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Abstract

The transverse spatial effects observed in photon pairs produced by paramet-
ric down-conversion provide a robust and fertile testing ground for studies
of quantum mechanics, non-classical states of light, correlated imaging and
quantum information. Over the last 20 years there has been much progress in
this area, ranging from technical advances and applications such as quantum
imaging to investigations of fundamental aspects of quantum physics such
as complementarity relations, Bell’s inequality violation and entanglement.
The field has grown immensely: a quick search shows that there are hun-
dreds of papers published in this field, some with hundreds of citations. The
objective of this article is to review the building blocks and major theoretical
and experimental advances in the field, along with some possible technical
applications and connections to other research areas.
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1. Introduction

Correlations between optical fields produced in spontaneous parametric
down-conversion (SPDC) were first observed in 1970 by Burnham and Wein-
berg [1]. In this early experiment, they investigated the temporal and spatial
correlation between pairs of photons. From the theoretical point of view, it
was Zeldovich, Krindach and Klyshko who first studied the statistical proper-
ties of the light produced in this process, as early as 1969 [2, 3]. The temporal
correlations were studied and utilized in the pioneering series of work of Prof.
Leonard Mandel and his group [4, 5, 6, 7, 8], giving rise to the use of the term
twin photons, since the temporal correlation indicates that pairs of photons
are born simultaneously. These correlations are of fundamental importance
in all experiments with twin photons. They provide the time correlation
which allows for the post-selection of photon pairs born from the same pump
photon, which may present correlations in other degrees of freedom, such
as the transverse position and momentum. Both the time and spatial cor-
relations have been proven to be non-classical. The simple observation of
a coincidence rate above the rate of accidental coincidence counts already
leads to the violation of a classical inequality [9]. In the early Burnham and
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Weinberg experiment [1], spatial correlations were already observed. They
demonstrated that the transverse profile of the coincidence distribution in
the far field is narrower than the single photon intensity distribution. How-
ever, more comprehensive investigations were made only in the 1990s. For
instance, Grayson and Barbosa [10] investigated spatial correlations for use
in induced coherence without induced emission [11]. Joobeur et al. [12] stud-
ied general spatial and temporal coherence properties, and Souto Ribeiro et
al. [13] started a long series of experiments using double-slit apertures and
coincidence detection, initially dedicated to the study of spatial coherence
properties of twin photons. Strekalov et al.[14] performed a novel double-slit
experiment to observe ghost interference fringes and Pittman et al. [15] ini-
tiated a series of experiments on what was called Quantum Imaging, with
the two-photon field from SPDC. Monken et al.[16] demonstrated that the
spatial correlations could be controlled through the shaping of the angular
spectrum of the pump beam. This control allowed the use of the spatial
correlations in a series of applications, ranging from fundamental aspects of
Quantum Mechanics such as the measurement of the photonic de Broglie
wavelength of a two-photon wave packet [17] and the observation of the spa-
tial anti-bunching of photons [18, 19], to applications to quantum information
such as, for instance, the production of spatial qudits [20]. Howell et al. [21]
and D’Angelo et al. [22] formally demonstrated entanglement between the
spatial properties of the twin photons.

In this review, we will discuss the spatial correlations between twin pho-
tons produced in parametric down-conversion, starting with the basic con-
cepts and basic theory for the description of the down-conversion process
and temporal simultaneity. We will introduce some basic concepts related
to the classical spatial coherence of light fields and propagation of parax-
ial light beams. The theoretical framework for the description of quantum
spatial correlations will be introduced and the remainder of the text will
be dedicated to the description and discussion of several key experiments
and applications: double-slit experiments, quantum images, demonstration
of non-classicality, spatial entanglement, transverse modes and applications
to quantum information.

2. Fundamentals of parametric down-conversion

In SPDC, a nonlinear birefringent crystal is typically pumped by an in-
tense pump laser beam, producing low intensity signal and idler fields, as
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Figure 1: Pumping a non-linear crystal with an intense laser beam produces low inten-
sity signal and idler beams by the non-linear process of spontaneous parametric down-
conversion.

illustrated in Fig. 1. The pump laser has frequency ωp and is typically in
the UV or violet region, while the down-converted signal and idler fields have
frequencies ωs and ωi that are usually in the visible or near infra-red region
of the spectrum. There have been many theoretical treatments of SPDC,
beginning with the early work of Klyshko [23] and later by Hong and Mandel
[5]. A detailed account of these calculations is out of the scope of this review,
but can be found in the Ph.D. thesis of L. Wang, [24] and the books by D. N.
Klyshko [25], Mandel and Wolf[26] and Ou[27]. In this section, we follow the
treatment presented in Refs. [5, 24] to introduce the main features related
to the temporal correlations between twin photons produced in SPDC. Even
though our main concern is the spatial correlation, their time correlation is
essential in all experiments.

2.1. Classical and quantum parametric interaction

The quantum theory of parametric down-conversion can be derived from
the classical description of the nonlinear interaction, followed by the quan-
tization of the electromagnetic field. Up to second order, the components
of the electric polarization of a nonlinear and non centrosymmetric optical
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medium when an electric optical field E propagates through it is [28, 29]

Pi(r, t) = ǫ0

∞
∫

0

dt′χ
(1)
ij (t

′)Ej(r, t− t′) + (1)

∞
∫

0

dt′
∞
∫

0

dt′′χ
(2)
ijk(t

′, t′′)Ej(r, t− t′)Ek(r, t− t′′),

where Ej(r, t) is the j component of the electric field vector and χ(1) and χ(2)

are the first and second order susceptibility tensors, respectively. Summation
over all combinations of the tensor components and electric field components
is assumed. For light sources with low electric field strengths compared with
the characteristic atomic electric field strength Eat ≈ 6×1011 V/m [30], only
the linear term in Eq. (1) is significant. Increasing the field intensity by using
laser sources, for example, increases the nonlinear terms in the polarization.
We will focus on the second order non-linear interaction.

In order to quantize the field, we begin with the electromagnetic field
Hamiltonian in the dielectric medium of volume V /citemandel95

H(t) =
1

2

∫

V

dr [D(r, t) · E(r, t) +B(r, t) ·H(r, t)] , (2)

where D is the displacement vector, B is the magnetic induction and H is
the magnetic field. If we use the definition D(r, t) = ǫ0E(r, t) + P(r, t) in
Eq. (2), and use Eq. (1), we can rewrite the Hamiltonian as

H(t) = H0(t) +HI(t), (3)

where H0(t) contains the interaction of the electric field and the first order
linear component of the electric polarization. The “perturbation” HI(t) is
the nonlinear interaction Hamiltonian, given by

HI(t) =
1

2

∫

V

drE(r, t) ·Pnl(r, t)

=
1

2

∫

V

dr

∞
∫

0

dt′
∞
∫

0

dt′′χ
(2)
ijk(t

′, t′′)Ei(r, t)Ej(r, t− t′)Ek(r, t− t′′), (4)
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where Pnl(r, t) is the nonlinear component of the electric polarization, and
summation on repeated indices is understood. In order to avoid unnecessary
difficulties in the quantization of the field, it is considered that there are no
electromagnetic boundaries between the medium and the air. In all situa-
tions discussed here, the effects related to refraction and birefringence can be
included classically, after the field is quantized. A more rigorous approach is
not yet available and is still subject of research.

From this point on we concern ourselves only with the nonlinear portion
of the Hamiltonian. It is also convenient to suppose that just after the crystal
there are two interference filters limiting the frequency spectrum of the down-
converted fields, and that the pump beam has a narrow frequency spectrum.
The two-photon quantum state will then include the functions describing the
signal and idler interference filters. As a part of the quantization procedure,
we expand the classical optical electric field in terms of plane waves:

E(r, t) = E+(r, t) + E−(r, t), (5)

with

E+(r, t) =
1√
V
∑

k,σ

ek,σεk,σαk,σG(ω) exp [i(k · r− ωt)] =
[

E−(r, t)
]∗
, (6)

where
εk,σ =

√

~ω(k, σ)/2ǫon2(k, σ), (7)

ǫ0 is the free space permittivity, G(ω) is the transmission function of the
interference filter, V is the quantization volume, k is the wave vector, ek,σ is
the two-dimensional polarization vector, ω is the frequency, and αk,σ is the
mode amplitude. The index σ is summed over orthogonal components of a
two-dimensional polarization vector and k is summed over all possible wave
vectors.

We adopt the usual method of quantization of the electric field, letting
αk,σ −→ ak,σ, where ak,σ is the photon annihilation operator. Then, the
electric field amplitude becomes a field operator, given by

E+(r, t) −→ E+(r, t) =
1√
V
∑

k,σ

~ek,σεk,σak,σG(ω) exp [i(k · r− ωt)]

=
[

E−(r, t)
]†
. (8)
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Substituting expression (8) into the classical Hamiltonian (4) we have a quan-
tum Hamiltonian operator

HI =
1

2V3/2

∑

kσ,σs

∑

ki,σi

∑

kp,σp

g∗
ks,σs

g∗
ki,σi

gkp,σp
a
†
ks,σs

a
†
ki,σi

akp,σp

× exp [i(ωs + ωi − ωp)t]χijk(eks,σs
)∗i (eki,σi

)∗j(ekp,σp
)k

×
∫

V

exp [−i(ks + ki − kp) · r] dr+H.C., (9)

where we have distinguished the three fields as pump (p), signal (s) and idler
(i),

gkj ,σj
= i

√

~ω(kj, σj)

2ǫon2(kj, σj)
G[ω(kj , σj)], (10)

V is the interaction (crystal) volume, and H.C. stands for Hermitian Conju-
gate. Here, n(kj, σj) is the linear refractive index of the (anisotropic) crystal.
We have also eliminated all terms which do not conserve energy and have
defined

χijk ≡ χ
(2)
ijk(ωp = ωs + ωi) + χ

(2)
ijk(ωi = ωs + ωp) + χ

(2)
ijk(ωs = ωi + ωp), (11)

with

χ
(2)
ijk(ω = ω′ + ω′′) =

∞
∫

0

dt′
∞
∫

0

dt′′χ
(2)
ijk(t

′, t′′) exp [−i(ω′t′ + ω′′t′′)]] . (12)

To find the quantum state at a given time t, we assume that the nonlinear
interaction is turned on at time t0 = 0 when the system is in the initial state
|ψ(0)〉. The state at time t is given by the time evolution of some initial state
at t0 = 0:

|ψ(t)〉 = U(t) |ψ(0)〉 (13)

where

U(t) = exp





1

i~

t
∫

0

dτHI(τ)



