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EXACTNESS AND THE NOVIKOV CONJECTURE

ERIK GUENTNER AND JEROME KAMINKER

Abstract. In this note we will study a connection between the conjecture that

C∗

r
(Γ) is exact and the Novikov conjecture for Γ. The main result states that if the

inclusion of the reduced C∗-algebra C∗

r
(Γ) of a discrete group Γ into the uniform

Roe algebra of Γ, UC∗(Γ), is a nuclear map then Γ is uniformly embeddable in

a Hilbert space. By a result of G. Yu, this implies that Γ satisfies the Novikov

conjecture. Note that the hypothesis is a slight strengthening of the usual notion of

exactness since a group Γ is exact if and only if the inclusion of C∗

r
(Γ) into B(l2(Γ))

is nuclear.

1. Introduction

Let X be a discrete metric space with metric d. A function f from X to a separable

Hilbert space H is a uniform embedding if there exist non-decreasing proper functions

ρ± : [0,∞) → [0,∞) such that

ρ−(d(x, y)) ≤ ‖f(x) − f(y)‖ ≤ ρ+(d(x, y)), for all x, y ∈ X.

The Strong Novikov Conjecture states that the assembly map on K-theory,

µ : K∗(BΓ) → K∗(C
∗

r (Γ)),

is injective. Answering a question of Gromov, Yu proved the following theorem [15,

11].

Theorem 1.1. Let Γ be a finitely presented discrete group. If Γ is uniformly embed-

dable in a Hilbert space, then Γ satisfies the Strong Novikov conjecture.
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This is currently the weakest general hypothesis implying the Novikov conjecture.

It is conceivable, however, that there exist groups which are not uniformly embeddable

in a Hilbert space but which nevertheless satisfy the Novikov conjecture. At present

there are no such examples known.

From another direction, there is the question of whether all finitely generated dis-

crete groups are exact, [7, 9]. Recall that a discrete group Γ is exact if its reduced

C∗-algebra, C∗
r (Γ), is an exact C∗-algebra. That is, given the exact sequence of

C∗-algebras

0 → I → B → B/I → 0

the sequence

0 → I ⊗min C
∗

r (Γ) → B ⊗min C
∗

r (Γ) → (B/I) ⊗min C
∗

r (Γ) → 0

is also exact.

The Novikov conjecture and Exactness question appear to have little in common

other than that they both involve properties which might be possessed by all finitely

presented groups. However, there is a link provided by results of Roe-Higson and Yu

[6, 15]. Combined these results state that if Γ acts amenably, in the topological sense

[2], on a compact space then it is uniformly embeddable in a Hilbert space, and hence

satisfies the Novikov conjecture. On the other hand, it is an easy observation that

this condition also implies that Γ is exact. Thus, the same hypothesis yields both

properties.

We note that Gromov has asserted the existence of finitely presented groups that

are not uniformly embeddable [5]. This follows from his assertion that there exists a

finitely presented group whose Cayley graph contains a sequence of expanding graphs

[10], together with his observation that, when viewed as a discrete metric space, a

sequence of expanding graphs is not uniformly embeddable. On the other hand, it

follows simply from a result of Voiculescu [13] that the uniform algebra of such a

metric space is, in general, not exact. Based on this it seems likely that Gromov’s

examples of non-uniformly embeddable groups will in general fail to be exact.
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The purpose of this note is to study the relationship between uniform embeddabil-

ity and exactness. We state the main result, leaving precise definitions for later in the

paper. We need the uniform Roe algebra, UC∗(Γ), sometimes called the “rough” alge-

bra, introduced by Roe, [6]. It is isomorphic to the reduced cross product C(βΓ)⋊r Γ.

The left regular representation provides an inclusion of C∗
r (Γ) into B(l2(Γ)), and in

fact into UC∗(Γ). Recall that a group Γ is exact if this inclusion is a nuclear embed-

ding of C∗
r (Γ) into B(l2(Γ)) [14, 7]. We modify this condition by requiring that the

inclusion be a nuclear embedding of C∗
r (Γ) into UC∗(Γ). Note that most classes of

groups which are know to be exact, including word hyperbolic groups, discrete sub-

groups of connected Lie groups, Coxeter groups, etc., actually satisfy this stronger

condition.

