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AN ANALYSIS ON THE SHAPE EQUATION FOR BICONCAVE

AXISYMMETRIC VESICLES

THOMAS KWOK-KEUNG AU AND TOM YAU-HENG WAN

Abstract. We study the conditions on the physical parameters in the Helfrich bending
energy for lipid bilayer vesicles. The variation equation for embedded surface with a
biconcave axisymmetric shape is analyzed in detail. This leads to simple conditions
describing the solution and information about the geometry of the surface.

Introduction

In this article, a vesicle is represented by a closed surface Σ in R
3 with mean curvature

H , surface area |Σ| and it encloses a volume V . Its geometric shape is modelled by

minimizing a functional, sometimes called Helfrich functional,

F =
∫

Σ

(2H + c0)
2 dS + λ |Σ| + pV

with some physical constant parameters c0, λ, and p. The parameters carry the following

meanings: c0 is the spontaneous curvature, λ is the tensile stress, and p = po − pi is the

osmotic pressure difference between the outer (po) and inner (pi) media. We take a sign

convention that H is negative for the standard sphere.

It has been observed experimentally long ago that a red blood cell is of biconcave-

discoid shape (which will be defined mathematically later). And it is a quest to find the

appropriate theoretical model for the bending energy. Historically, the early model of

Canham, [C], is purely geometric and it is equivalent to the Willmore functional, [W,

ch. 7], which equals F with c0 = λ = p = 0, up to a constant. Certainly, from a differ-

ential geometer’s view, this cannot be the correct model because the unique minimum of

1

http://arXiv.org/abs/math/0001103v2


2 THOMAS AU AND TOM WAN

the Willmore functional for topologically spherical vesicles is the round sphere. This is

also observed by physicists [DH]. In fact, there are many important mathematical studies

of the Willmore functional because of its geometric implications; for instance, the exis-

tence of minimizers among a certain topological class by Simon [Si], and the conformal

properties by Li and Yau [LY]. We expect that their works may contribute to a certain

extent to a deeper theoretical understanding of the energy F .

Helfrich takes physical condition together with the Gaussian curvature into account

and proposes a modified bending energy, [H1]. The shape of blood cells and some other

biological membranes is closely related to the formation of lipid bilayer vesicles in aque-

ous medium (e.g. liquid crystal). The physical condition is based on the elasticity of lipid

bilayer vesicles. According to the Gauss-Bonnet Theorem, the integral of the Gauss-

ian curvature is a topological constant. Thus, within a certain topological class of Σ,

Helfrich’s bending energy can be reduced to F above.

Many properties of F are yet to be discovered, though there are some experimental

observations and numerical simulations, [HDH, MB]. The existence and uniqueness of

its minimizer of a certain topology are still unknown. It is also not known whether the

minimizer is symmetric in any sense. Answers to these questions require deep geometric

analysis of the functional and studies in this direction are rare. Nevertheless, there are

related works, such as, on similar functionals, [Si, LY, Ni]; or on surface flows, [E].

The Euler-Lagrange equation corresponding to F is

4△ΣH + 2(2H + c0)
[

2(H2 −K) − c0H
]

− 2λH + p = 0.
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In the past, much effort of physicists and biologists has been spent on studying axisym-

metric solution to this variational equation, [DH, L, Se, OH2, OY, NOO1, NOO2]. By an

axisymmetric surface, we mean an embedded surface Σ in R
3 which is rotationally sym-

metric and has a reflection symmetry by the plane perpendicular to the rotational axis.

With this additional assumption, the fourth order equation can be reduced to a second

order one, usually referred to as the shape equation of axisymmetric vesicles. However,

it is still unknown to scientists how the solution depends on the physical parameters

and which parameters yield a solution corresponding to a biconcave surface. Our work

is in this direction. We can derive conditions on the physical parameters for a solution

having the biconcave shape. The conditions are easily expressed in terms of the cubic

and quadratic polynomials denoted by

Q(t) = t3 + 2c0t
2 + (c20 + λ)t− p

2
;

R(t) = Q(t) − t3.

Our main result can be stated as,

Theorem. For any c0, λ, and p > 0 such that every real root of Q is positive, there

exists axisymmetric biconcave surfaces which satisfies the Euler-Lagrange equation of F .

It should be remarked that when c0 > 0, λ > 0, and p > 0, the condition is always

satisfied. Helfrich’s numercial simulation produces a biconcave shape resembling a blood

cell when c0 is positive. Furthermore, we are also able to numerically construct other

interesting shapes when the condition is not satisfied. One is multiconcave and the other

has no reflection symmetry.
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This article is organized in the following way. In §1, we first give the differential

equation for the revolving graph of an axisymmetric solution. The derivation of the

equation is given in the appendix. Moreover, we formulate the problem of finding special

solution corresponding to a biconcave shape surface. We also present several variants

of the equation which will be useful later. The variants of the shape equation are then

studied in §2 to show that our condition stated above is sufficient for getting the expected

special solution for the problem. The analysis and the estimates of geometric quantities

are discussed in detail here. Finally, since the solution and its reflection no longer form

a graph at the reflection plane. We will show that the solution obtained in previous

sections is still a solution across the reflection symmetry. It is sufficient to verify that

it also satisfies the variation equation at the reflection plane. In the process, one more

necessary geometric condition is obtained.