 , (14)

is the time evolution operator.
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If the pump field is sufficiently weak, such that the interaction time is
small compared to the average time between down-conversions, then we can
expand Eq. (14) in power series and keep only the two-photon term:

U(t) = 1 +





1

i~

t
∫

0

dτHI(τ)



 + · · · . (15)

The integral can be expressed in terms of Eq. (9) as:

∫ t

0

dτ HI(τ) =
1

2V3/2

∑

ks,σs

∑

ki,σi

∑

kp,σp

g∗
ks,σs

g∗
ki,σi

gkp,σp
a
†
ks,σs

a
†
ki,σi

akp,σp

× exp [i(ωs + ωi − ωp)t/2]χijk(eks,σs
)∗i (eki,σi

)∗j (ekp,σp
)k

× t sinc[(ωs + ωi − ωp)t/2]

∫

V

dr exp [−i(ks + ki − kp) · r]

+H.C. (16)

Integration in r leads to a sinc function involving the wave vectors, which
provides the conservation of momentum condition:

∫ t

0

dτ HI(τ) =
V t

2V3/2

∑

ks,σs

∑

ki,σi

∑

kp,σp

g∗
ks,σs

g∗
ki,σi

gkp,σp
a
†
ks,σs

a
†
ki,σi

akp,σp

×χijk(eks,σs
)∗i (eki,σi

)∗j(ekp,σp
)k sinc[(ωs + ωi − ωp)t/2]

× exp [i(ωs + ωi − ωp)t/2]
∏

m

sinc [(ks + ki − kp)mlm/2]

× exp [−i(ks + ki − kp)zlz/2] +H.C., (17)

where V = lx × ly × lz and lm is the dimension of the nonlinear medium in
direction m (m = x, y, z).

The quantum state at time t can be finally obtained using Eq. (13),
considering the initial state as the vacuum state, and using the interaction
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Hamiltonian in the form of Eq. (17):

|ψ(t)〉 = |vac〉+ V t

2i~V3/2

∑

ks,σs

∑

ki,σi

∑

kp,σp

g∗
ks,σs

g∗
ki,σi

gkp,σp
vp(kp, σp)

× χijk(eks,σs
)∗i (eki,σi

)∗j (ekp,σp
)k sinc [(ωs + ωi − ωp)t/2]

× exp [i(ωs + ωi − ωp)t/2]
∏

m

sinc [(ks + ki − kp)mlm/2]

× exp [−i(ks + ki − kp)zlz/2] |ks, σs〉 |ki, σi〉 , (18)

where |ks, σs〉 and |ki, σi〉 are single photon Fock states in modes (ks, σs)
(signal) and (ki, σi) (idler) respectively, and vp(kp, σp) is a classical ampli-
tude corresponding to the plane wave component (kp, σp) of the pump beam.
Quantum effects in the pump field are neglected in this treatment, since the
pump depletion is much smaller than its average intensity and its quantum
state is effectively constant. The annihilation operator for the pump modes
was replaced in Eq. (18) by a classical amplitude.

In order to simplify expression (18), it is convenient to make the following
approximations:

(a) The interaction time is long enough, so that the term sinc (ωs + ωi =
ωp)t/2 is significant only when ωs+ωi = ωp. This assumption can be justified
by the use of a moderate power pump laser so that the time interval between
two down-conversions is large compared to the detection resolving time.

(b) The frequency spread of the detectable down-converted fields is small
compared to the central frequencies, so that the dispersion of the refractive
indices around the central frequencies ω̄j is small and a linear approxima-
tion can be used. This assumption is justified by the use of narrow-band
interference filters in front of the detectors.

(c) The terms gkj ,σj
and χ̃

(2)
ijk are slowly-varying functions of kj, so that

they may be taken as constants in the intervals considered for kj.
(d) The pump beam propagates along the z axis and the crystal is large

enough in the x and y directions to contain the whole pump beam transverse
profile. In this case, lx and ly can be extended to infinity and the last term
in the third line of expression (18) is proportional to

δ(qs + qi − qp) sinc [(ksz + kiz − kpz)L/2],

where qj = (kjx, kjy) is the transverse (xy) component of kj and L = lz is
the crystal thickness.
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(e) The quantization volume is large enough to justify the replacement
of summations over k by integrals.

(f ) The pump beam contains only extraordinary polarization. It is im-
plicit in this assumption that we are dealing with negative birefringent crys-
tals.

Under the above assumptions, Eq. (18) is written as

|ψ〉 = |vac〉 +
∑

σs,σi

∫

dωs

∫

dωi

∫

dqs

∫

dqi Φσsσi
(qs,qi, ωs, ωi)

× |qs, ωs, σs〉 |qi, ωi, σi〉 , (19)

where
∣

∣qj, ωj, σj
〉

represents a one-photon state in the mode defined by the
transverse component qj of the wave vector, by the frequency ωj and by the
polarization σj . The amplitude Φ is now reduced to

Φσsσi
≈ Cσsσi

Gs(ωs)Gi(ωi) v(qs+qi, ωs+ωi) sinc [(ksz+kiz−kpz)L/2], (20)

where Cσsσi
is a coupling constant which depends on the nonlinear suscep-

tibility tensor, and G(ωj) is the spectral function defined by the narrow
bandwidth filters placed in front of the detectors. If the anisotropy of the
medium is neglected (which is not always convenient), the longitudinal wave
vector mismatch ksz+kiz−kpz is written as

√

|ks|2 − |qs|2+
√

|ki|2 − |qi|2−
√

|kp|2 − |qs + qi|2.

2.2. The coincidence count rate

The state given by Eq. (18) can be simplified, considering approxima-
tions that are appropriate to given specific experimental situations. In this
section, let us consider that signal and idler fields are detected through small
apertures at fixed positions far enough from the source, so that only one spa-
tial mode is selected by each detector. In this case, when narrow bandwidth
filters are used, the quantum state takes a very simple form:

|ψ(t)〉 = C1 |vac〉+ C2

∫

dωs

∫

dωiGs(ωs)Gi(ωi)vp(ωi + ωs) |ωs〉 |ωi〉 , (21)

where C1 and C2 are normalization constants.
The electric field operator can also be simplified to

E+(t+ τ) = C

∫

dω a(ω) exp [−iω(t+ τ)], (22)
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where C is a constant.
The state in Eq. (21) and field operator in Eq. (22) were obtained under

several approximations. However, they adequately describe the main features
of time correlations between twin photons. The time correlation is always
assumed and used in all twin-photon experiments with coincidence detection,
even when the spatial correlations are the focus of the investigation. There-
fore, it is important and interesting to calculate the coincidence count rate
in this simplified point of view.

The coincidence count rate is given by the fourth order (in the fields)
correlation function:

Rc(t + τi, t+ τs) = 〈E−
s (t+ τs)E

−
i (t + τi)E

+
i (t+ τi)E

+
s (t+ τs)〉

= |E+
i (t+ τi)E

+
s (t+ τs) |ψ(t)〉 |2. (23)

Using Eqs. (21) and (22), we obtain:

Rc(t+ τi, t+ τs) = η2
∣

∣

∣

∣

∫

dω1

∫

dω2 a(ω1)a(ω2) exp {−i[ω1(t+ τi) + ω2(t+ τs)]}

×
∫

dωi

∫

dωsGi(ωi)Gs(ωs)vp(ωi + ωs) |ωi〉 |ωs〉
∣

∣

∣

∣

2

, (24)

where η is a constant that depends on the square root of the pump beam
power, the efficiency of the detectors and of the parametric down conver-
sion process. After the action of the operators on the quantum state and
integration over ω1 and ω2, we obtain:

Rc(t + τi, t+ τs) = η2
∣

∣

∣

∣

∫

dωi

∫

dωsGi(ωi)Gs(ωs)vp(ωi + ωs)

× exp [−i(ωi + ωs)t] exp [−i(ωiτi + ωsτs)]

∣

∣

∣

∣

2

. (25)

In the limit where the pump spectrum can be approximated by a delta
function vp(ω) → δ(ωp − ω), the time correlation is:

Rc(τi, τs) = η2
∣

∣

∣

∣

∫

dωGi(ω)Gs(ωp − ω) exp [iω(τs − τi)]

∣

∣

∣

∣

2

= η2 |F (τs − τi)|2 , (26)

where F (t) is the convolution of the Fourier transforms of the filter functions
Gi(ω) and Gs(ωp − ω). Usually, the width of F (t) is on the order of fem-
toseconds. This means that detections are simultaneous within the window
of a few femtoseconds.
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3. Fundamentals of spatial correlations

The investigation of the transverse spatial properties of light has accom-
panied the study of the nature of light itself. The development of the theory
of diffraction and all resulting applications represent an impressive example
of how finely a physical theory can describe nature. Despite the incredible
success of classical optics, it has been found in the last few decades that
amendments should be made in order to accurately describe the quantum
effects which arise when dealing with some special light sources. In this
respect, the transverse correlations between the twin photons produced in
the parametric down-conversion process have largely contributed to this end.
The quantum optics theory of spatial effects which has been developed so
far is strongly based on classical diffraction theory, and has been shown to
describe a large array of quantum phenomena in optics. In the following, we
will briefly discuss some important topics in classical diffraction theory which
will help in the development of the quantum theory of spatial correlations.

3.1. Transverse coherence and partial coherence: classical optics

In this section we will review some fundamental aspects of transverse
coherence and partial coherence in classical optics. These concepts were es-
sential in the development of quantum coherence theory and are still essential
for the design and understanding of many quantum optics experiments. We
introduce the discussion by analyzing the Young’s double-slit experiment and
its relationship with the van Cittert-Zernike [31] theorem, and the concept
of coherence area.

3.1.1. Double slit experiment: perfect coherence

Fig. 2 shows a light source illuminating a double-slit aperture, and the
resulting intensity pattern which is observed at the detection screen. When
the light emitted by the source is perfectly coherent, interference fringes are
observed with high visibility or contrast, as in Fig. 2a). Many of the laser
light sources available today are almost perfectly coherent, but many other
important light sources are incoherent or partially coherent. Incoherent light
sources can also be used to perform interference experiments under certain
conditions. All real light beams present partial coherence, depending on
the geometrical properties and propagation of the beam. Thus, interference
fringes can still be observed, but with reduced visibility, as illustrated in Fig.
2b). The light intensity distribution after a double-slit is given by [32, 31]:
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Figure 2: Double-slit experiment. The double-slit is illuminated by a perfect coherent
light source in a) and by a partially coherent light source in b).

