H_{s}$, with H_{s} generator of $\mathbf{P}(Q) \otimes \mathbf{Q}=\mathbf{Q}$. This shows $\mathrm{CH}_{s}(X) \otimes \mathbf{Q}=\mathbf{Q} \forall s \leq l_{0}$.

Remark 2.1 In the preceding proof a moving Lemma is used; for this reason X^{\prime} should have at most quotient singularities. One can probably avoid this as to arrive at the true generalization of the result in [ELV] valid irrespective of the singularities.

Essentially the same method also works for complete intersections so that appropriate analogues of [ELV] Prop. 3.5 and Thm. 4.6. hold. In view of technical complications we preferred to state and give the proof for hypersurfaces onl

References:

[ELV] H.Esnault- M.Levine- E.Viehweg "Chow groups of projective varieties of very small degree" Duke Math. Journal 87 n. 1 (1997) 29-58.
[FU] W.Fulton "Intersection Theory", Springer-Verlag, Berlin, 1984.