Acknowledgement. We would like to thank our colleague K. S. Chou, who has been

encouraging in our project and making valuable suggestions.

1. The Equation, the Problem, and the Conditions

An axisymmetric surface is a closed embedded surface Σ in R
3 with a rotation

symmetry and a reflection symmetry by the plane perpendicular to the rotation axis. It

is biconcave if there are exactly two components of negative Gaussian curvature. Without

loss of generality, the rotational axis is labelled the z-axis and the plane of reflection is

the xy-plane. Then the surface Σ can be obtained by revolving a radial curve about the

z-axis on the upper half plane and reflecting it to the lower half. Typically, a biconcave

one is obtained by revolving and reflecting a curve shown in the picture below.
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A cross-section of a biconcave axisymmetric surface

(with c0 = 1, λ = 0.25, p = 1)

In other words, one may parametrize the upper part of Σ by X = (r cos θ, r sin θ, z(r)),

with a function z(r) defined for r in some interval [0, r∞], where z(r) > 0 for r ∈ [0, r∞)

and z(r∞) = 0. There are natural boundary conditions imposed by the rotation and

reflection symmetries of the surface. The obvious ones are z′(0) = 0 and z′(r) → −∞

as r → r∞. However, more subtle ones arise from the regularity at the end-point r∞,

which we will discuss later in §3. For a biconcave surface, there is rM < r∞ such that

z′′(r) > 0 if and only if r ∈ [0, rM). This is equivalent to require that z′ has only a unique

maximum and no other critical point.

For a biconcave axisymmetric surface, the variation equation for the Helfrich func-

tional is reduced to a second order ordinary differential equation, traditionally called the

shape equation. With the notation w(r) = z′(r), the shape equation is

2r

(1 + w2)5/2
w′′ =

5rw

(1 + w2)7/2
w′2 − 2w′

(1 + w2)5/2

+
2w + w3

r(1 + w2)3/2
+

2c0w
2

1 + w2
+

(c20 + λ)rw

(1 + w2)1/2
− pr2

2
.

(1)

We leave the derivation of this equation to the appendix to focus on the idea and analysis

of the equation.
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We are going to study special solution w(r) to the initial value problem on this

variational equation with initial choice w(0) = 0 and w′(0) = w′
0 > 0. Specifically, we

look for a solution with the additional requirements that

C1: it is unimodal; and

C2: there is a finite number r∞ such that w(r) → −∞ as r → r∞; and

C3: −∞ <
∫ r∞

0

w(r) dr < 0.

In [DH, JS, ZL], there are versions of the same equation written in term of the angle

ψ between the surface tangent and the plane perpendicular to rotational axis. However,

it is convenient for our discussion to write the equation in the above form.

With our notation of the polynomials Q and R, after multiplying with rw′, the

equation is equivalent to,

[

r2w′2

(1 + w2)5/2

]′

=

[

w2

(1 + w2)1/2

]′

+ r3w′R(κ(r)); or(1a)

[

r2w′2

(1 + w2)5/2

]′

=

[

−2√
1 + w2

]′

+ r3w′Q(κ(r)),(1b)

where κ(r) =
w

r
√

1 + w2
. It will be seen that these groupings of the lower order terms

are important in the analysis the equation.

The understanding of κ(r) also provides useful information about the solution. First,

its derivatives are given by,

κ′(r) =
w′

r(1 + w2)3/2
− w

r2
√

1 + w2
,

κ′′(r) =
w′′

r(1 + w2)3/2
− 3ww′2

r(1 + w2)5/2
− 2w′

r2(1 + w2)3/2
+

2w

r3
√

1 + w2
.

Then we have the equation for κ(r),

rκ′′ =
−rκ(rκ′ + κ)2

2(1 − r2κ2)
− 3κ′ +

rQ(κ(r))

2(1 − r2κ2)
.(2)
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Let us end this section by remarking on a few geometric quantities in terms of w.

Firstly, κ =
w

r
√

1 + w2
is the principle curvature in the meridinal (rotational) direction.

Another principle curvature, the longitudinal one, is given by
w′

(1 + w2)3/2
, which occurs

in κ′. Their product is the Gaussian curvature, which is expected to be positive at the

rotational axis and reflection plane but negative somewhere along the circle defined by

the zero of w.

