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Abstract

We propose and discuss some toy models of stock markets using the same opera-

torial approach adopted in quantum mechanics. Our models are suggested by the

discrete nature of the number of shares and of the cash which are exchanged in a

real market, and by the existence of conserved quantities, like the total number

of shares or some linear combination of cash and shares. The same framework as

the one used in the description of a gas of interacting bosons is adopted.
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I Introduction

A huge literature exists concerning the time behavior of financial markets, most of which

is based on statistical methods, see [1] and references therein. In recent years a strategy

somehow different has also been considered. This strategy takes inspiration on the many-

body nature of a stock market, nature which suggests the use of tools naturally related

to quantum mechanics and, in particular, to QM∞, i.e. quantum mechanics for systems

with infinite degrees of freedom. Examples of this approach can be found, for instance,

in [2] and [3], where the concepts of hamiltonian, phase transition, symmetry breaking

and so on are introduced. However, in none of these papers, and in our knowledge not

even in other existing literature, the analysis of the time evolution of the portfolio of

each single trader has been undertaken. It should be mentioned, however, that a point

of view not very different from the one adopted here is discussed, for instance in [4] and

[5].

In this paper we use quantum mechanical ideas to construct some toy models which

should mimic a simplified stock market. In all our models, where for simplicity a single

kind of share is exchanged, the total number of shares does not change in time. This

reminds of what happens in a totally different context, i.e. in a gas of elementary

particles which can interact among them but without changing their total number.

Also, the price of a single share does not change continuously, since any variation is

necessarily an integer multiple of a certain minimal quantity, the monetary unit, which

can be seen, using our quantum mechanical analogy, as a sort of quantum of cash. QM∞

provides a natural framework in which these features can be taken into account. It also

provides some natural tools to discuss the existence of conserved quantities and to find

the differential equations of motion which drive the portfolio of each single trader, as

we will see.

The paper is organized as follows:

in the next section we discuss a first easy model and we give an interpretation to

the quantities used to define the model. This oversimplified model will be useful to fix

some general ideas.

In Section III we improve the model introducing the cash, the price of the share and

the supply of the market. We prove that many integrals of motion exist. The equations
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of motion are solved using a perturbative expansion, well known in QM∞.

In Section IV we consider a particular version of this model which we completely

solve using the so-called mean-field approximation. We also discuss the role of KMS-like

states in our framework.

Section V contains our conclusions and plans for the future, while in the Appendix 1

we give few definitions and results concerning the mathematical framework used along

the paper, which we have included here for those readers who are not familiar with

quantum mechanics. In Appendix 2 we discuss some more results related to the mean-

field model.

II A first model

The model we discuss in this section is really an oversimplified toy model of a stock

market based on the following assumptions:

1. Our market consists of L traders exchanging a single kind of share;

2. the total number of shares, N , is fixed in time;

3. a trader can only interact with a single other trader: i.e. the traders feel only a

two-body interaction;

4. the traders can only buy or sell one share in any single transaction;

5. there exists an unique price for the share, fixed by the market. In other words, we

are not considering any difference between the put and the buy prices;

6. the price of the share changes with discrete steps, multiples of a given monetary

unit;

7. each trader has a huge quantities of cash that he can use to buy shares but which

does not enter, in the present model, in the definition of his portfolio whose value

is fixed only by the number of shares.
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Let us briefly comment the above assumptions: of course assuming that there is only

a single kind of share may appear rather restrictive but we believe that more species

of shares can be introduced without major changes. However, along all this paper we

only work in this hypothesis just to simplify the treatment. The third assumption above

simply means that it is not possible for, say, the traders t1, t2 and t3 to interact with each

other at the same time: however t1 can interact directly with t3 or via its interaction

with t2: t1 interacts with t2 and t2 interacts with t3. This is a typical simplification in

many-body theory where often all the N−body interactions, N ≥ 3, are assumed to be

negligible with respect to the 2−body interaction. Assumptions 4, 5 and 7 are useful

to simplify the model and to allow us to extract some driving ideas to construct more

realistic models. Finally, as we have seen, assumption 6 is a natural one. Most of these

assumptions will be relaxed in the next section.

As we discuss in the Appendix, the time behavior of this model can be described by

an operator called the hamiltonian of the model, which describes the free evolution of

the model plus the effects due to the interaction between the traders. The hamiltonian

of this simple model is the following:

H = H0 + Hprice, H0 =

L
∑

l=1

αla
†
l al +

L
∑

i,j=1

pijaia
†
j , Hprice = ǫp†p (2.1)

where the following commutation rules are assumed:

[al, a
†
n] = δlnI, [p, p†] = I, (2.2)

while all the other commutators are zero. The meaning of these operators is discussed

in more details in Appendix 1. Here we just recall that al and a
†
l respectively destroys

and creates a share in the portfolio of tl, while the operators p and p† modify the price

of the share: p makes the price decrease of ǫ, while p† makes it increase of the same

quantity. The coefficients pij’s take value 1 or 0 depending on the fact that ti interacts

with tj or not. We also assume that pii = 0 for all i, which simply means that ti does

not interact with himself. For those who are familiar with second quantization, there

is an easy interpretation for the hamiltonian above, which can be deduced also from

what is discussed in Appendix 1: while ǫp†p +
∑L

l=1 αla
†
l al describes the free evolution
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of the operators {al} and p, whose physical meaning will be considered again later on

in this section, the single contribution aia
†
j of the interaction hamiltonian

∑L
i,j=1 pijaia

†
j

destroys a share belonging to the trader ti and creates a share in the portfolio of the

trader tj . In other words: if pij = 1 then the trader ti sells a share to tj . However, since

H must be self-adjoint (for mathematical and physical reasons), then pij = 1 also implies

pji = 1. This means that the interaction hamiltonian contains both the possibility that

ti sells a share to tj and the possibility that tj sells a share to ti. Different values of αi in

the free hamiltonian are then used to introduce an ability of the trader, which will make

more likely that the most expert trader sells or buys his shares to the other traders so

to increase the value of his portfolio.

