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Abstract. In this paper, we study the Kelly criterion in the continuous time 
framework building on the work of E.O. Thorp and others. The existence of an 
optimal strategy is proven in a general setting and the corresponding optimal 
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1 Introduction 

The Kelly Criterion [1], [2] was initially introduced in 1956 to find the optimal 
betting amount in games with fixed known odds, and was later extended to the field 
of financial investments by E. O. Thorp and others. The strategy maximizes the 
entropy and with probability one outperforms any other strategy asymptotically [3]. 
This approach was recently further developed by Kargin [4], who applied the criterion 
to a mean-reverting asset process under liquidity and credit constraints. 

The Kelly Criterion tells us that the optimal betting fraction is given by p-q, if a 
gambler is faced with a bet, where the probability to double the money is p and to lose 
the initial stake is q (p>q). The optimal betting fraction maximizes the expected log 
wealth. The question, why investors should choose to maximize the log wealth, has a 
simple answer: according to Breiman’s theorem [3], it gives the asymptotically 
optimal pay-out and dominates any other strategy.  

In this paper, we start by extending the original idea to the general continuous time 
framework with n correlated assets. Our task is to find the optimal self-financing 
trading strategy. We will prove that if the market is complete, this optimal self-
financing trading strategy always exists. A limited number of applications are 
discussed in the context of Ornstein-Uhlenbeck processes.   
  The paper is organized as follows. In section 2 we review the standard assumptions 
and prove the optimization theorem. The theorem covers both the existence of the 
optimal trading strategy and the explicit form of the associated optimal investment 
fraction. In section 3 we apply the theory to a market of n correlated assets given by 
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Ornstein-Uhlenbeck mean-reverting processes. The optimal investment strategy is 
calculated for some representative examples. In the last section we put the results into 
the financial context and describe some open problems. 

2 General Theory 

In the first section, we will cover the assumptions and the theoretical framework. In 
2.2 we will provide the main result, which is contained in Theorem 1. 

2.1   Basic Assumptions and other Preliminaries 

We will use the standard notation and conventions of financial mathematics. In 
section 2 the basic assumption is that the market is complete and frictionless [5]. Let 
us further assume that we consider all the processes in the finite time interval 0 to the 
terminal time T. There exists a probability space ( )T,  P , TΩ F , on which all of the 
random variables are constructed, whereΩ is the sample space, TF is aσ -algebra 
which denotes the information accumulated up to time T and TP is the spot probability 
measure [5]. The filtration tF , [ ]0,t T∈ , represents the information accumulated up 

to time t. The sub-probability space ( )t,  P , tΩ F  is introduced at time t, where tP is 
the restriction of TP on the filtration tF . 
  We assume there are n+1investable assets in the market including the wealth 
process tB , representing a saving account with value 1 at the initial time 0. We 
assume tB follows 

t t tdB B r dt=  ,                        (1) 

where tr is the short term rate at time t. 
The other n assets in the market are denoted by ( )iS t , [ ]0,t T∈ , 1, 2,...,i n= , and we 

define a n-dimensional vector by ( ) ( ) ( )( )1 2, ,...,
T

t nS t S t S t=S , where’ T ’represents 
the transposition of a matrix. Let us define the relative assets price process 
by 1

t t tB −=S S . Let ( )0 tφ denotes the number of units of tB an investor holds at time t 

and ( )i tφ , [ ]0,t T∈ , 1, 2,...,i n= , denotes the number of units of the ith asset an 
investor holds at time t. In addition, the n-dimensional vector tφ is defined 

as ( ) ( ) ( )( )1 2, ,...,
T

t nt t tφ φ φ φ= . ( )tV ψ is the total value of the portfolio ( )( )0 ,t ttψ φ φ= . 
So we have 

( ) ( )0t t t tV t Bψ φ φ= + ⋅S  ,                   (2)  

where t tSφ ⋅ is the inner product of two vectors. 
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Definition 1  A self-financing trading strategy ( )( )0 ,t ttψ φ φ= is a strategy that 
satisfies: 

( ) ( )0t t t tdV t dB dψ φ φ= + ⋅ S ,  [ ]0,t T∀ ∈  .           (3) 

We assume ( )0 1V ψ = . 

