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We propose a technique, which produces nearly complete ionization of the population of a dis-
crete state, coupled to a continuum by a two-photon transition via a lossy intermediate state, whose
lifetime is much shorter than the interaction duration. We show that using counterintuitively or-
dered pulses, as in stimulated Raman adiabatic passage (STIRAP), wherein the pulse coupling the
intermediate state to the continuum precedes and partly overlaps the pulse coupling the initial and
intermediate states, greatly increases the ionization signal and strongly reduces the population loss
due to spontaneous emission through the lossy state. For strong spontaneous emission from that
state, however, the ionization is never complete because the dark state required for STIRAP does
not exist. We demonstrate that this drawback can be eliminated almost completely by creating a
laser-induced continuum structure (LICS) by embedding a third discrete state into the continuum
with a third, control laser. This LICS introduces some coherence into the continuum, which enables
a STIRAP-like population transfer into the continuum. A highly accurate analytic description is
developed and numerical results are presented for Gaussian pulse shapes.

PACS numbers: 32.80.Qk, 32.80.Fb, 32.80.Rm, 33.80.Rv

I. INTRODUCTION

Stimulated Raman adiabatic passage (STIRAP) is a
simple, robust and efficient technique for complete popu-
lation transfer (CPT) in three-state quantum systems [1].
In this technique, the population is transferred adiabati-
cally in a Raman transition, from an initially populated
state ψ1 via an intermediate state ψ2 to a target state ψ3

by two pulsed fields, pump and Stokes, whose frequencies
are maintained on two-photon resonance between states
ψ1 and ψ3. If the pulses are ordered counterintuitively,
the Stokes before the pump, then the dark state is associ-
ated with state ψ1 initially and state ψ3 in the end, thus
providing an adiabatic route from ψ1 to ψ3. A unique and
remarkable feature of STIRAP is that during the trans-
fer the population remains trapped in a dark state, which
is a time-dependent coherent superposition of states ψ1

and ψ3 only and does not involve the intermediate state
ψ2. State ψ2 therefore remains unpopulated during the
transfer and its properties, including possible population
decay, are largely irrelevant for STIRAP. A very large
detuning [2] or loss rate [3], however, do affect STIRAP
and reduce its transfer efficiency.

The simplicity, efficiency, and robustness of STIRAP
have attracted much attention, which has resulted in nu-
merous applications in a variety of quantum systems.
Among them, we mention population transfer via a con-
tinuum, wherein the discrete intermediate state ψ2 is re-
placed by an ionization continuum [4–6]. Because a dark
state that links adiabatically states ψ1 and ψ3 still forms,
high transfer efficiency is still possible. However, various
specific features of the continuum that make it substan-
tially different from a discrete state (or a manifold of
discrete states) reduce the transfer efficiency. Several sce-

narios have been proposed to reduce the effects of these
continuum features, resulting in increase of the transfer
efficiency well above 50%. STIRAP via continuum has
recently been demonstrated experimentally [6].

The extension of STIRAP to include an initial or final
continuum was at first investigated for the photoasso-
ciation process producing cold molecules starting from
laser-cooled atoms [8]. Photoassociation is based on the
laser-driven transitions of a continuum-bound-bound sys-
tem. Vardi et al [9] have extended the STIRAP technique
to the cases of initial or final continuum, proving that
transfer with a good efficiency is possible. The quantum
transfer in a three-level system based on bound-bound-
continuum transitions arises also in the ionization of a
Bose-Einstein condensate (BEC). Ionization of a rubid-
ium BEC from the ground state through a two-photon
ionization (TPI) scheme was explored experimentally [10]
and theoretically [11].