I(x, y) = I0(x, y)[1 + |γ12(d)| cos(k · ρ+ δ)], (27)

where I0(x, y) gives the single slit diffraction pattern, k is the wave vector, ρ
gives the position in the transverse plane, γ12 is the normalized mutual coher-
ence of the light field in the plane of the slits, d is the distance between slits
and δ is a fixed phase factor. When the source is perfectly coherent, |γ12| = 1
and the contrast of the interference fringes is maximum. The contrast can
be quantified by the visibility V , defined as V = (Imax − Imin)/(Imax + Imin),
where Imax and Imin are the intensities at the interference maximum and min-
imum. When the coherence is partial, 0 ≤ |γ12| ≤ 1, and can be calculated
from geometrical and statistical properties of the source [31].

One important result in the calculation of γ12 is known as the van Cittert-
Zernike theorem. We will discuss this theorem in more detail.

3.1.2. Partial coherence and the van Cittert-Zernike theorem

Let us consider the situation sketched in Fig. 3, where a light source
S is illuminating the observation screen O. We assume that the source is
constituted by infinitesimal independent light emitters, such as a thermal
source or parametric down-conversion, for example. The non-normalized
mutual coherence function between points 1 and 2 on the screen is defined
as:

Γ12(d, τ) =
∑

m

〈Em1(t+ τ)E∗
m2(t)〉+

∑∑

m6=n

〈Em1(t+ τ)E∗
n2(t)〉, (28)

where the summations are performed over the emitting points of the source,
d is the distance between points 1 and 2 at the screen, τ is the time difference
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Figure 3: Finite source S illuminating an observation screen O.

due to different propagation distances from point m at the source to point
1(or point 2) at the screen, E∗ is the complex conjugate of E, and the brackets
indicate time average.

If the field is quasi-monochromatic, the mutual coherence function can
be written as

Γ12(d, τ) = Γ12(d, 0) e
ikcτ , (29)

where k = |k| and c is the speed of light. This approximation is valid when
the time difference τ is much smaller than the coherence time of the source.
In other words, the phase relationship between Em1(t + τ) and Em2(t) is
preserved. However, for spatially incoherent sources such as thermal sources
and SPDC, there is no phase relationship between Em1(t + τ) and En2(t) if
m 6= n and the second term in the left side of Eq. (28) averages to zero.
Therefore, we end up with:

Γ12(d, 0) =
∑

m

〈Em1E
∗
m2〉. (30)

It is convenient to take the continuum limit and suppose that each point
of the source emits a spherical wave. Thus, Eq. (30) takes the form:

Γ12(d, 0) =
1

R2

∫

S

dr0 I(r0)e
ik(R1−R2), (31)
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Figure 4: Finite source illuminating an observation screen.

where I(r0) is the intensity distribution of the source, R1 = |r0 − r1| and
R2 = |r0 − r2| are the distances between point r0 in the source and points r1
and r2, respectively, and it was assumed that R1 ∼ R2 = R≫ (R1 −R2).

It is interesting to write the difference R1 − R2 explicitly in terms of
the coordinates of the generic source point (x0, y0) and the coordinates of
the points 1 (x1, y1) and 2 (x2, y2) (see Fig. 4) and use again the relation
R1 ∼ R2 = R ≫ (R1 − R2). We then obtain the result known as the van
Cittert-Zernike theorem:

Γ12(d, 0) =
eiα

R2

∫∫

S

dx0dy0 I(x0, y0)e
ik(px0+qy0), (32)

where α is a constant phase and

p =
(x1 − x2)

R
and q =

(y1 − y2)

R
. (33)

The dependence on the distance d appears through p and q. The van Cittert-
Zernike theorem shows that the mutual coherence is given by the Fourier
transform of the intensity distribution of the light source. This result is valid
if the emitting points in the source are independent and if the mutual coher-
ence is considered in a plane far enough from the source, so that Fraunhofer
diffraction regime can be assumed. The normalized degree of coherence γ12
is:

γ12(d, 0) =
eiα
∫∫

dx0dy0I(x0, y0)e
ik(px0+qy0)

∫∫

dx0dy0I(x0, y0)
. (34)

The quantity |γ12(d)| gives the visibility of the interference fringes in a double
slit experiment, Eq. (27), where we remember that d is the distance between
slits.
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Figure 5: Gaussian source illuminating an observation screen.

3.1.3. The coherence area

Let us illustrate the application of the van Cittert-Zernike theorem in
the calculation of the coherence area of a light source. Referring to Fig.
5, we start by calculating the degree of coherence for a light source with
a Gaussian intensity distribution. The integrals in Eq. (34) are computed
using the initial intensity distribution

I(x0, y0) = A exp

(

−x
2
0 + y20
σ2

)

, (35)

and we obtain

γ12(d, 0) = exp

(

−k
2σ2d2

4R2

)

. (36)

The coherence area is the area within which the value of |γ12| is appreciable
and the field can be considered spatially coherent. From Eq. (36), we can
see that, on the one hand, the degree of coherence decreases with the wave
number k, source width σ and distance d between points 1 and 2. On the
other hand, the degree of coherence increases with the propagation distance
R. As the coherence function is Gaussian, it never reaches zero and we can
take the value γ12(d, 0) = 1/e as a lower bound for the coherence. Then
the circular coherence area Ac = π(d

2
)2 can be deduced from Eq. (36) by

imposing γ12(d, 0) = 1/e :

Ac =
πR2

k2σ2
. (37)

In terms of a double slit experiment, this result indicates that there will be
interference fringes with considerable visibility as long as the slits are placed
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within the area given by Eq. (37).
The double-slit experiment provides a method for determining the coher-

ence area of a light field at some distance from the source. A double-slit
aperture with variable slit separation d is placed at the plane of interest, the
visibility of the resulting interference patterns is measured in the far-field.
By plotting the visibilities of the interference patterns as a function of d, a
measurement of the transverse coherence length of the field in the one direc-
tion is obtained. Repeating the procedure in the perpendicular direction in
the transverse plane, we obtain a measurement of the coherence area. This
method was used to measure the transverse coherence length of one of the
down-converted fields produced by SPDC [33], and it was observed that the
coherence length is the same as that predicted for a thermal source. The
same method was also applied to the two-photon beam produced by SPDC,
and it was shown that the transverse coherence length of the two-photon field
is much larger than the one-photon field [34]. A quantum multimode theory
was necessary to explain the experimental results in this case.

3.2. The Fresnel and paraxial approximations

Another important and basic issue in spatial correlations concerns the
Fresnel and paraxial approximations. Most of the quantum optics theory
concerning SPDC was developed within these approximations and describes
very well the vast majority of the experimental situations reported so far.
In the following sections, we will derive the quantum state for the trans-
verse degrees of freedom of the twin photons produced by parametric down-
conversion, according to the Fresnel and paraxial approximations.

Let us assume that a monochromatic light beam is propagating along the
z direction in an isotropic medium. We can write the kz component as

kz =
√

k2 − q2 ≈ k

(

1− q2

2k2

)

. (38)

The above approximation, known as the Fresnel approximation, is obtained
by simple Taylor expansion and is valid when q2 ≪ k2.

The Fresnel approximation is essentially a particular application of the
more general paraxial approximation. In geometric optics, where light is rep-
resented by rays, paraxial rays are those that lie at small angles to the optical
axis of the optical system under consideration. If we were to draw rays from
the origin to points k in k-space satisfying the approximation in expression

18



(38), they would be paraxial rays. In this respect the paraxial approxima-
tion and the Fresnel approximation are essentially the same. Throughout
this work we will refer to both as the paraxial approximation. A thorough
account of the paraxial approximation can be found in most classical optics
textbooks [35, 36]. Here we will present only the bare essentials. The parax-
ial approximation can be extended to wave optics if one considers only waves
whose wavefront normals are paraxial rays. In wave optics, an optical wave
E(r, t) satisfies the wave equation:

∇2E(r, t)− 1

c2
∂2

∂t2
E(r, t) = 0. (39)

If one considers that the optical wave is monochromatic with harmonic time
dependence, so that E(r, t) = E(r) exp(−iωt), where ω is the angular fre-
quency, one arrives at the Helmholtz equation:

∇2E(r) + k2E(r) = 0. (40)

If we now consider only paraxial waves propagating near the z axis, we can
write E(r) = U(r) exp(ikz), where U(r) is a slowly varying function of r such
that E(r) maintains a plane wave structure for distances within that of a
wavelength. Using this form of E(r) in the Helmholtz equation, one arrives
at the paraxial Helmholtz equation

(

∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

)

U(r) = 0. (41)

In obtaining (41), we have used the fact that the term ∂2U(r)/∂z2 is very
small within distances of a wavelength: ∂2U(r)/∂z2 ≪ k∂U(r)/∂z. The
paraxial Helmholtz equation admits several well known solutions, including
the Hermite-Gaussian and Laguerre-Gaussian beams. Quantum fields pre-
pared in these modes have been proposed for several applications and will
be discussed in more detail later. It has been shown by several authors that
the paraxial Helmholtz equation is analogous to the Schrödinger equation in
quantum mechanics [37, 38, 39]. In reference [37] an alternative derivation of
equation (41) is provided which requires that the optical wave is only nearly
monochromatic.

3.3. The angular spectrum and its propagation

The quantum theory which accounts for the transverse correlations of
photons makes use of several techniques of Fourier Optics, in particular the
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propagation of the angular spectrum. Fourier Optics [36] provides a useful
method of calculating the propagation of an optical field through a given
optical system. Here we consider a monochromatic scalar field far from its
source, satisfying the Helmholtz equation (40), for which the field amplitude
can be represented [36] as

U(ρ, z) = 1

(2π)2

∫

R2

dq v(q, z) exp [iq · ρ] , (42)

where we assume that the field is propagating along the z direction and have
defined ρ and q as the transverse components of r and k, respectively. The
angular spectrum v(q, z) is the inverse Fourier transform of the electric field:

v(q, z) =

∫

R2

dρ U(ρ, z) exp [−iq · ρ] . (43)

One can also understand the angular spectrum by recognizing equation (42)
as an expansion of U(ρ, z) in terms of plane waves exp(iq · ρ), in which the
angular spectrum v(q, z) acts as a weight function.

As the field propagates, its angular spectrum changes accordingly. Com-
bining Eqs. (41) and (42), it is easy to show that if the angular spectrum of
a field is known at z = 0, it propagates as

v(q, z) = v(q, 0) exp(ikzz). (44)

In order to be useful, kz must be expressed in terms of the transverse com-
ponent q. For isotropic media, this can be done using Eq. (38).

