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A FORMULA FOR EULER CHARACTERISTIC OF LINE

SINGULARITIES ON SINGULAR SPACES

GUANGFENG JIANG

Abstract. We prove an algebraic formula for the Euler characteristic of the
Milnor fibres of functions with critical locus a smooth curve on a space which is a
weighted homogeneous complete intersection with isolated singularity.

1. Introduction

For an analytic function germ f : (X, 0) −→ (C, 0) with critical locus Σ ⊂ X,
there is a local Milnor fibration induced by f . We are interested in the topology of
the Milnor fibre F of f in the case when dim Σ = 1. It is well known that in this
case the homotopy type of F is not necessarily a bouquet of spheres in the middle
dimension. The calculation of the Euler characteristic χ(F ) of F is of importance.
There is a so called Iomdin-Lê formula [6] which expresses the Euler characteristic
of the Milnor fibre of f by that of the series of f with isolated singularities.

The question we are interested in is that if there is a way to express χ(F ) by some
“computable” invariants determined only by (f, Σ, X). When X is Cm, the singular
locus Σ of f is a one dimensional complete intersection with isolated singularity, and
the transversal singularity type of f along Σ is Morse, Pellikaan [9] answered this
question positively. Pellikaan’s formula expresses the Euler characteristic in terms
of the Jacobian number j(f), δ and the Milnor number µ(Σ) of Σ. These numbers
can be computed directly by counting the dimensions of certain finite dimensional
vector spaces. The development of computer algebra makes this kind of algebraic
formulae more and more important and popular. In this article we answer the
question by proving a similar formula for function germs with line singularities on a
weighted homogeneous space X with isolated complete intersection singularity (see
Proposition 7). Remark that for a function germ f with isolated singularity on a
weighted homogeneous complete intersection with isolated singularity, Bruce and
Robert [1] have proved an algebraic formula for the Milnor number of f .
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2. Non-isolated singularities on singular spaces

Let OCm be the structure sheaf of Cm. The stalk OCm,0 of OCm at 0 is a local
ring, consisting of germs at 0 of analytic functions on Cm. The ring OCm,0 is often
denoted by Om, or simply by O when no confusion can be caused. The unique
maximal ideal of Om is denoted by mm or m.

Let (X, 0) ⊂ (Cm, 0) be the germ of a reduced analytic subspace X of Cm defined
by an ideal h of O, generated by h1, . . . , hp ∈ O. Let g be the ideal generated by
g1, . . . , gn ∈ O. The germ of the analytic space defined by g at 0 is denoted by
(Σ, 0). Write OX := O/h and OΣ := O/g.

Let Der (O) denote the O-module of germs of analytic vector fields on Cm at 0.
Then Der (O) is a free O-module with ∂

∂z1

, . . . , ∂
∂zm

as basis, where z1, . . . , zm are

the local coordinates of (Cm, 0). Der (O) is a Lie algebra with the bracket defined
by [ξ, η] := ξη − ηξ for all ξ, η ∈ Der.

Define Der h(O) := {ξ ∈ Der (O) | ξ(h) ⊂ h}, which is the O-module of loga-

rithmic vector fields along (X, 0) and a Lie subalgebra of Der (O) [10, 1]. When h

is a radical ideal defining the analytic space X, Der h(O) is often denoted by DX .
Geometrically, DX consists of all the germs of vector fields that are tangent to the
smooth part of X. When X is a weighted homogeneous complete intersection with
isolated singularity, one can write down precisely all the generators of DX (cf. [13]).

For f ∈ O, the ideal JX(f) := {ξ(f) | ξ ∈ DX} is called the (relative) Jacobian

ideal of f . Obviously, when X is the whole space Cm, namely, h = {0}, then
JX(f) = J(f), the Jacobian ideal of f .

Let S = {Sα} be an analytic stratification of X, f : (X, 0) −→ (C, 0) an analytic
function germ. The critical locus ΣS

f of f relative to the stratification S is the union

of the critical loci of f restricted to each of the strata Sα, namely, ΣS
f =

⋃

Sα∈S
Σf |Sα

.