2. Analysis of the Equation

In this section, we prove the conditions for the existence of the required special

solution to the initial value problem on equation (1) described in the preceding section.

The strategy is the following analysis on the equation. We study the principle curvature

κ, which is positive initially (at the rotational axis), i.e., κ(0) = w′
0 > 0. If w′

0 is not too

large in terms of the roots of Q, κ must decrease and eventually becomes zero at r0 for

some 0 < r0 < r∞. After w becomes negative, it continues its descent and blows down

to −∞ at finite distance r∞. This guarantees C1 that w is unimodal and has a unique

zero at r0. In order to verify that the solution satisfies the requirements C2 and C3, we

establish, in terms of w′
0, the estimates on r0, r∞ and values of w, w′ at these positions.

Lemma 2.1. Let w′
0 > 0 and R(t) < 0 for t ∈ [0, w′

0]. If w ≥ 0 on an interval [0, r0),

then κ(r) decreases on (0, r0).

Proof. By continuity of κ and that lim
r→0

κ(r) = w′
0 > 0, there exists ε > 0 such that

R(κ(r)) < 0, w ≥ 0, and w′ > 0 on (0, ε). Integration of the equation (1a) on (0, ε) gives

r2w′2

(1 + w2)5/2
<

w2

√
1 + w2

on (0, ε).
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Thus, κ′(r) =
w′

r(1 + w2)3/2
− w

r2
√

1 + w2
< 0 for r ∈ (0, ε). This also implies that κ(r)

remains in the interval (0, w′
0] for r ∈ (0, ε) and hence the argument works before we hit

the first zero rM of w′, i.e., the first critical point of w. This shows that r1 = inf{r ∈

(0, r0) : κ′(r) ≥ 0} ≥ rM > 0 if the set is nonempty.

Now by the smoothness of κ, we conclude that κ(r1) ∈ [0, w′
0], κ

′(r1) = 0 and

κ′′(r1) ≥ 0. Putting this into the equation (2), we have

0 ≤ r1κ
′′(r1) =

r1R(κ(r1))

2 (1 − r2
1κ

2(r1))
< 0.

This is a contradiction and hence the set {r ∈ (0, r0) : κ′(r) ≥ 0} must be empty. �

By the same token, we can also establish a criterion for a growing solution. Since

we don’t need it for our further discussion, we will omit the proof.

Proposition 2.2. If c0 > 0, p > 0, w′
0 > 0 and R(w′

0) > 0, then w is increasing and

blows-up to +∞.

For our future discussion, we denote a few quantities which depends only on the

polynomial Q and the initial data w′
0 as follow:

µ(w′
0) = −min {Q(t) : 0 ≤ t ≤ w′

0} = max {−Q(t) : 0 ≤ t ≤ w′
0} ;

δ+(w′
0) = min {−Q(t) : 0 ≤ t ≤ w′

0} = −max {Q(t) : 0 ≤ t ≤ w′
0} ;

δ− = min {−Q(t) : t ≤ 0} = −max {Q(t) : t ≤ 0} .

Note that lim
w′

0
→0
δ+(w′

0) = p/2 = lim
w′

0
→0
µ(w′

0), and δ− is independent of w′
0.

We will now show that under reasonable condition, the solution will not blow up to

+∞. It is because the cubic lower terms are dominated by δ+.
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Lemma 2.3. Suppose that all real roots of Q are positive. If Q < 0 on [0, w′
0], i.e., w′

0

less than the smallest real root of Q, then there is r0 > 0 with r2
0 <

16w′

0

δ+
such that on the

interval (0, r0),

w > 0, w(r0) = 0, and w′(r0) < −δ+
8
r2
0.

In addition, if 64w′
0

3 < 27δ+, then

∫ r0

0

w(r) dr ≤ 4w′
0

2

δ
3/2

+

(

1 − 64w′
0

3

27δ+

)−1/2

.

Proof. Consider the principal curvature κ(r) =
w

r
√

1 + w2
and rewrite equation (1) or

(1a) as

κ′′ =
−3κ′

r
− ww′2

r(1 + w2)5/2
+

1 + w2

2
Q(κ(r)).

By lemma 2.1, κ′(r) < 0 on a neighborhood of 0 and hence κ(r) < w′
0 near 0. Using the

assumption on Q and the positivity of w near 0, we have

r3κ′′ + 3r2κ′ ≤ −δ+
2
r3.

Therefore, for small r,

κ′(r) ≤ −δ+
8
r2,(3)

and

κ(r) ≤ w′
0 −

δ+
16
r2.(4)

These inequalities show that κ remains in (0, w′
0) as long as w ≥ 0. In turns, they

themselves hold as long as w ≥ 0. Clearly, they guarantee the existence of r0 with

r2
0 ≤ 16w′

0

δ+
such that κ(r0) = 0 and so w(r0) = 0. Then by (3), we have w′(r0) < −δ+r2

0/8.