As we will discuss in Appendix 1, the time evolution of an operator X of the model

is X(t) = eiHtXe−iHt and it satisfies the following Heisenberg differential equation:
dX(t)

dt
= ieiHt[H, X]e−iHt = i[H, X(t)]. The only observables whose time evolution we

are interested in are, clearly, the price of the share and the number of shares of each

traders. Indeed, as we have already remarked, within our simplified scheme there is no

room for the cash of the trader! The price operator P̂ is P̂ = ǫp† p, while the j-number

operator is n̂j = a
†
j aj , which represents the number of shares that tj possesses. The

operator total number of shares is finally N̂ =
∑L

j=1 n̂j =
∑L

j=1 a
†
j aj. The choice of

H in (2.1) is suggested by the requirement 2) above. Indeed it is easy to check, using

(2.2), that [H, N̂ ] = 0. This implies that the time evolution of N̂ , N̂(t) = eiHtN̂ e−iHt

is trivial: N̂(t) = N̂ for all t. However this does not imply also that [H, n̂j] = 0, which,

as a matter of fact, is not true in general. This is clear from the definition of H : the

term
∑L

l=1 αla
†
l al does not change the number of shares of the different traders, but

only counts this number. On the contrary,
∑L

i,j=1 pijaia
†
j destroys a share belonging

to ti but, at the same time, creates another share in the portfolio of the trader tj . In

this operation, the number of the shares of the single traders are changed, but the total

number of shares remains constant! It may be worth noticing that if all the pij are zero,

i.e. if there is no interaction between the traders, then we also get [H, n̂j ] = 0: our

model produce a completely stationary market, as it is expected.

We implement assumptions 5) and 6) by requiring that the price operator P̂ has the

form given above, P̂ = ǫp† p, where ǫ is the monetary unit. Such an operator is assumed
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to be part of H , see (2.1). Also, because of the simplifications which are assumed in

this toy model, P̂ is clearly a constant of motion: [H, P̂ ] = 0. This is not a realistic

assumption, and will be relaxed in the next sections. However, it is assumed here since

it allows us a better understanding of the meaning of the αl’s, as we will discuss later.

In order to describe a state of the system in which at time t = 0 the portfolio of the

first trader consists of n1 shares, the one of t2 of n2 shares, and so on, and the price of

the share is P = Mǫ, we should impose that the market is in a vector state ωn1,n2,...,nL;M ,

see Appendix 1, defined by the vector

ϕn1,n2,...,nL;M :=
1√

n1! n2! . . . nL!M !
(a†

1)
n1(a†

2)
n2 · · · (a†

L)nL(p†)Mϕ0, (2.3)

where ϕ0 is the vacuum of the model: ajϕ0 = pϕ0 = 0 for all j = 1, 2, . . . , L. If X ∈ A,

A being the algebra of the observables of our market, then we put

ωn1,n2,...,nL;M(X) =< ϕn1,n2,...,nL;M , Xϕn1,n2,...,nL;M >, (2.4)

and < , > is the scalar product in the Hilbert space of the theory, see again the Appendix.

The Heisenberg equations of motion (A.2) for the annihilation operators al(t) produce

the following very simple differential equation:

iȧ(t) = Xa(t), (2.5)

where we have introduced the matrix X, independent of time, and the vector a(t) as

follows

X ≡



























α1 p2 1 p3 1 . . pL−1 1 pL 1

p1 2 α2 p3 2 . . . pL 2

p1 3 p2 3 α3 . . . .

. . . . . . .

. . . . . . .

p1 L−1 p2 L−1 p3 L−1 . . αL−1 pL L−1

p1 L p2 L p3 L . . pL−1 L αL



























, a(t) ≡



























a1(t)

a2(t)

a3(t)

.

.

aL−1(t)

aL(t)



























.

Notice that, due to the conditions on the pij ’s, and since all the αl’s are real, the

matrix X is self-adjoint. Equation (2.5) can now be solved as follows: let V be the
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(unitary) matrix which diagonalizes X: V †XV = diag{x1, x2, . . . , xL} =: Xd, xj , being

its eigenvalues, j = 1, 2, . . . , L. Notice that, of course, V does not depend on time.

Then, putting

U(t) =





















eix1t 0 0 . . . 0

0 eix2t 0 . . . 0

0 0 eix3t . . . 0

. . . . . . .

. . . . . . .

0 0 0 . . . eixLt





















,

we get

a(t) = V U(t)V † a(0), (2.6)

where, as it is clear, a(0)T = (a1, a2, . . . , aL). If we further introduce the adjoint of the

vector a(t), a†(t) = (a†
1(t), a

†
2(t), . . . , a

†
L(t)) = a†(0)V U †(t)V †, we can explicitly check

that N̂ is a constant of motion. Indeed we have

N̂(t) = a
†
1(t)a1(t) + a

†
2(t)a2(t) + . . . + a

†
L(t)aL(t) = a†(t) · a(t) =

= (a†(0)V U †(t)V †) · (V U(t)V † a(0)) = a†(0) · a†(0) = N̂(0).

In order to analyze the time behavior of the different n̂j(t), we simply have to

compute the mean value nj(t) = ωn1,n2,...,nL;M(n̂j(t)). This means that, for t = 0, the

first trader possesses n1 shares, the second trader possesses n2 shares, and so on, and

that the price of the share is Mǫ. It should be mentioned that the only way in which

a matrix element like ωn1,n2,...,nL;M(ak
j (a†

l )
m), can be different from zero is when j = l

and k = m. This follows from the orthonormality of the set {ϕn1,n2,...,nL;M}. which is a

direct consequence of the canonical commutation relations.

The easiest way to get the analytic expression for nj(t) is to fix the number of the

traders, starting with the simplest situation: L = 2. In this case we find that

{

n1(t) = 1
Ω2 {n1 (α2 + 2p2(1 + cos(Ωt))) + 2p2n2 (1 − cos(Ωt))}

n2(t) = 2p2n1

Ω2 (1 − cos(Ωt))) + n2

(

1 + 2p2

Ω2 (cos(Ωt) − 1)
) (2.7)

where we have defined Ω2 = α2 + 4p2, with α = α2 − α1 and p = p12 = p21.
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It is not hard to check that n1(t)+n2(t) = n1+n2, as expected. Also, if p = 0 then we

find n1(t) = n1 and n2(t) = n2 for all t. This is natural and expected, since when p = 0

there is no interaction at all between the traders, so that there is no reason for n1(t) and

n2(t) to change in time. Another interesting consequence of (2.7) is that, if n1 = n2 = n,

that is if the two traders start with the same number of shares, they do not change this

equilibrium during the time: we find again n1(t) = n2(t) = n. Also this result is

expected, since both t1 and t2 possess the same amount of money (their huge sources!)

and the same number of shares. The role of α1 and α2, in this case, is unessential. It

is further clear that nj(t) is a periodic function whose period, T = 2π
Ω

, decreases for

|α| = |α1 − α2| and p increasing. Finally, if we call ∆nj = maxt∈[0,T ] |nj(t) − nj(0)|,
which represents the highest variation of nj(t) in a period, we can easily check that ∆nj

increases when |n1(0) − n2(0)| increases and when Ω decreases.

Remark:– It is worth remarking that, since the number of shares should be integer,

while the functions n1(t) and n2(t) are not integers for general values of t, we could

introduce a sort of time per the m-th transaction, τm, chosen in such a way that nj(τ1),

nj(τ2), . . . are all integers, j = 1, 2.