Definition 2  A self-financing trading strategy ( )( )0 ,t ttψ φ φ= is said to be 
admissible if and only if 

( ) 0tV ψ ≥ , TP  a.s.  [ ]0,t T∀ ∈  .               (4) 

( )U x , 0x ≥ , is defined to be a concave function representing the utility of wealth. 
Here concaveness means 

( )( ) ( ) ( ) ( )1 2 1 21 1U p x px p U x pU x− + ≥ − + , 2 1 0x x∀ ≥ ≥ and 0 1p≤ ≤  .    (5) 

Further it is assumed that ( )U x has a first order derivative for ( )0,x∀ ∈ +∞ . The first 
order derivative at 0x = can be either finite or infinite, and the first order derivative 
of ( )U x , 0x ≥ , is a strictly decreasing function of x with ( )lim 0

x
U x

→+∞
′ = . 

If ( )0U ′ = +∞ , let ( )I x , 0x ≥ , be the inverse function of ( )U x′  with ( )0I = +∞ and 

( ) 0I +∞ = . For ( )0 0U b′ = > , we denote by ( )bI x , [ ]0,x b∈ , the inverse function 

of ( )U x′ ,with ( )0I = +∞ . In this case, we define ( )I x as 

( ) ( ) [ ]
( )

0,   
  0     ,  
bI x x b

I x
x b

⎧ ∈⎪= ⎨ ∈ +∞⎪⎩

，

，
 .                   (6) 

Let us denote byD the class of all of the admissible self-financing trading strategies. 
We say a self-financing trading strategy *ψ ∈D is the optimal trading strategy, if and 
only if 

( )( ) ( )( )
T T

*
P PT TE U V E U Vψ ψ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦ ,  ψ∀ ∈D  .       (7) 

Our task is to find an optimal *ψ ∈D , which satisfies eq.7. 

2.2   The Optimal Strategy 

To find the optimal strategy, we will first need to introduce the following lemma.. 

Lemma 1   The function ( )I x , [ )0,x∈ +∞ satisfies the following inequality: 

( )( ) ( ) ( )U I y yI y U c yc− ≥ − ， [ ), 0,y c∀ ∈ +∞  .        （8） 
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Proof: 
If ( )I y c= , then eq.8 is obviously satisfied. If ( )I y c> , then the average growth rate 

of ( )U x from c to ( )I y should be larger than the first order derivative 

of ( )U x at ( )I y , which is given by ( )( )U I y′ , since the first order derivative 

of ( )U x is a strictly decreasing function of x. 

The average growth rate of ( )U x from c to ( )I y is  

( )( ) ( )
( )

U I y U c
I y c

−

−
 . 

This yields the following inequality 

( )( ) ( )
( ) ( )( )

U I y U c
U I y y

I y c
−

′≥ =
−

                     

( )( ) ( ) ( )U I y yI y U c yc⇒ − ≥ −  . 

An almost identical argument can be applied in the case ( )I y c< .              □ 

Let us define PT as the martingale of the market and
P
P

t
t

t

d
Z

d
= . Then ( ),t tZ F is 

a PT martingale [5]. Define * 1 1
t t t ty Z Bη − −= , ( )* *

t tV I η= , where we assume ty is a 

deterministic function of t and is defined in such a way that * * 1
t t tV V B−= is 

a PT martingale. So ty solves the equation 

( )1 1 1 1t t t tE B I y Z B− − −⎡ ⎤ =⎣ ⎦  .                   (9) 

The deterministic property of ty seems contrived, but is necessary for the proof of 
Proposition 1. As we shall see in section 3, in the case of the log utility function the 
deterministic function ty indeed exists and is a constant. 

