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Effective spin model for interband transport in a Wannier-Stark lattice system
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We show that the interband dynamics in a tilted two-band Bose–Hubbard model can be reduced
to an analytically accessible spin model in the case of resonant interband oscillations. This allows
us to predict the revival time of these oscillations which decay and revive due to inter-particle inter-
actions. The presented mapping onto the spin model and the so achieved reduction of complexity
has interesting perspectives for future studies of many-body systems.

I. INTRODUCTION

An amazing control of quantum degrees of freedom
is nowadays routinely possible with the techniques of
preparing and handling ultracold matter in the labora-
tory [1–5]. Backed by a plethora of theoretical propos-
als (see, e.g., [6–9]), a new direction is the coupling of
such matter to additional degrees of freedom, such as
provided by internal states (e.g. [10]), by external po-
tentials (e.g. [11]), by coupling to a bath (e.g. [12]), to
a continuum (e.g. [13, 14]) or even to macroscopic ob-
jects (e.g. [15, 16]). Such hybrid quantum systems are of
high interest for applications, ranging from fundamental
physics to metrology.
A major challenge in studying these systems is to re-

duce their inherent complexity. This is important for an
understanding of both the internal dynamics as well as an
extension to include a coupling to further degrees of free-
dom. In this paper we focus on the dynamics of atomic
bosons in a two band Bose-Hubbard model. The prob-
lem is non-stationary due to an additional Stark force (or
constant tilt). In particular, we describe the Rabi-like
oscillations between the two bands, which are well pro-
nounced in the case of single-particle resonant tunnelling
between the levels of adjacent lattice wells [13, 17]. The
presence of a second band gives an additional degree of
freedom – in the sense of the previous paragraph – mak-
ing the full many-particle problem very rich in new phe-
nomena, yet also very complicated in general. We show
how to effectively map the original problem to a much
simpler spin system for specific fillings and parameters.
This new model allows us to derive an analytical formula
for the revival time of the interband oscillations which
decay and revive due to weak inter-particle interactions.

II. THE SYSTEM

A. The many-body model

We consider a two-band Bose-Hubbard model with
an additional external force as obtained from a general
many-body Hamiltonian under the assumption of a con-
tact interaction and introduced in [18, 19]. We mea-
sure all parameters in recoil energies Erec ≡ ~

2k2L/(2m),

where kL is the wave vector of the laser creating the op-
tical lattice and m the mass of the atoms. Setting ~ = 1
throughout, the Hamiltonian reads [18, 19]

H =
L
∑

l=1

[

ǫ−l n
a
l −

ta
2
(a†l+1

al + h.c.) +
gWa

2
na
l (n

a
l − 1)

+ ǫ+l n
b
l +

tb
2
(b†l+1

bl + h.c.) +
gWb

2
nb
l (n

b
l − 1)

+ FC0(b
†
lal + h.c.) + 2gWxn

a
l n

b
l+

+
gWx

2
(b†l b

†
lalal + h.c.)

]

. (1)

The operator al (a†l ) annihilates (creates) a particle at

site l of totally L sites in the lower band and bl (b
†
l ) in

the upper band with the number operators na
l = a†l al,

nb
l = b†l bl. The bands are separated by a bandgap ∆

and have on-site energies ǫ±l = ±∆/2 + lF . The hop-
ping amplitudes between neighbouring sites in band a, b
are denoted by ta, tb > 0, and a repulsive interaction be-
tween particles occupying the same site in band a (b)
with a strength Wa (Wb) has been included. The single-
particle coupling of the bands is proportional to the ex-
ternal Stark force F via C0F with a coupling constant
C0 depending on the depth of the lattice V0 [18, 19]. The
bands are additionally coupled via the inter-particle in-
teractions with a strength Wx. Focusing on a realisation
with a single optical lattice, the parameters fulfill gener-
ally: ∆ ≫ ta, tb, as well as ta, tb ≈ Wi and C0 ≈ −0.1.
We take the external force F as a free parameter. Addi-
tionally we assume that the interaction strength can be
tuned, e.g., by the use of Feshbach resonances [3], and
include a factor g to all interaction terms. For numeri-
cal simulations, we change to the interaction-picture with
respect to the external force [20] which removes the tilt
∑

l ln
a,b
l F and replaces a†l+1

al → eiFta†l+1
al (and likewise

for b†l+1
bl). The Hamiltonian is then time-dependent with

a periodicity of TB ≡ 2π/F and allows to use periodic
boundary conditions aL+1 = a1 and bL+1 = b1.