Let us now consider a market with three traders. In Figure 1 we plot n3(t) with the

initial conditions n1 = 40, n2 = n3 = 0, with p12 = p13 = p23 = 1 and different values of

α1, α2 and α3. In the figure on the left we have (α1, α2, α3) = (1, 2, 3), in the one in the

middle (α1, α2, α3) = (1, 2, 10) and in the one in the right (α1, α2, α3) = (1, 2, 100)
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Figure 1: n3(t) for α3 = 3 (left), α3 = 10 (middle), α3 = 100 (right)

This plot, together with many others which can be obtained, e.g., considering differ-

ent initial conditions, suggests to interpret αj as a sort of inertia: the larger the value
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of αj, the bigger the tendency of tj of keeping the number of his shares constant in

time! We could also think of α−1
j as a sort of information reaching tj (but not the other

traders): if αj is large then not much information reaches tj which has therefore no

input to optimize his interaction with the other traders.

In this case, and also for more traders, it is not evident from our plots if a periodic

behavior is again recovered. In any case, at least a quasi-periodic behavior is observed

with a quasi-period which is compatible with the same T found in the case of the two

traders.

As for the L = 2 situation, we recover that if n1 = n2 = n3 = n, then n1(t) =

n2(t) = n3(t) = n, for all t. Moreover, if n1 ≃ n2 ≃ n3 ≃ n, then nj(t) have all small

oscillations around n. But, if n1 ≃ n2 6= n3, and if pij = 1 for all i, j with i 6= j, then all

the functions nj(t) change considerably with time. The reason is the following: since n3

differs from n1 and n2, it is natural to expect that n3(t) changes with time. But, since

N = n1(t) + n2(t) + n3(t) must be constant, both n2(t) and n1(t) must change in time

as well. The same conclusion can be deduced also if p23 = 0 while all the other pij ’s

are equal to 1: even if t2 does not interact with t3, the fact that t1 interacts with both

t2 and t3, together with the fact that N must be constant, implies again that all the

nj(t)’s need to change in time. Finally, it is clear that if p13 = p23 = 0, then t3 interact

neither with t1 nor with t2 and, indeed, we find that n3(t) does not change with time:

this is a consequence of the fact that, in this case, [H, n̂3] = 0.

Analogous conclusions can be deduced also for five (or more) traders. In particular

Figure 2 shows that there is no need for all the traders to interact among them to have

a non trivial time behavior. Indeed, even if p15 = p25 = 0, which means that t5 may

only interact directly with t3 and t4, we get the following plots for (α1, α2, α3, α4, α5) =

(1, 2, 3, 4, 5) and (n1, n2, n3, n4, n5) = (40, 0, 0, 0, 0). We see that the number of shares

of each trader changes in time with the same order of magnitude.
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Figure 2: n1(t), n2(t), n3(t) (first row) and n4(t), n5(t) (second row) for αj and nj as

above

We end this section stressing that the interpretation of αj as a sort of inertia is

suggested also by the analysis of this larger number of traders.

III A different model

We consider now another model, which differs from the previous one since the cash, the

price of the share and the supply of the market are introduced in a non trivial way. In

particular we require that assumptions 1, 2, 3, 4 and 6 of the previous section still hold.

Moreover we require that

a. when the tendency of the market to buy a share, i.e. the market demand, increases

then the price of the share increases as well. Equivalently, when the tendency of the

market to sell a share, i.e. the market supply, increases then the price of the share

decreases;

b. for our convenience the demand and the supply are expressed in term of natural

numbers;

c. we take ǫ = 1 in the following: 1 is therefore the unit of money.

The formal hamiltonian of the model is the following operator:















H̃ = H0 + H̃I , where

H0 =
∑L

l=1 αla
†
l al +

∑L

l=1 βlc
†
l cl + o† o + p† p

H̃I =
∑L

i,j=1 pij

(

a
†
iaj(ci c

†
j)

P̂ + ai a
†
j(cj c

†
i )

P̂
)

+ (o† p + p† o),

(3.1)
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where, as before, P̂ = p†p. Here the following commutation rules are assumed:

[al, a
†
n] = [cl, c

†
n] = δlnI, [p, p†] = [o, o†] = I, (3.2)

while all the other commutators are zero. As for the previous model we assume that

pii = 0. Here the operators a
♯
l and p♯ have the same meaning as in the previous section,

while c
♯
l and o♯ are respectively the cash and the supply operators. The states in (2.4)

must be replaced by the states

ω{n};{k};O;M( . ) =< ϕ{n};{k};O;M , . ϕ{n};{k};O;M >, (3.3)

where {n} = n1, n2, . . . , nL, {k} = k1, k2, . . . , kL and

ϕ{n};{k};O;M :=
(a†

1)
n1 · · · (a†

L)nL(c†1)
k1 · · · (c†L)kL(o†)O(p†)M

√
n1! . . . nL! k1! . . . kL! O! M !

ϕ0. (3.4)

Here ϕ0 is the vacuum of the model: ajϕ0 = cjϕ0 = pϕ0 = oϕ0 = 0, for j = 1, 2, . . . , L.

Let us now see what is the meaning of the hamiltonian above and for which reason

we call it formal.

H0 contains all that is related to the free dynamics of the model.

H̃I is the interaction hamiltonian, whose terms have a natural interpretation:

the presence of o† p implies that when the supply increases then the price must

decrease. Of course p† o produces exactly the opposite effect;

the presence of a
†
iaj(ci c

†
j)

P̂ implies that ti increases of one unit the number of shares

in his portfolio but, at the same time, his cash decreases because of cP̂
i , that is it must

decrease of as many units of cash as the price operator P̂ demands. Moreover, the trader

tj behaves exactly in the opposite way: he has one share less because of aj but his cash

increases because of (c†j)
P̂ . Of course, the hermitian conjugate term ai a

†
j(cj c

†
i)

P̂ in H̃I

produces a specular effect for the two traders.

As in the previous section, if H̃I = 0, then there is no nontrivial dynamics of the

relevant observables of the system, like the c
†
jcj and n

†
jnj . This can also be seen as a

criterium to fix the free hamiltonian of the system: it is only the interaction between

the traders which may modify their status!

However, despite of this clear physical interpretation, the hamiltonian in (3.1) suffers

of a technical problem: since cj and c
†
j are not self-adjoint operators, it is not obvious
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how to define, for instance, the operator cP̂
j . Indeed, if we formally write cP̂

j as eP̂ log cj ,

then we cannot use functional calculus to define log cj . Also, we cannot use a simple

series expansion since the operators involved are all unbounded so that the series we get

is surely not norm convergent and many domain problems appear. For this reason, we

find more convenient to replace H̃ with an effective hamiltonian, H , defined as















H = H0 + HI , where

H0 =
∑L

l=1 αla
†
l al +

∑L
l=1 βlc

†
l cl + o† o + p† p

HI =
∑L

i,j=1 pij

(

a
†
iaj(ci c

†
j)

M + ai a
†
j(cj c

†
i )

M
)

+ (o† p + p† o),

(3.5)

where M = ω{n};{k};O;M(P̂ ). Notice that, because of the fact that pii = 0, there is no

difference in HI above if we write (ci c
†
j)

M or (ci)
M(c†j)

M even if the two operator cj

and c
†
j do not commute. Notice also that if we consider a state ω over A different from

ω{n};{k};O;M , as we will do in the next section, then ω(P̂ ) could be different from M .