This proves the first statement of the theorem.
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To prove the second statement, we temporarily let a = w′
0 and b = δ+/16. Then on

[0, r0),

w

r
√

1 + w2
≤ a− br2.

With the assumption that 4a3 < 27b, it can be written as

w ≤ r(a− br2)
√

1 − r2(a− br2)2
.

Therefore,

w ≤ r(a− br2)
√

1 − 4a3

27b

,

and

∫ r0

0

w dr ≤
∫

√
a/b

0

r(a− br2)
√

1 − 4a3

27b

dr

≤ 1
√

b− 4a3

27

a2

4b
=

4w′
0

2

δ+

(

1 − 64w′
0

3

27δ+

)−1/2

.

This completes the proof of the lemma. �

Immediately from the lemma we have the following

Corollary 2.4. Suppose that all real roots of Q are positive. Then

lim sup
w′

0
→0

r2
0

w′
0

≤ 32

p
and lim sup

w′

0
→0

1

w′
0
2

∫ r0

0

w dr ≤ 8

p
.

In the above, we obtained an upper bound for r0, where w first hits zero. Next, a

lower bound is established, which is essential for future estimates. We note that from

lemma 2.3, w has at least one maximum in the interval (0, r0). Since w is increasing at

the beginning, the first critical point must be a maximum point. From now on, we let

ξ = ξ(w′
0) = 1 − 64w′

0

3

27δ+
> 0.
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Lemma 2.5. Let rM ∈ (0, r0) be the first critical point of w. Then

lim inf
w′

0
→0

r2
0

w′
0

≥ lim inf
w′

0
→0

r2
M

w′
0

≥ 32

3p
, lim inf

w′

0
→0

w′(r0)

w′
0

≥ −2.

Proof. Using equation (4), κ > 0 on [0, r0), and r2
0 < 16w′

0/δ+, one can check that

1 − r2κ(r)2 ≥ ξ on (0, r0).

Putting together the assumption on Q, the fact that κ < w′
0 on (0, r0), and the inequal-

ity (3) into the equations (2), one obtains

(rκ)′′ ≥ −1

2ξ
rκ(rκ′ + κ)2 +

1

8
δ+r −

µ

2ξ
r.

≥ −1

2ξ
rw′

0 [(rκ)′]
2
+

1

8
δ+r −

µ

2ξ
r

=
−w′

0

2ξ

[

(rκ)′
2
+
µ− ξ

4
δ+

w′
0

]

r.

Note that in the above, µ = max {−Q(t) : 0 ≤ t ≤ w′
0} ≥ δ+.

Let y = (rκ)′ =
w′

(1 + w2)3/2
and A2 =

µ− ξ
4
δ+

w′
0

≥
(

1 − ξ
4

)

δ+

w′
0

>
3δ+
4w′

0

> 0. We then

have

y′

y2 + A2
≥ −w′

0

2ξ
r.

Integrating from 0, it yields

arctan
(

y

A

)

≥ arctan

(

w′
0

A

)

− Aw′
0

4ξ
r2.(5)

Taking r = rM and multiplying by A/w′
0, as y(rM) = 0 and r0 ≥ rM , we have

A2r2
0 ≥ A2r2

M ≥ 4ξ · A
w′

0

arctan

(

w′
0

A

)

≥ 4ξ

(

1 − w′
0

2

3A2

)

.

Then,

r2
0

w′
0

≥ r2
M

w′
0

≥ 4ξ
(

µ− ξ
4
δ+
)



1 − w′
0

3

3
(

µ− ξ
4
δ+
)



 .
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Considering the limiting situation, by lim
w′

0
→0
µ = lim

w′

0
→0
δ+ = p/2 and lim

w′

0
→0
ξ = 1, the first

result follows.

For the second estimate, we first take r → r0 in (5), apply r2
0 < 16w′

0/δ+ to obtain

A(w′(r0) − w′
0)

A2 + w′(r0)w′
0

≥ tan

(

−4Aw′
0

2

δ+ξ

)

≥ −4Aw′
0

2

δ+ξ
·
[

cos

(

4Aw′
0

2

δ+ξ

)]−1

.

Then,

w′(r0)

w′
0

≥
cos

(

4Aw′

0

2

δ+ξ

)

− 4A2w′

0

δ+ξ

cos
(

4Aw′

0

2

δ+ξ

)

+
4w′

0

3

δ+ξ

.

This gives the second estimate immediately by letting w′
0 → 0. �

Combining the previous lemmas, we have the following

Corollary 2.6. For any ε > 0, there exists β > 0 such that if w′
0 ∈ (0, β), then

32

3p
− ε ≤ r2

M

w′
0

≤ r2
0

w′
0

≤ 32

p
+ ε

and

−2 − ε ≤ w′(r0)

w′
0

≤ −2

3
+ ε

The rM that we discussed in the previous lemma is in fact the unique critical point

of w in (0, r0) provided w′
0 is sufficiently small.