Proposition 1   ( )* *
T TV I η= satisfies the inequality given by eq.7. 

Proof: 
Let ( )TV ψ , ψ∀ ∈D , be the wealth process corresponding to a special trading 

strategyψ , then  

( ) ( )( )
T T

*
P PT TE U V E U V ψ⎡ ⎤ ⎡ ⎤− ⎣ ⎦⎣ ⎦  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
T T

* * * * * *
P PT T T T T T T T TE U I I U V V E V Vη η η ψ η ψ η ψ⎡ ⎤ ⎡ ⎤= − − − + −⎢ ⎥ ⎣ ⎦⎣ ⎦

 (10) 
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According to lemma 1, the first term of the right hand side of eq.10 is positive. The 
second term is equal to zero,  

( )( ) ( )( ) ( )
T

* * * * *
P 0T T T T T T T T T TE V V E Z V V y E V Vη ψ η ψ ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − = − =⎣ ⎦⎣ ⎦ ⎣ ⎦  .  (11) 

The last equality of the above equation is deduced from the fact that both *
tV and 

( )tV ψ are martingales under the martingale measure. 
Combining eq.10 and eq.11, we directly get 

( ) ( )( )
T T

*
P PT TE U V E U V ψ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦                                             

                                            □  

Proposition 1 only state the fact that ( )*
tI η satisfies eq.7. It doesn’t necessarily mean 

that ( )*
tI η is the optimal wealth process. We will prove in the following theorem 

that ( )*
tI η is in fact the optimal wealth process. 

Theorem 1  Given a concave utility function ( )U x , there exists an optimal self-

financing trading strategy *ψ , such that for each time [ ]0,t T∈ , the wealth 

process ( )*
tV ψ of this strategy satisfies 

( )( ) ( )( )
T T

*
P Pt tE U V E U Vψ ψ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦ ,  ψ∀ ∈D  . 

And the optimal wealth process is given by: ( ) ( )* *
t tV Iψ η= , [ ]0,t T∈ . 

Proof: 
Define *

tV  to be ( )1 *
t tB I η− . For t=T, we have ( )* * *

T T TV B V I η= = , which 
represents a general contingent claim in the market. Since the market is complete, the 
contingent claim *

TV is attainable. This means there exists a self-financing trading 

strategy *ψ such that ( )* * 1
T T tV V Bψ −= , where ( )*

tV ψ is the wealth process of this self-

financing trading strategy. So the relative wealth process ( ) ( )* * 1
t t tV V Bψ ψ −= is a 

martingale under the martingale measure PT . *
tV is also a martingale under the 

martingale measure PT , and we have 

( ) ( )* * * *| |t t T t t T t tV B E V B E V Vψ ψ⎡ ⎤⎡ ⎤= = =⎣ ⎦ ⎣ ⎦F F , [ ]0,t T∀ ∈  .   (12) 

Eq.12 shows that *ψ is a self-financing trading strategy and replicates the optimal 

wealth process ( )* 1 *
t t tV B I η−= . From the combination of *

tV , satisfying eq.7 for any 
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time t before T, and eq.12, we can see that ( )*
tV ψ also satisfies eq.7. This proves that 

the strategy *ψ is both self-financing and optimal.                          □ 
It follows from Proposition 1 and Theorem 1 that the existence of a self-financing 

trading strategy *ψ ∈D , where the total wealth at a fixed time T is consistent with 

eq.7, implies that the wealth process ( )*
tV ψ  satisfies 

( )( ) ( )( )
T T

*
P Pt tE U V E U Vψ ψ⎡ ⎤ ⎡ ⎤≥ ⎣ ⎦⎣ ⎦ ,  ψ∀ ∈D  . 