We denote ΣS
f by Σf when S is clear from the context. If the dimension of ΣS

f is not
positive, we say that f defines (or has) isolated singularities on X. If the dimension
of ΣS

f is positive, we say that f defines (or has) non-isolated singularities on X. If

ΣS
f is one dimensional smooth complex manifold, we say that f defines (or has) a

line singularity on X.
For an analytic space X embedded in a neighborhood U of 0 ∈ Cm, there is a

logarithmic stratification Slog := {Sα} of U (see [10, 1]). In general, Slog is not
locally finite. If Slog is locally finite, then X is said to be holonomic.

Let X be of pure dimension. The collection S ′
log = {X ∩ Sα | Sα ∈ Slog} is a

stratification of X which will be called the logarithmic stratification of X in this
article. Especially, when X has isolated singularity in 0, then {0} and the connected
components of X \ {0} form a holonomic logarithmic stratification of X. So 0 is
always a critical point of any germ f : (X, 0) −→ (C, 0) relative to this stratification.
Hence for f ∈ m, Σf = {p ∈ X | ξ(f)(p) = 0 for all ξ ∈ DX} is the critical locus of
f relative to the logarithmic stratification. Obviously Σf = X ∩ V(JX(f)).
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Definition 1. Let h = (h1, . . . , hp) ⊂ g = (g1, . . . , gn) be ideals of OCm,0. Define a
subset of O, called the primitive ideal of g relative to h:

∫

h

g := {f ∈ g | ξ(f) ⊂ g for all ξ ∈ Derh(O)}.

In the following we always assume that h and g are radical, X = V(h) and
Σ = V(g). In this case,

∫

h
g is denoted by

∫

X
g or

∫

g when no confusion can be
caused by this.

Remarks 2. (1) When X is smooth this definition was given by Pellikaan [7, 8]. It
is straightaway to verify that

∫

h
g is an ideal of O, and g2 +h ⊂

∫

h
g ⊂ g always

holds. And for gi ⊃ h (i = 1, 2), we have
∫

h
g1 ∩

∫

h
g2 =

∫

h
(g1 ∩ g2);

(2) Geometrically, the relative primitive ideal collects all the functions whose zero
level surfaces pass through Σ and are tangent to the regular part Xreg of X
along Σ ∩ Xreg.

(3) The singular locus (relative to S ′
log) of f is Σf := V(JX(f)) ∩ X, and Σf ⊂

f−1(0) if f(0) = 0. If f ∈
∫

g, then Σ ⊂ X ∩ V(JX(f)) = Σf . Conversely,
for f ∈ m, we have f ∈

∫

g when Σ ⊂ Σf and g is radical. The reason is:
JX(f) ⊂ g, and since f takes finite values on Σf and 0 ∈ Σ, f |Σ = 0, so fk ∈ g

for some k ∈ N. Hence f ∈ g since g is radical.
(4) The relative primitive ideals have been generalized to higher relative primitive

ideals in [5]. Under the assumption that h is pure dimension, g is radical, and
the Jacobian ideal of h is not contained in any associated prime of g, it was
proved that the primitive ideal

∫

h
g is the inverse image in O of the second

symbolic power of the quotient ideal ḡ := g/h of OX . Remark that the results
in [5] generalized the results of [11, 7, 8].

3. Transversal singularities

Let (X, 0) ⊂ (Cn+1, 0) be the germ of a reduced analytic space with isolated
singularity in 0. Let Σ be a reduced curve germ on (X, 0) defined by g and have
isolated singularity in 0. A germ f ∈

∫

g is called a transversal A1 singularity

along Σ on X if its singular locus Σf = Σ, and, for P ∈ Σ \ 0, f has only A1

singularity transversal to the branch of Σ containing P . It was proved in [3], that
f is a transversal A1 singularity along Σ on X if and only if the Jacobian number

j(f) := dim(g/(h + JX(f)) < ∞.
There exist admissible linear forms l (see [6]) such that {l = 0} ∩ Σ = {0} and

{l = 0} intersects both X and Σ transversally, and {l = 0}∩X ∩f−1(0) has isolated
singularity at the origin. We assume {l = 0} is the first coordinate hyperplane
{z0 = 0} of Cn+1.