In the present paper, we follow this latter idea and
introduce a continuum in STIRAP by replacing the fi-
nal state ψ3 by a continuum. The objective, compared
to STIRAP via a continuum, is also changed drastically:
instead of trying to avoid ionization, here we aim at max-

imizing ionization. As in STIRAP we also aim at mini-
mizing the transient population of the intermediate state
ψ2, in order to avoid (possibly strong) decay to other
discrete states via spontaneous emission or unwanted ex-
citation to other states. States ψ1 and ψ2 are linked by
a pump pulse, and state ψ2 is connected to the contin-
uum by an ionizing pulse, with the ionizing pulse arriv-
ing before the pump. The challenge here is that, unlike
STIRAP via continuum, a dark state cannot be formed
between the initial state ψ1 and the continuum states,
because a flat continuum is an incoherent medium.
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To this end, we propose to use a laser-induced contin-
uum structure (LICS) [7] created in the continuum by
embedding an ancillary, control state ψc into the contin-
uum by a third, control laser. This LICS creates some
coherence into the continuum, which makes it possible to
create a quasi-dark state, and thence a STIRAP-like pro-
cess into the continuum. This LICS-STIRAP allows us to
produce almost complete ionization, with negligibly small
population losses from state ψ2, even when the ψ2 life-
time is much shorter than the interaction duration. Ex-
perimental verification of this LICS-STIRAP technique
will open opportunities for many applications, for in-
stance efficient photoionization of a BEC without atomic
excitation in intermediate atomic states that will improve
the ion production obtained in the experiment of ref.
[10]. In addition, an increase in the ionization efficiency
for cold atoms will improve the brightness in magneto-
optical-trap based sources producing either electron [12]
or ion [13] beams.
The structure of this paper is as follows. In Sec. II

we define the problem and show that a counterintuitive
pulse order of the pump and ionizing pulses suppresses
fluorescence and is favourable for ionization, even with-
out a control laser. In Sec. III we add LICS to the
scenario and derive a very accurate analytic approxima-
tion to describe this LICS-STIRAP technique. Section
IV provides illustrations of the proposed ionization tech-
nique and comparison of the analytical and numerical
results. Section V presents a summary.

II. STIRAP INTO CONTINUUM

We first consider TPI of an atom, initially in state ψ1,
coupled to the ionization continuum via state ψ2, as il-
lustrated in Fig. 1. The transition 1-2 is driven by a
pump laser pulse with Rabi frequency Ω(t) and detuning
∆, and state ψ2 is connected to the continuum by a sec-
ond laser pulse with a time-dependent rate Γi(t). State
ψ2 can decay irreversibly via spontaneous emission (or
other mechanisms) to other states with a constant rate
Γ; we shall refer to the respective signal as the fluores-

cence signal,

F =

∫ ∞

−∞

ΓP2(t)dt. (1)

The ionization signal is

I = 1− P1(∞)− P2(∞)− F, (2)

where Pn(t) are the populations of the discrete states
(n = 1, 2). Our objective is to set up the laser pulses
such that the ionization signal I is maximized, while the
fluorescence signal F is minimal.
We wish to design a recipe to maximize ionization

when the loss rate Γ is large compared to the interaction
duration T . In other words, we wish to ionize the atom,
without exciting it, despite being on resonance with state

Γ

1ψ

2ψ

∆

pump 
laser

ionization 
laser

FIG. 1: (Color online) TPI scheme. An initially populated
discrete state ψ1 is coupled to another discrete state ψ2 by
a resonant, or nearly resonant, pump laser field. State ψ2

is coupled to the ionization continuum by a second, ionizing
laser pulse. State ψ2 can decay irreversibly to other states.

ψ2. This objective reminds one of STIRAP. The signif-
icant difference here is that state ψ3 is replaced by a
continuum.

The equation that describes the dynamics of the sys-
tem (in units ~ = 1) is the Schrödinger equation,

i
d

dt
c(t) = H(t)c(t). (3)

Here c(t) = [c1(t), c2(t)]
T

is the column-vector with
the probability amplitudes c1(t) and c2(t) of states ψ1

and ψ2, and H(t) is the Hamiltonian, obtained by adia-
batic elimination of the continuum states and within the
rotating-wave approximation (RWA) [7],

H(t) = 1
2

[
2S1(t) Ω(t)
Ω(t) 2∆ + 2S2(t)− iΓi(t)− iΓ

]
, (4)

where S1(t) and S2(t) are the Stark shifts of states ψ1

and ψ2, produced by virtual excitation to other atomic
states.

