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Abstract: To describe the physical reality, there are two ways of constructing the dynamical 

equation of field, differential formalism and integral formalism. The importance of this fact is 

firstly emphasized by C. N. Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 445], where 

the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic 

monopole [Phys. Rev. D. 12 (1975) 3845]. In this paper we shall point out that such a fact also 

holds in general wave function of matter, it may give rise to a deeper understanding for Berry 

phase. Most importantly, we shall prove a point that, for general wave function of matter, in the 

adiabatic limit, there is an intrinsic difference between its integral formalism and differential 

formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic 

theorem pointed out by K. P. Marzlin and B. C. Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It 

has been widely accepted that there is no physical difference of using differential operator or 

integral operator to construct the dynamical equation of field. Nevertheless, our study shows that 

the Schrödinger differential equation (i.e., differential formalism for wave function) shall lead to 

vanishing Berry phase and that the Schrödinger integral equation (i.e., integral formalism for wave 

function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a 

conclusion: There are two ways of describing physical reality, differential formalism and integral 

formalism; but the integral formalism is a unique way of complete description.       
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1. Introduction 

 

The quantum adiabatic theorem (QAT) [1-4] is one of the oldest fundamental and most widely 

used tools in physics. It states that [5] if the Hamiltonian  tH  evolves slowly enough by 

satisfying the adiabatic condition in time interval  T,0 , then the evolving state of the system 

will remain close to its instantaneous eigenstate up to a multiplicative phase factor in the interval 

 T,0 . In 1984, M. V. Berry [6] found there is a geometrical phase, namely Berry phase, in the 

adiabatically evolving state vector besides the dynamic phase. Interestingly, Aharonov-Bohm (AB) 

phase can be regarded as a special case of Berry phase. From that time on, the QAT has been 

widely accepted by a complete form, that is [7], 
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where, we have used the scaled dimensionless time variable 
T

t
s  . 

Recently, however, the QAT has been doubted. Marzlin and Sanders (MS) have pointed out an 

inconsistency for the QAT [7]. This point has attracted a lot of attention and has promoted the 

study of QAT into a new springtide. For this inconsistency, on the one hand, the opinions of critics 

focus on three points: (i). MS made a mathematical error [8,9,10,11]. (ii). The QAT is physically 

correct [9,10]. (iii). The conditions for QAT used by MS are insufficient [11,12]. On the other 

hand, the opinions of supporters focus on two points: (i). Vanishing Berry phase is induced by MS 

inconsistency [13]. (ii). The widely used quantitative conditions in QAT are insufficient 

[14,15,16,17,18].  

Evidently, there are many different viewpoints as for the inconsistency of QAT raised by MS. 

Nevertheless, here we need to emphasize: That is because there, in essence, are two different types 

of inconsistencies of QAT in reference [7]! One is equation (6) in [7] (we call this type the MS 

inconsistency), another is “counterexample of a two-level system” in [7] (we call this type the MS 

counterexample). But, it is notable that these two types are often confused with each other by 

physical circles
 1

. In fact, MS inconsistency is almost independent of MS counterexample. 

Interestingly, the traditional adiabatic condition,     0



tm

t
tn   mn  , neither resolves 

the MS inconsistency nor removes the MS counterexample. That is the reason why MS 

inconsistency and MS counterexample are often confused as one. In fact, resolving the MS 

counterexample is related to references [12,15,16,17,18]; resolving the MS inconsistency is 

related to references [9,10,13].    

Resolving the type of MS counterexample refers to convergence of Schrödinger integral 

equation in the adiabatic limit, which shows as convergence of transition probabilities
 2

 between  

energy levels [17]. Hence, resolving the type of counterexample may guarantee the validity of the 

adiabatic quantum computation [19]. Fortunately, the type of counterexample has been resolved 

[12,15,16,17,18]. Recently, Amin [18] gave a splendid summary as for this point. In this paper, 

we shall not discuss the type of MS counterexample; our purpose is to focus on another type, that 

is, MS inconsistency. The importance of this inconsistency is still missed by physical circles, 

 
 1

For example, MS inconsistency and MS counterexample are confused as one by references [14] and [15]. In 

fact, reference [14] is related to the MS inconsistency and reference [15] is related to the MS counterexample. We 

shall clarify this point in a later paper. 