Three integrals of motion for our model trivially exist:

N̂ =
L

∑

i=1

a
†
i ai, K̂ =

L
∑

i=1

c
†
ici and Γ̂ = o†o + p†p. (3.6)

This can be easily checked since the canonical commutation relations in (3.2) imply that

[H, N̂ ] = [H, Γ̂] = [H, K̂] = 0.

The fact that N̂ is conserved clearly means that no new share is introduced in the

market. Of course, also the total amount of money must be a constant of motion since

the cash is assumed to be used only to buy shares. Since also Γ̂ commutes with H ,

moreover, if the mean value of o†o increases with time then necessarily the mean value

of the price operator must decrease and vice-versa. This is exactly the mechanism

assumed in point a. at the beginning of this section.

Remark:– it may be worth noticing that this is not the only way in which Require-

ment a. could be implemented, but it is surely the simplest one. Just to give few other

examples, we could ask for one the following combinations to remain constant in time:

(o†o)2 + (p†p)2, o†op†p or many others.

Another consequence of the definition of H is that L other constants of motion also
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exist. They are the following operators:

Q̂j = a
†
j aj +

1

M
c
†
j cj, (3.7)

for j = 1, 2, . . . , L. This can be checked explicitly computing [H, Q̂j] and proving that

all these commutators are zero. But we can also understand this feature simply noticing

that: (i) Q̂j commutes trivially with H0 and (ii) the term a
†
iaj(ci c

†
j)

M in HI obviously

preserves not only the total number of shares and the total amount of cash, but also a

certain combination of the shares and the cash: as far as ti is concerned, a
†
i increases of

one unit the number of shares while cM
i decreases of M units the amount of cash. This

means that if a certain vector Ψ represents ni shares and ki units of cash, then a
†
i cM

i Ψ

describes ni +1 shares and ki −M units of cash. Therefore we have Q̂iΨ = (ni +
1
M

ki)Ψ

and Q̂i(a
†
i cM

i Ψ) = (ni + 1 + 1
M

(ki − M))(a†
i cM

i Ψ) = (ni + 1
M

ki)(a
†
i cM

i Ψ). So, it is not

surprising that [Q̂i, a
†
i cM

i ] = 0 and, as a consequence, that [Q̂i, H ] = 0.

The hamiltonian (3.5) contains a contribution, hpo = o† o+p† p+(o† p+p† o), which is

decoupled from the other terms. This means that, within our model, the time evolution

of the supply and the price operators do not depend on the number of shares or on the

cash, and can be deduced referring only to hpo. The Heisenberg equations of motion are

the following:
{

iȯ(t) = o(t) + p(t)

iṗ(t) = o(t) + p(t),
(3.8)

which shows that o(t) − p(t) is constant in t, so that ∆̂ = o − p is still another integral

of motion. Solving this system we get o(t) = 1
2
{o(e−2it + 1) + p(e−2it − 1)} and p(t) =

1
2
{p(e−2it + 1) + o(e−2it − 1)}. It is now trivial to check explicitly that both ∆̂(t) =

o(t) − p(t) and Γ̂(t) = o†(t)o(t) + p†(t)p(t) do not depend on time. If we now compute

the mean value of the price and supply operators on a state number we get

{

Pr(t) = 1
2
{Pr + Of + (Pr − Of) cos(2t)}

Of(t) = 1
2
{Pr + Of − (Pr − Of) cos(2t)},

(3.9)

where we have called Of(t) = ω{n};{k};O;M(o†(t)o(t)) and Pr(t) = ω{n};{k};O;M(p†(t)p(t)).

Recall that Pr = Pr(0) = M . Equations (3.9) show that, if Of = Pr then Of(t) =
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Pr(t) = Of for all t while, if Of ≃ Pr then Of(t) and Pr(t) are almost constant. In

the following we will replace Pr(t) with an integer value, the value M which appears

in the hamiltonian (3.5), which is therefore fixed after the solution (3.9) is found. This

value is obtained by taking a suitable mean of Pr(t) or working in one of the following

assumptions: (i) Of = Pr; or (ii) Of ≃ Pr or yet (iii) |Of + Pr| ≫ |Pr − Of |. In these

last two situations we may replace Pr(t), with a temporal mean, < Pr(t) >, since there

is not much difference between these two quantities.

Let us now recall that the main aim of each trader is to improve the total value of

his portfolio, which we define as follows:

Π̂j(t) = γn̂j(t) + k̂j(t). (3.10)

Here we have introduced the value of the share γ as decided by the market, which does

not necessarily coincides with the amount of money which is payed to buy the share.

As it is clear, Π̂j(t) is the sum of the complete value of the shares, plus the cash. The

fact that for each j the operator Qj is an integral of motion allows us to rewrite the

operator Π̂j(t) only in terms of n̂j(t) and of the initial conditions. We find:

Π̂j(t) = Π̂j(0) + (γ − M)(n̂j(t) − n̂j(0)), (3.11)

In order to get the time behavior of the portfolio, therefore, it is enough to obtain

n̂j(t). If we write the Heisenberg equation for n̂j(t), ˙̂nj(t) = i[H, n̂j(t)], we see that

this equation involves the time evolution of aj , cj and their adjoint. The equations of

motion for these operators should be added to close the system, and the final system of

differential equations cannot be solved exactly. The easiest way to proceed is to develop

the following simple perturbative expansion, well known in quantum mechanics:

n̂j(t) = eiHtn̂je
−iHt = n̂j + it[H, n̂j ] +

(it)2

2!
[H, n̂j ]2 +

(it)3

3!
[H, n̂j ]3 + . . . , (3.12)

where [H, n̂j]1 = [H, n̂j ] = Hn̂j − n̂jH and [H, n̂j ]n+1 = [H, [H, n̂j]n] for n ≥ 1, and

then to take its mean value on a state ω{n};{k};O;M up to the desired order of accuracy.

Of course, we can compute as many contributions of the above expansion as we want.

However, the expression for [H, n̂j ]n becomes more and more involved as n and L in-

crease. Just as an example, we consider here the case L = 2: up to the third order in
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time we find

n1(t) = ω{n};{k};O;M(n̂1(t)) = n1 + t2p2
12(ǫ

2
+ − ǫ2

−) + O(t4), (3.13)

where ǫ± are related to the state ω{n};{k};O;M as follows:

ǫ+ =

√

(n1 + 1) n2
k1!