We are interested in situations when the ionization sig-
nal I is large, i.e. in the non-perturbative regime. This
implies large peak Rabi frequency Ω(t) and large ioniza-
tion rate Γi(t). Because we also assume that the loss rate
Γ is fixed and large, Γ ≫ 1/T , state ψ2 is subjected to
strong population decay, due to both spontaneous emis-
sion and ionization. This implies that it receives very lit-
tle transient population and can therefore be eliminated
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FIG. 2: Contour plots of the ionization signal I as a function
of the delay of the ionizing pulse τi and the pump detuning
∆ = 0. The pulses have Gaussian shapes, Eqs. (22a). The
decay rate from state ψ2 is Γ = 100/T , the peak ionization
rate is Γi0 = 50/T , the peak Rabi frequency is Ω0 = 50/T ,
and the Stark shift is S = 0.

adiabatically. Hence we find after simple algebra

P1(t) ≈ exp

[
−
∫ t

−∞

Ω(t′)2 [Γi(t
′) + Γ]

[Γi(t′) + Γ]
2
+ 4 [∆ + S(t′)]

2 dt
′

]
,(5a)

P2(t) ≈ Ω(t)2

[Γi(t) + Γ]
2
+ 4 [∆ + S(t)]

2P1(t), (5b)

with S(t) = S2(t)− S1(t). Now we use these formulas to
examine the possibilities of how to minimize fluorescence
F , i.e. P2(t), and simultaneously maximize ionization I.
The first choice is to use a large detuning ∆. In-

deed, this will reduce the population of state ψ2, because
P2(t) ∼ ∆−2 for large ∆ [see Eq. (5b)]; however, this
decrease will be accompanied by an increase in the pop-
ulation of state ψ1, see Eq. (5a). In result, the increase in
the ionization will be little, if any. A similar conclusion
applies to the Stark shift S(t), which can be induced by
the ionizing laser, or, if needed, by an additional far-off-
resonance laser, as in SCRAP technique [14].
A straightforward alternative is to increase the magni-

tude of the ionizing pulse Γi(t) alone. Then the popula-
tion (5b) of state ψ2 decreases as Γ−2

i , as vs ∆; however,
the increase in the population (5a) of state ψ1 is smaller
vs Γi than vs ∆. In result, the ionization signal will
increase more markedly when increasing Γi.
A closer inspection of Eqs. (5) suggests that one can

decrease P2(t), without increasing P1(t) (implying thence
a net increase of the ionization I), by delaying the pump
pulse Ω(t) with respect to the ionizing pulse Γi(t). In-
deed, it is obvious that the pump pulse Ω(t) must not
arrive before the ionizing pulse Γ(t), because then the flu-
orescence will deplete the population even before ioniza-
tion has the chance to begin; mathematically, this implies
large values for the fractions in Eqs. (5), with resulting
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FIG. 3: Contour plots of the ionization signal I as a function
of the delay of the ionizing pulse τi and the peak ionization
rate Γi0. The pulses have Gaussian shapes, Eqs. (22a). The
pump detuning is ∆ = 0, the decay rate from state ψ2 is
Γ = 100/T , the peak Rabi frequency is Ω0 = 50/T , and the
Stark shift is S = 0.

small population of state ψ1 and large fluorescence sig-
nal F . In contrast, if the pump pulse Ω(t) arrives simul-
taneously, or after the ionizing pulse Γi(t), with some
overlap, then fluorescence can only begin simultaneously
with ionization. Moreover, if during the ionization the
ratio Ω(t)/Γi(t) is very small, while the ratio Ω(t)2/Γi(t)
is moderately large compared to 1/T , then both P1(t)
and P2(t) will remain small, as easily seen from Eqs. (5)
when ∆ = S = 0. Therefore, our objective of produc-
ing ionization without excitation requires that during the
population depletion we have

Ω(t)2T & [Γi(t) + Γ] ≫ Ω(t). (6)

These conditions require large pulse areas over the inter-
action duration,

∫ ∞

−∞

Ω(t)dt ≫ 1,

∫ ∞

−∞

Γi(t)dt ≫ 1. (7)

