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REGULARITY OF THE OPTIMAL STOPPING PROBLEM FOR LÉVY PROCESSES WITH

NON-DEGENERATE DIFFUSIONS

ERHAN BAYRAKTAR AND HAO XING

Abstract. The value function of an optimal stopping problem for a process with Lévy jumps is known to be a

generalized solution of a variational inequality. Assuming the diffusion component of the process is nondegenerate

and a mild assumption on the singularity of the Lévy measure, this paper shows that the value function of obstacle

problems on an unbounded domain with finite/infinite variation jumps is in W
2,1

p,loc
. As a consequence, the smooth-fit

property holds.

1. Introduction

On a probability space (Ω, (Ft)t∈R+ , P), consider a one-dimensional jump diffusion process X = {Xt; t ≥ 0}

whose dynamics is governed by the following stochastic differential equation:

(1.1) dXt = b(Xt−, t) dt+ σ(Xt−, t) dWt + dJt,

in which W = {Wt; t ≥ 0} is a 1-dimensional Wiener process, J = {Jt; t ≥ 0} is a pure jump Lévy process,

independent of the Wiener process, with its Lévy measure denoted by ν. This paper studies the problem of

maximizing the discounted terminal reward g by optimally stopping the process X before a fixed time horizon T .

The value function of this problem is defined as

(OS) u(x, t) = sup
τ∈Tt,T

E
t,x
[
e−r(τ−t)g(Xτ )

]
,

in which Tt,T is the set of all stopping times valued between t and T . A specific example of such an optimal stopping

problem is the American option pricing problem, where X model the logarithm of the stock price process and g

represents the pay-off function.

The value function u is expected to satisfy a variational inequality with a nonlocal integral term (see e.g.

Chapter 3 of [7]). When the diffusion component of X may vanish, different concepts of solutions were employed

to characterize the value function. Pham used the notion of viscosity solution in [21]. Also see [3], [4] for more

recent results in this direction. Lamberton and Mikou worked with Lévy processes and showed in [18] that the

value function can be understood in the distribution sense.

When the diffusion component in X is nondegenerate, the value function is expected to have higher degree

of regularity. Sections 1-3 in Chapter 3 of [7] and [15] analyzed the Cauchy problems for second order partial

integro-differential equations and showed the existence and uniqueness of solutions in both Sobolev and Hölder

spaces. Also see [19]. The intuition is that the diffusions component dominates the contribution from jumps in

determining the regularity of solutions, no matter what the variation of the jumps are. However this intuition

is only a folklore theorem for obstacle problems. There are some limited results available whose assumptions on
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obstacles, domains, and the structure of the jumps may not be appropriate for financial applications. For example,

Bensoussan and Lions analyzed an obstacle problem for jump diffusions where jumps may have finite/infinite

activity with finite/infinite variation; see in Theorem 3.2 in [7] on pp. 234. However, their assumption on the

obstacle may not be satisfied by option payoffs. In the mathematical finance literature, when irregular obstacles

are considered, the jumps are usually restricted to finite activity or infinite activity with finite variation cases.

Zhang studied in [25] an obstacle problem for a jump diffusion with finite active jumps. Also see [20], [24], [5], and

[6] for further developments. More recently, Davis et al. in [11], generalizing the results in [16] for the diffusion

case, analyzed an impulse control problems for jump diffusions with infinite activity but finite variation jumps.

A regularity result which treats obstacle problems with irregular obstacles and infinite variation jumps has been

missing in the literature.

In this paper, we consider jump diffusions with finite/infinite activity and finite/infinite variational jumps. We

show in Theorem 2.5 that the value function of an obstacle problem solves a variational inequality for almost all

points in the domain, and it is an element in W 2,1
p,loc (see later this section for the definition of this Sobolev space).

This regularity result directly implies that the smooth fit property holds and the value function is C2,1 inside the

continuation region. These results confirm the intuition that the nondegenerate diffusions components dominate

any type of Lévy jumps in determining the regularity of the value function for obstacle problems.

The remainder of the paper is organized as follows. After introducing notation at the end of this section, main

results are presented in Section 2. Regularity properties of the infinitesimal generator of X are studied in Section 3.

Then main results are proved in Section 4.

1.1. Notation. For a given open interval D = (ℓ, r) with −∞ < ℓ < r < ∞, let us define the δ-neighborhood

of D as Dδ := (ℓ − δ, r + δ) for δ > 0. We will also denote Ds := D × (0, s), Dδ
s := Dδ × (0, s) for any s > 0,

Es := R× [0, s], and · the closure of the indicated set. Let us recall definitions of Sobolev spaces and Hölder spaces

in what follows; see pp. 5-7 for further details.

Definition 1.1. C2,1(Ds) denotes the class of continuous functions on Ds with continuous classical time and

spatial derivatives up to the second order.

For any positive integer p ≥ 1, W 2,1
p (Ds) is the space of functions v ∈ Lp(Ds) with generalized derivatives ∂tv,

∂xv, ∂
2
xxv, and a finite norm ‖v‖W 2,1

p (Ds)
:= ‖∂tv‖Lp(Ds) + ‖∂xv‖Lp(Ds) + ‖∂2

xxv‖Lp(Ds). The space W 2,1
p, loc(Ds)

consists of functions whose W 2,1
p -norm is finite on any compact subsets of Ds.

For any positive nonintegral real number α, Hα,α/2
(
Ds

)
is the space of functions v that are continuous in Ds

with continuous classical derivatives ∂r
t ∂

s
xv for 2r + s < α, and have finite norm ‖v‖

(α)

Ds
:= |v|

(α)
x + |v|

(α/2)
t +

∑
2r+s≤[α] ‖∂

r
t ∂

s
xv‖

(0), in which ‖v‖(0) = maxDs |v|, |v|
(α)
x =

∑
2r+s=[α] sup|x−x′|≤ρ0

|∂r
t ∂

s
xv(x,t)−∂r

t ∂
s
xv(x

′,t)|

|x−x′|α−[α] , and

|v|
(α/2)
t =

∑
α−2<2r+s<α sup|t−t′|≤ρ0

|∂r
t ∂

s
xv(x,t)−∂r

t ∂
s
xv(x,t

′)|

|t−t′|(α−2r−s)/2 , for a constant ρ0. The space Hα
(
Ω
)
is the Hölder

space when only spatial variables are considered.

2. Main results

2.1. Model. Let us first specify the jump diffusion X in (1.1). We assume that the drift and volatility of X and

the discounting factor r satisfy the following assumption:

Assumption 2.1. Let a := 1
2σ

2. Coefficients a, b, r ∈ Hℓ, ℓ2 (ET ) for some ℓ > 1, r(x, t) ≥ 0, moreover there exist

a strictly positive constant λ such that a(x, t) ≥ λ for all (x, t) ∈ ET .

Under above assumption, both b and σ are Lipschitz continuous on ET . For the pure jump component J in

(1.1), we assume that it is a Lévy process with the Lévy measure ν, which is a positive Radon measure on R with a
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possible singularity at 0. This measure ν satisfies
∫
R
y2 ∧ 1 ν(dy) < ∞, see [22]. These assumptions on coefficients

and the jump component ensure that (1.1) admits a unique strong solution, which we denote by X . This jump

diffusion process X is said to have finite activity, if ν is a finite measure on R, otherwise it is said to have infinite

activity.

In Assumption 2.1, X is assumed to have a nondegenerate diffusion component. Meanwhile, it could also have

infinitely active jump component. The coexistence of diffusions and infinite activity jumps is motivated by recent

studies of Aı̈t-Sahalia and Jacod in [1] and [2].

Among all possible Lévy measures, we consider the following large subclass in this paper:

Assumption 2.2. The Lévy measure satisfies
∫
|y|>1 |y|ν(dy) < ∞. Moreover it has a density, which we denote by

ρ, and this density satisfies ρ(y) ≤ M
|y|1+α on |y| ≤ 1, for some constants M > 0 and α ∈ [0, 2).