(k1 − M)!

(k2 + M)!

k2!
, ǫ− =

√

(n2 + 1) n1
(k1 + M)!

k1!

k2!

(k2 − M)!
.

Of course, in order to have all the above quantities well defined, we need to have both

k2 − M ≥ 0 and k1 − M ≥ 0. This is a natural requirement since it simply states that

a trader can buy a share only if he has the money to pay for it!

Remarks:– (1) This solution has some analogies with that given in (2.7). Indeed,

if we expand n1(t) in (2.7) as a power of t, we find an expression which is very close

to equation (3.13). In particular, we find that for both models there is no contribution

coming from αj (and from βj here) up to the order t3. Also, for this model, if t1 and t2

possess the same amount of cash for t = 0, k1 = k2, then, since ǫ2
+ − ǫ2

− turns out to be

proportional to n2 − n1, we deduce that n1(t) = n2(t) if n1 = n2. This is again exactly

the same conclusion we have obtained in Section II: n1 = n2 is a stability condition.

(2) Using the fact that Q1 is constant we can also find the value of the cash of t1 as

a function of time: k1(t) = k1 −Mt2 p2
12(ǫ

2
+ − ǫ2

−) + O(t4) while its portfolio evolves like

Π1(t) = Π1(0) + (γ − M)t2 p2
12(ǫ

2
+ − ǫ2

−) + O(t4) (3.14)

(3) This formula allows us to get some conclusions concerning the time behavior of

the portfolio of t1 for small time. In particular we can deduce that:

if k1 = k2 and n1 = n2 then kj(t) = kj and nj(t) = nj , j = 1, 2. The two traders are

already in an equilibrium state and there is no way to let them change their state;

if k1 = k2 =: k but n1 6= n2 then, since ǫ2
+ − ǫ2

− = (k+M)!
(k−M)!

(n2 − n1), it follows that

ǫ2
+ − ǫ2

− > 0 if n2 > n1 and it is negative otherwise. This implies that, for small t, n1(t)

increases with t if n2 > n1 and decreases if n2 < n1. This means that the trader with

more shares tends to sell some of his shares to the other trader, to increase his liquidity.

Moreover, since k1(t) = Q1 − n1(t), k1(t) decreases when n1(t) increases and viceversa.
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We also find

Π1(t) ≃ Π1(0) + (γ − M)t2 p2
12

(k + M)!

(k − M)!
(n2 − n1), (3.15)

which shows that, if γ > M , Π1(t) increases with t if n2 > n1 and decreases if n1 > n2.

This can be understood as follows: if γ > M , then the market is giving to the shares a

larger value than the amount of cash used to buy them. Therefore, if n2 > n1, since as

we have seen n1(t) increases for small t, the first trader is paying M for a share whose

value is γ > M . That’s way the value of his portfolio increases!

Let now take n1 = n2 =: n and k1 6= k2. In this case after few algebraic computations

we see that ǫ2
+ − ǫ2

− > 0 if k1 > k2 while ǫ2
+ − ǫ2

− < 0 if k1 < k2. This implies that, if

k1 > k2, then n1(t) increases while k1(t) decreases as t increases. Moreover, if γ > M ,

then Π1(t) increases its value with t. This can be understood again as before: since

n1(t) is an increasing function, for t > 0 small enough, and since the market price of the

share γ is larger than M , t1 improves his portfolio since he spends M to get γ.

(4) As for the second trader, we can easily find n2(t), k2(t) and Π2(t) simply recalling

that N = n1(t) + n2(t) is constant in time.

(5) The case in which γ < M can be analyzed in the very same way as before.

IV Mean-field approximation

It is clear that the results of the previous section suffer of the two major approximations:

first of all our final considerations have been obtained only in the case of two traders.

Considering more traders is technically much harder and goes beyond the real aims of

this paper. Secondly, the perturbation expansion we have introduced in (3.12), gives only

an approximated version of the exact solution. In this section we propose a particular

version of the model considered before which, under a sufficiently general assumption

on αj and βj, can be explicitly solved in the so-called mean-field approximation. This

different version of our model is relevant since it is related to a market in which the

number of traders is very large, virtually divergent. In other words, while in the previous

section we have considered a stock market with very few traders, using the mean-field

approximation we will be able to analyze a different market, namely one with a very

large number of traders.
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Our model is defined by the same hamiltonian as in (3.5) but with M = 1. This is

not a major requirement since it corresponds to a renormalization of the price of the

share, which we take equal to 1: if you buy a share, then your liquidity decreases of one

unit while it increases, again of one unit, if you sell a share. It is clear that all the same

integrals of motion as before exist: N̂ , K̂, Γ̂, ∆̂ and Qj = n̂j + k̂j , j = 1, 2, . . . , L. They

all commute with H , which we now write as















H = h + hpo, where

h =
∑L

l=1 αln̂l +
∑L

l=1 βlk̂l +
∑L

i,j=1 pij

(

a
†
iajci c

†
j + ai a

†
jcj c

†
i

)

hpo = o† o + p† p + (o† p + p† o),

(4.1)

For hpo we can repeat the same argument as in the previous section and an explicit

solution can be found which is completely independent of h. In particular we have

ω{n};{k};O;M(P̂ ) = 1. For this reason, from now on, we will identify H only with h and

work only with this hamiltonian. Let us introduce the operators

Xi = ai c
†
i , (4.2)

i = 1, 2, . . . , L. The hamiltonian h can be rewritten as

h =

L
∑

l=1

(

αln̂l + βlk̂l

)

+

L
∑

i,j=1

pij

(

X
†
i Xj + X

†
j Xi

)

. (4.3)

The following commutation relations hold:

[Xi, X
†
j ] = δij(k̂i − n̂i), [Xi, n̂j ] = δij Xi [Xi, k̂j] = −δij Xi, (4.4)

which show how the operators {{Xi, X
†
i , n̂i, k̂i}, i = 1, 2, . . . , L} are closed under com-

mutation relations. This is quite important, since it produces the following system of

differential equations:















Ẋl = i(βl − αl)Xl + 2iX
(L)
l (n̂l − k̂l)

˙̂nl = 2i
(

Xl X
(L)
l

†
− X

(L)
l X

†
l

)

˙̂
kl = −2i

(

Xl X
(L)
l

† − X
(L)
l X

†
l

)
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whose first obvious consequence is that d
dt

(n̂l + k̂l) = 0, as we already knew from the

general analysis of the integrals of motion for our model. Here we have introduced

the following mean operators: X
(L)
l =

∑L

i=1 pliXi, l = 1, 2, . . . , L. Using the constant

Ql = n̂l + k̂l and considering only the relevant equations, the above system simplifies

and becomes
{

Ẋl = i(βl − αl)Xl + 2iX
(L)
l (2n̂l − Ql)