Let DX be generated by ξ0, ξ1, . . . ξs. Denote by D0
X the submodule of DX gener-

ated by those ξi such that if we write ξi =
∑n

j=0 ξi
j

∂
∂zj

, then ξi
0 /∈ g, and by D1

X the

submodule of DX generated by those ξi such that if we write ξi =
∑n

j=0 ξi
j

∂
∂zj

, then
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ξ0 ∈ g, thus DX = D0
X + D1

X . Denote

J0(f) := D0
X(f) = {ξ(f) | ξ ∈ D0

X}, J1(f) := D1
X(f) = {ξ(f) | ξ ∈ D1

X}.

If f is clear from the context we just write J0 and J1.

Lemma 3. Let f ∈
∫

g, and z0, z1, . . . , zn be the coordinates of Cn+1 such that

z0 = 0 is admissible. The transversal singularity type of f along every branch of Σ
is constant at all the points of Σ \ {0} if and only if

dimC

(

O

g + ((J1 + h) : J0)

)

< ∞.

Proof. The inequality means that Σ ∩ V((J1 + h) : J0) = {0}. For ǫ > 0 small
enough, let P ∈ Σ ∩ {z0 = t}, 0 < |t| < ǫ. P /∈ V((J1 + h) : J0) if and only
if (J0)P ⊂ (J1)P , where (J i)P is the localization of the ideal at P . Since z0 = 0
intersects both Σ and X transversally and X is smooth at P , we can choose the
local coordinates such that locally the branch of Σ containing P is the first axis.
Furthermore, we can arrange the coordinate transformation such that under this
transformation D0

X and D1
X are preserved. By this we mean that any derivation

of X with the first component non-zero at P will remain non-zero at P and any
derivation of X with first component zero at P will remain zero at P . We let
x = z0, y1, . . . , yn−p be the new local coordinates in a neighborhood of P in X, then

at P , (J0)P =
(

∂f

∂x

)

OX,P and (J1)P =
(

∂f

∂y1

, . . . , ∂f

∂yn−p

)

OX,P . By [9], the inequality

is equivalent to the constancy of the transversal singularity type of f . �

Let X, Σ and f ∈
∫

g be the same as before. There is an integer k0 such that for
all k ≥ k0, fk = f + 1

k+1
xk+1 defines an isolated singularity at O. Let µ(fk) be the

Milnor number of fk. If X is a weighted homogeneous complete intersection with
isolated singularity, by [1] 7.7, we have

µ(fk) = dim

(

O

h + JX(fk)

)

.

By the exact sequence

0 −→
g + JX(fk)

h + JX(fk)
−→

O

h + JX(fk)
−→

O

g + JX(fk)
−→ 0,

we know that

µ(fk) = dim

(

g + JX(fk)

h + JX(fk)

)

+ dim

(

O

g + JX(fk)

)

(3.1)

Define

ek := dim
O

g + JX(fk)
, σ(ΣX, 0) := dim

(

OΣ

JX(x)

)

, multix(Σ) := dim

(

OΣ

(x)

)

.



EULER CHARACTERISTIC OF LINE SINGULARITIES 5

Then obviously ek = σ(ΣX, 0) + kmultix(Σ), and

g + JX(fk)

h + JX(fk)
=

g

(h + JX(fk)) ∩ g
.

Hence

µ(fk) = σ(ΣX, 0) + kmultix(Σ) + dim

(

g

(h + JX(fk)) ∩ g

)

(3.2)

4. Line singularities

In this section, we assume that Σ is a line in Cn+1 defined by the ideal g, and X
is a space with isolated complete intersection singularity defined by h ⊂ g.