The interval |y| ≤ 1 can be replaced by any other neighborhood of 0 in our analysis, here |y| ≤ 1 is chosen to

ease the presentation.

Remark 2.3. Virtually all Lévy processes used in the financial modeling satisfy above assumption. For jump

diffusions models, ν is a finite measure as in Merton’s and Kou’s model. For subordinated Brownian motions, ρ has

a power singularity 1/|y|1+2β at y = 0, with 0 ≤ β < 1; see (4.25) in [10]. In particular, this class contains Variance

Gamma and Normal Inverse Gaussian where β = 0 or 1/2 respectively. For generalized tempered stable processes

(see Remark 4.1 in [10]), ρ(y) = C−

|y|1+α
−
e−λ−|y|1{y<0} + C+

|y|1+α+
e−λ+y1{y>0}, with α−, α+ < 2 and λ−, λ+ > 0.

In particular, CGMY processes in [9] and regular Lévy processes of exponential type (RLPE) in [8] are special

examples of this class.

Having introduced the jump diffusion process X , let us discuss the problem (OS). We assume that the payoff

function g satisfies the following assumption. A typical example, where this assumption holds, is the American put

option payoff g(x) = (K − ex)+ for some K ∈ R+.

Assumption 2.4. The payoff function g is a positive bounded Lipschitz continuous on R, i.e., there exists positive

constants K and L such that 0 ≤ g(x) ≤ K for any x ∈ R and |g(x)− g(y)| ≤ L|x− y| for any x, y ∈ R. Moreover g

satisfies ∂2
xxg ≥ −J for some positive constant J in the distributional sense, i.e.,

∫
R
g(x)∂2

xxφ(x) dx ≥ −J
∫
R
φ(x) dx

for any compactly supported smooth function φ on R.

For the problem (OS), we define its continuation region C and stopping region D as usual:

C := {(x, t) ∈ R
n × [0, T ) : u(x, t) > g(x)} and D := {(x, t) ∈ R

n × [0, T ) : u(x, t) = g(x)} .

2.2. Main regularity results. Intuitively, one can expect from Itô’s lemma that the value function u satisfies the

following variational inequality:

min {(−∂t − L+ r)u, u− g} = 0, (x, t) ∈ R× [0, T ),

u(x, T ) = g(x), x ∈ R.
(2.1)

Here, the integro-differential operator L, the infinitesimal generator of X , is defined via a test function φ as

(2.2) Lφ := LDφ+ Iφ,

where LDφ(x, t) := a(x, t) ∂2
xx + b(x, t) ∂x and the integral term

(2.3) Iφ(x, t) :=

∫

Rn

[
φ(x + y, t)− φ(x, t) − y∂xφ(x, t) 1{|y|≤1}

]
ν(dy).
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However, one does not know a priori whether u is sufficiently regular so that it solves (2.1) in the classical sense

where all previous differential and integral terms are well defined for u. It is not even clear whether Iu is well

defined in the classical sense.

When φ(·, t) is Lipschitz continuous on R with a Lipschitz continuous derivatibe ∂xφ(·, t) in a neighborhood of

x, it can be seen that Iφ(x, t) is well defined in the classical sense. Indeed, Iφ(x, t) = Iǫφ(x, t) + Iǫφ(x, t) < ∞,

where

Iǫφ(x, t) =

∫

|y|>ǫ

[φ(x + y, t)− φ(x, t)] ν(dy)− ∂xφ(x, t) ·

∫

ǫ<|y|≤1

y ν(dy)

≤ C

∫

|y|>ǫ

|y|ν(dy)− ∂xφ(x, t) ·

∫

ǫ<|y|≤1

y ν(dy),

Iǫφ(x, t) =

∫

|y|≤ǫ

[φ(x + y, t)− φ(x, t) − y∂xφ(x, t)] ν(dy)(2.4)

=

∫

|y|≤ǫ

y (∂xφ(z, t)− ∂xφ(x, t)) ν(dy) ≤

∫

|y|≤ǫ

C̃ y2ν(dy).

Here, C is the Lipschitz constant of φ(·, t) on R, z ∈ R satisfies |z − x| < |y|, the second inequality in (2.4) follows

from the mean value theorem, and D is the Lipschitz constant of ∂xφ(·, t) in a neighborhood of x. However,

the value function u, in general, does not have these regularity properties mentioned above. We only know from

Lemma 3.1 in [21] that u is Lipschitz continuous in x and 1/2−Hölder continuous in t. However, we will see that

the integral term Iu is well defined in the classical sense, see Lemma 3.2. In fact, more is true as we show in the

next theorem, which is the main result of the paper.

Theorem 2.5. Let Assumptions 2.1, 2.2, and 2.4 hold. Then u ∈ W 2,1
p,loc(R × (0, T )) for any integer p ∈ (1,∞).

Moreover, u solves (2.1) for almost every point in ET .

The following corollary is of special interest for the American option problem.

Corollary 2.6. Under the assumptions of Theorem 2.5,

(i) ∂xu ∈ C(R× [0, T )), i.e., the smooth-fit holds;

(ii) u ∈ C2,1 in the region where u > g.

Remark 2.7. When jumps of X have finite variation, i.e.,
∫
R
|y| ∧ 1 ν(dy) < ∞, the proof of the main result is much

simpler. This is because, when jumps of X have finite variation, the infinitesimal generator L can be rewritten

such that its integral component has a reduced form. For any test function φ that is Lipschitz continuous in its

first variable, Lφ can be decomposed as Lφ = Lf
Dφ+ Ifφ, in which Lf

Dφ = a ∂2
xxφ+ [b−

∫
|y|≤1

yν(dy)] ∂xφ and

(2.5) Ifφ(x, t) :=

∫

Rn

[φ(x+ y, t)− φ(x, t)] ν(dy).

The previous integral is clearly well defined. This is because |Ifφ(x, t)| ≤
∫
R
|φ(x + y, t)− φ(x, t)| ν(dy) ≤

C
∫
R
|y| ν(dy) < +∞, where C is the Lipschitz constant of φ. Moreover, Ifφ is also Hölder continuous; see

Lemma 3.1 below. Since the value function u is known to be Lipschitz continuous in its first variable (see Lemma 3.1

in [21]), Iu is already well defined and Hölder continuous. Therefore, Iu can be treated as a driving term in (2.1).

However, this simplification cannot be applied when jumps of X have infinite variation, i.e.,
∫
R
|y| ∧ 1ν(dy) = ∞.

3. Regularity properties of the integro-differential operator

3.1. The integral operator. The integral operator I has two basic features. First, ν has a singularity at y = 0.

As a result, I maps functions with certain degree of regularity to functions with less regularity. This is contrast
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to the case in which ν is a finite measure. In that case
∫
R
φ(x + y, t)ν(dy) is already well defined, for any φ with

at most linear growth, and this integral has the same regularity as φ; see [24]. Second, I is a nonlocal operator.

Therefore, regularity of Iφ on a given interval D depends on φ outside D. In this subsection, we shall study these

two features in detail and analyze regularity of Iφ when φ is either a function in certain Hölder or Sobolev spaces.

Consider I as an operator between Hölder spaces. When jumps of X have finite variation, we can work with the

reduced integral operator If in (2.5). It has the following regularity property.

Lemma 3.1. Let Assumption 2.2 hold with 0 ≤ α < 1. For any φ which is Lipschitz continuous in its first variable

and 1/2-Hölder continuous in its second variable,

Ifφ ∈ H1−γ, 1−γ
2 (Ds) ∀γ ∈ (0, 1), when α = 0;

Ifφ ∈ H1−α, 1−α
2 (Ds), when 0 < α < 1.

However when jumps of X have infinite variation, the integral term Ifφ is no longer well defined for Lipschitz

continuous functions. Hence we work with L and its integral part I in the form of (2.2) and (2.3). We will see that

if we choose an appropriate test function φ, Iφ is still well defined and Hölder continuous in both its variables.