 2
In the rotating representation, the Schrödinger integral equation is written as [15], 
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where,      sTEsTET lmml  . Clearly, Convergence of Schrödinger integral equation in the adiabatic 
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except that a handful of references, e.g. [9,10,13], have some substantial contacts. 

To resolve the MS inconsistency, here we must pay attention to one important fact: MS reach 

the MS inconsistency through Schrödinger differential equation [7]. In fact, Wu and Yang [9] have 

proved that the QAT satisfies Schrödinger integral equation rather than Schrödinger differential 

equation in the adiabatic limit. They state further that [10] if the QAT satisfies Schrödinger 

differential equation in the adiabatic limit, then there will be MS inconsistency
 3

. Nevertheless, 

MS, in the reference [7], require that the QAT satisfies the Schrödinger differential equation. That 

is the reason why there is MS inconsistency in MS’s derivation. Another important fact is shown 

by Pati and Rajagopal [13] that the MS inconsistency shall lead to vanishing Berry phase. The 

main purpose of this paper is to point out that there is a very important and profound relationship 

between such two facts; a relationship shows that the Schrödinger differential equation gives rise 

to the vanishing Berry phase. For this point, we shall provide an explanation: Differential 

description
 4

 is not a logical way of describing global effect (or topological effect). The MS 

inconsistency just originates from the fact that MS use differential description (i.e., Schrödinger 

differential equation) to describe a global effect (i.e., Berry phase). To avoid this difficulty, we 

need to appeal to the integral description.  

The organization of our paper is as follows. In section 2, we review the integral formalism for 

gauge field developed by C. N. Yang and recognize that it is a more proper way of describing AB 

phase and magnetic monopole than the differential formalism for gauge field. In section 3, we 

shows that the Schrödinger differential equation gives rise to vanishing Berry phase and that the 

Schrödinger integral equation, in the adiabatic limit, can satisfactorily give the Berry phase. In 

section 4, we present the integral formalism for wave function. It can be regarded as a 

development of integral formalism for gauge field, while it is also an intrinsic requirement of 

describing Berry phase. In section 5, we analyze the reason why the global effect (e.g., AB phase, 

magnetic monopole and Berry phase) can be properly described by integral formalism rather than 

differential formalism. In section 6, we take an example to show how the Schrödinger differential 

equation, in the adiabatic limit, leads to vanishing Berry phase. In section 7, our conclusion 

follows. In this paper we set 1 c . 

 

2. AB phase, magnetic monopole, and integral formalism for gauge field. 

 

Before 1960s, it was widely accepted that, for electromagnetic field: (i). Field strength f  

completely described electromagnetism; (ii). Potential A  were only regarded as a convenient 

mathematical aid for calculating the fields and hence had no independent significance. However, 

the study of Aharonov and Bohm [20] shows that f  by itself does not, in quantum theory, 

 
 3

That means, resolving the MS inconsistency, which is different from resolving the type of MS 

counterexample, but refers to convergence of Schrödinger differential equation in the adiabatic limit. 

 4
Here differential description and integral description are determined by differential formalism and integral 

formalism respectively. The notions of differential formalism and integral formalism shall be presented in footnote 

(5) of section 2. 



completely describe all electromagnetic effects on the wave function of electron. They hence 

suggest that, in quantum mechanics, the fundamental physical entities are the potentials rather 

than field strength. Later, Yang [21] developed the integral formalism for gauge field and further 

pointed out that [22] what provides an intrinsic and complete description of electromagnetism is 

integral formulation  


dxAieexp . 

From that time on, there have been two ways of describing gauge field [21,22] as follows: 

 

(a). Differential formalism
 5

 for gauge field. It is based on the replacement of differential 

operator   by  

 ieA .         (2) 

The corresponding Dirac equation reads  

   0   meAi .         (3) 

(b). Integral formalism
 5

 for gauge field. The wave function of the matter is determined by  

   




 

Q

P
dxAiexx 

 exp ,           (4) 

where 
Q

P
dx

 denotes any path from P  to Q  and 







Q

P
dxAie 

exp  hence is called 

the nonintegrable (i.e., path-dependent) phase factor. 

 

On the one hand, AB phase can be directly obtained from integral formulation (4) as QP  . 