Conditions (6) suggest that the pump pulse Rabi fre-
quency Ω(t) should be small in comparison with the ion-
izing rate Γi(t). This can be naturally achieved, indeed,
if the pump pulse is delayed to, but overlapped with,
the ionizing pulse. Then ionization will occur during the
rising edge of the pump pulse.
These conclusions are illustrated in Figs. 2 and 3 where

the ionization signal is plotted as a function of, respec-
tively, the ionizing pulse delay and the pump pulse de-
tuning ∆, and the ionizing pulse delay and the ionizing
pulse intensity. These figures clearly demonstrate that
the counterintuitive pulse order – ionizing pulse before
pump pulse – is favorable for ionization. Figure 2 demon-
strates also that the detuning ∆ is of little help in respect
to ionization, as predicted by Eqs. (5).
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FIG. 4: (Color online) The scheme for ionization by LICS-
STIRAP, which extends the scheme in Fig. 1. The additional
discrete state ψc is embedded into the continuum by a control
laser field, which creates a LICS in the continuum.

As follows from the above analysis, counterintuitive
pulse order increases ionization and suppresses excita-
tion. However, very strong ionizing laser is needed to en-
sure the conditions (6). In the following section we shall
show that a LICS in the continuum can help ionization
and make this process very similar to STIRAP because
of the creation of a quasi-dark state between state ψ1 and
the LICS, with ensuing nearly complete ionization with
moderate laser resources.

III. STIRAP INTO LICS

A. The system

Let us assume now that, in addition to the scheme in
Fig. 1, an additional laser pulse couples a third discrete
state ψc with the continuum, as shown in Fig. 4. The
dynamics of the system is again described by Eq. (3),

with c(t) = [c1(t), c2(t), cc(t)]
T
. The Hamiltonian after

adiabatic elimination of the continuum states and within
the RWA reads

H = 1
2



2S1 Ω 0
Ω 2∆+ 2S2 − iΓi − iΓ −(q + i)

√
ΓiΓc

0 −(q + i)
√
ΓiΓc 2δ + 2Sc − iΓc


 ,

(8)
where explicit time dependences are omitted for brevity.
The constant q, called the Fano parameter [15], is an

important feature of LICS. It is responsible for the asym-
metric dependence of the ionization signal on the two-
photon detuning [7], and it also plays an important role

in population transfer via continuum [4]. The quanti-
ties Γ2 =

∑
α Γα

2 and Γc =
∑

α Γα
c (α = p, i, c) are

the total ionization rates of states ψ2 and ψc, respec-
tively, which are given by sums of ionization rates in-
duced by the pump (p), ionization (i) and control (c)
pulses, whereas Sn =

∑
α S

α
n (n = 1, 2, c) are the dy-

namic Stark shifts. The ionization widths and the Stark
shifts are proportional to the pulse intensities Ip(t), Ii(t)
and Ic(t), Γ

α
n(t) = Γα

n0Iα(t) and S
α
n (t) = Sα

n0Iα(t), where
the parameters Γα

n0 and Sα
n0 depend on the particular

atomic states and the laser frequencies.

For simplicity, we will assume that the ionization of
state ψ2 occurs due to the action of the ionizing laser Ii
only: Γ2 = Γi

2; this condition can be satisfied by selecting
appropriate atomic levels and laser frequencies such that
the pump and control lasers do not cause direct ionization
from state ψ2. We will also assume that the ionization
rate of state ψc is induced by the control laser Ic only:
Γc = Γc

c. Given the preceding assumption for Γ2 it is
clear that the ionizing laser Ii will ionize also state ψc

(Γi
c 6= 0). However, because from state ψc the ionizing

laser points deeply into the continuum this ionization rate
is small; moreover, as state ψc remains largely unpopu-
lated, this ionization channel (which is actually favorable
for our goal of maximizing ionization) does not alter the
dynamics markedly.

In addition, we also neglect the Stark shifts, S1 = S2 =
Sc = 0; these are important in population transfer via
continuum [4], but do not have much effect here.

The fluorescence signal F from state ψ2 is given by Eq.
(1), and the ionization signal by

I = 1− P1(∞)− P2(∞)− Pc(∞)− F. (9)

The optimal pulse order of the three pulsed fields is
determined by the objective to maximize ionization. We
have already come to the conclusion that the pump and
ionizing pulses must arrive in a counterintuitive order:
ionizing before pump. The optimal timing of the control
pulse can be deduced from the following arguments.