Lemma 3.2. Let Assumption 2.2 hold with α ∈ [1, 2).

(i) Suppose that φ satisfies |φ(x1, t1) − φ(x2, t2)| ≤ L(|x1 − x2| + |t1 − t2|
1
2 ) for some L > 0 and any

(x1, t1), (x2, t2) ∈ Es. If, moreover, φ ∈ Hβ,β2 (D1
s) for some β ∈ (α, 2), then Iφ ∈ H

β−α
2 , β−α

4

(
Ds

)

and

(3.1) ‖Iφ‖
(β−α

2 )
Ds

≤ C
(
L+ ‖φ‖

(β)

D1
s

)
,

for a positive constant C that depends on D, α, and β.

(ii) If φ ∈ Hβ,β2 (Es) for some β ∈ (α, 2), then Iφ ∈ H
β−α

2 , β−α
4 (Es) and

(3.2) ‖Iφ‖
( β−α

2 )
Es

≤ C ‖φ‖
(β)
Es

,

for a positive constant C depending on α and β.

Since the proofs of Lemmas 3.1 and 3.2 are similar, we only present the proof of Lemma 3.2.

Proof of Lemma 3.2. Statement (ii) is a special case of Statement (i) when the domain is taken to be R, instead

of D. In particular, ‖ · ‖
(β)
Es

≥ L; see Definition 1.1.

It then suffices to prove Statement (i). This proof is inspired by the proof of Proposition 2.5 in [23]. For

notational simplicity C represents a generic constant throughout the rest of proof.

Step 1: Estimate maxDs
|Iφ|. For any (x, t) ∈ Ds,

|Iφ(x, t)| ≤

∫

|y|≤1

|φ(x+ y, t)− φ(x, t)− y ∂xφ(x, t)| ν(dy) +

∫

|y|>1

|φ(x+ y, t)− φ(x, t)| ν(dy)

≤

∫

|y|≤1

|y ∂xφ(z, t)− y ∂xφ(x, t)| ν(dy) + L

∫

|y|>1

|y|ν(dy)

≤ ‖φ‖
(β)

D1
s

∫

|y|≤1

|y|βν(dy) + L

∫

|y|>1

|y|ν(dy)

≤ C
(
L+ ‖φ‖

(β)

D1
s

)
,

where the second inequality follows from the mean value theorem with |z − x| ≤ |y|; the third inequality is the

result of the Hölder continuity of ∂xφ on D1
s ; the fourth inequality holds thanks to Assumption 2.2.
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Step 2: Show that Iφ is Hölder continuous in x. For x1, x2 ∈ D and t ∈ [0, s], we break up |Iφ(x1, t)− Iφ(x2, t)|

into three parts:

|Iφ(x1, t)− Iφ(x2, t)| ≤ I1 + I2 + I3, in which

I1(x, t) :=

∫

|y|≤ǫ

[|φ(x1 + y, t)− φ(x1, t)− y ∂xφ(x1, t)|+ |φ(x2 + y, t)− φ(x2, t)− y ∂xφ(x2, t)|] ν(dy),

I2(x, t) :=

∫

ǫ<|y|≤1

[|φ(x1 + y, t)− φ(x2 + y, t)|+ |φ(x1, t)− φ(x2, t)|+ |y| |∂xφ(x1, t)− ∂xφ(x2, t)|] ν(dy),

I3(x, t) :=

∫

|y|>1

[|φ(x1 + y, t)− φ(x2 + y, t)|+ |φ(x1, t)− φ(x2, t)|] ν(dy).

Here the constant ǫ ≤ 1 will be determined later. Let us estimate each above integral term separately. First, an

estimate similar to that in Step 1 shows that I1 ≤ 2 ‖φ‖
(β)

D1
s

∫
|y|≤ǫ

|y|βν(dy) = C‖φ‖
(β)

D1
s

ǫβ−α. Second, the Lipschitz

continuity of x 7→ φ(x, t) and the Hölder continuity of x 7→ ∂xφ(x, t) on D1
s together imply that

I2 ≤

∫

ǫ<|y|≤1

[
2L|x1 − x2|+ ‖φ‖

(β)

D1
s

|y| |x1 − x2|
β−1
]
ν(dy)

≤ CL|x1 − x2|(ǫ
−α − 1) + C ‖φ‖

(β)

D1
s

|x1 − x2|
β−1 ·

{
ǫ1−α − 1 when 1 < α < 2,

− log ǫ when α = 1,

where the second inequality follows from Assumption 2.2. Third, it is clear from the Lipschitz continuity of φ that

I3 ≤ 2L|x1 − x2|
∫
|y|>1

ν(dy).

Now pick ǫ = |x1 − x2|
1
2 ∧ 1. Since 1 ≤ α < 2 and β > α, we have ǫβ−α ≤ |x1 − x2|

β−α
2 , ǫ−α − 1 ≤ |x1 − x2|

−α
2 ,

ǫ1−α − 1 ≤ |x1 − x2|
1−α
2 and − log ǫ ≤ 2

β−1 |x1 − x2|
1−β
2 . All above estimates combined imply that

|Iφ(x1, t)− Iφ(x2, t)| ≤ C
(
L+ ‖φ‖

(β)

D1
s

)
|x1 − x2|

β−α
2 ,

for a constant C independent of x1, x2, and t.

Step 3: Show that Iφ is Hölder continuous in t. The proof is similar to that in Step 2. First we separate

|Iφ(x, t1)−Iφ(x, t2)| into three parts as above. Then using that fact that |∂xφ(x, t1)−∂xφ(x, t2)| ≤ ‖φ‖
(β)

D1
s

|t1−t2|
β−1
2

(see Definition 1.1) and choosing η = |t1 − t2|
1
4 ∧ 1, we can obtain

|Iφ(x, t1)− Iφ(x, t2)| ≤ C
(
L+ ‖φ‖

(β)

D1
s

)
|t1 − t2|

β−α
4 ,

for a constant C independent of x, t1, and t2. �

When I is considered as an operator between Sobolev spaces, it maps W 2,1
p −functions to Lp−functions on a

smaller domain.

Lemma 3.3. Let Assumption 2.2 hold. Consider a function φ ∈ W 2,1
p (D × (t1, t2)) such that |φ| is bounded and

|∂xφ| is locally bounded on R× [t1, t2]. Then for any η > 0,

(3.3) ‖Iφ‖Lp(D×(t1,t2)) ≤ Cη2−α‖φ‖W 2,1
p (Dη×(t1,t2))

+ C

(
max

R×[t1,t2]
|φ|+ max

D1×[t1,t2]
|∂xφ|

)
·

{
(1 + η1−α), α 6= 1

(1− log η), α = 1
,

for some constant C depending on D, t1, and t2.

Remark 3.4. When X has finite variation jumps, i.e., 0 ≤ α < 1, η can be chosen as zero. Hence Lp−norm of Iφ

only depends on maxR×[t1,t2] |φ| and maxD1×[t1,t2] |∂xφ|.
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Proof. Since C2,1 is dense in W 2,1
p (c.f. Theorem 5.3.1 in [12] pp.250), φ can be considered as a C2,1 function.

Observing that φ(x+ y, t)− φ(x, t)− y∂xφ(x, t) = y2
∫ 1

0 (1− z) ∂2
xxφ(x+ zy, t) dz, the integral Iφ can be separated

into the following three parts:

|Iφ(x, t)| ≤

∫

|y|≤η

y2 ν(dy)

∫ 1

0

dz
∣∣∂2

xxφ(x + zy, t)
∣∣

+

∫

η<|y|≤1

ν(dy) |φ(x+ y, t)− φ(x, t)− y∂xφ(x, t)| +

∫

|y|>1

ν(dy) |φ(x+ y, t)− φ(x, t)|

=:I1 + I2 + I3.