To study the interband transport, we prepare the sys-
tem in an initial state |ψ(0)〉, with a uniform distribution
of particles in the lower band only and evolve it in time
by the many-body Schrödinger equation. The quantity
we study is the (normalised) number of particles in the
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upper band

Nb(t) ≡
1

N
〈ψ(t)|

∑

l

nb
l |ψ(t)〉, (2)

where N =
∑

l(n
a
l + nb

l ) is the total number of parti-
cles. We will refer to Nb(t) as occupation of the upper

band. For the range of parameters described above, this
observable shows a superposition of many sinusoidal os-
cillations with an amplitude of few per cent, even for
strong forces [21].

B. Weakly interacting system in resonance

Despite the small interband oscillations described in
the previous paragraph, a strong enhancement of the in-
terband transport is possible for specific parameter val-
ues. When the force-induced tilt of the lattice is such
that a lower and upper band energy level become nearly
degenerate (i.e. for ∆ ≈ mF, m ∈ N), the interband
oscillations of Nb(t) come close to 100% indicating a res-
onantly enhanced interband transport [21]. We refer to
these specific parameter values as resonant and will focus
on this resonant behaviour in the following.
To describe the non-interacting system H(g = 0) = H0

in resonance, it is useful to apply the following basis
transformation involving Bessel functions of the first kind
Jn(x) [21, 22]

αn =
∑

l∈Z

Jl−n(xa)al βn =
∑

l∈Z

Jl−n(xb)bl, (3)

with xi ≡ ti/F , i = a, b. By using
∑

l∈Z
Jn−l(x)Jn′−l(x

′) = Jn−n′(x − x′), one finds
that the transformation removes the hopping terms from
the original Hamiltonian (1) but leads to a coupling
between any sites from the two different bands weighted
by Bessel functions

H0 =
∑

l∈Z

[

ǫ−l α
†
lαl + ǫ+l β

†
lβl

+
∑

m∈Z

C0FJm(∆x)(α†
lβl−m + h.c.)

]

, (4)

where ∆x = xa +xb and ǫ
±
l = ±∆/2+ lF as above. The

resonance condition, ∆ ≈ mF or equivalently ǫ−l ≈ ǫ+l−m,
means that two levels from different bands become ener-
getically degenerate. In this case, it is sufficient to keep
only the direct coupling between these two sites leading
to a sum of independent two-level systems

Hres
0 =

∑

l∈Z

[

ǫ−l α
†
lαl+ǫ

+

l β
†
lβl+C0FJm(∆x)(α†

lβl−m+h.c.)
]

.

(5)
This approximate description of the system in resonance
corresponds to lowest order nearly degenerate perturba-
tion theory and higher order corrections are easily calcu-
lated, see e.g. [23, 24]. However, the lowest order approx-
imation, eq. (5), gives already an accurate description of

the non-interacting system in resonance [21, 23]. The
resonant contribution to the non-interacting case is thus
well-described as Nb(t) = sin2 [C0FJm(∆x) t] with a pe-
riod Tres = π/[C0FJm(∆x)] ≫ TB much larger than the
Bloch period.

As demonstrated in [21], the inclusion of a weak inter-
particle interaction leads to a dephasing of the resonant
interband oscillations. The occupation of the upper band
as a function of time exhibits a collapse and revival effect,
with the time-scales for the collapse and revival inversely
proportional to the interaction strength g [23]. An exam-
ple of such oscillations under a weak repulsive interaction
is given by the solid line in fig. 2 below. In the weakly
interacting regime under consideration here, one of the
interaction terms in the full Hamiltonian eq. (1) is most
important. We focus solely on repulsive interactions, for
which the system tries to avoid double occupancy of sites
in either bands. However, the system is always assumed
to be at approximately integer filling and at the same
time sites from different bands are nearly degenerate,
such that it cannot avoid to have two particles occupying
the same site in either band. Thus the dominant contri-
bution comes from the term 2gWx

∑

l n
a
l n

b
l (see [21] for

further details). In the next section we derive an effective
Hamiltonian that allows to study the effect of a weak in-
teraction on the resonant interband oscillations in detail.