Theorem 1.2. Let Γ be a finitely presented group. If the inclusion of the reduced

C∗-algebra C∗
r (Γ) into the uniform Roe algebra UC∗(Γ) is a nuclear map, then Γ is

uniformly embeddable in a Hilbert space, and hence satisfies the Novikov conjecture.

It is natural to consider other refinements of exactness which can be obtained by

replacing UC∗(Γ) by other subalgebras of B(l2(Γ)). This will be discussed in a future

paper.

2. Approximate units and negative type functions

In this section we will assemble some of the facts needed for the results in Section

3. In particular, we will establish an analog of a theorem of Akemann-Walter, [1].

A complex-valued function f on the set X ×X is said to be positive definite if, for

any n ≥ 1,
∑

ij

zif(xi, xj)zj ≥ 0, for all x1, . . . , xn ∈ X and z1, . . . , zn ∈ C.

A real-valued function h on X ×X is of negative type if

(i) h(x, x) = 0 for all x ∈ X,

(ii) h(x, y) = h(y, x) for all x, y ∈ X, and
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(iii)
∑

ij aih(xi, xj)aj ≤ 0, for all x1, . . . , xn ∈ X and a1, . . . , an ∈ R satisfying∑
j aj = 0.

It will be convenient to have the following notation. If X is a metric space and

A is a subspace, then C0(X;A) will be the set of functions which tend to zero off of

A. That is, f ∈ C0(X;A) if for any ε > 0 there is an R > 0 such that |f(x)| < ε if

d(x,A) > R.

Suppose now that X is a discrete metric space. Consider the ideal C0(X×X; ∆) ⊆

l∞(X ×X) , where ∆ denotes the diagonal of X ×X. A sequence fn ∈ l∞(X ×X)

satisfies ‖fnf − f‖ → 0 for all f ∈ C0(X ×X; ∆) if and only if fn → 1 uniformly on

any set of the form B∆(R) = {(x, y) : d(x, y) < R}. Finally, we say that a complex-

valued function f on X × X is metrically proper if it satisfies that for any C > 0

there is an R > 0 such that |f(x, y)| > C if d(x,A) > R.

The following result is a generalization of [1, Theorem 10] from the case of groups

to that of equivalence relations.

Theorem 2.1. Let X be a discrete metric space. There exists an approximate unit

for C0(X ×X; ∆) consisting of positive definite functions if and only if there exists a

metrically proper negative type function on X ×X.

Proof. Let φ be a metrically proper negative type function on X ×X. By a general-

ization of Schoenberg’s Theorem, [4], the function e−tφ(x,y) is positive definite for any

t ≥ 0. Since φ is metrically proper, one has, for any t, e−tφ(x,y) ∈ C0(X ×X; ∆). On

the other hand one also has limt→0 ‖e
−tφ(x,y) − 1‖ = 0 uniformly on B∆(R) for any

R > 0. Thus, Φt = e−tφ provides the approximate unit for C0(X ×X; ∆) consisting

of positive definite functions.

For the converse, let uλ be an approximate unit consisting of positive definite

functions. Since uλ → 1 uniformly on BR(∆), there exists an R and λ0 so that

uλ > 0 if d(x, y) < R and λ > λ0. One may thus adjust the approximate unit so

that uλ(x, x) = 1 for all x ∈ X. Now, exactly as in [1, Theorem 10] one extracts

a sequence uλi
such that the function

∑
nRe(1 − uλn

)2n converges to the required

metrically proper negative type function.
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We next recall the result of Yu, [15], relating metrically proper negative type func-

tions to uniform embeddings in a Hilbert space.

Theorem 2.2. The metric space X is uniformly embeddable in a Hilbert space if and

only if there exists a metrically proper negative type function on X ×X.

Combining these two results we obtain

Theorem 2.3. The following are equivalent for the countable discrete metric space

X.

(i) X is uniformly embeddable in a Hilbert space.

(ii) There is a metrically proper negative type function on X ×X.