Moreover, we can note that AB phase is path-dependent but phase of wave function satisfying 

equation (3) is path-independent. Hence, we do realize that the integral formalism (b) is a more 

natural way of understanding AB phase than the differential formalism (a). In fact, this point has 

been emphasized by reference [22]. 

On the other hand, if we not only require that magnetic monopole exists but also require that 

the Dirac equation (3) holds, then there need to be an additional condition, which reads, 

  0x  along a singular string (Dirac’s veto) [23]. Fortunately, this difficulty has been 

removed by integral formalism (b) [22].  

Above discussion shows that the integral formalism (b) is indeed a more natural way of  

 
 5

Since Maxwell established the electromagnetism theory, people started to believe that the interaction 

between matters as point contact is passed by fields. In general, field is determined by a dynamical equation. 

Mathematically, the dynamical equation may be written as a differential equation or an integral equation. In this 

paper, we call such differential equation the differential formalism and call such integral equation the integral 

formalism. For example, the matter wave is a field; its differential formalism and integral formalism are 

Schrödinger differential equation and Schrödinger integral equation respectively. Generally speaking, it has been 

widely accepted that there is no physical difference of using differential operator or integral operator to construct 

the dynamical equation of field. Nevertheless, in section 5, we shall find that this viewpoint is wrong.    



describing global effects (e.g., AB phase and magnetic monopole) than the differential formalism 

(a). Now that the AB phase is a special case of the Berry phase [6]; a natural question is what 

provides a more natural way of describing Berry phase, differential formalism or integral 

formalism? We shall answer this question in the section 4, where we shall surprisingly find that 

the integral formalism is not only a more natural way of describing Berry phase but is an intrinsic 

requirement. In other words, the differential formalism can not describe Berry phase! Nevertheless, 

before entering to this point, we firstly need to explain why the Schrödinger differential equation 

leads to vanishing Berry phase. That is what we shall refer to in next section. 

 

3. MS inconsistency and vanishing Berry phase 

 

Generally speaking, the state vector  sT  of system evolves according to Schrödinger 

differential equation [24] 

     sTsTTHsT
s

i 



.       (5) 

Clearly, we can note that the Dirac equation (3) is a special case of the Schrödinger equation 

(5). In general, the QAT reads [25]    
AT

sTsT 


lim , where T  denotes the 

adiabatic limit [4]. To prove the QAT, an important step is to construct an adiabatic transformation 

[3,4,24]  sT  which leads to 

     sTsTsT  ,       (6) 

where,          





n

s

n nsTndsTsEiTsT 0exp
0

'' .         (7) 

Here, if we can prove [26]       

       0explim
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 ,        (8) 

 the proof of the QAT is complete.  

Substitution of equations (6) and (7) into equation (5) gives the dynamical equation of 

 sT  (namely, the Schrödinger equation in the rotating representation), 

     sTsKsT
s

T  



,        (9) 

or         '

0

''0 dsTssKsT
s

T  .       (10) 

where,  
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Clearly, if we wish to prove the equation (8) (or equivalently, to prove the QAT), we need to 



solve the equation (9) or the equation (10) in the adiabatic limit T .  

Recently, nevertheless, Wu and Yang [9] have proved that the equation (8), in the adiabatic 

limit T , satisfies the integral equation (10) rather than the differential equation (9). 

Furthermore, they point out that if the equation (8), in the adiabatic limit T , satisfies the 

differential equation (9), then there exists a restriction for the Hilbert space,  

    0



sTm

s
sTn .   mn        (12) 

Indeed, in most cases, there would be no set of  sTn  satisfying equation (12) for the 

Hilbert space. Nevertheless, here we need to emphasize: That is because we, in the past, failed to 

check the case of adiabatic limit. In fact, the conclusion of reference [9] has shown that if an 

adiabatic system, in the adiabatic limit, satisfies the Schrödinger differential equation, then the 

arbitrary eigenstate  sTn  for the Hilbert space would satisfy the equation (12). 

Wu et al, in a later paper [10], continue to prove that the equation (12) shall lead to the MS 

inconsistency (Detailed proofs sees appendix A), which is 

        
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s

dsTsm
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It is easy to check that the equation (12) not only satisfies the traditional adiabatic condition, 

    0



tm

t
tn   mn  , but also is compatible with some new adiabatic conditions given 

by references [12,15,16,17,18]. Therefore, the conclusion of reference [10] has implied that both 

the traditional adiabatic condition and these new adiabatic conditions can not still remove the MS 

inconsistency. However, these new adiabatic conditions may remove the MS counterexample.  