Therefore, an optimal trading strategy for a fixed time T will be optimal for any time 
before T. It follows further that an optimal trading strategy is only based on the 
information up to time t. The optimal trading strategy *

tψ is an adapted process with 

respect to the filtration [ ){ }, 0,t t∈ +∞F . In the next section, we will apply the theorem 
to the case of a financial market containing a saving account and n correlated assets, 
whose price processes follow Ornstein- Uhlenbeck mean-reverting processes. 

3 Implications for Ornstein-Uhlenbeck Processes 

In this section we set =tr r and ( ) ( )( )expi iS t x t= , [ ]0,t T∈ , 1, 2,...,i n= . 

Each ( )ix t is governed by 

( ) ( ) ,
1

n
j

i i i i i j t
j

dx t a b x t dt dWσ
=

= − +⎡ ⎤⎣ ⎦ ∑ , , 1,2,...,i j n=  . 

where ia is some fixed real number, 0ib > is some nonnegative real number 

and ,i jσ are constants. ( )1 2, ,...,
Tn

t t t tW W W=W is a standard n-dimensional Brownian 
motion. 
Define a to be the vector ( )1 2, ,..., T

na a a (’ T ’ is the transposed of a matrix), b to be the   

n×n matrix of the form ,

, 0   
i j i

i j

b i j
i j

= =⎧⎪= ⎨ = ≠⎪⎩

b
b

b
，

，
, and σ to be the matrix , ,i j i jσ=σ , 

for1 ,i j n≤ ≤ .The matrix σ has a non-zero determinant. Then the dynamic equation 

of ( ) ( ) ( )( )1 2, ,...,
T

t nx t x t x t=x can be expressed as 

[ ]t t td dt d= − +x a bx σ W  .                      (13) 

Let ( ) ( ) ( )( )1 2, ,...,
T

t nS t S t S t=S , 1
t t tB−=S S . 

According to Ito’s lemma, the dynamic of tS is 
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 ( ) ( ) ( ) ( ) ,
1

n
j

i i i i i j t
j

dS t S t t dt S t dWμ σ
=

= + ∑ , 1,2,...,i n=  . 

where ( ) ( )( ) 21log
2i i i i it a b S tμ = − + σ and ( ),1 ,2 ,, ,...,

T

i i i i nσ σ σ=σ . 

Define 

2

0 0

P 1exp
2P

T T
T

u u u
T

d
d du

d
⎛ ⎞

= ⋅ −⎜ ⎟
⎝ ⎠
∫ ∫θ W θ  ,               (14) 

where ( ) ( ) ( )( )1 2, ,...,
T

u nu u uθ θ θ=θ is a n-dimensional adapted stochastic process 

and ( ) ( )2 2
1 ...u nu uθ θ= + +θ is the Euclidean vector norm, and tW a Girsanov 

transformed Brownian motion, i.e. 
0

t

t t udu= − ∫W W θ . 

Then under PT , tS it follows 

( ) ( ) ( ) ( ) ( ), ,
1 1

n n
j

i i i i j j i i j t
j j

dS t S t t r t dt S t dWμ σ θ σ
= =

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑ ∑  . 

Define ( ) ( )i ic t t rμ= − and in vector form ( ) ( ) ( )( )1 2, ,...,
T

t nc t c t c t=c . If tθ solves 

1
t t t t

−= ⇒ =σθ c θ σ c  ,                     (15) 

then under PT  it follows that 

t t td d=S σ WS  ,                         (16) 

where the matrix tS is defined as:
( ) ( )
( )

,

, 0       
i j i

t
i j

t S t i j
t i j

⎧ = =⎪= ⎨ = ≠⎪⎩

，

，

S
S

S
. tS is a martingale 

under PT . 
To apply theorem 1, we need first to prove the completeness of the market price 
processes under consideration. The next lemma tells us that indeed the market is 
complete. The proof is given in an earlier presentation [7]. 

Lemma 2   The mean-reverting market given above is complete. 