III. RESULTS

A. Effective spin model for system in resonance

The description of the non-interacting system in reso-
nance according to eq. (5) contains already the seed for an
effective model. The sum of many independent two-level
systems can be viewed as a system of non-interacting
spins. We only need to re-order the labeling of lattice
sites such that the two levels being coupled have the same
site-index and the coupling operator is then proportional
to the Pauli matrix σx. The constant of proportionality
is the coupling matrix element C0FJm(∆x) from eq. (5).
This is simply a different way of writing the approximate
Hamiltonian for the non-interacting system in resonance,
eq. (5), and is schematically displayed for a resonance of
order m = 2 in fig. 1. To include the effect of the most
important interaction term 2gWx

∑

l n
a
l n

b
l into our effec-

tive spin model, we insert the basis transformation from
eq. (3) and obtain in the transformed basis

2gWx

∑

l

na
l n

b
l = 2gWx

∑

l,l1,...,l4

{

Jl−l1(xa)Jl−l2(xa)×

Jl−l3(xb)Jl−l4(xb) α
†
l−l1

αl−l2
β†
l−l3

βl−l4

}

≈ 2gWxJ
2
0 (xa)J

2
0 (xb)

∑

l

α†
lαlβ

†
l βl.

(6)
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FIG. 1: Schematical view of the effect of the interband inter-
action on the system in resonance of order m = 2. In reso-
nance, the system is forced into a superposition of states from
both bands (the sites forming a superposition are indicated
by dashed ellipses). This happens on all lattice sites and the
system cannot avoid an interaction of 2gWx

∑
l
na

l n
b

l . A new
fictitious lattice labeling scheme setting the superpositions on
one site is also indicated in the figure.

Here we used the fact that only one of the many differ-
ent combinations of Bessel functions gives a significant
contribution [21, 23]. The reason is that the arguments
of the Bessel functions xa and xb are much smaller than
unity for a realisation with a single optical lattice as dis-
cussed here, and the dominant contribution is therefore
given by the product of four zeroth order Bessel func-
tions J2

0 (xa)J
2
0 (xb). We denote the interaction strength

for this dominant process by

U ≡ 2gWxJ
2
0 (xa)J

2
0 (xb). (7)

The introduction of the new ficticious lattice is now ef-
fectively achieved by replacing l → l +m for the sites of
the upper band. It is important to note that the inter-
band interaction was between atoms occupying the same
site in different bands in the original lattice, i.e. ∝ na

l n
b
l ,

whereas in the new lattice it connects a particle at one

lattice site in the lower band α†
lαl ≡ nα

l with a particle

at a different site in the upper band β†
l+mβl+m ≡ nβ

l+m

(where we used the transformed basis αl, βl). We fo-
cus on unit filling N = L and, since the repulsive inter-
action effectively suppresses higher occupation of lattice

sites, we limit the occupation numbers of nα
l and nβ

l to
0 or 1 for our effective model. This allows us to replace

nα,β
l → σ↑,↓

l with the projectors on a spin-up or spin-

down state σ↑↓
l = (1l ± σz

l ) /2.
Collecting all arguments, the effective Hamiltonian (for

a resonance of order m) is accordingly given by

Heff =

L
∑

l=1

(

Vmσ
x
l + Uσ↑

l σ
↓
l+m

)

(8)

where Vm = C0FJm(∆x). Here σi
l denotes the Pauli

matrices for a spin at site l. The first part is as in the
non-interacting resonant system, which was also a sum
of independent two-level systems. We only changed the
ordering of the sites to bring degenerate levels close to-
gether. The second part reflects the repulsion of two
particles when sitting in different bands or different spin
states respectively. Since we are using spin-1/2 matri-
ces in this effective description it can only be applied to

the case of unit filling and the number of lattice sites
is per definition identical with the number of spins. We
expect it to be a good approximation for close-to-unit fill-
ing (as is supported by our results below, see fig. 4). An
extension to higher fillings should be possible by using
larger spins than spin 1/2, since this would allow fur-
ther distinction of the type non-occupied, partly occu-
pied, or highly-occupied, but is beyond the scope of the
present article. The effective Hamiltonian (8) is trans-
lational invariant as our original model, such that one
could use a reduction to subspaces of fixed total quasi-
momentum similar to [18, 20, 23]. Please note, that
the Hilbert space for the effective Hamiltonian has a di-
mension dimHeff = 2L that is much smaller than the
Hilbert space of the original bosonic problem, eq. (1),
where dimH = (N + 2L− 1)!/[N !(2L− 1)!]. This is ad-
vantageous for numerical computations since much larger
system sizes become computable as compared to the orig-
inal model.