˙̂nl = 2i
(

Xl X
(L)
l

† − X
(L)
l X

†
l

) (4.5)

This system, as l takes all the values 1, 2, . . . , L, is a closed system of differential equa-

tions for which an unique solution surely exists. However, in order to find explicitly this

solution, it is convenient to introduce now the mean-field approximation which essen-

tially consists in replacing the two-traders interaction pij with a sort of global interaction

(meaning with this that all the traders may speak among them) whose strength is in-

versely proportional to the number of traders: this concretely means that we have to

replace pij with p̃

L
, with p̃ ≥ 0. After this replacement we have that

X
(L)
l =

L
∑

i=1

pliXi −→
p̃

L

L
∑

i=1

Xi,

whose limit, for L diverging, only exists in suitable topologies, [6, 7], like, for instance,

the strong one restricted to a set of relevant states. Let τ be such a topology. We define

X∞ = τ − lim
L→∞

p̃

L

L
∑

i=1

Xi, (4.6)

where, as it is clear, the dependence on the index l is lost because of the replacement

pli → p̃

L
. This is a typical behavior of transactionally invariant quantum systems, where

pl,i = pl−i. The operator X∞ belongs to the center of the algebra A, that is it commutes

with all the elements of A: [X∞, A] = 0 for all A ∈ A. In this limit system (4.5) above

becomes
{

Ẋl = i(βl − αl)Xl + 2iX∞(2n̂l − Ql)

˙̂nl = 2i
(

Xl X
∞† − X∞ X

†
l

)

,
(4.7)

which, following the notation introduced in [8] in a different context, can be called the

semiclassical approximation of (4.5). This system can now be solved if we assume that

βl − αl =: Φ (4.8)
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for all l = 1, 2, . . . , L. Under this assumption, in fact, we can deduce the time dependence

of X∞(t) and, as a consequence, we can completely solve system (4.7). The procedure

is as follows:

(i) using (4.7) we construct the following means: 1
L

∑L
l=1 Ẋl = d

dt
X

(L)
l and 1

L

∑L
l=1

˙̂nl.

(ii) Then we take the τ − limL→∞ of the system we have obtained in this way.

Introducing the following intensive operators

η = τ − lim
L→∞

1

L

L
∑

l=1

n̂l, Q = τ − lim
L→∞

1

L

L
∑

l=1

Ql, (4.9)

which again belong to the center of the algebra, we find that
{

Ẋ∞ = iΦX∞ + 2iX∞(2η − Q)

η̇ = 2i
(

X∞ X∞† − X∞ X∞†
)

= 0.
(4.10)

This system can be easily solved: η(t) = η and X∞(t) = eiνtX∞
0 , where ν = Φ+4η−2Q.

Notice that equation η(t) = η has an obvious interpretation: the various n̂l(t) change

in time in such a way that their mean does not change, see (4.9). This is again a

consequence of [H, N̂ ] = 0.

(iii) This solution must be now replaced in (4.7). It is convenient to consider two

different situations: Φ = ν and Φ 6= ν. We begin with this last case. With the change

of variable Xl(t) = eitν
{

Zl(t) + 2
Φ−ν

X∞
0 Ql

}

, since both Ql and X∞
0 do not depend on

time, we deduce the following system:

{

Żl = i(Φ − ν)Zl + 4iX∞
0 n̂l

˙̂nl = 2i
(

Zl X
∞
0

† − X∞
0 Z

†
l

)

,
(4.11)

which becomes closed if we also add the differential equation for Z
†
l . Then we have

Θ̇l(t) = i∆ Θl(t), (4.12)

where we have introduced

∆ ≡







Φ − ν 4X∞
0 0

2X∞
0 0 −2X∞

0

0 −4X∞
0 −(Φ − ν)






, Θl(t) ≡







Zl(t)

n̂l(t)

Z
†
l (t)






.
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Remark:– Notice that the procedure developed here implies, as a consequence, that

the dynamical behavior of all the traders is driven by the same differential equations.

This is a consequence of condition (4.8), which introduce the same quantity Φ for all

the traders. Possible differences in the time evolution of the portfolios may arise there-

fore only because of different initial conditions. We discuss in Appendix 2 a different

approximation, which produce different equations of motion for different traders.

The solution of equation (4.12) can be written as

Θl(t) = V ei∆dt V −1Θl(0), (4.13)

where V is the matrix which diagonalizes the matrix ∆ in the following sense:

V −1∆V = ∆d :=







δ1 0 0

0 δ2 0

0 0 δ3







Remark:– Notice that V needs not to be unitary since ∆ is not hermitian.

It is clear that we are only interested in the second component of the vector Θl(t),

which is exactly n̂l(t). Carrying out all the computations and computing the mean value

of n̂l(t) on a state number ω{n};{k};O;M , we find that

nl(t) =
1

ω2

{

nl(Φ − ν)2 − 8|X∞
0 |2 (kl(cos(ωt) − 1) − nl(cos(ωt) + 1))

}

, (4.14)

where we have introduced ω =
√

(Φ − ν)2 + 16|X∞
0 |2. This formula shows that nl(t)

is a periodic function whose period, T = 2π
ω

, increases when Φ approaches ν and when

|X∞
0 | approaches zero. It is also interesting to remark that, since ṅl(0) = 0 and n̈l(0) =

8|X∞
0 |2(kl − nl), then nl(t) is an increasing function for t in a right neighborhood of 0 if

kl > nl, while it is decreasing if kl < nl. This means that if tl has a large liquidity, then

he spends money to buy shares. On the contrary, if tl has a lot of shares, then he tends

to sell shares and to increase his liquidity, until the situation changes again.

As for the portfolio, its behavior is the following: since Πl(t) = Πl(0)+(γ−1)(nl(t)−
nl(0)), it is clear that Π̇l(0) = 0 and, if γ > 1 and kl > nl, Π̈l(0) > 0. This means that,
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in a right neighborhood of t = 0, Πl(t) increases as we expect, because of the same

arguments discussed in the previous section.

Remark:– It may be worth noticing that if X∞
0 = 0 then the number of shares does

not change with time. This is a trivial consequence of (4.14) and of the definition of ω,

but can also be deduced directly from (4.12) and from the extremely simple expression

of ∆ in this case. From the first equation in (4.7) and from the definition of Φ we can

also deduce that, in this case, Xl(t) = eiΦtXl(0).

Let us finally consider what happens if Φ = ν. In this case the system (4.7) takes

a simpler expression and, again, the solution can be found explicitly. Without going in

many details we find nl(t) = Ql

2
+(nl − Ql

2
) cos(ωt)+B sin(ωt), where ω = 4|X∞

0 | (since

Φ = ν), and B = 2i
ω
(X∞

0
†Xl −X∞

0 X
†
l ), which is again periodic with the same period as

before.