Dealing with anisotropic media, which is the case of the nonlinear crys-
tals used for parametric down-conversion, the expressions for kz in terms of
q can be quite complicated [32]. We will restrict our analysis to uniaxial
media for two reasons: first, in the majority of the work on spatial corre-
lation properties of two-photon states, the photon pairs are generated by
spontaneous parametric down-conversion in uniaxial crystals. Second, the
physics of down-conversion in biaxial crystals, though more involved, to our
knowledge does not contain any essentially new effect. We will consider the
geometry depicted in Fig. 6, where a slab of a uniaxial crystal of thickness
L is cut to have its optic axis making an angle θ with its normal, which is
oriented parallel to the z axis. In this medium, the wave vector surface has
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Figure 6: Non-linear crystal and its optical axis. z axis represents the direction of propa-
gation of light.

two sheets, defined by
q2x + q2y + k2z

n2
o

=
ω2

c2
, (45)

which allows us to immediately write

kz =

√

(

no
ω

c

)2

− |q|2 ≈ no
ω

c
− c

2noω
|q|2, (46)

and
(

cos2 θ

n2
e

+
sin2 θ

n2
o

)

q2x +
q2y
n2
e

+

(

cos2 θ

n2
o

+
sin2 θ

n2
e

)

k2z

+

(

1

n2
e

− 1

n2
o

)

sin(2θ)qx kz =
ω2

c2
, (47)

where no and ne are the ordinary and extraordinary refractive indices, respec-
tively. Eq. (45) applies to plane waves with ordinary polarization (orthogonal
to the optical axis), whereas Eq. (47) applies to plane waves with extraordi-
nary polarization. In the latter case, Eq. (47) can be solved for kz, leading
to

kz = αqx +

√

(

η
ω

c

)2

− β2q2x − γ2q2y

≈ αqx + η
ω

c
− c

2ηω
(β2q2x − γ2q2y), (48)
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where

α =
(n2

o − n2
e) sin θ cos θ

n2
o sin

2 θ + n2
e cos

2 θ
, (49)

β =
none

n2
o sin

2 θ + n2
e cos

2 θ
, (50)

γ =
no

√

n2
o sin

2 θ + n2
e cos

2 θ
, (51)

η =
none

√

n2
o sin

2 θ + n2
e cos

2 θ
. (52)

The term α is responsible for the so-called walk-off. The terms β and γ are
close to 1 and cause a slight astigmatism in the beams propagating through
the uniaxial medium. Their effect is marginal, and both β2 and γ2 can be
approximated by 1. Therefore, for extraordinary polarization,

kz ≈ η
ω

c
+ αqx −

c

2ηω
|q|2. (53)

3.4. Quantum state of photon pairs: spatial degrees of freedom

The spatial properties of the two-photon state depend strongly on the
birefringence of the non-linear crystal and type of phase matching [40, 41,
42, 43, 44]. Let us consider first the case of type I phase matching, where
the pump field has extraordinary polarization and the down-converted fields
have ordinary polarization (e→ oo). In this case,

kpz ≈ ηp
ωp

c
− αpqpx −

c

2ηpωp

|qs + qi|2, (54)

ksz ≈ ns
ωs

c
− c

2nsωs
|qs|2, (55)

kiz ≈ ni
ωi

c
− c

2niωi
|qi|2, (56)

where nj (j = s, i) stands for the ordinary refractive index.
Using Eqs. (54)-(56) in Eq. (20) and considering a monochromatic pump

beam, we arrive at the two-photon detection amplitude for type I phase
matching:

Φoo(qs,qi) ≈ Coo Gs(ωs)Gi(ωi) v(qs + qi)δ(ωs + ωi − ωp)

× sinc

[

µoo + lt(qsx + qix) +
L

4K

∣

∣

∣

∣

qs

rs
− qi

ri

∣

∣

∣

∣

2
]

× exp[−ilt(qsx + qix)], (57)
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where K = ηpωp/c is the pump beam wave number inside the crystal,

rs =
√

ωs/ωi, ri =
√

ωi/ωs, µoo = (n̄ − ηp)KL/2ηp, and lt = αpL/2 is
the transverse walk-off length[45, 43]. The ordinary refractive index n̄ is cal-
culated at the frequency ωp/2. In collinear phase matching, µoo = 0. Eq.
(57) is accurate up to first order in (ωs − ωi)/2ωp.

For each particular set of frequencies ωs, ωi, the function Φoo(qs,qi) can
be regarded as the normalized angular spectrum of the two-photon field. Note
that the angular spectrum of the pump beam is present in Φoo, meaning that
it is transferred to the fourth-order spatial correlation properties of the two-
photon state [16]. The amplitude Φoo is not a separable function of qs, and
qi, that is to say, Φoo 6= Fs(qs)Fi(qi). This non-separability is responsible for
many of the nonlocal and non-classical effects observed with the state (60).

For simplicity, let us assume that the crystal is thin enough to allow
us to ignore the effects of birefringence. If narrow-band interference filters
selecting ωs = ωi = ωp/2 are used, the two-photon state generated by SPDC
in quasi-collinear phase matching (µoo ≈ 0) can be written in a very simple
form as [16, 46]

|ψ〉
SPDC

= Cv |vac〉+ C2 |ψ〉I , (58)

where

|ψ〉
I
=

∫∫

dqsdqi v(qs + qi)γ(qs − qi) |qs, eo〉 |qi, eo〉 , (59)

γ(q) =
√

2L/π2Ksinc(Lq2/4K), and
∣

∣qj, eo
〉

represent Fock states in plane
wave modes labeled by the transverse component qj of the wave vector kj ,
and ordinary polarization vector eo. If the nonlinear crystal is sufficiently
thin, so that the width of the sinc function in Eq. (57) can be much greater
than the width of the pump beam angular spectrum, the sinc function can
then be approximated by unity. This is known as the thin crystal approxi-
mation. The quantum state (59) simplifies to

|ψ〉tc =
∫∫

D

dqsdqi v(qs + qi) |qs, eo〉 |qi, eo〉 , (60)

D is a domain in the q space within which the thin-crystal approximation
is valid, meaning that the two-photon angular spectrum Φoo(qs,qi) mimics
the pump beam angular spectrum v(q) in the sum of transverse wave vectors
qs+qi. Since all the information about a monochromatic beam is contained
in its angular spectrum, the transverse and longitudinal spatial properties
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of the pump beam are transferred to the two-photon field, in this context,
defining a correlation beam.

In the general case, however, when the crystal length is not negligible,
the sinc function in Eq. (57) has to be considered in detail. Due to the
presence of the linear term lt(qsx + qix), that function is, in general, much
narrower in the x direction than it is in the y direction. This fact causes
the two-photon coincidence detection amplitude to not emulate the pump
beam angular spectrum completely[47, 44]. For example, in the collinear
(µoe = µeo = 0) degenerate monochromatic (ωs = ωi = ωp/2) case, when the
detectors are scanned in the same direction in the q space (qs = qi = q),
the amplitude Φoo is proportional to

v(2q) sinc (2ltqx) exp(−2iltqx). (61)

It is clear that the angular spectrum will be clipped by the sinc function and
subjected to transverse walk-off.

In type II phase matching, one of the down-converted fields has ordinary
polarization and the other one has extraordinary polarization (e → oe). In
this case, one has two amplitudes:

Φoe ≈ Coe Gs(ωs)Gi(ωi) v(qs + qi)δ(ωs + ωi − ωp)

× sinc

(

µoe + ltqsx + l′tqix +
L

4K

∣

∣

∣

∣

qs

rs
− qi

ri

∣

∣

∣

∣

2
)

× exp[−i(µoe + ltqsx + l′tqix)], (62)

and

Φeo ≈ Ceo Gs(ωs)Gi(ωi) v(qs + qi)δ(ωs + ωi − ωp)

× sinc

(

µeo + l′tqsx + ltqix +
L

4K

∣

∣

∣

∣

qs

rs
− qi

ri

∣

∣

∣

∣

2
)

× exp[−i(µeo + l′tqsx + ltqix)], (63)

where

µoe =

[

n̄ + η̄

2
− ηp +

ωs − ωi

2ωp
(n̄− η̄)

]

KL

2ηp
, (64)

µeo =

[

n̄ + η̄

2
− ηp −

ωs − ωi

2ωp
(n̄− η̄)

]

KL

2ηp
, (65)
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lt = αpL/2, and l′t = (2αp − ᾱ)L/4 ≈ lt/2. The walk-off parameter ᾱ and
the refractive indices n̄ (ordinary) and η̄ (extraordinary) are calculated at the
frequency ω̄ = ωp/2. Note the linear dependence of µoe and µeo on ωs − ωi.
For the crossed cone configuration[48], the state generated by type II SPDC
is, according to Eq. (63),

|ψ〉
SPDC

≈ Cv |vac〉+ C2 |ψ〉II , (66)

where

|ψ〉
II

≈
∫

dωs

∫

dωi

∫

dqs

∫

dqi (Φoe |qs, ωs, eo〉 |qi, ωi, ee〉
+Φeo |qs, ωs, ee〉 |qi, ωi, eo〉). (67)

Again, if the crystal is thin enough and narrow-band filters are used, the
state |ψ〉

II
in collinear frequency-degenerate phase matching reduces to

|ψ〉
II
≈
∫∫

D

dqsdqi v(qs + qi)(|qs, eo〉 |qi, ee〉+ |qs, ee〉 |qi, eo〉). (68)

Eqs. (62) and (63) predict different transverse and longitudinal walk-off
for ordinary and extraordinary down-converted photons. In type II phase
matching, these effects can be considerable, and may decrease the quality of
the entanglement between the photons.

3.5. Coincidence detection probability and probability amplitude

The coincidence count rate is proportional to the fourth-order correlation
function

C(ρs,ρi) = 〈ψ|E(−)(ρs)E
(−)(ρi)E

(+)(ρs)E
(+)(ρi) |ψ〉 , (69)

where E is the electric field operator and ρs and ρi are the transverse coor-
dinates on the signal and idler detection planes respectively. Since |ψ〉 is a
two-photon state, the correlation function (74) can be put in the form [41]

C(ρs,ρi) = |Ψ(ρs,ρi)|2, (70)

where C(ρs,ρi) can be interpreted as the two-photon detection probability
and

Ψ(ρs,ρi) = 〈vac|E(+)(ρs)E
(+)(ρi) |ψ〉 , (71)
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Figure 7: Illustration of an experiment to show the transfer of the angular spectrum from
the pump beam to the spatial correlations of down converted photons [16].

as the two-photon detection amplitude. Eq. (71) can be viewed as the two-
photon, or bi-photon wavefunction. The electric field operator is given by

E(+)(ρ) = C

∫

dq a(q) exp [i(q.ρ+
√

k2 − q2z)], (72)

where C is a constant and z is the propagation distance.