Let us discuss the effective model of eq. (8) in more
detail. The parameters in the effective spin model are
chosen for the particular case of the system in resonance
of order m. It includes only the resonant coupling be-
tween the two sites and other non-resonant couplings are
neglected. The effective model does thus not reproduce
small scale oscillations which are found on top of the
resonant oscillations within the full model (see [21] for
an example). However, these oscillations are only weakly
influenced by the interparticle interaction and are not rel-
evant for the collapse and revival effect we want to study.
Another important aspect of the effective spin model con-

cerns the choice of the interaction term σ↑
l σ

↓
l+m. Here we

included only one of the four interaction terms from the
original Hamiltonian, eq. (1), which has the strongest ef-
fect on the resonant interband oscillations. The inclusion
of the other terms is straightforward but not necessary
in the present context. Furthermore we are limited to
weak inter-particle interactions, U ≪ Vm, which is, how-
ever, not a limitation of the effective model but origi-
nates from the physics of the original system: As soon
as the inter-particle interaction becomes too strong, the
resonant tunneling is washed out and the Rabi-like inter-
band oscillations cede and eventually transform into an
essentially structureless evolution of the band population
defined in eq. (2) [23].

To compare the effective model to the full problem,
we computed the time-evolution of similar initial states
in both models and show the resulting occupation of the
upper band as a function of time with the pronounced col-
lapse and revival effect in fig. (2). The occupation of the
upper band for the full model is given byNb(t), as defined
by eq. (2), and has been computed by direct numerical
integration of the time-dependent Schrödinger equation.
In the effective spin model, a state with an atom occupy-
ing the upper band is represented by a spin-up such that
the corresponding observable for the spin model is given

by N↑(t) = 1

L
〈ψ(t)|

∑

l σ
↑
l |ψ(t)〉 and the initial state is

of the form |↓↓ . . . ↓〉. Both observables are compared
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FIG. 2: Occupation of the upper band in the full two-band
Bose–Hubbard model (solid line; see [21] for details) and num-
ber of up-spins in the effective spin model (dashed line) for the
same parameters. The spin model reproduces most features
of the time signal, first and foremost the collapse and revival
are in very good agreement between both models. Parame-
ters correspond to V0 = 10: ∆ = 7.77, ta = 0.005, tb = 0.121,
C0 = −0.114, Wa = 0.040, Wb = 0.027, and Wx = 0.018; res-
onance order m = 1, i.e. F = 7.9804; g = 0.1 and N = 5 = L.

in fig. 2 for a weakly interacting system of medium size.
Overall, the effective spin model reproduces the occupa-
tion of the upper band very well, especially when com-
pared to the drastic simplification from the full two-band
Bose–Hubbard model to the effective model of eq. (8).
The good agreement is particularly surprising when tak-
ing into account that a reduction of occupation numbers
to 0 or 1 is usually known as “hard-core bosons” [25, 26]
and valid in the limit of strong interactions, whereas we
are operating in exactly the opposite regime of U ≪ Vm.
Furthermore, the effective model reproduces the collapse
and revival effect only when it is introduced from the
transformed basis. Limiting the occupation number in
the original al, bl-basis by artificial constraints (such a
truncation procedure was applied, e.g., in [27, 28]) can-
not reproduce the effect [23].

A great advantage of the effective spin model for the in-
terband transport, eq. (8), is its exact solvability. Rewrit-
ing the spin-up and -down operators in terms of Pauli ma-
trices and applying a rotation of π/2 around the y-axis
(which leads to σx → σz and σz → −σx), our effective
Hamiltonian takes the following form

Heff =

L
∑

l=1

(

Vmσ
x
l − 1

4
U σz

l σ
z
l+m

)

+ const. (9)

This Hamiltonian is known (for m = 1) as the quantum
Ising model in a transverse magnetic field [29]. It de-
scribes coupled spins that tend to align in z-direction but
are subjected to the force of an applied magnetic field in
x-direction. It can be solved exactly by subsequent appli-
cation of a Jordan–Wigner transformation [30], Fourier
and Bogolyubov transformation. The final result in

terms of Bogolyubov quasi-particles is [23, 29]

Heff =
∑

k

ǫ(k)
(

d†kdk − 1/2
)

. (10)