In the rest of proof, the Lp-norm of each above term is estimated respectively. First,

‖I1(·, t)‖
p
Lp(D) =

∫

D

dx

[∫

|y|≤η

y2ν(dy)

∫ 1

0

dz
∣∣∂2

xxφ(x+ zy, t)
∣∣
]p

≤

∫

D

dx

∫ 1

0

dz

[∫

|y|≤η

ν(dy) |y|2
∣∣∂2

xxφ(x + zy, t)
∣∣
]p

≤ C

∫

D

dx

∫ 1

0

dz

[∫

|y|≤η

dy |y|1−α
∣∣∂2

xxφ(x+ zy, t)
∣∣
]p

≤ C

∫

D

dx

∫ 1

0

dz

(∫

|y|≤η

dy |y|1−α

) p
q

·

∫

|y|≤η

dy |y|1−α
∣∣∂2

xxφ(x + zy, t)
∣∣p

≤ C η(2−α)p
∥∥∂2

xxφ(·, t)
∥∥p
Lp(Dη)

,

where the first inequality follows from Fubini’s Theorem and Jensen’s inequality since p > 1; the second inequality

is a result of Assumption 2.2; the third inequality follows from Hölder inequality with 1/p + 1/q = 1; the fourth

inequality holds since x+ zy ∈ Dη for any |y| ≤ η and z ∈ [0, 1]. Second, since x+ y ∈ D1 for x ∈ D and |y| ≤ 1,

‖I2(·, t)‖Lp(D) ≤ C max
D1×[t1,t2]

|∂xφ| ·

∫

η≤|y|≤1

|y|ν(dy) ≤ C max
D1×[t1,t2]

|∂xφ| ·

{
(1 + η1−α), α 6= 1

(1− log η), α = 1

Third, it is clear that ‖I3φ(·, t)‖Lp(D) ≤ C ·maxR×[t1,t2] |φ|, since φ is bounded.

Now, since ‖Iφ‖Lp(D×(t1,t2)) :=
[∫ t2

t1
‖Iφ(·, t)‖Lp(D) dt

] 1
p

, the statement follows from above Lp-norm estimates

on Ik, k = 1, 2, 3. �

3.2. An interior estimate. The Lp−norm estimate of the integral term in Lemma 3.3 helps to derive the following

W 2,1
p −norm estimate for solutions of the Cauchy problem below. This estimate is a nonlocal version of the parabolic

Calderon-Zygmund estimate (c.f. Theorem 9.1 in [17] pp.341).

Proposition 3.5. Suppose that Assumptions 2.1 and 2.2 are satisfied. Let v be a W 2,1
p,loc−solution of the following

Cauchy problem:

(∂t − LD − I + r) v = f(x, t), (x, t) ∈ R× (0, T ],

v(x, 0) = g(x), x ∈ R,

where f ∈ Lp,loc(ET ). If v is bounded and ∂xv is locally bounded on ET , then for any s ∈ (0, T ), there exist

δ ∈ (0, s) and Cδ, depending on δ, such that

(3.4) ‖v‖W 2,1
p (D×(s,T )) ≤ Cδ

[
max
ET

|v|+ max
Dδ/4+1×[0,T ]

|∂xv|+ ‖f‖Lp(Dδ/4×( δ
2 ,T ))

]
.
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Remark 3.6. The main idea of the following proof is to treat Iv as a driving term and utilize the classical Calderon-

Zygmund estimate. However, as we have seen in Lemma 3.3, W 2,1
p −norm of v controls Lp−norm of Iv, which

in term bounds the W 2,1
p −norm of v via the Calderon-Zygmund estimate. Therefore, a careful balance between

extending domains and controlling W 2,1
p −norm of v needs to be employed in the following proof. This is contrast

to the case where only finite variation jumps are considered. As we have seen in Remark 3.4, max |∂xv| and max |v|

control the Lp−norm of Iv which bounds the W 2,1
p -norm of v. Hence, in this case, (3.4) can be obtained directly

from the classical Calderon-Zygmund estimate.

Proof. The constant C denotes a generic constant throughout this proof. Domains used in this proof are displayed

in Figure 1.

For a constant δ ∈ (0, s) which will be determined later, let us choose a cut-off function ζδ such that 0 ≤ ζδ ≤ 1,

ζδ = 1 inside D × (δ, T ) and ζδ = 0 outside Dδ/4 × (δ/2, T ). Moreover ζδ can be chosen to satisfy

(3.5)
∣∣∂xζδ

∣∣ ≤ C

δ
,
∣∣∂2

xxζ
δ
∣∣ ≤ C

δ2
, and

∣∣∂tζδ
∣∣ ≤ C

δ
.

The function w := ζδ v satisfies

(∂t − LD + r) w = ζδ Iv(x, t) + ζδ f(x, t) + h(x, t), (x, t) ∈ Dδ/4 × (0, T ),

w(x, t) = 0, (x, t) ∈ ∂Dδ/4 × [0, T ),

w(x, 0) = 0, x ∈ Dδ/4,

in which h(x, t) := ∂tζ
δ v − a

(
∂2
xxζ

δ v + 2 ∂xζ
δ ∂xv

)
− b ∂xζ

δ v. Appealing to Theorem 9.1 in [17] pp.341, we can

find a constant C such that

‖w‖W 2,1
p (Dδ/4×(0,T )) ≤C

[∥∥ζδ Iv
∥∥
Lp

+
∥∥ζδ f

∥∥
Lp

+ ‖h‖Lp

]
,(3.6)

where all Lp-norms on the right-hand-side are taken on Dδ/4 × (0, T ).

Figure 1. Domains used in this proof

0
δ
2 δ T

Bρ Bρ+
δ

4

Bρ+
δ

2
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In what follows, we will estimate the terms on the right-hand-side of (3.6) respectively. First, when α 6= 1,
∥∥ζδ Iv

∥∥
Lp(Dδ/4×(0,T ))

≤ ‖Iv‖Lp(Dδ/4×( δ
2 ,T ))

≤ C

(
δ

4

)2−α

‖v‖W 2,1
p (Dδ/2×( δ

2 ,T )) + C

(
1 +

(
δ

4

)1−α
)[

max
ET

|v|+ max
Dδ/4+1×[0,T ]

|∂xv|

]
,

where the first inequality follows from the choice of ζδ; the second inequality follows from Lemma 3.3 where

η = δ
4 , t1 = δ

2 , and t2 = T . When α = 1, a similar estimate can be obtained. In that case, the rest of proof

is similar to that for α 6= 1 case, hence we only present the proof for α 6= 1 henceforth. Second, it is clear that∥∥ζδ f
∥∥
Lp(Dδ/4×(0,T ))

≤ ‖f‖Lp(Dδ/4×( δ
2 ,T )) . Third, we will estimate the Lp−norm of h. To this end, let us derive a

bound for ‖∂tζ
δv‖Lp(Dδ×(0,T )) in what follows. It follows from (3.5) that

∥∥∂tζδ v
∥∥
Lp(Dδ×(0,T ))

≤ Cmax
ET

|v| δ−1Area
(
Dδ/4 × (δ/2, T ) \D × (δ, T )

) 1
p

≤ Cmax
ET

|v| δ
1−p
p ,

where Area(·) is the Lebesgue measure. Estimates on other terms of h can be performed similarly to obtain

‖h‖Lp(Dδ/4×(0,T )) ≤ C
(
δ

1−p
p + δ

1−2p
p

)(
max
ET

|v|+ max
Dδ/4×[0,T ]

|∂xv|

)
.

Using the above estimates on the right-hand-side of (3.6), we obtain that

‖v‖w2,1
p (D×(δ,T )) ≤‖w‖w2,1

p (Dδ/4×(0,T ))

≤C

(
δ

4

)2−α

‖v‖W 2,1
p (Dδ/2×( δ

2 ,T )) + C
(
1 + δ1−α + δ

1−p
p + δ

1−2p
p

) (
max
ET

|v|+ max
Dδ/4+1×[0,T ]

|∂xv|

)

+ ‖f‖Lp(Dδ/4×( δ
2 ,T )) .