3.6. The role of the spatial properties of the pump field

The quantum states derived in section 3.4 show a dependence on the
angular spectrum of the pump beam. This dependence indicates that the
photon pairs can be prepared in a variety of quantum states through the
manipulation of the pump beam. This preparation has measurable effects
in the coincidence counting rate [16, 49]. In order to illustrate this idea, we
will describe one experiment in which the spatial shape of the coincidence
distribution in the detection plane was prepared through manipulation of the
pump beam [16].

The set-up is shown in Fig.7. The pump laser passes through a mask and
a lens, before pumping the non-linear crystal. The mask has an aperture with
the shape of the letter “C”. The lens is used to form the image of the mask
in a plane situated after the crystal. The down-converted beams are detected
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on the plane where the image of the mask is formed. In this condition, it is
possible to recover the shape of the image “C”, in the transverse coincidence
distribution. In order to image the coincidence distribution, the idler (or
signal) detector is kept fixed, while the signal (or the idler) detector is scanned
in two dimensions on the detection plane. A typical result is displayed in the
inset in Fig. 7. The angular spectrum of the pump laser is transferred to the
correlations between signal and idler photons, while the local intensities of
each photon field are not affected [16].

The coincidence count rate can be calculated using the state given in Eq.
(60) together with several approximations simplifying the function Φ(qs,qi)
given by Eq. (57). Assuming the thin crystal approximation, the SPDC
state can be described by

|ψ〉 = C2

∫∫

D

dqsdqi v(qs + qi) |qs, σs〉s |qi, σi〉i , (73)

where C2 is a constant. We neglect |vac〉 in Eq. (73), since it does not
contribute to coincidence counts.

Using Eqs. (73), (69) and (72), the coincidence rate can be calculated:

C(ρs,ρi) = |C2|2
∣

∣

∣

∣

∫

dρW(ρ) exp

(

−i K
2Z0

|R− ρ|2
)∣

∣

∣

∣

2

= |C2|2 |W(R;Z0)|2 , (74)

where W(R;Z0) is the transverse spatial profile of the pump beam propa-
gated to Z = Z0, and

1

Z0

=
ωs

ωp

1

zs
+
ωi

ωp

1

zi
, (75)

R =
ωs

ωp

Z0

zs
ρs +

ωi

ωp

Z0

zi
ρs,

where zs and zi are distances between the crystal and signal and idler detec-
tion planes, respectively.

Eq. (74) shows that the coincidence distribution depends on the Fres-
nel propagator of the transverse profile of the pump field. This structure
coincides with the image prepared in the pump, depending on the relation-
ship between the wavelengths of the three fields and the free propagation
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distances. This allows the engineering of spatial correlations by manipulat-
ing the pump laser beam. Another important aspect is that the coincidence
distribution depends on the sum of the signal and idler detector coordinates,
and not either detector position alone, which is a signature of the spatial
entanglement between the down-converted photons.

4. Double slit experiments with twin photons

Spatial properties of twin photons were experimentally investigated al-
ready at the time of the first experimental observation of parametric down-
conversion by Burnham and Weinberg [1]. They observed that the inten-
sity correlations were stronger for certain combinations of detection angles.
A more comprehensive study of these far field correlations were made by
Grayson and Barbosa [10]. Experiments exploring interference at a double
slit experiment using twin photons and coincidence counting came in 1994
[13] and 1995 [14] and was further investigated in later work [50, 34, 19, 17,
51, 52, 53, 18, 54, 55]. In this section, we review some of the key experiments
exploring aspects of interference of photon pairs using a double slit.

4.1. Nonlocal dependence of spatial coherence

There are several possible ways to send one or two photons through a
Young’s double slit. Historically, the first choice is to send one of the photons–
say the signal photon–through the double slit aperture, and let the idler
propagate freely to the detection plane [13], as illustrated in Fig. 8. The
two-photon coincidence distribution can be obtained in the same way as in
Section 3.6. In order to take into account the presence of the slits in the
signal beam, we include the diffraction integral in the electric field operator
[46]:

E(+)(ρ) =

∫

dq dq′ a(q′)T (q− q′) exp

{

i

[

q · ρ− q2

2k
Z − q′2

2k
zA

]}

, (76)

where T (q) is the Fourier transform of the double slit aperture A(ρ), zA is
the longitudinal coordinate of the slits, and Z = z− zA. Using this operator
and the quantum state (73) in Eq. (71), we arrive at:
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Figure 8: Double slit experiment with twin photons. In Ref. [13], the signal detector Ds

was scanned to observe interference fringes.

where W(ρ, zA) is the transverse profile of the pump beam propagated to
z = zA and we have assumed that ks = ki = K/2 and zs = zi ≡ z. Assuming
that the distance Z is such that the Fraunhofer approximation is valid, the
detection probability is

C(ρs,ρi) ∝
∣

∣

∣

∣

v

(

k

Z
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)

T
(
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Z
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∣

2

. (78)

Approximating the aperture function by A(ρs) = δ(xs + d) + δ(xs − d) gives
T (q) ∝ cos(qxd). In this case the detection probability is

C(ρs,ρi) ∝
∣
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∣
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)∣
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2
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[
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2Z
(xs − xi)

]

. (79)

From Eq. (79) we see that the typical oscillations of a double slit interference
pattern is found, as a function of the difference between the transverse coordi-
nates of the signal and idler detectors. In Ref. [13], the coincidence patterns
were obtained by scanning the signal detector Ds after the slits. A quali-
tative comparison between the intensity fringes and the coincidence fringes
observed as a function of the width of the idler detector aperture is shown
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Figure 9: Qualitative comparison between intensity (single-photon) and coincidence fringes
obtained by scanning the signal detector DS as a function of the aperture of the idler
detector Di.

in Fig. 9. These results show that the visibility of the coincidence fringes
depends on the diameter of the idler detector, while the visibility of the in-
tensity (single-photon) fringes depends only on the source properties. The
visibility is high for a narrow aperture and low for a large aperture, implying
a nonlocal dependence of the spatial coherence. The detection probability in
this case is obtained from Eq. (79) by integrating over the size of the idler
detector

CD(ρs,ρi) ∝
∫

dρiD(ρi − σ)

∣

∣
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)∣
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kd

2Z
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kd

2Z
xi

)

, (80)

where D(ρi) is the function describing the idler detector centered at po-
sition σ in the detection plane. For a very narrow detection aperture,
D(ρi) ∼ δ(ρi−σ), and CD(ρs,ρi) ∝ cos2[kd/2Z(xs−σx)], resulting in max-
imum visibility. In other words, the post-selection by the narrow aperture in
the idler mode projects the signal beam in a state with a narrower angular
bandwidth. For a very broad detector, so that the width of D is much larger
than the width of the angular spectrum v, we can approximate D ∼ 1. In
this case Eq. (80) gives a convolution, which washes out the oscillations of
the cosine function, giving low visibility. A simple way of relating the idler
detector diameter and the visibility of the coincidence fringes, following the
lines of the classical van Cittert-Zernike theorem, was developed in Ref. [56].
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Figure 10: Double slit experiment used to observe ghost interference fringes.

4.2. Ghost interference

Another possibility in terms of double slit experiments using twin pho-
tons and coincidence detection is the scanning of the idler detector instead
of the signal detector [14], as shown in Fig. 10. The coincidence distribution
displays interference fringes, while the intensity distribution of the idler field
would never present interference fringes, since the double slit aperture is in
the other beam. These fringes can be understood in terms of Eq. (79), which
shows that the parameters of the coincidence interference pattern depend on
the difference between the signal and idler detectors coordinates. Thus, by
fixing the signal detector, and scanning the idler, the interference fringes ap-
pear as a function of the position of the idler detector, even though the idler
photon never passes through the double slit aperture. This type of exper-
iment was named “ghost” interference, in reference to the “spooky” action
at a distance attributed by Einstein to the non-local nature of entangled
particles.

4.2.1. The Advanced Wave Picture

A method that aids in the understanding and design of experiments ex-
ploring the spatial correlations between twin photons was introduced by A.
V. Belinski and D. N. Klyshko [57]. This method, known as the “Advanced
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Figure 11: Advanced wave picture.

Wave Picture” (AWP), consists of associating the coincidence detection and
post selection to a temporal inversion of the propagation of one of the beams.
In the case of the experiment of Fig.10, the AWP considers the system as if
the fixed detector (signal) behind the slits was an incoherent light source and
the scanning detector (idler) was registering the resulting intensity. The crys-
tal plays the role of a mirror, as shown in Fig. 11. The coincidence pattern
obtained when the idler detector is scanned will be equal to the hypothetical
intensity pattern obtained according to the AWP scheme described above.
The AWP works independently of the optical components placed in the sig-
nal and idler beams. It is important to notice that the crystal is treated as a
mirror and the kind of mirror depends on the shape of the pump beam. This
dependency was discussed in section 3.6. For example, in Ref. [49] it was
shown that the curvature of the “mirror” is directly related to the curvature
of the pump beam.