  In case ( ) ( )logU x x= , we find ( ) 1/I x x= . Using eq.9, we can show 1ty = . Then 
the optimal discounted wealth process is 

2*

0 0

1exp
2

t t

t t u u uV Z d du
⎛ ⎞

= = ⋅ −⎜ ⎟
⎝ ⎠
∫ ∫θ W θ . 

Now we are in a position to derive a general result for Ornstein-Uhlenbeck processes. 
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Theorem 2  The optimal trading strategy ( )( )* * *
0 ,t ttψ φ φ= is given by: 

( ) ( )* 1 * 1
0 1 T

t t t t t tt B V Bφ − −= − θ λ S , ( ) ( ) ( )* 1 *
,

1

n

i t t j j i
j

t B V t tφ θ λ−

=

= ∑ , 1, 2,...,i n=  .  (17) 

where ( ) 1

t t

−
=λ σS . 

Proof: 
First, we can show immediately 

 ( )* * *
0t t t tV t Bφ φ= ⋅ +S  , 

where *
tV is the optimal wealth process given by  

2*

0 0

1exp
2

t t

t t u u uV B d du
⎛ ⎞

= ⋅ −⎜ ⎟
⎝ ⎠
∫ ∫θ W θ  . 

Using Ito’s lemma for *
tV , we get 

* * T
t t t t tdV dZ V d= = θ W  .                          

From eq.16 we know that 

 t t td d=W λ S  . 

Combining the above two equations, we have 

( )* * 1 *T T T
t t t t t t t t t t t t tdV V d B V d r dt−= = −θ λ S θ λ S θ λ S  ,        (18) 

and 

* 1 * 1 *
t t t t tdV B dV rB V dt− −= −  .                   (19) 

Combining eq.18 and eq.19, we arrive at 

( ) ( )* * 1 1 1 * *
01T T

t t t t t t t t t t t t t t tdV V B d B B dB d t dBφ φ− − −⎡ ⎤= + − = ⋅ +⎣ ⎦θ λ S θ λ S S  .   (20) 

Eq.20 shows directly that ( )( )* * *
0 ,t ttψ φ φ= given by eq.17 is the optimal self-financing 

trading strategy.                                                      □ 

The optimal fraction vector ( ) ( ) ( )( )* * * *
1 2, ,...,

T

t nf t f t f t=f is composed of the 

individual ( )*
if t , e.g. ( ) ( )* * */i i tt S t Vφ . By simple calculations based on Theorem 2, 

we have 
* 1
t t

−=f R c ,                         (21) 
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where T=R σσ is a symmetric matrix and called correlation matrix. We will show in a 
separate paper that the matrix R denotes the correlations of the yield rates, e.g. the 
correlation of the ith and jth assets is a deterministic function of i j⋅σ σ . If the standard 
inverse of the volatility matrix does not exist, then one can resort to the generalized 
Moore-Penrose inverse to obtain a related result for the optimal investment fractions 
in markets without arbitrage. 
  Another derivation of the optimal fraction can be based on the function 

( ) 1F
2

T T
t= −x c x x Rx ,   nR∀ ∈x  ,               (22) 

linked to the mean-variance approach, since the optimal fraction given by eq.21 is the 
maximum of the function F . This indicates the close relationship between the utility 
maximization and the mean-variance method.  
  In the special case where the market is composed of only one stock, by eq.21, the 
optimal fraction is ( )* 2/t tf rμ σ= − , where ( )( ) 2log 0.5t a b S tμ σ= − + . Fig. 1 shows 
a sample path for the stock process and the associated optimal investment fraction and 
wealth process. As an aside, if one assumes zero interest rates, than the sensitivity of 
the optimal fraction to a percentage estimation error in the drift μ is twice the negative 
of a similar error inσ , e.g. a 1% overestimation in volatility has approximately the 
same impact as an underestimation of the drift by 2%. 