(iii) There is an approximate unit for C0(X ×X; ∆) consisting of positive def-

inite functions.

In Section 3 we will discuss the relation of this to the Haagerup property for the

groupoid βΓ ⋊ Γ.

3. Exactness

In this section we restrict X to be a finitely presented group with a length function

determined by a finite, symmetric set of generators. The length function, l, determines

a right invariant metric via d(s, t) = l(st−1). The quasi-isometry type of (Γ, d) is

independent of the choice of generators. We next recall the definition of the uniform

Roe algebra associated to (Γ, d).

Consider the set of A : Γ × Γ → C satisfying

(i) there exists M > 0 such that |A(s, t)| ≤M , for all s, t ∈ Γ

(ii) there exists R > 0 such that A(s, t) = 0 if d(s, t) > R

Each such A defines a bounded operator on l2(Γ) via the usual formula for matrix

multiplication:

Aξ(s) =
∑

r∈Γ

A(s, r)ξ(r), for ξ ∈ l2(Γ).



6 ERIK GUENTNER AND JEROME KAMINKER

These will be referred to as finite width operators. The collection of finite width

operators is a ∗-subalgebra of B(l2(Γ)). The uniform Roe algebra of Γ, denoted

UC∗(Γ), is the closure of the ∗-algebra of finite width operators. It is a C∗-algebra

The quasi-isometry class of (Γ, d) determines UC∗(Γ), which is therefore independent

of the choice of generators.

Every t ∈ Γ acts on l2(Γ) by the left regular representation. The action of t ∈ Γ

is represented by the matrix A defined by A(s, r) = 1 if and only if s = tr. Clearly,

t ∈ Γ acts as a finite width operator. Thus, C[Γ] ⊆ UC∗(Γ), and we have

C∗

r (Γ) ⊆ UC∗(Γ) ⊆ B(l2(Γ)).

Recall that if a unital *-homomorphism, T : A → B, between unital C∗-algebras is

nuclear then there is a net Tλ : A → B of finite rank, unital, completely positive linear

maps such that limλ ‖Tλ(x) − T (x)‖ = 0 for all x ∈ A. It was shown by Kirchberg

[14, 8] that a unital C∗-algebra A is exact if and only if every non-degenerate, faithful

representation of A on a Hilbert space H provides a nuclear embedding of A into

B(H). In particular, a discrete group Γ is exact if and only if the inclusion of C∗
r (Γ)

into B(l2(Γ)) given by the left regular representation is a nuclear embedding. The

main theorem of this section states that if one restricts the range of the nuclear

embedding a little bit, then this strengthened form of exactness implies the uniform

embeddability of Γ.

Theorem 3.1. Let Γ be a finitely generated discrete group. If the inclusion C∗
r (Γ) ⊂

UC∗(Γ) is a nuclear map then Γ is uniformly embeddable in a Hilbert space (and

hence satisfies the Novikov conjecture).

Proof. By Theorem 2.3 it is sufficient to produce an approximate unit for C0(X ×

X; ∆) consisting of positive definite functions. This will be obtained using nuclearity

of the inclusion.

There is a general procedure to associate to a linear map T : C∗
r (Γ) → B(l2(Γ)) a

function u : Γ × Γ → C given by the formula

u(s, t) = 〈δs, T (st−1)δt〉,
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where δt denotes the characteristic function of the element t ∈ Γ. Note that if T is

bounded then u ∈ l∞Γ × Γ. The correspondence

{T : C∗

r (Γ) → B(l2(Γ))} 7−→ {u : Γ × Γ → C}

has the following properties:

(i) if T is unital and completely positive then u is positive definite, and

(ii) if T : C∗
r (Γ) → UC∗(Γ) has finite rank then u ∈ C0(Γ × Γ; ∆).

Further if Tλ : C∗
r (Γ) → B(l2(Γ)) is a net of bounded linear maps with associated

functions uλ then

(iii) if ‖Tλ(x) − x‖ → 0, for all x ∈ C∗
r (Γ), then uλ → 1 uniformly on BR(∆)

for all R.