4.3. The de Broglie wavelength of a two-photon wave packet

Interesting possibilities arise when one sends both photons through the
double slit aperture. Using the spatial correlations between the twin photons,
it is possible to perform a double slit experiment in which the two photons
always pass through the same slit [17]. In this way, the interference for a
wave packet containing two photons can be observed. The signature of the
two-photon interference is the spatial frequency of the fringes, which is twice
the frequency of the fringes that arise in single photon interference. The
spatial frequency is directly related to the de Broglie wavelength λdb = λ/N
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Figure 12: Experimental setup for two-photon interference at a double slit. The resulting
interference pattern has oscillations corresponding to the spatial frequency of a two-photon
wave packet.

of the N -photon wave packet [58]. An experiment which observed the de
Broglie wavelength of a two-photon wave packet was reported in Ref. [17],
and is sketched in Fig. 12. A twin photon pair is produced in collinear SPDC.
The beam containing the down-converted photons is sent through a double
slit aperture with slit separation of 2d, after which the photons are split on
a 50/50 beam splitter and detected in coincidence. In order to control the
spatial correlations between the pair of photons in the plane of the slits, the
pump beam is sent through a wire and a lens, placed before the crystal. The
angular spectrum of the pump is produced so that the image of the wire is
projected onto the double slit plane. The pump beam is blocked after the
crystal, and does not actually pass through the slits. However the image of
the wire is transferred to the correlations between the twin photons, such that
there is a relative spatial separation 2d between the photons. Therefore, if
one photon passes through one of the slits, the probability of finding its twin
in the other slit is practically zero. Then, almost all photon pairs that pass
through the slits must have passed through the same slit. The detection of the
coincidence distribution is performed by scanning both detectors together,
in order to mimic a two photon detector. Again, we can use the two-photon
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Figure 13: Typical experimental results for two-photon interference at a double slit. The
plots on the left show the profile of the pump beam at the double slit. The plots on the
right show the two-photon interference pattern. In the lower pattern, the spatial frequency
is doubled.

state (73) and detection operator (76) for both the signal and idler fields to
calculate the coincidence count distribution. We obtain [17]:

C(x) ∝ |Bd(x)|2 + 4|B0(x)|2 + |B−d(x)|2 + (81)

4Bd(x)B0(x) cos
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zA
+
kx2d2

z1

)

+

4B0(x)B−d(x) cos
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− kx2d2

z1

)

+

2Bd(x)B−d(x) cos

(

2kx2d2

z1

)

,

where x is the position of the detectors, Bd, B0 and B−d are envelope func-
tions which depend on the spatial amplitude distribution of the pump beam
and the dimensions of the double slit aperture, zA is the distance from the
crystal to the double slit and z1 is the distance from the slits to the detec-
tors. In particular, Bj is proportional to the square root of the transverse
profile of the pump beam at position x = j. We can see in Eq. (82) that two
oscillating terms depend on kx and one term depends upon 2kx, which is the
two-photon interference term. Therefore, if B0(x) = 0, then only the two-
photon interference terms will survive. This condition is achieved through
the preparation of the pump profile, using the wire and the lens to obtain a
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zero intensity profile at x = 0. Then the coincidence rate will be given by:

C(x) ∝ |Bd(x)|2 + |B−d(x)|2 + 2Bd(x)B−d(x) cos

(

2kx2d2

z1

)

. (82)

Fig. 13 shows a computer simulation of typical experimental results, similar
to those obtained in Ref. [17]. The type of two-photon interference fringes
depends strongly upon the transverse profile of the pump beam at the double
slit aperture [52]. When the pump beam is a broad Gaussian distribution, the
interference pattern depends only on the wavelength and not on the number
of photons [59], and an interference pattern, shown in the upper right-side
of Fig. 13, is obtained. However, if one manipulates the pump beam so that
the photons always pass through the same slit, the spatial frequency of the
interference pattern changes to twice the original frequency, as illustrated in
Fig. 13b. Additional experiments reporting the observation of the de Broglie
wavelength of two or more photons have been reported [60, 61, 62, 63, 64, 65].
The increase in spatial frequency in these experiments is equivalent to an
increase in resolution, which may lead to interesting applications in optical
lithography.

4.3.1. Quantum Lithography

We can conclude from the experiment discussed in section 4.3, that there
are instances in which electromagnetic radiation with a given wavelength
behaves as if it had a smaller wavelength, depending on the photon number.
This idea has motivated the proposition of applications such as lithography
processes with increased resolution. It was called quantum lithography [66,
67, 68, 69] and is based on the possibility of creating two-photon wavepackets
[17]. In brief, using entangled pairs of photons and coincidence techniques,
it is possible to obtain two-photon wavepackets which interfere and diffract
in the same fashion as light with twice its wavelength. In principle, this idea
can be extended to N -photon wavepackets and in this case the increase in
the resolution increases with N .

The term quantum lithography comes from the fact that the concept of
photon is required to distinguish the behavior of one photon wavepackets and
N photon wavepackets. However, there are propositions for the implementa-
tion of quantum lithography using classical light sources [70, 71, 72, 73, 74].
In this case it is the interaction between the light and some material which
would only absorb N -photon wavepackets, and not J-photon wavepackets
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Figure 14: Experimental set-up for the non-local double slit.

(J 6= N). Detection of only N -photon wavepackets projects the field onto
the N -photon component.

Optical lithography is a process used to fabricate integrated circuits. It
consists in the removal of a thin film from a substrate through the expo-
sure to light. This results in drawings of very small circuits and electronic
components. The future of integrated circuits in large scale depends on the
possibility of reducing the size of these drawings. A limitation is given by
the diffraction limit of the light used in the process, which depends upon the
wavelength. Quantum lithography would allow one to obtain, for instance,
the optical resolution of a UV beam, using near infra-red light. The main
challenge towards quantum lithography seems to be finding proper materials
which selectively absorb only N -photon wavepackets [75].

An experiment demonstrating this idea, similar to the one described in
section 4.3, was later reported in Ref. [69].

4.4. Non-local double slit

Another possibility in terms of variations of a double slit experiment us-
ing twin photons and coincidence detection is a non-local double slit [51],
illustrated in Fig. 14. In this experiment double-slit interference is observed,
even though neither photon passes through a double-slit aperture. The non-
local double slit is built from a single slit placed in the signal beam and a
thin wire placed in the idler beam. The combined effect of these two com-
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ponents results in double-slit type coincidence fringes. In order to calculate
the coincidence count distribution, we can again use the two photon state
given by Eq. (73) and the electric field operator given by Eq. (76), where
the transfer function T = T1 for the signal field corresponds to a single slit
and the transfer function T = T2 for the idler corresponds to a thin wire.
In order to observe the coincidence fringes for the non local double slit, it
is necessary to focus the pump beam on the zA plane. This allows one to
approximate the pump beam amplitude transverse distribution by a delta
function. The resulting coincidence count distribution is given by [51]:
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∣

∣
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(83)
where A1 and A2 are the transmission functions of the single slit and the
thin wire respectively, zA is the longitudinal coordinate of the single slit and
thin wire, considered to be at equal distances from the crystal (z = 0), and
zD is the position of the detection plane for both signal and idler detectors.
The integral above is a Fresnel integral and the argument is given by the
product of the functions A1 and A2 which results in the transmission function
of a usual double slit aperture. Another characteristic which is present in
this result, as well as many other SPDC experiments, is the dependence
on the difference between the detector coordinates appearing in the Fresnel
propagator in Eq. 83.

4.5. The double-slit quantum eraser

A double slit experiment with twin photons can be used to implement a
quantum eraser [76, 77], which shows the complementarity between wave-like
and particle-like behavior. Exploiting the polarization correlation between
down-converted photons, the idler photon can be used to herald either inter-
ference fringes (wave-like) in the signal field or to determine which slit the
signal photon passed through (particle-like). Furthermore, one can delay the
decision about erasing this information or not.

Typically, if one cannot determine through which slit a photon passes,
then interference fringes will be observed in the intensity distribution after the
double slit aperture. However, if one can mark the photon’s path, so that the
two paths are in principle distinguishable, then no interference fringes appear.
It was previously argued that the disappearance of interference fringes was
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Figure 15: The double slit quantum eraser for one photon. λ/4 represents a quarter wave
plate.

due to the perturbation caused by the which-slit marker [78]. However,
Scully, Englert and Walther showed that the interference fringes can reappear
if one erases the which-slit information in the marker [77]. Hence the name
quantum erasure. Let us begin by describing a simple double-slit quantum
eraser with single photons. Let us suppose that a source emits single photons
which propagate to a double slit. If interference fringes are visible on the
detection screen after many photons have emitted, then one cannot determine
through which slit each photon has passed. The state of the photons after
the slits can be given by:

|ψ〉1photon =
1√
2
[|ψ1〉+ |ψ2〉], (84)

where ψ1 and ψ2 represent the passage through slit 1 and 2 respectively. In
order to mark the path of each photon, let us place quarter wave-plates in
front of each slit, so that if the horizontally polarized photon crosses one
of the slits, it leaves circularly polarized to the right and if it crosses the
other it leaves circularly polarized to the left, as in Fig.15a. Then, a mea-
surement of the photon polarization is enough to determine through which
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slit it has passed. This causes the interference pattern to disappear, even if
the polarization is not measured. Even the possibility of obtaining which-
path information is enough to destroy the interference, since the presence of
the wave plates in each slit entangles states ψ1 and ψ2 with the polarization
degree of freedom, so that the state becomes:

|ψ〉1photon =
1√
2
[||R〉|ψ1〉+ |L〉|ψ2〉], (85)

where |R〉 and |L〉 are right and left circular polarization states respectively.
The which-path information is available due to the entanglement between
the state describing the passage through each slit and the output polariza-
tion state. It can be erased by projecting the two orthogonal polarization
states |R〉 and |L〉 onto a–say–linear polarization state, |H〉(horizontal) or
|V 〉(vertical) for instance, as in Fig. 15b. Therefore, after the polarizer, the
which-path information is no longer available, and the interference fringes
are recovered.

Using pairs of photons allows for a delayed choice quantum eraser, as
reported in Refs. [53, 54, 79]. A sketch of an experiment is shown in Fig. 16.
A pair of photons is prepared in a polarization-entangled state:

|ψ〉QE =
1√
2
[|H〉i|V 〉s + |V 〉i|H〉s]. (86)

The signal photon is sent through the double slit aperture and quarter-wave
plates. The state of the photons after passage through the slits is given by:

|ψ〉QE =
1

2
[|H〉i(|L〉s|ψ1〉+ |R〉s|ψ2〉) + i|V 〉i(|R〉s|ψ1〉+ |L〉s|ψ2〉)]. (87)

The polarization entanglement allows the idler photon to be used as a which-
path marker or eraser. If it is projected onto polarization H or V the signal
photon will be projected onto state |L〉s|ψ1〉+ |R〉s|ψ2〉 or |R〉s|ψ1〉+ |L〉s|ψ2〉
respectively. Therefore, no interference is observed. However, if one projects
the idler photon onto |+〉(+45 degrees) or |−〉(-45 degrees) linear polariza-
tions, the which-path information is erased and the interference fringes re-
turn, as illustrated in Fig. 17. In order to see this, we write the state (87)
in the +/− basis:

|ψ〉QE =
1√
2
[|+〉i|+〉s(|ψ1〉 − i|ψ2〉) + i|−〉i|−〉s(|ψ1〉+ i|ψ2〉)]. (88)
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Figure 16: The delayed choice double slit quantum eraser. Quarter wave-plates are used
to mark the path of the signal photon. Which-path information can be recovered or erased
by projecting the idler photon onto the appropriate polarization state.