Because the objective is ionization, we must avoid pop-
ulation transfer via the continuum into state ψc, which
will occur if the control pulse precedes the ionizing pulse
[4]; the control should therefore be applied after the ion-
izing pulse. The timing of the control pulse with respect
to the pump pulse is not so significant but these pulses
should not be separated too much because it is obvious
that, for LICS to have any effect, the control pulse must
overlap significantly with the pump and ionizing pulses.
We therefore conclude that for maximal ionization, the
pulses should be applied in the order ionizing-control-

pump, with a sufficient overlap between them. We shall
therefore assume this pulse ordering in the analytical de-
scription in the next section, which will be confirmed as
optimal also by numerical simulations in Sec. IV.
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B. Analytical description

It is appropriate to describe the evolution of the system
in the basis of the instantaneous eigenstates of the Hamil-
tonian (8). Because this Hamiltonian is non-Hermitian
its eigenvalues εα(t) are complex valued, and the right
eigenvectors ϕα(t) differ from Hermitian conjugates of
the left eigenvectors [16]. The right eigenvectors, and the
eigenvalues, are defined by the equation (α = +, 0,−)

H(t)ϕα(t) = εα(t)ϕα(t), (10)

where ϕα(t) = [f1α(t), f2α(t), f3α(t)]
T . Using such states

we expand the state vector as

Ψ(t) = b+(t)ϕ+(t) + b0(t)ϕ0(t) + b−(t)ϕ−(t). (11)

The probability amplitudes in the original basis and the
adiabatic basis are related through the transformation

c(t) = R(t)b(t), (12)

where the column vector b(t) = [b+(t), b0(t), b−(t)]
T

comprises the probability amplitudes of the adiabatic
states. The columns of R are the components of ϕα(t),
(R(t))nα = fnα(t), with n = 1, 2, 3 and α = +, 0,−.
The Schrödinger equation for the vector b reads

i
d

dt
b(t) = H

ad(t)b(t), (13)

where H
ad(t) = H

a(t) +H
na(t), with an adiabatic diago-

nal Hamiltonian

H
a(t) = R

−1(t)H(t)R(t) =




ε+(t) 0 0
0 ε0(t) 0
0 0 ε−(t)



 , (14)

and a nonadiabatic coupling Hna(t) = −iR−1(t) d
dtR(t). If

the time evolution is slow we can neglect the nonadiabatic
coupling; then Eq. (13) is easily solved,

bα(t) = bα(−∞) exp

[
−i

∫ t

−∞

εα(t
′)dt′

]
(α = +, 0,−).

(15)
Our major approximation is based on the assumption

that the population dynamics takes place mainly during
the time interval when Ω ≪

√
ΓiΓc. i.e. during the

rising edge of the pump pulse (which is the last to arrive).
This assumption derives from our interest in the regime
of large ionization, which requires strong laser fields. In
this case we can approximate the eigenvalues and the
eigenvectors by assuming that the ratio Ω/

√
ΓiΓc is a

small parameter [16]. After simple algebra we obtain

ε+ ≈ 1
2

[
∆̃ + δ̃ + η

]
+

Ω2

4η

η + ∆̃− δ̃

η + ∆̃ + δ̃
, (16a)

ε0 ≈ Ω2

Γ̃2 − 4∆̃δ̃
δ̃, (16b)

ε− ≈ 1
2

[
∆̃ + δ̃ − η

]
− Ω2

4η

η − ∆̃ + δ̃

η − ∆̃− δ̃
, (16c)

where

∆̃ = ∆− i
Γi + Γ

2
, (17a)

δ̃ = δ − iΓc

2
, (17b)

Γ̃ = − (q + i)
√
ΓiΓc, (17c)

η =

√[
∆− δ − i (Γi + Γ− Γc)

2

]2
+ (q + i)

2
ΓiΓc.(17d)

The corresponding eigenvectors are

ϕ+(t) ≈
[
Ω

Γ̃

η + ∆̃− δ̃

η + ∆̃ + δ̃
sin ξ, cos ξ, sin ξ

]T

, (18a)

ϕ0(t) ≈
[
1− Ω2(Γ̃2 + 4δ̃2)

2(Γ̃2 − 4∆̃δ̃)2
,

2δ̃Ω

Γ̃2 − 4∆̃δ̃
,− ΩΓ̃

Γ̃2 − 4∆̃δ̃

]T

,(18b)