Let us now briefly consider what happens on states of a different nature. In particular

we want to understand if any meaning can be given to a KMS-state, that is, see Appendix

1, to an equilibrium state for a non-zero temperature.

Suppose that this is so, that is that a state ωβ satisfying condition (A.6) can be

used to deduce the existence of an equilibrium for the system under consideration. It is

well known that ωβ 6= ω{n};{k};O;M , so that our previous conclusions do not necessarily

hold. However, if we consider the easiest non-trivial situation, X∞
0 = 0, it is still

true that Xl(t) = eiΦtXl = eiΦtal c
†
l . If we now take A = B† = Xl in (A.6), we find

that eβΦωβ(ala
†
l c

†
l cl) = ωβ(a†

l alclc
†
l ). Assume now that ωβ can be factorized as follows,

ωβ = ω
(a)
β ⊗ ω

(c)
β , with ω

(a)
β related to the number of shares and ω

(c)
β to the cash, and let

us put m
(a)
l = ω

(a)
β (al a

†
l ), n

(a)
l = ω

(a)
β (a†

l al), m
(c)
l = ω

(c)
β (cl c

†
l ) and n

(c)
l = ω

(c)
β (c†l cl). Then

the KMS condition becomes eβΦm
(a)
l n

(c)
l = n

(a)
l m

(c)
l . Since the commutation relations

also imply that m
(a)
l = 1 + n

(a)
l and m

(c)
l = 1 + n

(c)
l , this equality produces the following

condition:

eβΦ =
n

(a)
l (1 + n

(c)
l )

n
(c)
l (1 + n

(a)
l )

, (4.15)

at least if the denominator is different from zero. A first obvious remark is that, even if

the single two-particles states may depend on l, the combination in the rhs of equation
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(4.15) must not.

In order to analyze condition (4.15), it is convenient to consider three different con-

ditions: (i) Φ > 0, (ii) Φ = 0 and (iii) Φ < 0, and, for each of these situations, the

following cases: (a) n
(a)
l > n

(c)
l , (b) n

(a)
l = n

(c)
l or (c) n

(a)
l < n

(c)
l .

Case (ia): In this case, for all values of Φ > 0, it is not hard to check that an unique

pair (β0, n
(c)
(o)) exists such that (4.15) can be verified. It is worth remarking that this

also fixes the value of n
(a)
(o) , since Ql is a constant of motion. It is also possible to check

that the smaller β Φ, the larger the value of n
(c)
(o), so that n

(a)
(o) turns out to be smaller.

Case (ib): In this case (4.15) can be verified if and only if β = 0 independently of

the value of n
(c)
l .

Case (ic): In this case no solution of (4.15) exists.

Case (ii): In this case a solution of (4.15) exists only if n
(a)
l = n

(c)
l .

Finally, if Φ < 0, our conclusions are exactly specular to those in (i): no solution

exists for (iiia), β = 0 is the only possibility for equation (4.15) to hold in case (iiib)

and, finally, an unique pair (β0, n
(c)
(o)) exists which verifies (4.15) in case (iiic).

Since Φ > 0 implies that βl > αl for all l, using the interpretation discussed in

Section II we could say that the inertia of the cash is larger than that of shares.

Exactly the opposite happens when Φ < 0, since in this case the inertia of the shares

is larger than that of cash.

In Φ = 0 an equilibrium can be reached only if the system was already in an equi-

librium state for t = 0, i.e. if n
(a)
l = n

(c)
l , that is if tl has the same amount of cash and

shares for t = 0.

Also, if Φ 6= 0 and if, for t = 0, n
(a)
l = n

(c)
l , then an equilibrium can be reached only

if β = 0.

For what concerns the value of the portfolio at the time t̃ in which the equilibrium

is reached, we get

Πl(t̃) = Πl(0) + (γ − 1)(kl(0) − n
(c)
(o))

From this we deduce that, when γ > 1, tl increments the value of his portfolio if

kl(0) > n
(c)
(o). But, for this to be possible, the value of βo (for fixed Φ > 0) must

be sufficiently high. If γ < 1 the trader tl increments the value of his portfolio if

kl(0) < n
(c)
(o). In this case the value of βo (again for fixed Φ > 0) must be sufficiently low.
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These considerations suggest therefore to interpret βγ−1 as a kind of information

reaching the trader tl, which should be considered together with the information already

arising because of αl and βl. This is again because we are assuming that a larger amount

of information produces a larger increment of the portfolio.

Remark:– It must be observed, however, that in this procedure all the traders

receive the same information, since βγ−1 is the same for all tl. What can make the

difference between the traders is the information coming from α−1
j and β−1

j , as suggested

in Section II. So we can distinguish between a global information, reaching all the traders

in the same way, and a local information, which may be different from trader to trader.

V Conclusions and outcome

In this paper we have proposed an operator approach to the analysis of some toy models

of a stock market. We have shown that non trivial results concerning the dynamical

behavior of the portfolio of each trader can be obtained, even using the existence of

conserved quantities, i.e., of some operators commuting with the hamiltonian. We have

also discussed a possible use of the KMS-states within this contest.

Many things are still to be done. Among these, first of all we should introduce

more than a single kind of shares. Then a different, and more realistic, mechanism to

determine the price of the shares should be considered. Also, the role of condition (4.8)

should be better understood, and a deeper analysis and understanding of KMS-states

has to be carried out.
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Appendix 1: Mathematical Background

This Appendix, which is meant only for those who are not familiar with operator algebras

and their applications to QM∞, is essentially based on known results discussed in [9]

and [10], for instance. We want to stress that only few useful facts will be discussed

here, paying no particular care about the mathematical rigor. In particular we will not

insist on the unbounded nature of the operators involved in the game. This is possible

since the relevant spectrum of all the operators relevant for our discussion are usually

bounded subsets of R.

Let H be an Hilbert space and B(H) the set of all the bounded operators on H.

B(H) is a C*-algebra, that is an algebra with involution which is complete under a norm

‖ . ‖ satisfying the so-called C*-property: ‖A∗A‖ = ‖A‖2, for all A ∈ B(H). As a matter

of fact B(H) is usually seen as a concrete realization of an abstract C*-algebra. It has

been widely discussed in literature that, as far as physical applications are concerned,

it is convenient to assume that the relevant observables of a certain system generate a

von Neumann algebra, i.e. a closed subset of B(H), or a topological quasi *-algebra.