Lemma 4. Let X be a space with isolated complete intersection singularity, con-

taining a line Σ, which is chosen to be the first axis of a local coordinate system of

Cn+1. If X is weighted homogeneous with respect to this coordinate system, then

DX = OξE + D1
X and

JX(fk) = (ξE(fk))O + J1(fk)

⊂ (ξE(fk))O + D1
X(f) + D1

X(xk+1),

where J1(fk) = {ξ(fk) | ξ ∈ D1
X} ⊂ g.

Proof. Let x, y1, . . . , yn be the local coordinates of (Cn+1, 0) in the statement of the

lemma. We know by [13] that the Euler derivation ξE = w0x
∂
∂x

+
n
∑

k=1

wkyk
∂

∂yk
∈ DX ,

where w0, w1, . . . , wn are the weights of the coordinates x, y1, . . . , yn respectively.

Let ξ = ξ0 ∂
∂x

+
n
∑

k=1

ξk ∂
∂yk

∈ DX . Since OΣ is a principal ideal domain and X has

isolated singularity at O, ξ̄0 ∈ (x̄). Let ξ̄0 = x̄ξ̄0
1 . Then ξ′ = ξ − 1

w0

ξ0
1ξE has the

coefficient of ∂
∂x

in g. �

Lemma 5. Let Σ and X be the same as in Lemma 4. Let f ∈
∫

g have transversal

A1 singularity along Σ. For k > 0 sufficiently large, we have

J̃ := ξE(f)g + D1
X(f) + h = (h + JX(fk)) ∩ g

Proof. By Lemma 4, we have

(h + JX(fk)) ∩ g = (ξE(fk)) ∩ g + D1
X(fk) + h.

For a ∈ (ξE(fk)) ∩ g, a = a0x
k+1 + a0ξE(f) ∈ g. Since ξE(f) ∈ g, a0 ∈ g. Hence

(ξE(fk)) ∩ g = (ξE(fk))g and

(h + JX(fk)) ∩ g = (xk+1 + ξE(f))g + D1
X(fk) + h

⊂ (xk+1 + ξE(f))g + xkD1
X(x) + D1

X(f) + h
(4.1)

Since j(f) < ∞, there is a k1 such that when k > k1, xkg ⊂ h + JX(f) =
(ξE(f)) + D1

X(f) + h.
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By Lemma 3, there is a k2 such that xk2 ∈ g + ((D1
X(f) + h) : (ξE(f))), and

xk2ξE(f) ∈ (ξE(f))g + D1
X(f) + h. Hence when k > k1 + k2,

a0(x
k+1 + ξE(f)) + b0x

k ∈ J̃ and (h + JX(fk)) ∩ g ⊂ J̃ .

On the other hand, there is an integer n1 >> 0 such that when k ≥ n1 (see (3.2))

xkg ⊂ (h + JX(fk)) ∩ g ⊂ J̃ ⊂ g.

Then for k > n1, by the equality in (4.1)

J̃ ⊂ ξE

(

f +
xk+1

k + 1

)

g + xk+1g + D1
X(f) + h

= (ξE(f) + xk+1)g + D1
X(f) + h + xk+1g

= (h + JX(fk)) ∩ g + xk+1g

⊂ (h + JX(fk)) ∩ g + xkg

⊂ (h + JX(fk)) ∩ g + xk−n1J̃

⊂ (h + JX(fk)) ∩ g + mJ̃ .

By Nakayama’s lemma, (h + JX(fk)) ∩ g = J̃ . �

Lemma 6. Under the assumption of Lemma 5, we have

1) L :=
h + JX(f)

J̃
∼=

(ξE(f))

(ξE(f)) ∩ J̃
;

2) Ann(L) = g + ((D1
X(f) + h) : (ξE(f)));

3) L ∼=
O

Ann(L)
=

O

g + ((D1
X(f) + h) : (ξE(f)))

.