Lemma 2.7. Under conditions of lemmas 2.3 and 2.5, if w′
0 is sufficiently small, then

w has a unique maximum at rM ∈ [0, r0) and has no other critical point.

Proof. Suppose w has another critical points in (0, r0), then according to the definition

of rM , w attains a positive nonmaximum critical at rm ∈ (rM , r0), i.e., w′(rm) = 0

and w′′(rm) ≥ 0. By the corollary 2.6, given any ε > 0, r2
m > r2

M ≥
(

32

3p
− ε

)

w′
0 for
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sufficiently small w′
0. On the other hand, substituting w′(rm) = 0 and w′′(rm) ≥ 0 into

the equation (1), we have

0 ≤ 2wm

r3
m(1 + wm

2)3/2
+Q(κ(rm))

≤ 2

r2
m

κ(rm) +Q(κ(rm)),

where wm = w(rm). Since 0 < κ(rm) ≤ w′
0, thus, for sufficiently small w′

0, we also have

Q(κ(rm)) < −p/2 + ε. This leads to

0 ≤ 2
32

3p
− ε

− p

2
+ ε

which is clearly a contradiction since ε is arbitrary. �

Next, we claim that under our condition on Q, after hitting 0, w decreases and goes

to negative infinity in finite distance.

Theorem 2.8. Suppose that all real roots of Q(t) are positive and r0 > 0 is given by

lemma 2.3. Then w′ < 0 for r ≥ r0 and there is a finite number r∞ > r0 such that

lim
r→r∞

w(r) = −∞. Moreover, we have

r∞ − r0 ≤
π

2
√

δr2
0 |w′(r0)|

,

where δ = min
{

δ+
8
, δ−

2

}

and δ− = min {−Q(t) : t ≤ 0}.

Proof. For convenience, let us temporarily denote v = −w for r > r0. Since κ(r) < 0 and

v′ > 0 on (r0, r0 + ε) for some ε > 0, we have −v′Q(κ(r)) > δ−v
′ on the same interval

and the equation (1b) gives

[

r2v′2

(1 + v2)5/2

]′

=

[

−2

(1 + v2)1/2

]′

− r3v′Q(κ(r)) ≥
[

−2

(1 + v2)1/2

]′

+ δ−r
3v′(6)
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on (r0, r0 + ε). In particular,

[

r2v′2

(1 + v2)5/2

]′

≥
[

−2

(1 + v2)1/2

]′

,

which gives

r2v′2

(1 + v2)5/2
− r2

0v
′(r0)

2 ≥ −2

(1 + v2)1/2
+ 2 ≥ 0.

This implies that v′ does not vanish and therefore

rv′ ≥ rv′

(1 + v2)5/4
≥ r0v

′(r0) > 0.(7)

This, in turns, implies that v is increasing, κ remains negative and (6) holds as long as

v is defined. Substitute (7) into the equation (6) again, it gives

[

r2v′2

(1 + v2)5/2

]′

≥ δ−r
3v′ ≥ δ−r0v

′(r0)r
2 ≥ δ−r

2
0v

′(r0)r

for all r > r0 such that v is defined. Now, integrating the above from r0, we conclude

that

r2v′2

(1 + v2)5/2
≥ r2

0v
′(r0)

2 +
δ−r

2
0v

′(r0)

2
(r2 − r2

0).

In the case that δ+ ≥ 4δ−, we have v′(r0) ≥ δ−r
2
0/2 by lemma 2.3

r2v′2

(1 + v2)5/2
≥ r2

0v
′(r0)

(

v′(r0) −
δ−
2
r2
0

)

+
δ−r

2
0v

′(r0)

2
r2

≥ δ−r
2
0v

′(r0)

2
r2.

Otherwise, for ζ = δ+
4δ−

< 1, one has r2
0v

′(r0)
2 ≥ 1

2
ζδ−v

′(r0)r
4
0. It follows that

r2v′2

(1 + v2)5/2
≥ r2

0v
′(r0)

2 +
δ−r

2
0v

′(r0)

2
(r2 − r2

0)

= r2
0v

′(r0)
2 +

ζδ−r
2
0v

′(r0)

2
(r2 − r2

0) +
(1 − ζ)δ−r

2
0v

′(r0)

2
(r2 − r2

0)

≥ r2
0v

′(r0)

[

v′(r0) −
ζδ−v

′(r0)

2
r2
0

]

+
ζδ−r

2
0v

′(r0)

2
r2.
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Therefore,

r2v′2

(1 + v2)2
≥ r2v′2

(1 + v2)5/2
≥ ζδ−r

2
0v

′(r0)

2
r2 =

1

8
δ+r

2
0v

′(r0)r
2.