We verify these properties below, but for now observe that together they imply

the desired result. Assuming nuclearity of the inclusion of C∗
r (Γ) into UC∗(Γ) we

obtain unital completely positive maps Tλ : C∗
r (Γ) → UC∗(Γ) as above. It follows

immediately from the properties above that the associated functions uλ ∈ l∞(Γ × Γ)

form the desired approximate unit..

We now turn to the verification of (i)–(iii), beginning with (i). Let s1, . . . , sn ∈ Γ

and z1, . . . , zn ∈ C. Define an element of H = ⊕l2(Γ) by ξ = (z1δs1
, . . . , znδsn

) and

an operator on ⊕l2(Γ) by the n× n matrix A = [Aij ] ∈Mn(B(l2(Γ))) where

Aij = T (sjs
−1
i ).

A direct calculation shows

∑

i,j

ziu(si, sj)zj =
∑

i,j

zi〈δsj
, T (sjs

−1
i )δsi

〉 = 〈ξ, Aξ〉H.

Thus, it suffices to show that A is positive operator on H. However, since T is

completely positive, this will follow from the fact that the n× n matrix B = [Bij ] ∈

Mn(B(l2(Γ))), where Bij = sjs
−1
i defines a positive operator on H. This is equivalent
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to the assertion that

∑

ij

〈(sjs
−1
i )fi, fj〉 = ‖(s−1

1 f1, . . . , s
−1
N fn)‖2 ≥ 0

for all f1, . . . , fn ∈ l2(Γ), which is straightforward.

We now prove (ii). Since T has finite rank there exist finitely many fi ∈ C∗
r (Γ)∗

and Si ∈ UC∗(Γ) such that T =
∑
fiSi. Since u depends (conjugate) linearly on T

it is sufficient to consider the rank one case where T (s) = f(s)S. In this case,

|u(s, t)| = |〈δs, T (st−1)δt〉| = |f(st−1)||〈δs, Sδt〉| ≤ ‖f‖C∗

r (Γ)∗ |〈δs, Sδt〉|,

and it suffices show that for all ε > 0 there exists R > 0 such that |〈δs, Sδt〉| < ε

provided d(s, t) ≥ R.

At this point the requirement that S ∈ UC∗(Γ) is needed. Let S ′ be a finite width

operator such that ‖S − S ′‖ < ε. Then we have

|〈Sδt, δs〉| ≤ ‖S − S ′‖ + |〈S ′δt, δs〉|,

and for large enough R, d(s, t) > R forces the last term to be zero. The result follows.

We conclude the proof by verifying (iii). Consider

u(s, t) − 1 = 〈δs, T (st−1)δt〉 − 〈δs, δs〉

= 〈δs, T (st−1)δt − δs〉

= 〈δs, (T (st−1) − st−1)δt〉.

Thus, if we have a family Tλ, it follows that

|uλ(s, t) − 1| ≤ ‖Tλ(st
−1) − st−1‖.

To verify the uniform convergence on sets of the form BR(∆) note that d(s, t) < R

implies that st−1 lies in a bounded subset of Γ, hence only a finite number of such

products are possible. Thus, by taking λ sufficiently large the right side can be made

as small as necessary. This completes the proof.



EXACTNESS AND THE NOVIKOV CONJECTURE 9

4. Approximate units and the Haagerup property

The results of Section 2 can be used to directly relate the existence of an approxi-

mate unit of positive definite functions to the Haagerup property for the transforma-

tion groupoid βΓ ⋊ Γ. Here βΓ is the Stone-Cech compactification of Γ and Γ acts

on βΓ on the right by extending right translation.

This requires extending the notion of positive definite and negative type functions

to groupoids. This has been done by Tu [12, Section 3.3] in the following way. We

specialize to the case of a transformation groupoid X ⋊ Γ, defined as above, where

X is a compact space on which Γ acts on the right. A complex-valued function ϕ on

X ⋊ Γ is positive definite if

∑

ij

ziϕ(x · si, s
−1
i sj)zj ≥ 0, for all x ∈ X, s1, . . . , sn ∈ Γ and zi, . . . , zn ∈ C.