We see in Eq. (88) that projections of the idler photon onto |+〉i or |−〉i
projects the signal photon onto a superposition of |ψ1〉 and |ψ2〉 states, which
gives interference fringes. This quantum eraser allows for “delayed choice”,
meaning that the decision about the measurement of the idler photon can be
delayed until the signal has already been detected.

5. Quantum imaging

In sections 3.6 and 4.3 we discussed experiments in which the image or in-
terference pattern of an object appears in the two-photon coincidence counts.
These types of experiments have led to the idea of “quantum imaging”, which
in some cases may present advantages over classical imaging techniques, such
as increased spatial resolution [80, 81, 82, 83], as discussed in section 4.3. The
term quantum images generally refers to images that appear in two-photon
coincidence distributions. They are called quantum, because they were first
produced with the quantum-correlated twin photons produced in parametric
down-conversion. However, it is also possible to produce correlated images
with classically correlated light sources. In this section we will discuss quan-
tum and classically correlated images and some proposed applications.
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Figure 17: The delayed choice double slit quantum eraser. Each polarization projection
of the idler photon corresponds to a state preparation of the signal photon. Projections
onto vertical and horizontal polarizations results in which-path information. Projections
onto diagonal polarizations results in erasure of which-path information and interference.

5.1. Quantum images

The image of a double-slit aperture can be understood in terms of the
diffraction theory of classical optics as the near-field distribution of the double
slit, whereas the interference pattern is related to the far-field distribution.
The amplitude distributions of the electric field in these two cases are related
by a Fourier transform. This is also true for the correlated images and in-
terference patterns which may appear in coincidence distributions. However,
the propagation and detection of both signal and idler fields may influence
the resulting spatial distribution.

In order to introduce the idea of a quantum image, let us consider the
experiment reported by Pittman et al.[15] and illustrated in Fig.18. Para-
metric down-conversion is produced as usual. An aperture mask is placed
in the signal beam close to the detector and a lens also placed in the signal
beam. Coincidence detection is performed such that the signal detector is
a fixed large-aperture bucket detector, while the idler detector is scanned in
the transverse plane. A 3-D plot of the coincidence counts as a function
of the transverse coordinates x and y reproduces the image of the aperture
ABC. See the inset in the upper part of Fig. 18. The lens in the signal
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Figure 18: Observation of a quantum image, similar to the experiment of Pittman et al.
[15]. The image of the ABC mask appears in the coincidence counts when the detector
D1 is scanned.

beam is placed according to the advanced wave picture (see subsection 4.2
for details). The imaging condition given by the thin lens formula 1

f
= 1

i
+ 1

o

is applied, where f is the focal length, o is the distance between the lens and
the aperture mask (the image plane) and i is the distance between the lens
and the crystal plus the distance between the crystal and the idler detector.
According to the advanced wave picture, the crystal plays the role of a mirror
in the imaging process.

There are some particular aspects which distinguish this image pattern
from ordinary intensity images. One feature is that the image is observed in
coincidence as a function of the position of the idler detector, even though
the idler did not pass through the aperture mask. The image does not appear
in the intensity distribution of the idler alone, but only when it is counted in
coincidence with a detection of the signal photon. The intensity distribution
depends only on the source shape as usual, as illustrated in the inset in
the lower part of Fig. 18. Another aspect is that the dimensions and the
resolution of the quantum image depend on the pump beam wavelength and
spatial properties.

Initially, it was widely believed that the quantum correlation of the down-
converted photons was necessary to observe quantum images [84]. Thus, it
was quite surprising when similar types of correlated images were produced
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Figure 19: Observation of a classically correlated image using a laser pulse as reported in
Ref. [85].

with classical sources. This is the subject of the next section.

5.2. Classical two-photon images

A great deal of discussion was triggered by the work of Bennink et al.
[85, 86], in which it was demonstrated that it is possible to obtain correlated
images using classical light, in the same fashion as it is done with entangled
photons. Bennink et al.’s experiment is sketched in Fig.19. A laser pulse is
sent to a mirror and then to a 50-50 beam splitter. The transmitted beam
propagates through an aperture mask and is detected. Let us call this the
signal beam. The idler beam is reflected at the beam splitter and sent directly
to a CCD camera, which records the spatial intensity distribution. It is not
necessary to use a pulsed laser, the pulse-like scheme can be obtained for
instance with a chopper in a c.w. laser. However, it is important to have
pulses, so that there will be a temporal correlation between signal and idler
pulses.

The angle of the mirror before the beam splitter is randomly modulated
in both axial and azimuthal directions. This artificially broadens the angular
spectrum of the light sent to the beam splitter, and the temporal correlation
results in an angular correlation between the signal and idler beams. The sig-
nal detector after the aperture mask is kept fixed, while the idler is detected
with the CCD camera which only records when a trigger pulse is sent by the
signal. The triggered CCD image reproduces the ABC aperture, just as in
the case of correlated photon pairs from SPDC. Almost all ingredients natu-
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Figure 20: Observation of a classically correlated image using a thermal light source.

rally present in the pair of photons produced in parametric down-conversion,
are artificially introduced here: i) temporal correlation and ii) angular corre-
lation. However, since the correlated pulses are produced classically, there is
no entanglement. This experiment demonstrated that it is possible to obtain
a correlated image using classical light, and opened up the discussion about
the role of entanglement in quantum imaging experiments.

The production of correlated images with classical light was extended to
thermal/chaotic light sources [70, 87, 88, 89, 90], supporting the idea that
correlated images were not actually quantum. A typical experimental set-
up for the observation of correlated images with thermal light is shown In
Fig. 20 and is similar to Fig. 19. However, the pulsing to obtain temporal
correlation and spatial modulation to obtain spatial correlation is not neces-
sary anymore. Due to the natural bunching of photons in thermal light, it is
possible to obtain temporal and spatial correlation directly from the thermal
light. This kind of correlation was already observed in the famous exper-
iment by Hanbury Brown and Twiss (HBT)[91]. In the HBT experiment,
sketched in Fig. 21, the light is sent to a beam splitter and intensity corre-
lations are measured. One detector is kept fixed, while the other is scanned
along the detection plane. Results show that the width of the coincidence
distribution is proportional to the spatial coherence of the input field. The
larger the coincidence distribution, the smaller the spatial correlation and
the larger the spatial coherence. For incoherent sources like thermal sources,
the spatial coherence depends only on the source dimensions, as discussed in
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Figure 21: Sketch of the Hanbury Brown and Twiss experiment. C is the intensity corre-
lation. It is proportional to µ12, the normalized spatial degree of coherence.

section 3.1.2. In this way the HBT interferometer was used to measure the
diameter of stars. Correlated imaging with a laser source required a modu-
lation to induce spatial correlations since the spatial correlation is inversely
proportional to the spatial coherence, which in the case of a laser source can
be quite large.

While classical light can also be used to produce correlated images, there
is a price to be paid: the signal to noise ratio is generally higher than for
the output state of a down-converter [87, 92]. Quantum imaging has been
analyzed in the general case of light fields with Gaussian photon statistics
[93, 94], and this formalism has been applied to two-photon imaging [95].

5.3. Phase objects

The discussion about the differences between quantum and classically
correlated images has led to an important test, proposed and realized exper-
imentally by Abouraddy et al.[96]. The authors observed correlated images
using phase objects. Fig. 22 shows a sketch of a typical experimental set-up.
The transmission configuration using an aperture is replaced by a reflection
configuration using a micro electromechanical system (MEMS) micro-mirror.
The spatial amplitude distribution of the reflected beam is not changed, while
the spatial phase distribution is modulated. The signal photon propagates
through this plate and is detected afterwards by a fixed detector D1, outfitted
with a small pinhole. The idler photon propagates directly to detector D2,
which is scanned in the transverse plane. The spatial coincidence distribution
will be determined by the diffraction pattern of the signal beam. A typical
coincidence profile is illustrated in the inset of Fig. 22. This kind of two
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Figure 22: Observation of a quantum image with a pure phase object.

peak profile, is obtained when a double-slit object with phase π separated
by a line of phase 0 is prepared in the MEMS. It was shown in Ref.[97], that
coherent imaging can also be achieved with pseudo-thermal sources. The
observation of quantum images of phase objects is a further demonstration
of the differences between the correlated images with classical and quantum
light.

5.4. Spatial resolution of magnified images: quantum versus classical

It is well know that the spatial resolution of an image increases when the
wavelength of light used for illuminating the object is decreased. On the
other hand, short wavelengths in the UV range or smaller usually damage
an illuminated object. Needless to say, it would be advantageous to achieve
the spatial resolution of short wavelengths while illuminating the object with
a light beam with longer wavelength. Spatially entangled two-photon light
beams generated by SPDC are good candidates for this special light source
because it has two wavelengths associated with the two-photon beams: the
central wavelengths of the individual photons λ and the de Broglie wavelength
associated with the biphoton wavepacket equal to λ/2, as discussed in section
4.3. It was demonstrated experimentally in Ref. [81] that magnified images
of objects illuminated by two-photon wavepackets, as in a microscope [98],
can be generated with spatial resolution better than the diffraction limit and
are self-apodized [99].

For a comparison with a classical imaging experiment suppose an object
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is illuminated by a classical coherent light source. The image is produced
with a lens with a focal length f , separated from the object by a distance
zL. The image plane is located at a distance zD far from the lens. If it is
assumed that the light arriving at the object is a plane wave, the electric
field at the image plane is

E(ρ) =

∫

O(ξ)TL

(

kξ

zL
+
kρ

zD

)

dξ, (89)

where O(ξ) is the transmission function of the object, ρ is the transverse
position in the image plane, k = 2π/λ is the wave vector of the incident
plane wave and TL is the Fourier transform of the magnitude of the lens
transmission function. This last term limits the spatial resolution of the
image due to the finite size of the lens aperture [99].