Most importantly, Pati and Rajagopal, in reference [13], have proved that the equation (13) 

shall give rise to vanishing Berry phase. For example, for the cyclic evolution    Tmm 0 , 

the equation (13) gives, 

             100exp 1

''   TmmsTmmTsmdTsm s , 

which implies vanishing Berry phase.  

Clearly, integrating the conclusions of references [9,10] and [13], we can recognize that the 

Schrödinger differential equation, in the adiabatic limit, leads to the equation (12) and hence gives 

rise to vanishing Berry phase. Therefore, we reach a conclusion: The Schrödinger differential 

equation gives rise to vanishing Berry phase. In fact, we can rigorously prove that if the QAT (1) 

satisfies the Schrödinger differential equation (5), then the Berry phase vanishes. Proof sees 

appendix B. 

However, the equation (8) satisfies the integral equation (10). That is to say, the Schrödinger 

integral equation, in the adiabatic limit, can satisfactorily give the Berry phase. 

In order to understand this curious situation we are facing, we need to recall that, in the section 

2, the AB phase can be satisfactorily described by the integral formalism (b) rather than 

differential formalism (a) and that the AB phase is a special case of Berry phase. That means, in 

accordance with the case of gauge field, there are also two different ways of describing wave 



function. We shall refer to this point in next section. 

 

4. Berry phase and integral formalism for wave function 

 

In last section, we have concluded that there are two different ways of describing wave 

function. That may be the reason why the Berry phase is compatible with the Schrödinger integral 

equation rather than the Schrödinger differential equation. To show this point, here we attempt to 

define the clear formulations of these two ways of describing wave function. In analogy with the 

differential formalism (a) and the integral formalism (b), we define,  

 

(c). Differential formalism for wave function. The wave function is determined by the Schrödinger 

differential equation (9), 

     sTsKsT
s

T  



. 

(d). Integral formalism for wave function. The wave function is determined by 

     sTsTsT  , 

where  sT  is determined by the Schrödinger integral equation (10), 

        '

0

''0 dsTssKsT
s

T  . 

 

Clearly, the integral formalism (d) is, formally, similar to the integral formalism (b)
 6

. Further, 

the integral formalism (b) can be regarded as a special case of the integral formalism (d). For 

example, the integral formalism (d), in the adiabatic limit, gives, 

 
 6

In fact, if we use the Aharonov-Anandan connection [27], the differential formalism for wave function may 

be also, formally, similar to the differential formalism (a). To understand this point, let  sT  be  
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'exp  , in the cyclic evolution, gives Aharonov-Anandan phase and 
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s

sT 


  denotes the Aharonov-Anandan connection. Especially, in the adiabatic limit [27], 
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which, in the cyclic evolution, gives the Berry phase. 

Then the differential formalism for wave function is determined by 

        0











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


sTsT

s
sTsTiTH

s
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which is, formally, similar to differential formalism (a). Especially, in the adiabatic limit, the 

Aharonov-Anandan connection,    sT
s

sT 



, returns to the Berry connection [28],    sTm

s
sTm



 . 
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where we have used the equation (8). 

Especially, for the cyclic evolution, there may be [6] 
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which implies that the integral formalism (d) returns to the integral formalism (b). 

On the one hand, equations (14) and (15) show that the integral formalism (d), in the adiabatic 

limit, naturally gives the Berry phase. On the other hand, similar to the AB phase, the Berry phase 

     sTmdsTmexp  is also not integrable; it depends on the path of parameter space [6]. 

These two facts have implied that the integral formalism (d) is a more natural way of describing 

Berry phase than the differential formalism (c). Nevertheless, more importantly, the differential 

formalism (c) can not describe the Berry phase! That is because, according to the discussion of 

section 3, the Schrödinger differential equation (9) shall give rise to vanishing Berry phase. This 

point is different from the case of differential formalism (a), which at least, formally, gives the AB 

phase: That is to say, for any singularity-free paths, the equation (4) satisfies the Dirac equation 

(3). However, the integral formalism (d), in the adiabatic limit, can satisfactorily give the Berry 

phase. That is because there, in the adiabatic limit, exists an intrinsic difference between 

differential formalism (c) and integral formalism (d); a difference leads to that the differential 

formalism (c) fails to describe Berry phase. We shall present this difference in the next section. 