Hence, with δ = min
{

1

4
δ+,

1

2
δ−
}

, one has

v′

1 + v2
≥ v′

(1 + v2)5/4
≥
√

δr2
0v

′(r0)

as long as v is defined. Further integrating from r0 gives

arctan v ≥
√

δr2
0v

′(r0)(r − r0).

This clearly shows that v blows up before r goes to infinity. Furthermore, the upper

bound of r∞ follows. �

Corollary 2.9. Under the same conditions of theorem 2.8, we have,

∞ >
∫ r∞

r0

|w(r)| dr ≥ B−1 log

(

1

cos(B(r∞ − r0))

)

≥ B

2
(r∞ − r0)

2,

where B =
√

δr2
0v

′(r0) ≥
√

δδ+
8
r2
0 ≥ 1√

2
δr2

0.

Proof. From (6), by simply dropping the term −r3v′Q(κ(r)) > 0, we have

r2v′2

(1 + v2)5/2
≥ 2

(

1 − 1√
1 + v2

)

.

After multiplying by
√

1 + v2(
√

1 + v2 + 1), it becomes

(
√

1 + v2 + 1)
r2v′2

(1 + v2)2
≥ 2(

√
1 + v2 + 1)(

√
1 + v2 − 1) = 2v2.

Moreover, 2
√

1 + v2 > (
√

1 + v2 + 1), so one has

r2
∞ · v′2

(1 + v2)3/2
≥ v2.

Taking square root and integrating, it yields

r∞

∫ r∞

r0

v′

(1 + v2)3/4
dr ≥

∫ r∞

r0

v dr,
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in which the left hand side is obviously convergent. The lower bound follows easily from

the theorem. �

It can be seen that the area of negative part has a lower bound of order w′
0(r∞−r0)2.

We wish to establish that this dominates the area of the positive part. Let us consider

the equation of v(r) = −w(r) for r > r0 again, i.e.,

[

r2v′2

(1 + v2)5/2

]′

=

[

v2

(1 + v2)1/2

]′

− 2c0v
2v′r

1 + v2
+

(c20 + λ)r2vv′

(1 + v2)1/2
+
pr3v′

2

≤
[

v2

(1 + v2)1/2

]′

+

[

2|c0|v2r∞
1 + v2

+
(c20 + λ)r2

∞v

(1 + v2)1/2
+
pr3

∞

2

]

v′

≤
[

v2

(1 + v2)1/2

]′

+

[

2|c0|r∞ + (c20 + λ)r2
∞ +

pr3
∞

2

]

v′.

Therefore, after integrating from r0,

r2v′2

(1 + v2)5/2
≤ r2

0v
′(r0)

2 +
v2

(1 + v2)1/2
+

[

2|c0|r∞ + (c20 + λ)r2
∞ +

pr3
∞

2

]

v

≤ r2
0v

′(r0)
2 +

[

1 + 2|c0|r∞ + (c20 + λ)r2
∞ +

pr3
∞

2

]

v

r2
0v

′2

(1 + v2)5/2
≤ r2

0v
′(r0)

2 +
[

1 + 2|c0|r∞ + (c20 + λ)r2
∞ +

p

2
r3
∞

]

v.

From this, we have proved a comparison between the growth of w′ and |w|.

Proposition 2.10. If w(r) is a solution to equation (1) which blows down to −∞ at r∞,

then
w′2

|w| (1 + w2)5/2
is bounded.

Continue with the analysis, after integration and applying Holder inequality, we have

r2
0 ≤ r2

0

(

∫ r∞

r0

v′

(1 + v2)5/4
· 1
)2

≤ r2
0

∫ r∞

r0

v′2

(1 + v2)5/2

∫ r∞

r0

1

≤ r2
0v

′(r0)
2(r∞ − r0)

2 + (r∞ − r0)
[

1 + 2|c0|r∞ + (c20 + λ)r2
∞ +

p

2
r3
∞

]
∫ r∞

r0

v.
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Letting x = r∞ − r0 and using 2.6 that r2
0 <

64

δ+
w′

0 and v′(r0) < 2w′
0, we have

r2
0 ≤ 64

δ+
w′

0

3
x2 + x

[

a0 + a1x+ a2x
2 +

p

2
x3

]
∫ r∞

r0

v,(8)

where

a0 = 1 + 2|c0|r0 + (c20 + λ)r2
0 +

p

2
r3
0,

a1 = 2|c0| + 2(c20 + λ)r0 +
3p

2
r2
0 and

a2 = (c20 + λ) +
3p

2
r0.

We now claim that there exists C > 0 independent of w′
0 such that

∫ r∞
r0

v ≥ Cw′
0 for

sufficiently small w′
0. Otherwise, for any ε > 0, there is a w′

0 < ε such that

εw′
0 >

∫ r∞

r0

v.