Proof. It is an easy exercise in commutative algebra, we omit it. �

From the exact sequence

0 −→
h + JX(f)

(h + JX(fk)) ∩ g
−→

g

(h + JX(fk)) ∩ g
−→

g

h + JX(f)
−→ 0,

we have

µ(fk) = j(f) + ek + dim

(

h + JX(f)

(h + JX(fk)) ∩ g

)

.

Notice that σ(ΣX, 0) = multix(Σ) = 1, ek = k + 1. By Lemma 6, we have

µ(fk) = k + 1 + j(f) + dim

(

O

g + ((D1
X(f) + h) : (ξE(f)))

)

Let F and Fk are the Milnor fibre of f and fk respectively. Iomdin-Lê’s formula
[6, 12], says that

χ(F ) = χ(Fk) + (−1)dim X(k + 1).

But χ(Fk) = 1 + (−1)dim X−1µ(fk). Since in our case σ(ΣX, 0) = 1, we have proved
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Proposition 7. Let X be a space with isolated complete intersection singularity

containing a line Σ, which is chosen to be the first axis of a local coordinate system

of Cn+1. Assume that X is weighted homogeneous with respect to the coordinate

system. For an analytic function f ∈
∫

X
g with j(f) < ∞, the Euler characteristic

of the Milnor fibre F of f is

χ(F ) = 1 + (−1)dimX−1(j(f) + ν) (4.2)

where

ν = dim

(

O

g + ((D1
X(f) + h) : (ξE(f)))

)

. �

Remark 8. Formula (4.2) allows us to use a computer program to compute the Euler
characteristic effectively. In fact, we have a small Singular [2] program to calculate
χ(F ) for a function with critical locus a line on a hypersurface X. We use it to
check the examples in Example 10.

Let Σ be a line in C
n+1 defined by the ideal g = (y1, . . . , yn), X a space with

isolated complete intersection singularity defined by h = (h1, . . . , hp) ⊂ g. By
changing the generators of g, we can write

hi ≡

p
∑

k=1

bikyk mod g2

such that the determinant b of the matrix B = (bik) is a non-zero divisor in OΣ.
Note that y1, . . . yp are projected to zero or the generators of the torsion part T (M)
of the conormal module M = g/(g2 + h) of g/h, and yp+1, . . . yn form a basis of the
free module N = M/T (M). We call λ(ΣX) := dimC T (M) = dimO/(g + (b)) the
torsion number of the space pair (Σ, X). For f =

∑

hklykyl ∈ g2, define

∆ = det(hkl)p+1≤k,l≤n, δf := dim(
O

g + ∆
).

Question 9. For f ∈ g2, does the equality ν = 2λ(ΣX) + δf − 1 always hold? Or
under what conditions does it hold?

The equality in Question 9 and (4.2) show the geometric meaning of χ(F ). By
using Singular [2] we have checked that it holds for all the examples we know.

Example 10. Let Xk,l be an Ak,l singularity defined by h = xly + xsz2 + yz. This is
an Ak singularity with k = 2l + s − 1 (l ≥ 1, s ≥ 0). Since we take the line Σ with
torsion number l as x-axis, we have the definition equation (see [4]). By resolution
of singularities, one can prove that for any function f on Xk,l, if it has isolated line
singularity and A1 type transversal singularity, then the Milnor fibre F of f is a
bouquet of circles (see [11]). Then µ(f) = j(f) + ν.

(1) We consider a function g : Xk,l −→ C. For generic (a, b, c) ∈ C3, let g =
ay2 + byz + cz2, for example, take g = y2 − yz + 1

2
z2, a calculation shows that

µ(g) = 6l − 3.
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(2) Let f : Xk,l −→ C be defined by f = y + 1
2
z2. A calculation shows that

µ(f) =







l − 1 if s = 0,
l + 3s − 2 if 1 ≤ s ≤ l − 1,
4l − 2 if s ≥ l.
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