ϕ−(t) ≈
[
Ω

Γ̃

η − ∆̃ + δ̃

η − ∆̃− δ̃
cos ξ,− sin ξ, cos ξ

]T

, (18c)

where the complex-valued angle ξ is defined as

tan 2ξ =
Γ̃

∆̃− δ̃
. (19)

Because the pulses are applied in the sequence ionizing-
control-pump and the population is initially in state ψ1,
the initial adiabatic-state amplitudes are b0(−∞) = 1,
b±(−∞) = 0. In the adiabatic limit the population
P0(t) = |b0(t)|2 of state ϕ0(t) evolves as

P0(t) =

∣∣∣∣∣exp
[
−iδ̃(t)

∫ t

−∞

Ω2(t′)

Γ̃2(t′)− 4∆̃(t′)δ̃(t′)
dt′

]∣∣∣∣∣

2

.

(20)
The populations of the original states are

P1(t) =

∣∣∣∣∣1−
Ω2(t)[Γ̃2(t) + 4δ̃2(t)]

2[Γ̃2(t)− 4∆̃(t)δ̃(t)]2

∣∣∣∣∣

2

P0(t), (21a)

P2(t) =

∣∣∣∣∣
2Ω(t)δ̃(t)

Γ̃2(t)− 4∆̃(t)δ̃(t)

∣∣∣∣∣

2

P0(t), (21b)

Pc(t) =

∣∣∣∣∣
Ω(t)Γ̃(t)

Γ̃2(t)− 4∆̃(t)δ̃(t)

∣∣∣∣∣

2

P0(t). (21c)

The fluorescence signal is calculated from Eq. (1) and
(21b), and then the ionization signal from Eq. (9).
In the following section we will use these formulas to

examine how to minimize the fluorescence F , i.e. P2(t),
and simultaneously to maximize the ionization I.

IV. NUMERICAL EXAMPLES

We compare the analytical results derived in the pre-
ceding section with numerical simulations for the fluo-
rescence signal of Eq. (1), the ionization signal of Eq.
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FIG. 5: Contour plots of the ionization signal as a function of
the control pulse center τc and the control ionization rate Γc0.
The ψ2 loss rate is Γ = 1/T (top frames), Γ = 10/T (middle
frames), or Γ = 100/T (bottom frames). The Fano parameter
is q = 1 (left frames), q = 3 (middle frames), or q = 6 (right
frames). The other parameters are Ti = Tc = T , Γi0 = 50/T ,
Ω0 = 50/T , τi = −T , δ = 10/T , ∆ = 0. The number Imax

atop each frame indicates the respective maximal ionization
signal. Without the control field Imax is 0.978, 0.822, and
0.317 for Γ = 1, 10, and 100, respectively.

(9), and the populations (21) of states ψ1, ψ2 and ψc,
derived from numerical integration of Eq. (3), with the
Hamiltonian (8). We assume Gaussian pulse shapes,

Ω(t) = Ω0e
−(t−τ)2/T 2

, (22a)

Γi(t) = Γi0e
−(t−τi)

2/T 2

i , (22b)

Γc(t) = Γc0e
−(t−τc)

2/T 2

c . (22c)

We use the pump pulse duration T as a time unit and
1/T as a frequency unit, and choose the center of the
pump pulse to define the zero reference point of time,
τ = 0. All remaining parameters are variable: the peak
pump Rabi frequency Ω0, the peak ionization rates Γi0

and Γc0, the centers of the ionizing and control pulses τi
and τc, their widths Ti and Tc, the detunings ∆ and δ.
The Stark shifts are assumed zero because, as we have
verified, they do not affect significantly the ionization
signal. For the Fano parameter we have chosen three
values: q = 1, q = 3, q = 6, which are close to the
experimental values for LICS in sodium (q = 3.7) [17],
helium (q = 0.73) [18], and hydrogen atoms (q = −5.9)
[5], for electric-field mixing in rubidium (q = 3.3) [19],
and for configuration mixing in potassium (q = 1) [20],
rubidium (q = 0.1− 0.3) [21], and cesium (q ≈ 0.43) [21].
Figure 5 shows contour plots of the ionization signal