Let S be our physical system and A the set of all the operators useful for a complete

description of S (sometimes called the observables of S). For simplicity reasons it is

convenient to assume that A is a C* or a von Neumann-algebra, even if this is not always

possible. The description of the time evolution of S is related to a self-adjoint operator

H = H†, which will be assumed not to depend explicitly on time, which is called the

hamiltonian of S. Several equivalent descriptions are possible: the Schrödinger or the

interaction representation, which will not be used here, or the Heisenberg representation,

in which the time evolution of an observable X ∈ A is given by

X(t) = eiHtXe−iHt (A.1)

or, equivalently, by the solution of the differential equation

dX(t)

dt
= ieiHt[H, X]e−iHt = i[H, X(t)], (A.2)

where [A, B] := AB − BA is the commutator between A and B. The time evolution

defined in this way is usually a one parameter group of automorphisms of A.
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In our paper a special role is played by the so called canonical commutation relations

(CCR): we say that a set of operators {al, a
†
l , l = 1, 2, . . . , L} satisfy the CCR if the

following hold:

[al, a
†
n] = δlnI, [al, an] = [a†

l , a
†
n] = 0 (A.3)

for all l, n = 1, 2, . . . , L. These operators, which are widely analyzed in any textbook

in quantum mechanics, see [11] for instance, are those which are used to describe L

different modes of bosons. The operators n̂l = a
†
l al and N̂ =

∑L

l=1 n̂l are both self-

adjoint operators. In particular n̂l is the number operator for the l-th mode, while N̂

is the number operator of S.

The Hilbert space of our system is constructed as follows: we introduce the vacuum

of the theory, that is a vector ϕ0 which is annihiled by all the annihilation operators

al: alϕ0 = 0 for all l = 1, 2, . . . , L. Then we act on ϕ0 with the creation operators a
†
l :

ϕn1,n2,...,nL
:=

1√
n1! n2! . . . nL!

(a†
1)

n1(a†
2)

n2 · · · (a†
L)nLϕ0 (A.4)

These vectors form an orthonormal set and are eigenstates of both n̂l and N̂ : n̂lϕn1,n2,...,nL
=

nlϕn1,n2,...,nL
and N̂ϕn1,n2,...,nL

= Nϕn1,n2,...,nL
, where N =

∑L

l=1 nl. For this reason the

following interpretation is given: if the L different modes of bosons of S are described by

the vector ϕn1,n2,...,nL
then n1 bosons are in the first mode, n2 in the second mode, and

so on. The operator n̂l acts on ϕn1,n2,...,nL
and returns nl, which is exactly the number

of bosons in the l-th mode. The operator N̂ , finally, counts the total number of bosons.

A particle in mode l is created or annihilated by simply acting on ϕn1,n2,...,nL
re-

spectively with a
†
l or al. Indeed we have n̂l(alϕn1,n2,...,nL

) = (nl − 1)(alϕn1,n2,...,nL
) and

n̂l(a
†
l ϕn1,n2,...,nL

) = (nl + 1)(a†
l ϕn1,n2,...,nL

).

The Hilbert space is obtained by taking the closure of the linear span of all these

vectors.

An operator Z ∈ A is a constant of motion if it commutes with H . Indeed in this

case equation (A.2) implies that Ż(t) = 0, so that Z(t) = Z for all t.

The vector ϕn1,n2,...,nL
in (A.4) defines a vector (or number) state over the algebra

A as

ωn1,n2,...,nL
(X) =< ϕn1,n2,...,nL

, Xϕn1,n2,...,nL
>, (A.5)
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where < , > is the scalar product in the Hilbert space H of the theory. To be more

precise, we should replace (A.5) with the following formula:

ωn1,n2,...,nL
(X) =< ϕn1,n2,...,nL

, π(X)ϕn1,n2,...,nL
>,

where π is a representation of the (abstract) algebra A in the Hilbert space H. We will

avoid this unessential complication along this paper.

In general, a state ω over A is a linear functional which is normalized, that is such that

ω(I) = 1, where I is the identity of A. The states introduced above describe a situation

in which the number of all the different modes of bosons is clear. But different states

also exist and are relevant. In particular the so-called KMS-state, i.e. the equilibrium

state for systems with infinite degrees of freedom, are usually used to prove the existence

of phase transitions or to find conditions for an equilibrium to exist. Without going into

the mathematical rigorous definition, see [10], a KMS-state ω with inverse temperature

β satisfies the following equality:

ω(A B(iβ)) = ω(B A), (A.6)

where A and B are general elements of A and B(iβ) is the time evolution of the operator

B computed at the complex value iβ of the time.

Appendix 2: On system (4.7)

We will show now how to solve system (4.7) without using condition (4.8).

For this we introduce the following quantities: γl = βl−αl, X∞
γk = τ−limL

1
L

∑L
l=1 γk

l Xl,

k = 1, 2, . . ., ηγ = τ − limL
1
L

∑L
l=1 γln̂l, and Qγ = τ − limL

1
L

∑L
l=1 γlQl. Of course, we

are assuming here that all these limits do exist. Repeating the same steps as in Section

IV, we find the following system:
{

Ẋ∞ = iX∞
γ + 2iX∞(2η − Q)

η̇ = 0.

To close this system, we also need the differential equation for X∞
γ which, as it is easily

understood, involves X∞
γ2 , ηγ and Qγ. Notice that, in our previous approximation, these
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operators turned out to be equal respectively to Φ2X∞, Φη and ΦQ. Moreover, in

that approximation, we also had X∞
γ = ΦX∞, so that the system above was already

closed. We improve our original approximation by taking now X∞
γ as a new variable

and replacing X∞
γ2 , ηγ and Qγ with Φ̃2X∞, Φ̃η and Φ̃Q, where we have introduced

Φ̃ = limL
1
L

∑L

l=1 γl, assuming that it exists. It should be noticed that Φ̃ extends Φ

in the sense that they coincide if γl = Φ for all l. The equation for X∞
γ is therefore

Ẋ∞
γ = iΦ̃2X∞ +2iX∞Φ̃(2η−Q). For the sake of simplicity we will work here assuming

that X∞
γ (0) = 0 and 2µ + Φ̃ = 0, where µ = 2η − Q. With these assumptions, which

could be avoided in a more general analysis, we can repeat the same steps as in Section

IV, getting the following result:

nl(t) =
1

ω2
l

{

nl(γl + Φ̃)2 − 32µ2

Φ̃2
|X∞

0 |2 (kl(cos(ωlt) − 1) − nl(cos(ωlt) + 1))

}

,

where we have introduced ωl =
√

(γl + Φ̃)2 + 64µ2

Φ̃2
|X∞

0 |2. It is clear now that different

traders may have different behaviors, depending on the related value of γl: it is inter-

esting to notice, for instance, that if |γl| → ∞, that is when αl and βl are very different

from each other, then nl(t) = nl. This is not so for zero or intermediate values of |γl|,
for which a non trivial time evolution of nl(t) is recovered.
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