The exact dispersion relation ǫ(k) is given by

ǫ(k) = 2Vm

√

1− U
2Vm

cos k + ( U
4Vm

)2 ≈ 2Vm − 1

2
U cos k

(11)
and can be approximated for our weakly interacting sys-
tem U ≪ Vm as shown. Equation (10) is the exact
solution to our effective spin model. The elementary
excitations of the system are non-interacting fermions
with a dispersion relation that is approximately given
by a cosine. These elementary excitations correspond to
magnons, i.e., to delocalised spin-flips in the original spin
basis. They read explicitly

dk = cos(θk/2)ck − i sin(θk/2)c
†
−k (12)

tan θk =
sin k

cos k − 4Vm/U
, (13)

where ck is the Fourier transform of cl = σ−
l e

iπ
∑

n<l
c†
n
c
n ,

with σ±
l = (σx

l ± iσy
l )/2 and σz

l = 2c†l cl − 1.

B. Revival time within the effective model

The exact solution eq. (10) of the effective Hamilto-
nian allows, e.g., the computation of various correlation
functions. But in the present context, we are interested
in the time-evolution of particular initial states

|ψ(t)〉 =
∑

n

e−iEnt cn |En〉, (14)

where |En〉 are the eigenstates to the effective model,
eq. (10), and cn = 〈En|ψ(0)〉. In general the overlaps
cn between the given initial state and all eigenstates are
needed for the time evolution. Instead of an analytical
derivation of the overlaps on basis of the Jordan–Wigner
transformation, we adopt a numerical approach here in
order to decide which of the magnon states are relevant.
In detail, it is sufficient to know which eigenstates have a
significant contribution to the time-evolution to estimate
the revival time of the resonant interband oscillations.
Fig. 3 shows the coefficients cn for a time evolution of the
initial state |↓ . . . ↓〉 sorted by their eigenenergies. The
eigenenergies appear in several bunches corresponding to
eigenstates with a different number of magnon excita-
tions ranching from 0 to L magnons. Additionally, the
three coefficients with the largest amplitude have been
marked by squares in fig. 3. We find that the largest
coefficients in the eigenbasis expansion are from the en-
ergetically lowest eigenstates from the central bunches of
the spectrum. To be more specific, we found numeri-
cally that the largest coefficients always come from the
subspaces with M − 1, M , and M + 1 magnons, where
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FIG. 3: Shown are the coefficients cn = 〈En|ψ(0)〉 for an
eigenbasis expansion of the initial state |ψ(0)〉 = | ↓ . . . ↓〉
versus the corresponding eigenenergies (+). The three largest
coefficients are marked by (�) and highlight eigenstates with
M − 1, M , and M +1 magnons. Parameters: Vm = 1, L = 7,
U = 0.25, and F = 4.6020. Note the logarithmic scale on the
y-axis.

M = L/2 for L even and M = (L− 1)/2 for L odd, and
are from the eigenstates with lowest energy within these
subspaces. This important observation allows a simple
estimate of the revival time as the time for a beating
between oscillations with these three energies as frequen-
cies.

To find the lowest eigenenergy of state with M
magnons, we use the fact that the energy of a many-
body state with M magnons in the weakly interacting
regime is according to eq. (11) given by

EM =

M
∑

l=1

(

2Vm − 1

2
U cos(kjl)

)

, (15)

where kjl = 2πjl/L and each jl can take a value between
1, . . . , L. The energies for a given number of magnons
M thus arise from different choices of the momenta kjl .
The state with lowest energy in this cosine dispersion is
obtained by using momenta that fill the empty cosine dis-
persion from zero upwards. A many-magnon state with
M = L/2 is reached when half of the possible states are
filled and withM±1 by adding or removing one magnon,
respectively. This determines the momenta kjl to obtain
a state with M magnons and minimal energy. We can
now estimate the revival time from the difference between
the energies of states withM−1,M , andM+1 magnons,
i.e., we need ∆ω = (EM+1 − EM ) − (EM − EM−1) =
EM+1 + EM−1 − 2EM . Inserting explicitly that the en-
ergy of M magnons is proportional to the sum of M
cosine functions, eq. (15), with different momenta filling
the possible magnon states from below, we obtain the

following frequency difference

∆ω = −
U

2

(

M+1
∑

j=1

cos(kj) +

M−1
∑

j=1

cos(kj)− 2

M
∑

j=1

cos(kj)
)

= −
U

2

(

cos kM+1 − cos kM
)