as a function of the center of the control pulse τc and the
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FIG. 6: Contour plots of the ionization signal as a function of
the control laser detuning δ and the peak control ionization
rate Γc0. The ψ2 loss rate is Γ = 1/T (top frames), Γ = 10/T
(middle frames), or Γ = 100/T (bottom frames). The Fano
parameter is q = 1 (left frames), q = 3 (middle frames), or
q = 6 (right frames). The other parameters are Ti = Tc = T ,
Γi0 = 50/T , Ω0 = 50/T , τi = −T , τc = −0.5T , ∆ = 0.
The number Imax atop each frame indicates the respective
maximal ionization signal. Without the control field Imax is
0.978, 0.822, and 0.317 for Γ = 1, 10, and 100, respectively.

peak control ionization rate Γc0 for different values of the
Fano parameter q and the irreversible loss rate Γ from
state ψ2. Larger Fano parameters are clearly favourable
for ionization but improvement is seen for q = 1 too. In
principle a lower Fano parameter could be compensated
by stronger ionizing and control fields. For Γc0 = 0 (near
the horizontal axis in each frame), the plain STIRAP
into continuum, discussed in Sec. II, occurs. The bot-
tom frames demonstrate that for strong loss (ΓT ≫ 1)
the LICS-STIRAP improves ionization dramatically, for
example, from 0.317 without the control field to 0.875
with it. We have verified that for larger laser intensities,
a nearly complete ionization can be achieved.
Figure 6 shows contour plots of the ionization signal

as a function of the control laser detuning δ and the con-
trol peak ionization rate Γc0. Again, the presence of the
control laser pulse, and the ensuing LICS, are essential in
achieving high ionization signal, even for strong loss rate
from state ψ2. The asymmetry of the ionization signal
vs the detuning is typical for the Fano LICS profile.
In Fig. 7, we display the fluorescence and ionization

signals vs the timing of the ionizing pulse, for different
values of the irreversible loss rate Γ and different widths
of the control and ionizing pulses. The figure demon-
strates that efficient ionization requires a counterintuitive
pulse ordering, with the ionizing laser applied before the
pump laser (τi < 0, with optimum about τi = −T ). It
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FIG. 7: (Color online) Ionization I and florescence F signals
vs the center τi of the ionizing laser pulse. The ψ2 loss rate is
Γ = 10/T (top frames) or Γ = 100/T (bottom frames). The
pulse widths are Ti = Tc = T (left frames) or Ti = Tc = 3T
(right frames). The other parameters are q = 3, Γi0 = Γc0 =
50/T , Ω0 = 50/T , τc = −0.5T , ∆ = δ = 10/T . The solid
curves show the analytical results derived from Eqs. (1), (9),
and (21), the dots show the numerical results.

also shows that an increase of the pulse widths (right
frames) leads to broadening of the ionization profile but
does not affect appreciably the maximal ionization signal.
The figure evidences an excellent agreement between the
analytical theory and the numerical simulations. This
agreement indicates that indeed, the ionization dynam-
ics occurs during the rising edge of the pump pulse, when
the ionizing and control pulses are already present. The
manner in which the pulses terminate is not important,
as evident when comparing the left frames (where the
pump pulse starts and terminates later) and the right
frames (where the pump pulse start later but terminates
earlier because its width is shorter than the others). This
is one of the main differences between conventional STI-
RAP between discrete levels [1] and LICS-STIRAP pro-
posed here. In conventional STIRAP both the initial and
final times of the pulses are important (the pump must
start and terminate last). In LICS-STIRAP the initial
times are important, but the final times are not, because
there is no population left in the discrete states. In this
respect, LICS-STIRAP is similar to STIRAP between
lossy states [16].

Figure 8 shows the fluorescence and ionization signals
vs the timing of the control pulse. The figure demon-
strates that the best timing between the ionizing and
pump pulses is at τc ∼ τi/2, as used in other figures.
However, the technique is relatively robust against the
control timing and moderate deviations from this pre-
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FIG. 8: (Color online) The ionization and florescence signals
vs the center τc of the control laser pulse. The loss rate from
state ψ2 is Γ = 100/T and the pulse widths are Ti = Tc = T .
The other parameters are q = 3, Γi0 = Γc0 = 50/T , Ω0 =
50/T , τi = −T , ∆ = δ = 10/T . The solid curves show the
analytical results derived from Eqs. (1), (9), and (21), the
dots indicate the numerical results.

scription do not affect the ionization efficiency very much.
The background signal appearing for large deviations of
τc from this region is produced by c-STIRAP. It serves as
a reference for the influence of LICS on STIRAP, signifi-
cant in this case, once again. This figure reveals another
excellent agreement between analytical theory and nu-
merical simulations.