Multiplying δ2 on both hand sides of the previous inequality, we obtain

δ2 ‖v‖w2,1
p (D×(δ,T )) ≤ 4C

(
δ

4

)2−α (
δ

2

)2

‖v‖w2,1
p (Dδ/2×( δ

2 ,T )) +K(δ),

whereK(δ) = C
(
δ2 + δ3−α + δ

1+p
p + δ

1
p

) (
maxET |v|+maxDδ/4+1×[0,T ] |∂xv|

)
+δ2 ‖f‖Lp(Dδ/4×( δ

2 ,T )). Denote F (τ) :=

τ2 ‖v‖w2,1
p (Dδ−τ×(τ,T )). The previous inequality gives the following recursive inequality

F (δ) ≤ 4C

(
δ

4

)2−α

F

(
δ

2

)
+K(δ).

Now choosing a sufficiently small δ ∈ (0, s) such that 4C (δ/4)2−α ≤ 1
2 , we obtain from the above inequality that

F (δ) ≤
1

2
F

(
δ

2

)
+K(δ).

F (δ) is finite for any δ, since the W 2,1
p −norm of v is finite in any compact domain of R × (0, T ), and K(δ) is

increasing in δ. We then obtain from iterating the previous recursive inequality that

F (δ) ≤
∞∑

i=0

1

2i
K

(
δ

2i

)
≤

∞∑

i=0

1

2i
K(δ) = 2K(δ).

In terms of W 2,1
p,loc−norms, the previous inequality reads

‖v‖W 2,1
p (D×(s,T )) ≤ 2C

[
1 + δ1−α + δ

1−p
p + δ

1−2p
p

] [
max
ET

|v|+ max
Dδ/4+1×[0,T ]

|∂xv|

]
+ 2 ‖f‖Lp(Dδ/4×( δ

2 ,T ))

≤ Cδ

[
max
ET

|v|+ max
Dδ/4+1×[0,T ]

|∂xv|+ ‖f‖Lp(Dδ/4×( δ
2 ,T ))

]
.
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�

4. Proof of main results

4.1. The penalty method. We use the penalty method (see e.g. [14] and [24]) to analyze the following variational

inequality.

min {(∂t − LD − I + r) v, v − g} = 0, (x, t) ∈ R× (0, T ],

v(x, 0) = g(x), x ∈ R.
(4.1)

The nonlocal integral term introduces several technical difficulties in applying the penalty method. In this section,

we will focus on the case where X has infinite variation jumps, i.e., Assumption 2.2 holds with 1 ≤ α < 2. When X

has finite variation jumps, i.e., 0 ≤ α < 1, the integral operator has the reduced form If in (2.5). Then all proofs

are similar but easier than those in infinite variation case.

For each ǫ ∈ (0, 1), consider the following penalty problem:

(∂t − LD − I + r) vǫ + pǫ (v
ǫ − gǫ) = 0, (x, t) ∈ R× (0, T ],

vǫ(x, 0) = gǫ(x), x ∈ R,
(4.2)

Here {gǫ}ǫ∈(0,1) is a mollified sequence of g such that ∂2
xxg

ǫ(x) ≥ −J , 0 ≤ g ≤ K, and |(gǫ)′(x)| ≤ L for any x ∈ R;

see [14] pp.27 for its construction. These constants J,K, and L, appearing in Assumption 2.4, are independent of

ǫ. The penalty term pǫ(y) ∈ C∞(R) is chosen to satisfy following properties:

(i) pǫ(y) ≤ 0, (ii) pǫ(y) = 0 for y ≥ ǫ, (iii) pǫ(0) = −a(0)J − |b|(0)L− r(0)K − J

∫

|y|≤1

|y|2ν(dy)−K

∫

|y|>1

ν(dy),

(iv) p
′

ǫ(y) ≥ 0, (v) p
′′

ǫ (y) ≤ 0, and (vi) lim
ǫ↓0

pǫ(y) =

{
0, y > 0

−∞, y < 0
,

(4.3)

where a(0) = maxET a, |b|(0) = maxET |b|, and r(0) = maxET r are finite thanks to Assumption 2.1. Indeed, pǫ can

be chosen as a smooth mollification of the function min{− 2pǫ(0)
ǫ x+ pǫ(0), 0}.

Now we show that each penalty problem (4.2) has a classical solution. To this end, let us first recall the Schauder

fixed point theorem (see Theorem 2 in [13] pp. 189).

Lemma 4.1. Let Θ be a closed convex subset of a Banach space and let T be a continuous operator on Θ such

that T Θ is contained in Θ and T Θ is precompact. Then T has a fixed point in Θ.

Lemma 4.2. Let Assumptions 2.1, 2.2 with 1 ≤ α < 2, and 2.4 hold. Then for any ǫ ∈ (0, 1) and β ∈ (α, 2), (4.2)

has a solution vǫ ∈ H2+ β−α
2 ,1+β−α

4 (ET ).

Proof. We will first prove the existence on a sufficiently small time interval [0, s] via the Schauder fixed point

theorem, then extend this solution to the interval [0, T ].

Let us consider the set Θ :=
{
v ∈ Hβ,β2 (Es) with its Hölder norm ‖v‖

(β)
Es

≤ U0

}
, where s and U0 will be deter-

mined later. It is clear that Θ is a bounded, closed and convex set in the Banach space Hβ,β2 (Es). For any v ∈ Θ,

consider the following Cauchy problem for u− gǫ:

(∂t − LD + r) (u− gǫ) = Iv − pǫ(v − gǫ) + (LD − r) gǫ, (x, t) ∈ R× (0, s],

u(x, 0)− gǫ(x) = 0, x ∈ R.
(4.4)

We define an operator T via u = T v using the solution u of (4.4). Let us check the conditions for the Schauder

fixed point theorem are satisfied in the following four steps:



REGULARITY OF THE OPTIMAL STOPPING PROBLEMS 11

Step 1: Tv is well defined. Since v ∈ Hβ,β2 (Es) with β ∈ (α, 2), Lemma 3.2 part (ii) implies that Iv ∈

H
β−α

2 ,β−α
4 (Es) with ‖Iv‖

( β−α
2

)

Es
≤ C ‖v‖

(β)
Es

. On the other hand, using properties of v, gǫ and pǫ, one can check that

−pǫ(v− gǫ) + (LD − r)gǫ ∈ H
β−α

2 , β−α
4 (Es). Therefore, Theorem 5.1 in [17] pp. 320 implies that (4.4) has a unique

solution u− gǫ ∈ H2+ β−α
2 ,1+β−α

4 (Es). Hence u = Tv ∈ H2+ β−α
2 ,1+ β−α

4 (Es), since gǫ is smooth.

Step 2. T Θ ⊂ Θ. It follows from Lemma 2 in [13] pp. 193 that there exists a positive constant Aβ , depending

on β, such that

‖u− gǫ‖
(β)
Es

≤ Aβs
γ
[
‖Iv‖

(0)
Es

+ ‖pǫ(v − gǫ)‖
(0)
Es

+ ‖(LD − r) gǫ‖
(0)
Es

]

≤ AβCsγ‖v‖
(β)
Es

+ Ã,
(4.5)

where γ = 2−β
2 , C is the constant in Step 1, and Ã is a sufficiently large constant. Let s be such that τ := AβCsγ <

1/2 and let U0 := max{ 2Ã
1−2τ , 2 ‖g

ǫ‖
(β)
Es

}. Since ‖v‖
(β)
Es

≤ U0, it then follows from (4.5) that

(4.6) ‖u‖
(β)
Es

≤ ‖u− gǫ‖
(β)
Es

+ ‖gǫ‖
(β)
Es

≤ τU0 + Ã+
U0

2
≤ τ U0 +

1− 2τ

2
U0 +

U0

2
= U0.