A real-valued function ψ on X ⋊ Γ is of negative type if

(i) ψ(x, e) = 0 for all x ∈ X,

(ii) ψ(x · s, s−1t) = ψ(x · t, t−1s), for all x ∈ X, s, t ∈ Γ,

(iii)
∑

ij aiψ(x · si, s
−1
i sj)aj ≤ 0, for all x ∈ X, s1, . . . , sn ∈ Γ and a1, . . . , an ∈ R

satisfying
∑

j aj = 0.

Definition 4.1. The transformation groupoid X ⋊ Γ has the Haagerup property if

there exists a proper, negative type function ψ : X ⋊ Γ → R.

IfX⋊Γ has the Haagerup property, then it admits a proper affine action on a field of

Hilbert spaces, [12]. This latter property, in the case of groups, is call a-T-menability.

We may now state the main result of this section.

Theorem 4.1. Let Γ be a discrete group. The following are equivalent:

(i) Γ is uniformly embeddable in a Hilbert space.

(ii) The groupoid βΓ ⋊ Γ has the Haagerup property.

(iii) C0(βΓ ⋊ Γ) admits an approximate unit of positive definite functions.
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Proof. There is an equivalence of groupoids, α : Γ ⋊ Γ → Γ × Γ given by α(s, t) =

(s, st). Here Γ×Γ is the trivial groupoid. The inverse of α is β(s, t) = (s, s−1t). These

maps define correspondences, α∗ : l∞(Γ × Γ) ↔ Cb(βΓ ⋊ Γ) : β∗ between functions

on Γ× Γ and βΓ ⋊ Γ via α∗(f)(s, t) = f(s, st) and β∗(g)(s, t) = g(s, s−1t). Note that

α∗(f), initially defined on Γ × Γ ⊂ βΓ ⋊ Γ, extends by continuity to βΓ ⋊ Γ since

fα(·, t) is bounded for each fixed t ∈ Γ.

It is easy to check that α∗ and β∗ are inverses and provide a bijection between

l∞(Γ×Γ) and Cb(βΓ⋊Γ). These maps have the following properties which are direct

consequences of the definitions.

(i) A function f ∈ l∞(Γ×Γ) is metrically proper if and only if α∗(f) is a proper

function on βΓ ⋊ Γ.

(ii) The map α∗ takes the ideal C0(Γ × Γ; ∆) to the ideal C0(βΓ ⋊ Γ).

(iii) A net {uλ} is an approximate unit for C0(Γ×Γ; ∆) if and only if α∗(f)(uλ)

is an approximate unit for C0(βΓ ⋊ Γ).

It remains to note that α∗ preserves positive definite and negative type functions.

This also follows in a straightforward way from the above formulas.

Now the result follows from Theorem 2.3.

5. Remarks

A finitely generated discrete group Γ is strongly exact if the inclusion of C∗
r (Γ) into

UC∗(Γ) given by the left regular representation is a nuclear map, that is, if Γ satisfies

the hypethesis of Theorem 3.1.

1. If a discrete group Γ has the property that there is a nuclear embedding of C∗
r (Γ)

into B(l2(Γ)) then the inclusion given by the left regular representation is also

nuclear. It is possible that this inclusion is also a nuclear map into UC∗(Γ). In

other words, it is possible that every exact group is strongly exact. If this is

indeed the case then one would deduce that an exact group satisfies the Novikov

conjecture.
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2. One may consider algebras A satisfying

C∗

r (Γ) ⊆ A ⊆ UC∗(Γ)

and impose the requirement that the inclusion of C∗
r (Γ) into A be a nuclear

map; if A = UC∗(Γ) then Γ is strongly exact, whereas if A = C∗
r (Γ) then C∗

r (Γ)

is nuclear. One obtains a family of conditions interpolating between strong

exactness and nuclearity. In the case A = C∗
r (Γ) the procedure employed above

for constructing a proper negative type function on Γ × Γ actually yields an

invariant one, which descends to Γ showing that Γ has the Haagerup property.

This gives an alternate account of the result of Beki, Cherix and Valette [3].
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