0 0.2 0.4 0.6 0.8 1
9

10

11

St

0 0.2 0.4 0.6 0.8 1
-2
-1
0
1
2

f*t

0 0.2 0.4 0.6 0.8 1
9

10

11

t (time)

V*
t

 

Fig. 1. Simulation of the stock price process, the corresponding optimal strategy *
tf , and the 

wealth process *
tV  with parameters a=0.5, b=0.2,σ =0.1, r=0.03, 0S =10 and 0V =10.  
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Besides the sensitivity to estimation errors, it would be interesting to analyze the 
impact of the correlation matrix on the optimal trading strategy. Positive correlation 
has a tendency to reduce the number of ‘independent’ assets and forces investors to 
reduce leverage, e.g. the sum of the absolute values of the investment fractions is 
smaller. 
Next, we study a special case where the assets have local correlations. The different 
assets only correlate to the neighboring assets but have no correlation to the rest assets. 
Let’s set the risk-free rate to zero and the volatility matrix to be 

0 0
0
0 0 0

0 0 0 n n

σ σ
σ σ

σ
σ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

σ , n 2≥  . 

In this case, we will only study the large time limit. Let us denote by ( )*
Sf ∞                         

                      ( ) ( )* *
P

1
: lim

T

n

S it i
f E f t

→+∞
=

⎡ ⎤
∞ = ⎢ ⎥

⎣ ⎦
∑  .                   (23) 

After some simple manipulations we get  

( )*

1   for n odd
4

      for n even
4

S

n

f
n

+⎧
⎪⎪∞ = ⎨
⎪
⎪⎩

 .                  (24) 

For a fixed odd integer n, the limit of the expected total fraction is (n+1)/4, which is 
identical to the value for the next even number.  

Now, let us investigate another correlation structure where the assets have global 
correlations. As a simple example the volatility matrix is chosen as 

1 0 0 0
1 1 0 0

= 1 1
1 0

1 1 1 1 n n

σ

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

σ , n 2≥  , 

and the corresponding inverse matrix is 

1 1

1 0 0 0
1 1 0 0

= 0 1
1 0

0 0 1 1 n n

σ− −

×

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

σ  . 
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Thus the optimal fraction ( )*
if t is given by 

           ( )
( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

1 2 1

*
1 1

1

                     =1

 =2,3,..., n-1

                                =n  
i i i i i

n n

c t c t c t i

f t c t c t c t c t i

c t c t i
− +

−

⎧ − −
⎪⎪= − − −⎨
⎪ −⎪⎩

 .       (25) 

The total optimal fraction is 

( ) ( ) ( ) ( )1* *
1 2

1

n

i
i

t r
f t f t c t

μ
σ=

−
= = =∑  .               (26) 

The total fraction here is equal to the optimal fraction in another market containing 
only the first asset. This surprising result is partly due to the fact that in the multi-
dimensional case the investment fractions are likely to have both positive and 
negative signs. The expected total optimal fraction is 

( ) ( ) ( )
( )( ) 1 2

1 1 1
* *

1 2

1log 0
2E

b ta b S e r
f t f t c t

σ

σ

−⎡ ⎤− + −⎣ ⎦
⎡ ⎤= = =⎣ ⎦  .      (27) 

As time approaches infinity, the following limit is reached: 

( ) ( )

2
1

12
* *

2

12

1
2  for b =0

lim
1
2         for b 0

t

a r

f f t
r

σ

σ

σ

σ

→+∞

⎧ + −⎪
⎪⎪∞ = = ⎨
⎪ −
⎪ ≠⎪⎩

 .           (28) 

For additional examples, in particular in higher dimensions, we refer the reader to [7].  

4 Conclusions 

In the earlier sections we presented a discussion of the Kelly criterion in the 
continuous-time framework. The main theorem shows that in a complete market there 
exists an optimal self-financing trading strategy that maximizes the logarithmic utility 
function. The optimal investment fractions were explicitly calculated.  