This confirms that u = T v ∈ Θ.

Step 3. T Θ is a precompact subset of Hβ,β2 (Es). For any η ∈ (β, 2), a similar estimate as (4.5) shows that for

any v ∈ Θ, ‖Tv‖
(η)
Es

≤ U1 for some constant U1 depending on U0 and s. Since bounded subsets of Hη, η2 (Es) are

precompact subsets of Hβ,β2 (Es) (see Theorem 1 in [13] pp.188), then T Θ is a precompact subset in Hβ,β2 (Es).

Step 4. T is a continuous operator. Let vn be a sequence in Θ such that limn→∞ ‖vn − v‖
(β)
Es

= 0, we will show

limn→∞ ‖Tvn − Tv‖
(β)
Es

= 0. From (4.4), w , Tvn − Tv satisfies the Cauchy problem

(∂t − LD + r)w = I(vn − v)− [pǫ(vn − gǫ)− pǫ(v − gǫ)] , (x, t) ∈ R× (0, s],

w(x, 0) = 0, x ∈ R.

It follows again from Lemma 2 in [13] pp. 193 that

‖T vn − T v‖
(β)
Es

= ‖w‖
(β)
Es

≤ Aβs
γ
[
‖I(vn − v)‖

(0)
Es

+ ‖pǫ(vn − gǫ)− pǫ(v − gǫ)‖
(0)
Es

]

≤ Aβs
γ

[
C‖vn − v‖

(β)
Es

+max
Es,n

∣∣∣p
′

ǫ(vn − gǫ)
∣∣∣ ‖vn − v‖

(0)
Es

]
→ 0 as n → ∞.

Now all conditions of the Schauder fixed point theorem are checked, hence T has a fixed point in Hβ, β2 (Es),

which is denoted by vǫ. Moreover, it follows from results in Step 1 that vǫ = T vǫ ∈ H2+ β−α
2 ,1+ β−α

4 (Es).

Finally, let us extend vǫ to the interval [0, T ]. We can replace gǫ(·) by vǫ(·, s) in (4.4), since ‖vǫ(·, s)‖
(2+ β−α

2 )

R
is

finite thanks to the result after Step 4 and because the choice of s in Step 2 only depends on β and C. If we choose

a sufficiently large U0, depending on ‖vǫ(·, s)‖
(2+β−α

2 )

R
, such that (4.6) holds on [s, 2s], then ‖vǫ(·, 2s)‖

(2+ β−α
2 )

R
is

finite thanks to the argument after Step 4. Now one can repeat this procedure to extend the time interval by s

each time, until it contains [0, T ]. �

After the existence of classical solutions for (4.2) is established, we will study properties of the sequence (vǫ)ǫ∈(0,1)

in the rest of this subsection. The following maximum principle is a handy tool for our analysis.

Lemma 4.3. Suppose that a > 0, a and b are bounded and the Levy measure ν satisfies
∫
|y|>1 |y|ν(dy) < ∞.

Assume also that we are given a function c bounded from below on ET . If v ∈ C0(ET ) ∩ C2,1(ET ) satisfies

(∂t − LD − I + c) v(x, t) ≥ 0 and v is bounded from below on ET , then v(x, 0) ≥ 0 for x ∈ R implies that v ≥ 0 on

ET .
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Proof. Let v ≥ −m and c ≥ −C0 on ET for some positive constants m and C0. For any positive R0, consider the

following function:

w(x, t) :=
m

f(R0)
(f(|x|) + C1t) e

C0t, (x, t) ∈ ET ,

where C1 will be determined later and f : R+ → R+ is an increasing C2 function such that f = 0 in a neighborhood

of 0 and f(R) = R2

1+R for sufficiently large R. It is clear that limR→+∞ f(R) = ∞ and derivatives f
′

and f
′′

are

bounded. Then If(|x|) is bounded on R. Indeed, there exists a constant C such that

∣∣If(|x|)
∣∣ ≤

∫

|y|≤1

ν(dy)

∫ 1

0

dz (1− z) y2
∣∣∂2

xxf(|x+ zy|)
∣∣+
∫

|y|>1

ν(dy) |f(|x+ y|)− f(|x|)|

≤ C

(∫

|y|≤1

y2ν(dy) +

∫

|y|>1

|y| ν(dy)

)
< +∞.

Combining above estimate with c+ C0 ≥ 0, one can find a sufficient large constant C1 such that

(∂t−LD−I+c)w = eC0t
m

f(R0)

[
C1 + (c+ C0)(f(|x|) + C1t)− a ∂2

xxf(|x|)− b ∂xf(|x|)− If(|x|)
]
> C0m, on ET .

Now define ṽ := v + w. The previous estimate gives

(4.7) (∂t − LD − I + c+ C0)ṽ > C0v + C0m ≥ 0, for any (x, t) ∈ ET .

On the other hand, ṽ(x, 0) = m
f(R0)

f(|x|) + v(x, 0) ≥ 0 due to v(x, 0) ≥ 0, moreover ṽ(x, t) ≥ m + v(x, t) ≥ 0 for

|x| ≥ R0 because f is increasing and v ≥ −m. Therefore, we claim that ṽ ≥ 0 for (x, t) ∈ [−R0, R0]× [0, T ]. Indeed,

if there exists (x, t) ∈ [−R0, R0] × (0, T ] such that ṽ(x, t) < 0, ṽ must takes its negative minimum at some point

(x0, t0) ∈ [−R0, R0]×(0, T ]. Note that this is also a global minimum for ṽ on ET , hence Iṽ(x0, t0) ≥ 0, ∂tṽ(x0, t0) ≤

0, ∂xṽ(x0, t0) = 0, ∂2
xxṽ(x0, t0) ≥ 0, and (c + C0)ṽ(x0, t0) ≤ 0. As a result, (∂t − LD − I + c + C0)ṽ(x0, t0) ≤ 0,

which contradicts with (4.7). Now for fixed point (x, t), the statement follows from sending the constant R0 in ṽ

to ∞. �

This maximum principle implies the uniqueness of classical solutions for the penalty problem.

Corollary 4.4. Under assumptions of Lemma 4.2, vǫ is the unique bounded classical solution of (4.2).

Proof. Lemma 4.2 and the definition of Hölder spaces combined imply that v1 = vǫ is a bounded classical solution.

Now suppose there exists another solution v2, then v1 − v2 satisfies

(∂t − LD − I + r) (v1 − v2) + pǫ(v1 − gǫ)− pǫ(v2 − gǫ) = 0, (x, t) ∈ R× (0, T ],

(v1 − v2)(x, 0) = 0, x ∈ R.

It follows from the mean value theorem that pǫ (v1 − gǫ) − pǫ(v2 − gǫ) = p
′

ǫ(y)(v1 − v2) for some y ∈ R, where

p
′

ǫ(y) ≥ 0 thanks to (4.2) part (iv). Now it follows from Lemma 4.3, with c = r + p′ǫ(y) that v1 ≥ v2 on R× (0, T ].

The same argument applied to v2 − v1 gives the reverse inequality. �

Utilizing the maximum principle, we will analyze properties of the sequence (vǫ)ǫ∈(0,1) in the following result.

Lemma 4.5. Let Assumptions 2.1, 2.2 with 1 ≤ α < 2, and 2.4 hold. Then for any ǫ ∈ (0, 1),

0 ≤ vǫ ≤ K + 1 on ET .
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Proof. It follows from Lemma 4.2 that vǫ is bounded on ET for each ǫ ∈ (0, 1). In this proof, we will show that

the bounds are uniform in ǫ. First, it follows from (4.3) part (i) that (∂t − LD − I + r) vǫ = −pǫ(v
ǫ − gǫ) ≥ 0.

Moreover, vǫ(x, 0) = gǫ(x) ≥ 0 for x ∈ R. Then first inequality in the statement follows from Lemma 4.3 directly.