 

5. Shortage of differential formalism 

 

In section 4, we have noted that differential formalism (c) can not describe Berry phase. 

Nevertheless, it is not really worth surprising in such a fact. That is because, if we carefully check 

the standard proof of QAT [3,4,24], we shall note that a key step of these proofs is use of 

Schrödinger integral equation. In other words, we can not reach a complete QAT through 

Schrödinger differential equation. 

Taking an example of the Schrödinger differential equation (9), if we want to reach the 

equation (8) through the differential equation (9), we need to prove  

     sTsKsT
s T

T
TT








limlimlim .       (16) 

To prove the equation (16), we only need to prove    
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sT
s TT


 







limlim ,         (17) 

where we have used the equation,        sTsKsTsK
T

T
T

T
T




 limlimlim . 

However, the study of reference [9] shows that the equation (17) shall give rise to the equation 

(12). More importantly, after the discussion of section 3, we have recognized that the equation (12) 

should lead to the MS inconsistency (13) and that the MS inconsistency (13) should give rise to 



vanishing Berry phase! 

In fact, we are already familiar to an important mathematical fact: Differential does not always 

commute with limit. That is, commutation relation, 
 








TT ss
limlim  (e.g., equation (17)), does 

not always hold. It is neglect of this mathematical fact that leads to MS inconsistency and hence 

gives rise to vanishing Berry phase.  

Similar difficulty also appears in differential description of magnetic monopole. To understand 

this point, we need to note that the differential is also a limit operation. Gauge invariance of 

electromagnetic field strength f  requires, for a gauge transformation  
e

AA
1'

, 

that there holds a commutation relation,    . Unfortunately, commutation relation, 

   , does not always hold; otherwise, it shall give rise to a singular magnetic 

monopole. In fact,  

only   0 





  dxdxdx  gives Dirac’s quantization [22]. 

However, above difficulty does not appear in integral formalism (d). That is because the 

bounded convergence theorem of Lebesgue [29] would guarantee that integral, in general, 

commutes with limit (Here we suppose the oscillating factors could guarantee convergence of 

Schrödinger integral equation in the adiabatic limit). That is to say, commutation relation, 

  
TT

dsds limlim , almost always holds. That is the reason why equation (8) satisfies integral 

equation (10) rather than differential equation (9) in the adiabatic limit T . 

Therefore, we indeed do note that, in the adiabatic limit, there exists an intrinsic difference 

between differential formalism (c) and integral formalism (d):  

In case of differential formalism (c), differential does not commute with adiabatic limit; but in 

case of integral formalism (d), integral commutes with adiabatic limit. 

Since Maxwell wrote down the differential form of Maxwell equation, people always believed 

that the differential (local) description was a logical way of completely describing physical reality 

and that there is no physical difference of using differential operator or integral operator to 

construct the dynamical equation of field. Unfortunately, this viewpoint is wrong. For example, 

for the topological effect (e.g., Berry phase), there is an important physical difference between the 

Schrödinger integral equation and the Schrödinger differential equation. Previous discussion has 

shown that the differential description (e.g., differential formalism (c), or equivalently, the 

Schrödinger differential equation) can not describe the Berry phase. This fact indicates that the 

differential description is not a logical way of completely describing physical reality. However, the 

integral description is a logical way of completely describing physical reality.      

   

6. An example of vanishing Berry phase 

 

In section 3, we have pointed out that the Schrödinger differential equation shall lead to 

vanishing Berry phase. Finally, we use an example to show this fact.     

Consider the well known model, a spin-half particle in a rotating magnetic field. The 



Hamiltonian of this system is 

    zyxt
T

t
T

BtH 





 







 cos

2
sinsin

2
cossin . 

Now we require that this system satisfies the Schrödinger differential equation. Then, 

according to the discussion of section 3, this system, in the adibatic limit
 7

, should satisfy the 

equation (12), which leads to 

    0



 s

s
s ,       (18) 

where,  s  and  s  are eigenstates of the Hamiltonian of this system. 