One general implication of the Kelly’s criterion is maybe worth mentioning. It 
follows from Breiman’s theorem [2], which shows that a logarithmic utility 
maximizer outperforms with probability one in the long run any substantially different 
trading strategy. This theorem has surprising consequences, for example it has 
spanned a smallish field called ‘evolutionary finance’ [8]. According to evolutionary 
finance ‘natural selection’ should favor agents with log utility. Such agents maximize 
the growth rate of their wealth with probability one, and thus dominate eventually the 
market. The stark claim is that either the investor maximizes utility or is marginalized. 
The authors are doubtful, if such a strong claim is justified, since only in the long time 
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limit does the utility maximizer almost surely outperform. In the real world, where 
one has multiple independent agents and frequent paradigm shifts, maybe an even 
more aggressive strategy is warranted. Being ‘overinvested’ can be ‘superior’ (lower 
utility, but higher winning probability) in the short term. Even in the medium term the 
log maximizer has difficulties to outperform, if many independent agents exist. This 
could be a partial explanation for the regular crisis in financial markets, e.g. investors, 
who seek a short-term competitive advantage, invest over-aggressively. This is on top 
of the significant inherent volatility of utility maximization. A proper understanding 
of the impact of the Kelly criterion on the optimal behavior of individual agents is the 
precursor to consistent multi-agent modeling. 

As a speculative aside, maybe utility maximization has a role in the study of the 
punctuated equilibrium observed in the evolutionary history of the earth, since utility 
maximization could provide a potential explanation without necessarily having to 
resort to external causes like asteroid impacts or volcanic eruptions for rare 
widespread extinction events. 

A further interesting aside is to relate Kelly’s criteria to market bubbles.  A 
bubble is sometimes defined as a self-reinforcing dynamic associated with an 
excessive increase in asset prices followed by a sudden collapse. One simple and 
generic way to achieve a bubble is to find a reinforcing process that reduces the 
volatilityσ , which would increase the optimal leverage as perceived by the investors, 
since the optimal Kelly fraction is given by ( ) 2/t rμ σ− . Next a description of a 
possible self-reinforcing process: In a number of investment strategies investors are 
short volatility. This selling of implied volatility can lead to a decrease of implied 
volatility due to supply and demand imbalances, which leads on the one hand to an 
increase in the optimal leverage and on the other hand to mark-to-market profits for 
the short volatility positions. As volatility decreases the optimal position size, e.g. 
leverage, increases, putting additional pressure on implied volatilities. This process 
continues until the friction associated with obtaining additional leverage stops the 
process. This ‘virtuous circle’ is then replaced by a ‘vicious circle’, since the extremal 
point is unstable, as implied volatility increases and leverage decreases. Here we do 
not discuss realized and implied volatility separately, since they are positively 
correlated and for the qualitative description presented here a dampening process for 
either type of volatility is sufficient. The analysis sketched out above can be extended 
to show that many bubbles, i.e. credit and stock market bubble, are driven by changes 
in the optimal leverage ratio as derived from the Kelly criterion.     

Due the space limitations, we are not able to provide even a brief description of the 
application of the result in the area of statistical arbitrage. The present discussions are 
based on the continuous time framework, but realistic markets have an inherent 
discreteness. Furthermore there are different types of frictions, e.g. transaction cost, 
bid-offer spreads and liquidity constraints, which impose portfolio readjustment 
frequency restrictions. Not all of those influences are small and can be neglected. In 
an earlier presentation [7] correction terms for reducing the investment fractions were 
explicitly calculated. It would be of interest to give a comprehensive analysis of the 
impact of the different types of frictions for statistical arbitrage strategies. This will be 
done by the authors in a separate paper. 
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In conclusion this article gives a quantitative insight into the trade-off between risk 
and return as diversification opportunities are added, correlation structure changed, 
and other constraints modified. 
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