≈ −
π

L
U, (16)

where we expanded the cosine to lowest order around its
zero. Using eq. (16) and our expression for U , eq. (7),
we find that the revival time as estimated by oscillations
between the dominant frequencies is given by

trev =
L

2π

4π

gWxJ2
0 (xa)J

2
0 (xb)

. (17)

The effective spin model predicts the revival time to be
inversely proportional to the interaction strength and to
a product of two Bessel functions from the basis transfor-
mation. The parameters of the original full Hamiltonian
eq. (1), like the hopping strengths, the gap between the
two energy bands and the order of the resonance, en-
ter via the arguments of Bessel functions xa,b = ta,b/F ,
where the force has to be chosen according to the or-
der of resonance F ≈ ∆/m. These parameters and the
revival time change when the depth of the optical lat-
tice V0 is varied (see eq. (4)). Furthermore, the result
eq. (17) from the effective spin model additionally pre-
dicts a linear dependence of the revival time on the num-
ber of lattice sites. In this way, our effective model adds
an additional factor of L/2π to our earlier result [21],
which has been obtained following the arguments that
led to eq. (7) above, with the assumption that the initial
state is comparable to a coherent state and estimating
the revival time by computing the effect of the dominant
interaction term on a coherent state perturbatively [21].
To compare the result from eq. (17) to numerical simu-

lations of the full two-band Bose–Hubbard model, we use
the size-dependent prefactor to rescale numerical results
for different system sizes. The curves for different system
sizes should coincide, as is verified in fig. 4. The revival
times from full many-body models with Hilbert spaces
ranging over three orders of magnitude fall onto one curve
and demonstrate the validity of the effective spin model
eq. (8) for the interband transport in the weakly inter-
acting two-band Bose–Hubbard model. The remaining
fluctuations with the system size originate in the approx-
imation of eq. (16) and decrease with growing L. The
additional offset arises from taking only the three largest
coefficients for the derivation of the explicit expression
in eq. (17). This leads to an underestimation by about
10% of the time for the maximum in the revived inter-
band oscillations (which is our definition for the revival
time). Inclusion of more than three coefficients should
remove this systematic offset between the predicted and
measured revival time. This has been tested by com-
paring the oscillation dynamics of the original model (1)
with the full spin model (8) [23], and the good agreement
is shown for an exemplary data point in fig. 4 (cross, ex-
tracted from the temporal evolution presented in fig. 2
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FIG. 4: We show the revival times from different numerical
simulations of the full two-band Bose–Hubbard model (the
corresponding system sizes ‘N inL’ and the dimension of the
Hilbert spaces D are indicated in the legend). The numeri-
cal values have been rescaled by the size-dependent prefactor
2π/L. The data points for different system sizes coincide,
with small fluctuations due the approximation in eq. (16).
Our analytical prediction eq. (17) (red dashed line) captures
nicely the scaling with the system parameters, yet it shows a
systematic offset arising from the three level approximation.
The numerical result of the full spin model (cross marked by
arrow), extracted from fig. 2, coincides with the full problem
of eq. (1).

above). We finally note, that eq. (17) predicts a diver-
gence of the revival time whenever the parameters of the
system are chosen such that one of the Bessel functions
in the denominator vanishes. This can be achieved, e.g.,
by tuning the energy gap ∆ between the two bands, and
the expected divergence of the revival time close to Bessel
zeros was observed in numerical simulations [23], giving
room for a great deal of control of the resonant interband
oscillations.

IV. SUMMARY

We have shown how to reduce the complexity of the
original Hamiltonian of eq. (1) to the exactly solvable

model of eq. (9) for filling factors of the order one and
for resonant coupling between the two energy bands.
For weak inter-particle interactions the model is in good
agreement with the full problem and allowed us to derive
an analytical formula for the revivals of the resonant in-
terband oscillations. Interesting future aspects to work
on would be to include decay to higher energy states in
the continuum part of the spectrum (e.g. by opening the
model in a similar way as exercised in [18, 31] for a one-
band problem) and to extend the problem to atoms with
internal structure. The internal degrees of freedom would
become correlated with the external transport in “hori-
zontal” – along the lattice – and “vertical” – between
the bands – direction. Reductions of complex models are
in general a necessary prerequisite in order to describe
quantum systems with many degrees of freedom – pos-
sibly of different kind and nature. So we hope that the
spirit of our approach may inspire future research in this
direction.
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