Second, consider w = K + 1− vǫ, it satisfies

(∂t − LD − I + r)w = r(K + 1) + pǫ(v
ǫ − gǫ), (x, t) ∈ R× (0, T ].

Combining (4.3) part (ii) and gǫ ≤ K, we have pǫ(K + 1− gǫ) = 0. Hence,

(4.8) (∂t − LD − I + r)w + pǫ(K + 1− gǫ)− pǫ(v
ǫ − gǫ) =

[
∂t − LD − I + r + p

′

ǫ(y)
]
w = r (K + 1) ≥ 0,

where the first equality follows from the mean value theorem. Now applying Lemma 4.3 to above equation with

c = r + p′(y) ≥ 0 (see (4.3)) part (iv), we obtain w(x, t) = K + 1 − vǫ(x, t) ≥ 0 on ET for any ǫ ∈ (0, 1), which

confirms the second inequality in the statement of the lemma. �

Lemma 4.6. Let Assumptions 2.1, 2.2 with 1 ≤ α < 2, and 2.4 hold. Then for any ǫ ∈ (0, 1), there exists some

positive γ independent of ǫ such that

|∂xv
ǫ| ≤ C on ET ,

in which depends on T and L.

Proof. Formally differentiating (4.2) with respect to x gives the following equation:
[
∂t − a∂2

xx − (b+ ∂xa)∂x − I + (r − ∂xb)
]
w + ∂xr v

ǫ + p
′

ǫ (v
ǫ − gǫ)

(
w − (gǫ)

′

)
= 0, (x, t) ∈ R× (0, T ],

w(x, 0) = (gǫ)
′

(x), x ∈ R.
(4.9)

We will show that ∂xv
ǫ is indeed a classical solution of (4.9). To this end, let us consider the equation

[
∂t − a∂2

xx − (b+ ∂xa)∂x − I + (r − ∂xb)
]
w = −∂xr v

ǫ − p
′

ǫ (v
ǫ − gǫ)

(
∂xv

ǫ − (gǫ)
′

)
, (x, t) ∈ R× (0, T ],

w(x, 0) = (gǫ)
′

(x), x ∈ R.

Using Assumption 2.1 and Lemma 4.2, one can check that −∂xr v
ǫ−p

′

ǫ (v
ǫ − gǫ)

(
∂xv

ǫ − (gǫ)
′

)
is Hölder continuous.

It then follows from Theorem 3.1 in [15] on pp. 89 that the last equation has a classical solution, say w. Define

v(x, t) :=
∫ x

0
w(z, t)dz+vǫ(0, t). It is straight forward to check that v is a classical solution of the following equation

(∂t − LD − I + r)v = −pǫ(v
ǫ − gǫ), (x, t) ∈ R× (0, T ],

v(x, 0) = gǫ(x), x ∈ R.

Since gǫ and vǫ are both bounded, then −pǫ(v
ǫ − gǫ) is also bounded. As a result estimate (3.6) in Theorem 3.1

of [15] on pp. 89 implies that v is bounded solution of the last equation. However, Corollary 4.4 already shows

that vǫ is the unique bounded solution of the last solution, therefore v = vǫ, hence ∂xv
ǫ = w on ET and ∂xv

ǫ is a

classical solution of (4.9).

Now we shall show ∂xv
ǫ is bounded uniformly in ǫ. Consider ṽ = eγtL + ∂xv

ǫ, where γ > 0 will be determined

later. ṽ satisfies the following equation
[
∂t − a∂2

xx − (b+ ∂xa)∂x − I + r − ∂xb+ p
′

ǫ(v
ǫ − gǫ)

]
ṽ

= (γ + r − ∂xb)e
γtL− ∂xr v

ǫ + p
′

ǫ(v
ǫ − gǫ)

(
eγtL+ (gǫ)

′

)
, (x, t) ∈ R× (0, T ],

ṽ(x, 0) = eγtL+ (gǫ)
′

(x), x ∈ R.

(4.10)

Recall that ∂xb and ∂xr are bounded from Assumption 2.1 and that vǫ is bounded uniformly in ǫ thanks to

Lemma 4.5. Therefore, one can find a sufficiently large γ, independent of ǫ, such that (γ+r−∂xb)e
γtL−∂xr v

ǫ > 0.
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Moreover, p
′

ǫ(v
ǫ − gǫ)

(
eγtL+ (gǫ)

′

)
is also positive due to (4.3) part (iv) and |(gǫ)

′

| ≤ L. As a result, the right-

hand-side of (4.10) is positive. Now since r − ∂xb + p
′

ǫ(v
ǫ − gǫ) is bounded from below, we have from Lemma 4.3

that ṽ ≥ 0 on ET , hence ∂xv
ǫ ≥ −eγTL on ET , for some positive γ independent of ǫ. The upper bound can be

shown similarly by working with ṽ = eγt − ∂xv
ǫ. �

Lemma 4.7. Let Assumptions 2.1, 2.2 with 1 ≤ α < 2, and 2.4 hold. Then for any ǫ ∈ (0, 1),

vǫ ≥ gǫ on ET .

Proof. Let us first show that Igǫ is uniformly bounded from below. Indeed,

Igǫ(x) =

∫

|y|≤1

ν(dy)

∫ 1

0

dz(1− z) y2∂2
xxg

ǫ(x+ zy) +

∫

|y|>1

[gǫ(x+ y)− gǫ(x)] ν(dy)

≥ −J

∫

|y|≤1

y2ν(dy)−K

∫

|y|>1

ν(dy),

where the inequality follows from ∂2
xxg

ǫ ≥ −J and 0 ≤ gǫ ≤ K. As a result, (∂t − LD − I + r) gǫ from above. This

is because

(∂t − LD − I + r) gǫ(x) = −a(x, t) ∂2
xxg

ǫ(x) − b(x, t) ∂xg
ǫ(x) + r(x, t) gǫ(x)− Igǫ(x)

≤ a(0)J + |b|(0)L+ r(0)K + J

∫

|y|≤1

|y|2ν(dy) +K

∫

|y|>1

ν(dy)

= −pǫ(0),

where the second equality follows from (4.3) part (iii). Therefore,

(∂t − LD − I + r) (vǫ − gǫ) = −pǫ (v
ǫ − gǫ)− (∂t − LD − I + r) gǫ

≥ −pǫ (v
ǫ − gǫ) + pǫ(0).

The previous inequality and the mean value theorem combined imply that
(
∂t − LD − I + r + p

′

ǫ(y)
)
(vǫ − gǫ) ≥ 0,

for some y ∈ R. Hence the statement of the lemma follows applying Lemma 4.3 to the previous inequality and

choosing c = r + p
′

ǫ(y) ≥ 0. �

Corollary 4.8. Let assumptions of Lemma 4.7 hold. Then pǫ (v
ǫ − gǫ) is bounded uniformly in ǫ ∈ (0, 1).

Proof. Lemma 4.7 and (4.3) parts (i), (iv) imply that pǫ(0) ≤ pǫ (v
ǫ − gǫ) ≤ 0. Then the statement follows since

pǫ(0) is independent of ǫ; see (4.2) part (iii). �

4.2. Proof of Theorem 2.5 and Corollary 2.6.

Proof of Theorem 2.5. The proof consists of two steps. First, we show that there exists a function v∗ which solves

(4.1) and v∗ ∈ W 2,1
p (D × (s, T )) for any integer p ∈ (1,∞). Second, we confirm that u(x, t) = v(x, T − t) is the

value function for the problem (OS).

Step 1: First, vǫ ∈ W 2,1
p,loc(R × (0, T )) for each ǫ ∈ (0, 1), since Lemma 4.2 shows that ∂tv

ǫ, ∂xv
ǫ, and ∂2

xxv
ǫ are

continuous, hence locally bounded, on R× (0, T ). Second, Lemmas 4.5 and 4.6 show that vǫ and ∂xv
ǫ are bounded

on ET , uniformly in ǫ. Moreover, the penalty term pǫ(v
ǫ − gǫ) is also bounded uniformly in ǫ due to Corollary 4.8.