Then by corollary 2.9, we have

εw′
0 >

δ

2
√

2
r2
0x

2.

Using the lower estimate of r2
0 in terms of w′

0, we conclude that

x2 < ε
2
√

2

δ

w′
0

r2
0

≤ 2
√

2δ+
δ

ε.

Putting this into (8), we have

c1w
′
0 ≤ c2w

′
0

3
ε+ c3ε

1/2
{

1 + o(w′
0

1/2
) +

[

2|c0| + o(w′
0

1/2
)
]

c3ε
1/2+

+
[

c20 + λ+ o(w′
0

1/2
)
]

c23ε+
p

2
c33ε

3/2

}

εw′
0,

for some positive constants c1, c2 and c3. This is impossible since this implies

0 < c1 ≤ c2w
′
0

2
ε+ c3ε

3/2
[

1 + o(ε1/2) + o(w′
0

1/2
)
]

→ 0,

which is a contradiction.
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Theorem 2.11. With the conditions of the theorems 2.3, 2.5, and 2.8, we have

−∞ <
∫ r∞

0

w(r) dr < 0

for w′
0 sufficiently small.

3. A Necessary Geometric Condition

The fact that the surface has a reflection symmetry through the xy-plane actually

provides some geometric conditions on the surface. Suppose we have a function z(r) with

w = z′ = zr satisfying the equation (1), we must check that the surface obtained by

revolving the function −z(r) is also stationary to the functional F . For this purpose, we

may parametrize the surface by an even function r(z) with z ∈ [−a, a], namely,











X(θ, z) = (r(z) cos θ, r(z) sin θ, z), (θ, z) ∈ [0, 2π] × [−a, a],

r(z) = r(−z), r(0) = r∞.

In this section, we will use zr or wr to stand for derivatives wrt r, i.e., z′ and w′ previously

in order to distinguish from derivatives wrt z denoted by another subscript.

The Helfrich functional for r(z) and −r(z) near r∞ can be written as,

F
2π

= lim
ε→0

∫ −ε

−a
+
∫ a

ε

(

[

(2H + c0)
2
]

r
√

1 + r2
z +

p

2
r2

)

dz.

We then study the critical function of the functional. Assume that the variation

δ(r(z)) = ϕ(z), then the above is written as

δ(F)

2π
= lim

ε→0

∫

(F2ϕzz + F1ϕz + F0ϕ) dz;
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where (with similar calculations as those in the appendix)

F2 =
2rrzz

(r2
z + 1)5/2

− 2

(r2
z + 1)3/2

+
2c0r

r2
z + 1

;

F1 =
−5rrzr

2
zz

(r2
z + 1)7/2

− rz

r(r2
z + 1)3/2

+
(c20 + λ)rrz

(r2
z + 1)1/2

+
6rzrzz

(r2
z + 1)5/2

− 4c0rrzrzz

(r2
z + 1)2

;

F0 =
r2
zz

(r2
z + 1)5/2

− 1

r2(r2
z + 1)1/2

+
2c0rzz

r2
z + 1

+ (c20 + λ)
√

r2
z + 1 + pr.

Since F2 and F0 are even and F1 is odd, after integrating by parts, we have

δ(F)

2π
=
∫ a

−a
[(F2)zz − (F1)z + F0]ϕ dz − lim

ε→0
[−(F2)z(ε) + F1(ε)] [ϕz(ε) − ϕz(−ε)] .

The function r(z) here is the inverse function of the function z(r) in the previous sections.

Thus, rz and rzz above can be written in terms of w by chain rule. Since w(r) = z′(r) is

a solution to the equation (1), we obtain

(F2)zz − (F1)z + F0 = 0.

Furthermore, we may denote η(r)
def

:== −(F2)z + F1. Then, in terms of w,

η =
rw2

r

(1 + w2)5/2
− w2

r
√

1 + w2
− 2c0w − (c20 + λ)r

√
1 + w2 +

pr2w

2
.

Consequently, δ(F) = 0 if and only if η(r) is bounded in a neighborhood of r∞. Note

that

ηz =
ηr

w
=

−w2
r

w(1 + w2)5/2
+

w

r2
√

1 + w2
− 2c0wr

w(1 + w2)
− (c20 + λ)

√
1 + w2

w
+ pr

is bounded according to the analysis in the previous section, specifically by proposi-

tion 2.10. Therefore, η(r) is also bounded and hence, we have established the following

theorem.

Theorem 3.1. Let z = z(r) ≥ 0 be a function on [0, r∞] with z(r) = 0 if and only if

r = r∞. If w = z′ is a solution to the equation (1), then the surface obtained by revolving

the curves z(r) and −z(r) is stationary to the functional F .
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Furthermore, according to this boundary condition, by considering lim
r→r∞

η(r)√
1 + w2

=

0, there is a requirement on the geometry of the surface.