Generally speaking,  s  and  s  are determined by equations, 

 
 



















si

s






2exp
2

sin

2
cos

,       (19) 

 
 






















2
cos

2exp
2

sin






si
s ,       (20) 

   where   is an arbitrary real number in interval  ,0 . 

However, the Schrödinger differential equation, in the adiabatic limit, leads to a restriction for 

this system. That is to say, then, this system must satisfy the equation (18). Hence, substitution of 

the equations (19) and (20) into the equation (18) leads to 0  or  , which implies Berry 

phase, 

    0cos1   C  or 2 .     (21) 

On the one hand, the equation (21) leads to vanishing Berry phase, that is to say, 

   1exp  Ci . On the other hand, it is easy to check that        1exp10  Ci , 

which implies that essence of MS inconsistency is vanishing Berry phase since then MS 

inconsistency does not exist. 

 

7. Conclusion 

 

Similar to the fact that there have been two ways of describing gauge field, differential 

formalism (a) and integral formalism (b); there are also two ways of describing general wave 

function of matter, differential formalism (c) and integral formalism (d). Most importantly, we find 

  

  
 7

Here we need to emphasize: The adiabatic limit can not be neglected, since it is a sufficient condition of 

leading to Berry phase [6]. 



that, for these two ways of describing general wave function of matter, differential formalism (c) 

is not equivalent to integral formalism (d) in the adiabatic limit. Check such a fact, we note that 

differential formalism (c) can not describe Berry phase: If we use differential formalism (c) to 

describe Berry phase, then there will be MS inconsistency. Fortunately, the integral formalism (d), 

in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, differential formalism 

(e.g., Schrödinger differential equation) is though a convenient tool to describe physical reality but 

is not a complete way. What provides an intrinsic and complete description of physical reality is 

integral formalism (e.g., Schrödinger integral equation).   
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Appendix A 

 

In order to show that the equation (12) leads to the equation (13), here we shall prove two 

theorems as follows: 

 

Theorem 1. In the finite-dimensional Hilbert space, the necessary and sufficient condition, which 

guarantees that the equation (12) holds, reads 

        0








sTmsTm

s
sTmsTm

s
       (A.1) 

 

Proof. Sufficiency   We construct 

           sTmsTm
s

sTmsTm
s

sTm








 .       (A.2) 

Multiplying  sTn  from the left to the equation (A.2), we get     0 sTsTn m  for 

any integer n , where we have used the equation (12). 

This implies, in the finite-dimensional Hilbert space, that   0 sTm . 

Necessity   Multiplying  sTn  from the left to the equation (A.1), we get  

     0



sTm

s
sTn .   mn   □  

 

Theorem 2. If the equation (A.1) holds, then there exists the MS inconsistency, that is,  

        











 

s

dsTsm
s

TsmsTmm
0

''

'

'exp0 .      

 

Proof. Multiplying  0m  from the left to the equation (A.1), we get the differential equation 



             000 








sTmmsTm

s
sTmsTmm

s
. 

Integration of this differential equation leads to 

         











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s

dsTsm
s

TsmsTmm
0

''

'

'exp0 . □ 

 

Using theorems 1 and 2, we can understand that the equation (12) does lead to the equation 

(13).  

 

Appendix B 

 

Theorem 3. If the QAT (1) satisfies the Schrödinger differential equation (5) in the adiabatic limit 

T , then there exists   

       0exp
.

''

'

' mdsTsm
s

TsmsTm
s













  ,       (B.1) 

such that the QAT (1) can be rewritten as  

     0exp
0

'' ndsTsEiTsT
s

n 



  .          (B.2) 

 

Proof. Substitution of QAT (1) into equation (5) leads to  

      0exp
0

''

'

' 
























 sTmdsTsm

s
Tsm

s

s

.  

This, clearly, implies that  

        0exp
0

''

'

' mCsTmdsTsm
s

Tsm m

s













  ,         (B.3) 

 where mC  is a constant. 

 By setting 0s  in equation (B.3), we get 1mC , that is to say, equation (B.1) holds. 

Substitution of equation (B.1) into the QAT (1) gives the equation (B.2). □ 

 

   Most importantly, we note that Berry phase factor vanishes in the equation (B.2). 

 