Then applying Proposition 3.5 with f = −pǫ(v
ǫ − gǫ), we obtain that

(4.11) ‖vǫ‖W 2,1
p (D×(s,T )) ≤ C, for some constant C independent of ǫ.
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Combining with the fact that the Sobolev space W 2,1
p , 1 < p < ∞, is weakly compact, we can find a subsequence

(ǫk)k≥0, with ǫk → 0, and a function v∗, such that vǫk ⇀ v∗ in W 2,1
p (D × (s, T )). Here “ ⇀ ” represents the

weak convergence; c.f. Appendix D.4. in [12] pp. 639. Furthermore, the convergence is uniform for a further

subsequence. Indeed, it follows from (4.11) and the Sobolev embedding theorem (c.f. Lemma 3.3 in [17] pp. 80)

that

‖vǫ‖
(β)

D×[s,T ]
≤ C, for some constant C independent of ǫ.

Here β = 2− 3
p . We choose p > 1 so that β > 0. Using the previous uniform estimate and the Arzelà-Ascoli theorem,

we can find a further subsequence of (ǫk)k≥0, which we still denote by (ǫk)k≥0, such that (vǫk)k≥0 converge to v∗

uniformly on D × [s, T ].

Let us show that v∗ solves (4.1). On the one hand, since pǫ(v
ǫ − gǫ) ≤ 0, we have (∂t − LD − I + r) vǫ ≥ 0 for

any ǫ ∈ (0, 1). Since (vǫk)k≥0 converges uniformly to v∗, we obtain that (∂t − LD − I + r) v∗ ≥ 0 on D × [s, T ] in

the distribution sense. Since the choices of D and s are arbitrary, we have (∂t − LD − I + r) v∗ ≥ 0 on R× (0, T ]

in the distributional sense. On the other hand, Lemma 4.7 shows that vǫ ≥ gǫ. Then v∗ ≥ g after sending ǫ → 0.

Therefore, we obtain min{(∂t−LD−I+r) v∗, v∗−g} ≥ 0 on R×(0, T ]. It then remains to show (∂t−LD−I+r) v∗ = 0

when v∗ > g. To this end, take any (x, t) such that v∗(x, t) > g(x). Since both v∗ and g are continuous, one can

find a sufficiently small δ > 0 and a small neighborhood of (x, t), such that v∗(x̃, t̃) ≥ g(x̃) + 2δ for any (x̃, t̃) inside

this neighborhood. Since the convergence of (vǫk)k≥0 and (gǫk)k≥0 is uniform, we can find sufficiently small ǫk such

that vǫk(x̃, t̃) ≥ gǫk(x̃) + δ in the aforementioned neighborhood. Hence pǫk(v
ǫk − gǫk)(x, t) = 0, due to (4.3)-(ii),

which induces (∂t − LD − I + r) vǫk (x, t) = 0. After sending ǫk → 0, we conclude that (∂t − LD − I + r) v∗ = 0

when v∗ > g. Since v∗ ∈ W 2,1
p,loc, v

∗ also solves (4.1) for almost every point in ET .

Step 2: Let us first show that v∗ is a viscosity solution of (4.1). We will use the definition of viscosity solutions

in [21]. Denote by C1(ET ) the class of functions which have at most linear growth, i.e., |φ(x, t)| ≤ C(1 + |x|) for

some C and any (x, t) ∈ ET . Then viscosity solutions of (4.1) are defined as follows.

Any v ∈ C(ET ) is a viscosity supersolution (subsolution) of (4.1) if

min{∂tφ− LDφ− Iφ+ rv, v − g} ≥ 0 (≤ 0), (x, t) ∈ R× (0, T ],

v(x, 0) ≥ g(x) (≤ g(x)), x ∈ R,

for any function φ ∈ C2,1(R × (0, T )) ∩ C1(ET ) such that v(x, t) = φ(x, t) and v(x̃, t̃) ≥ φ(x̃, t̃) (v(x̃, t̃) ≤ φ(x̃, t̃))

for any other point (x, t) ∈ R× (0.T ). v is a viscosity solution of (4.1) if it is both supersolution and subsolution.

Let us show that v∗ is a viscosity subsolution of (4.1). Fix (x, t) ∈ R× (0, T ], consider v∗(x, t) > g(x), otherwise

min{∂tφ− LDφ− Iφ+ rv, v(x, t) − g(x)} ≤ 0 is automatically satisfied. Without loss of generality we can assume

that (x, t) is the strict maximum of v∗−φ in a neighborhood B(x, t; δ), otherwise the test function can be modified

appropriately. On the other hand, since (vǫk)k≥0 converges to v∗ uniformly in compact domains, we can find

sufficiently small ǫk such that vǫk − φ attains its maximum over B(x, t; δ) at (xk, tk) ∈ B(x, t; δ). Moreover,

(xk, tk) → (x, t) as ǫk → 0. Since vǫk is a classical solution of (4.2) (see Lemma 4.2), it is also a viscosity solution.

Hence (∂t −LD − I + r)φ(xk , tk) + pǫk(v
ǫk(xk, tk)− gǫ(xk)) ≤ 0. Now, since v∗(x, t) > g(x) and vǫk(xk, tk)− g(xk)

converges to v∗(x, t)−g(x), we obtain limǫk→0 pǫk(v
ǫk(xk, tk)−gǫ(xk)) = 0. As a result, (∂t−LD−I+r)φ(x, t) ≤ 0

by sending ǫk → 0. This confirms that v∗ is a viscosity subsolution of (4.1).

For the supersolution property, since v∗ ≥ g, it suffices to show that (∂t − LD − I + r)φ(x, t) ≥ 0 for any test

function φ. Then the rest proof follows from the arguments we used for the subsolution property.

Define u∗(x, t) = v∗(x, T − t). It is clear that u∗ is a viscosity solution of (2.1). Then the statement follows from

Theorem 4.1 in [21], which states that u is the unique viscosity solution of (2.1). �
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Proof of Corollary 2.6. (i) Combining Theorem 2.5 and the Sobolev embedding theorem (c.f. Lemma 3.3 in [17]

pp. 80), we have u ∈ Hβ,β2 (D × [0, T − s]), where β = 2 − 3
p and s < T . Choosing p > 3 so that β > 1, the

continuity of ∂xu follows from Definition 1.1.

(ii) Let us first show that Iu is well defined and Hölder continuous. Since u ∈ Hβ,β2 (D× [0, T −s]) (which follows

due to (i)), choosing sufficiently large p so that β > α, Iu ∈ H
β−α

2 , β−α
4 (DT−s) by Lemma 3.2 part (i). Now, for

B ⊂ R and t1, t2 ∈ [0, T ) such that B × (t1, t2) ⊂ C, consider the following boundary value problem:

(−∂t − LD + r) v = Iu, (x, t) ∈ B × [t1, t2),

v(x, t) = u(x, t), (x, t) ∈ ∂B × [t1, t2) ∪B × t2.
(4.12)

It is straight forward to show that u is the unique viscosity solution for the previous problem using the fact that

u is the unique viscosity solution for (2.1). On the other hand, since the boundary and terminal values of (4.12)

are continuous and the driving term Iu is Hölder continuous, it follows from Theorem 9 in [13] pp. 69 that (4.12)

has a classical solution u∗ ∈ C2,1(B × (t1, t2)). Hence u = u∗ on B × (t1, t2), since u∗ is also a viscosity solution.

Therefore, u ∈ C2,1(B × (t1, t2)). The statement now follows, since B × (t1, t2) is an arbitrary subset of C. �
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[17] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Uralchva, Linear and Quasi-linear Equations of Parabolic Type, American

Mathematical Society, Providence, Rhode Island, 1968.

[18] D. Lamberton and M. Mikou, The critical price for the American put in an exponential Lévy model, Finance and Stochastics,
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