Figure 9 shows the ionization signal as a function of the
irreversible loss rate Γ from state ψ2. The three curves
show how the ionization efficiency decreases with Γ for
TPI, c-STIRAP (no control laser), and LICS-STIRAP.
The c-STIRAP efficiency is clearly superior to TPI, and
LICS-STIRAP adds further considerable improvement
over c-STIRAP. Note the horizontal logarithmic scale in
Γ. Remarkably, LICS-STIRAP maintains high ionization
efficiency even when the intermediate state ψ2 can decay
hundreds of times during the interaction. Again, the fig-
ure reveals an excellent agreement between the analytical
theory and the numerical simulations.

Figure 10 shows the ionization signal vs the Fano pa-
rameter q and the peak control ionization rate. For mod-
erate values of q (1 . q . 10) nearly complete ionization
is achieved for sufficiently strong control pulses. When
q is too small LICS is not sufficiently strong to simulate
the presence of a bound state and to create a quasi-dark
state. When q is too large, a very large atomic coher-
ence is created through the continuum, so that state ψc

is directly involved in the dynamics, with some atomic
population transfered to this state.
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FIG. 9: (Color online) Ionization signal vs the ψ2 irreversible
loss rate Γ for three different techniques. TPI: coincident
pulses (τi = τ = 0), no control pulse (Γc0 = 0); c-STIRAP:
counterintuitively delayed pulses (τi = −T , τ = 0), no control
pulse (Γc0 = 0); LICS-STIRAP: counterintuitively delayed
pulses (τi = −T , τ = 0), with control pulse (Γc0 = 50/T ,
τc = −0.5T ). The other parameters are Ti = Tc = T , q = 3,
Γi0 = 50/T , Ω0 = 50/T , ∆ = δ = 10/T . The solid curves
show the analytical results derived from Eqs. (1), (9), and
(21). The dots display numerical results.
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FIG. 10: Contour plot of the ionization signal as a function
of the Fano parameter q and the peak control ionization rate
Γc0. The other parameters are Ti = Tc = T , Γi0 = 50/T ,
Ω0 = 50/T , Γ = 100/T , τi = −T , τc = −0.5T , δ = 10/T ,
∆ = 0.

V. CONCLUSIONS

We have demonstrated, using analytical techniques
and numerical simulations, that STIRAP can be used as
a tool for efficient ionization of the population of a dis-
crete state ψ1 coupled to a continuum via a lossy state ψ2.
The ionizing laser must precede the pump laser coupling
states ψ1 and ψ2, and both lasers must be strong enough
to enforce adiabatic evolution. The ionization probabil-
ity is further enhanced when a LICS is created into the
continuum and STIRAP is directed into this LICS be-
cause then a quasi-dark state composed of state ψ1 and
the LICS is created, via which the population flows into
the continuum. We have shown that almost complete
ionization can be achieved even when the lifetime of the
resonantly coupled state ψ2 is much shorter than the laser
interaction duration. We have also shown that in the adi-
abatic limit, the main population dynamics takes place
during the rising edge of the pump pulse, when it is lost
irreversibly either via ionization or fluorescence. Hence in
LICS-STIRAP only the order in which the pulses arrive
is important, a result significantly different from conven-
tional STIRAP between discrete levels, where the order
of the pulse terminations is also very important.
Experimental verification of these results will open op-

portunities for many applications, such as photoioniza-
tion of ultracold atoms with efficiency close to unity and
negligible population into intermediate discrete states.
It should be noticed that LICS-STRAP relies on atomic
structures in the continuum reached by appropriate laser
sources. An accurate examination of the atoms listed
above and their experimental investigation shows that
sodium is particularly suitable for experimental verifica-
tion of the proposed technique.
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