Proposition 3.2. Let Σ be an axisymmetric stationary surface of F . If r∞ is the radius

of the circle of intersection of Σ and the reflection plane, then the Gaussian curvature of

every point along this circle is given by K(r∞)2 =
−1

r∞
Q
(−1

r∞

)

.

4. Appendix: Derivation of the Main Equation

Let the surface of revolution Σ be parametrized by X(r, θ) = (r cos θ, r sin θ, z(r))

for (r, θ) ∈ [0, r∞] × [0, 2π]. Then, with w(r) = z′(r), the mean curvature H is given by

H =
1

2(1 + w2)

[

w′ +
1

r
w +

1

r
w3

]

.

The area element is 2πr
√

1 + w2 dr. With the assumption that z(r∞) = 0, after inte-

grating by parts, the volume enclosed by Σ is −π
∫ r∞

0

r2w(r) dr. Therefore, to find the

critical point of F , we may consider the variation on

1

2π
F =

∫ r∞

0

[

(2H + c0)
2 + λ

]

r
√

1 + w2 dr − p

2

∫ r∞

0

r2w dr.

Let δ be the variational operator and δ(w) = ϕ where ϕ(r) is a smooth function with

compact support. Then δF/2π = I1 + I2 + I3 where

I1 =
∫ r∞

0

2(2H + c0) δ(H) r
√

1 + w2 dr;

I2 =
∫ r∞

0

[

(2H + c0)
2 + λ

]

rδ(
√

1 + w2) dr

=
∫ r∞

0

[

(2H + c0)
2 + λ

]

r
rwϕ√
1 + w2

dr;

I3 =
−p
2

∫ r∞

0

r2δ(w) dr =
−p
2

∫ r∞

0

r2ϕ dr.
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We also have

δ(2H) =
1

(1 + w2)5/2

[

(1 + w2)ϕ′ +
1

r
(1 + w2)ϕ− 3ww′ϕ

]

;

(2H)′ =
1

(1 + w2)5/2

[

(1 + w2)w′′ − 3ww′2 +
1

r
(1 + w2)w′ − 1

r2
w(1 + w2)2

]

.

Therefore,

I1 =
∫ r∞

0

2r(2H + c0)

(1 + w2)2

[

(1 + w2)ϕ′ +
1

r
(1 + w2)ϕ− 3ww′ϕ

]

= −
∫ r∞

0

∂

∂r

[

2r(2H + c0)

(1 + w2)

]

ϕ dr +
∫ r∞

0

2r(2H + c0)

(1 + w2)
ϕ dr

−
∫ r∞

0

6rww′(2H + c0)

(1 + w2)2
ϕ dr

=
∫ r∞

0

[

−2r(2H)′

(1 + w2)
− 2rww′(2H + c0)

(1 + w2)2

]

ϕ dr

=
∫ r∞

0

[

−2rw′′

(1 + w2)5/2
+

6rww′2

(1 + w2)7/2
− 2w′

(1 + w2)5/2
+

2w

r(1 + w2)3/2

− 2c0rww
′

(1 + w2)2
− 2rww′2

(1 + w2)7/2
− 2w2w′

(1 + w2)5/2

]

ϕ dr.

The quantity I2 is expanded into the following.

I2 =
∫ r∞

0

[(2H + c0)
2 + λ] rw

(1 + w2)1/2
ϕ dr

=
∫ r∞

0

[

rw

(1 + w2)7/2

(

w′ +
1

r
w(1 + w2)

)2

+
2c0rw

(1 + w2)2

(

w′ +
1

r
w(1 + w2)

)

+
(c20 + λ)rw√

1 + w2

]

ϕ dr

=
∫ r∞

0

[

rww′2

(1 + w2)7/2
+

2w2w′

(1 + w2)5/2
+

w3

r(1 + w2)3/2

+
2c0rww

′

(1 + w2)2
+

2c0w
2

(1 + w2)
+

(c20 + λ)rw√
1 + w2

]

ϕ dr.
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Summing the above quantities, we have

1

2π
δ(F) = I1 + I2 + I3

=
∫ r∞

0

[

−2rw′′

(1 + w2)5/2
+

5rww′2

(1 + w2)7/2
− 2w′

(1 + w2)5/2
+

2w + w3

r(1 + w2)3/2

+
2c0w

2

(1 + w2)
+

(c20 + λ)rw

(1 + w2)1/2
− pr2

2

]

ϕ dr.

Therefore, the variational equation is given by (integrand) + constant = 0. With the

assumption that w(0) = 0, taking r → 0, one gets

−2w′(0) + lim
r→0

2w

r
+ constant = 0.

This concludes the derivation of the variational equation.
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