In the imaging experiment with photon pairs generated by SPDC, the
object information appears in the two-photon probability amplitude at the
image plane. It was shown theoretically in Ref. [80] that the probability
amplitude of simultaneously detecting two down-converted photons in the
image plane of an object illuminated by the signal photon is

Ψ(ρ) =

∫

O(ξ)TF

(

2kξ

zL
+

2kρ

zD

)

dξ, (90)

where it is assumed that zL = zLi = zLs, zD = zDi = zDs. Vector ρ describes
the detection position at both signal and idler detection planes, so that ρi =
−ρs = ρ. This last assumption means that image is measured by displacing
the signal and idler detectors simultaneously in opposite directions. It has
also been assumed that the pump laser beam at the object plane has a
transverse profile which is sufficiently narrow to be described by a Dirac
delta function. TF is the Fourier transform of the function F defined as

F (v) =

∫

|ALi(u+ v)||ALs(u− v)|du, (91)

where |ALs| and |ALi| are the magnitude of the aperture functions of the
lenses placed in signal and idler paths, respectively. F (v) is the correlation
of the lens transmission function magnitudes [80]. In comparing Eqs. (89)
and (90), one notices the presence of the factor 2k in Eq. (90) instead of k as
in Eq. (89). Eq. (90) is equivalent to an image generated by single photons,
however with wavelength equal to the De Broglie wavelength [58, 17] of the
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biphoton λ/2, and thus shows improvement in the spatial resolution. On the
other hand, the function F present in Eq. (90) describes an effective lens
with aperture transmission function that has a magnitude that is equal to
the correlation of the magnitudes of the aperture transmission functions of
the actual lenses, as it can be seen in Eq. (91). The function F describes an
effective apodized lens [99].

The image generated by the parametric down-converted photons is better
resolved than a similar one generated by an infrared classical light source with
the same wavelength, and is resolved better than the diffraction limit in this
case. In spite of this, the quantum image resolution is not as good as the
resolution of the image produced by the pump laser source (λp = λ/2), since
the transmission function of the effective lens seen by the photon pairs is not
equal to the transmission function of the original lenses. Apodization effects
are also observed in the twin photon image without physically apodizing the
lenses used, which could lead to interesting applications.

The spatial resolution of images obtained in quantum fourth-order imag-
ing has also been compared with that obtained in a classical second-order
incoherent imaging method [82]. The intensity at the image plane of an
object illuminated by a classical incoherent light source is [36]:

I(ρ) =

∫

|O(ξ)|2 T℘
(

2kξ

zL
+

2kρ

zD

)

dξ, (92)

where T℘ is the Fourier transform of the function ℘, defined as

℘(u) =

∫

AL(u+ v)AL(u− v)dv, (93)

k = 2π/λ, in which λ is the central wavelength of the incoherent light beam
and AL is the aperture transmission function of the lens. The function ℘(u)
is the auto-correlation function of the aperture function of the lens used for
imaging, and describes the aperture function of an effective lens. Note that
in the two-photon image the effective lens transmission function (91) is not
an auto-correlation function but a cross correlation function of the signal
and idler aperture lens transmission functions. Another difference with re-
spect to the object function is that in the incoherent imaging only the square
modulus of the object function appears in the optical intensity expression,
i.e., this method is not sensible to the object phase. In quantum imaging
the complete object function is present in the coincidence distribution at the
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image plane, i.e., the image carries the information about the object spatial
phase. A situation where the object function has no phase variation was an-
alyzed in Ref. [82], but the two imaging methods still produced completely
different results. The transmission function of the lens pair in the two-photon
imaging was modified such that the cross-correlation function between them
was different from the auto-correlation of one of the lenses. When the object
was illuminated by an incoherent classical light source, the image was not
resolved spatially. On the other hand, an image with very high spatial reso-
lution was measured when the object was illuminated by one down-converted
photon, and both photons were detected in coincidence at the image plane.

6. Spatial correlations: quantum versus classical

In the 1990’s, many novel and interesting features of spatial correlations
were observed experimentally and well described by the quantum theory.
Many of these results suggested that the spatial correlations were indeed
quantum correlations, even though the non-existence of a classical analog
was not discussed in most of these contributions. For example, the non-local
conditionality of two-photon interference fringes [14, 60] was well described
by quantum mechanics. However, there was never any formal proof that
the conditional interference fringes could not be exactly reproduced by some
special classical light source. In Ref. [9], it was shown that the simple detec-
tion of coincidence counts above the accidental coincidence rate is a proof of
non-classical behavior. However, this refers to the temporal correlations and
cannot be directly extended to spatial variables.

Perhaps the first experimental demonstration of the quantum nature of
light via a fourth-order correlation function was photon anti-bunching, first
observed in the time domain by Kimble et al. in 1977 [100]. Demonstration of
the non-classical nature of photon anti-bunching was based on the violation
of a classical inequality. In the same spirit, the anti-bunching of photons
was later demonstrated in the transverse spatial domain in Ref. [18], and
was probably the first formal demonstration of the non-classical behavior
of spatial correlations. In 2004, Howell et al. [21] and D’Angelo et al. [22]
demonstrated that the pairs of down-converted photons are indeed entangled
by experimentally violating classical separability criteria.

In this section we review several of these important results concerning the
non-classical nature of transverse correlations. The observation, detection
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Figure 23: Double-slit interference with two photons.

and quantification of spatial entanglement will be discussed in sections 7 and
8.

6.1. Conditional interference and complementarity in one and two-particle
interference patterns

An interesting idealized two-particle double-slit interference experiment
was discussed by Greenberger, Horne and Zeilinger [101] in 1993. In this
gedanken experiment, two identical double-slits were placed in opposite sides
of a linear source Ω with extension l that always emits two particles with mo-
menta approximately equal and opposite, as sketched in Fig. 23. The angle
between the slits and the source is θ and, due to the momentum correlation,
the particles pass either through the slits A and A′ or B and B′. The arrival
of the particles is registered at two opposite screens after each double-slit.
For the case where the daughter particles are photons and l >> λ/θ, the
probability amplitude for one of the particles to arrive at P and the other to
arrive at P ′ is [101]

Ψ2(xi, xs) ∝ cos [ k θ′(xi − xs)] (94)

where xs and xi are the transverse coordinates, k = 2π/λ, λ is the wavelength
(de Broglie or optical) related to the emitted particles, and θ′ is the angle
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Figure 24: Double-slit interference with two photons and parametric down-conversion.
Focusing the pump beam with a lens induces an anti-correlation (dependence on the sum
of coordinates) and using a a lens plus a wire induces correlation (dependence on the
difference of coordinates).

that is subtended by the hole pairs and the detecting screens. On the other
hand, if l << λ/θ, the probability amplitude is

Ψ2(xi, xs) ∝ cos( k θ′ xi)× cos( k θ′ xs). (95)

Expression (94) shows that the coincidence interference pattern detected
when l >> λ/θ presents “conditional fringes”. If the interference pattern
is recorded by two movable detectors Di and Ds, the term “Conditionality”
means that the position of the interference fringes will vary depending on
the position of both detectors. Suppose the interference pattern is recorded
by keeping one of the detectors (Di, for example) fixed at some position x
while Ds is scanned. For two different positions x, two displaced interference
pattern will be recorded. Expression (95) shows that for l << λ/θ a product
of independent single-particle interference patterns (“independent fringes”)
is measured and conditional fringes are not detected. This condition is the
requirement to detect the usual Young single-particle interference pattern.

This idealized experiment was tested experimentally in reference [52] us-
ing photons obtained from SPDC. The experiment is illustrated in Fig. 24.
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Two-photon interference experiments with spatial interference patterns were
also observed in [7, 102, 14, 56, 103, 17] but as discussed above [101] the
detection of a fourth-order interference pattern does not guarantee the pres-
ence of conditional fringes. Using the quantum multimode theory presented
in section 3 to calculate the fourth-order correlation function as a function
of the detector positions, the number of coincident photons at positions xi
and xs is [52]:

Nc(xi, xs) ∝ A(xi, xs) + 2B1(xi, xs)B2(xi, xs) cos

(

k d2

zA
+
k xi 2 d

z1

)

+

+2B1(xi, xs)B3(xi, xs) cos

(

k d2

zA
+
k xs 2 d

z1

)

+

+2B2(xi, xs)B4(xi, xs) cos

(

k d2

zA
− k xs 2 d

z1

)

+

+2B3(xi, xs)B4(xi, xs) cos

(

k d2

zA
− k xi 2 d

z1

)

+

+2B2(xi, xs)B3(xi, xs) cos

[

2 d k (xi − xs)

z1

]

+

+2B1(xi, xs)B4(xi, xs) cos

[

2 d k (xi + xs)

z1

]

(96)

with

A(xi, xs) = |B1(xi, xs) |2 + |B2(xi, xs) |2 + |B3(xi, xs) |2 + |B4(xi, xs) |2.(97)

Here 2d is the separation of the double-slits, 2a is the width of each slit. The
first four cross terms in (97) give independent fringes that depend only on xs
or xi, while the last two terms give conditional fringes which depend upon
xs ± xi. The interesting fact that appears from this calculation is that the
diffraction terms Bj(xi, xs), j = 1, 2, 3, 4, are proportional to the transverse
profile of the pump laser at different transverse positions in the plane of
the double slit aperture: Bj(xi, xs) ∝ W(0, zA) with j = 2, 3, B1(xi, xs) ∝
W(d, zA) and B4(xi, xs) ∝ W(−d, zA). Generating the photon pairs using
pump beams with different transverse profiles at the double-slit plane, the
authors in Ref. [52] were able to measure two-particle independent fringes,
as well as conditional fringes that depend on the difference or the sum of the
detector position coordinates. Conditional fringes which depend on the sum
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of the position coordinates have been predicted theoretically in references
[104, 105].

Greenberger, Horne and Zeilinger [101], analyzing the two extreme cases
discussed above (independent versus conditional fringes) affirmed: “... there
is a sort of complementarity between one- and two-particle fringes: the con-
dition for seeing one precludes the possibility of seeing the other”. When
the source dimension or the distance from the double-slits to the source is
such that the idealized experiment is analyzed in an intermediate geometry
when compared with the extreme cases mentioned above, both single-particle
fringes and conditional two-particle fringes are present [106, 101, 105, 107].
Horne [105] derived a complementarity relation for the one- (v1) and the
two-particle (v12) fringe visibility for a general state of a two-particle system
[108]:

v21 + v212 = 1. (98)

The single-particle fringe visibility is derived from the normalized single-
particle probability density, which is obtained by integrating the joint prob-
ability density with respect to the position of one of the particles. The
two-particle visibility is obtained from the two-particle “corrected” probabil-
ity density [109, 108]. This definition prevents the visibility v12 from being
unity when particles 1 and 2 are prepared in a product state. Abouraddy
and collaborators [110, 111] studied the two-particle double-slit interferome-
ter for the case where the particles are generated by means of SPDC. Photon
pairs generated collinearly by the crystal are passed through a double-slit
aperture and are imaged by a 2f lens system at the coincidence detector
camera. For this geometry, the authors verified the above complementarity
relation experimentally [110]. Calculation of v1 and v12 from the measured
data follows the strategy used by Horne [105]. The single-photon coincidence
probability associated with the two-photon pair transmitted by the double-
slit is calculated by integrating the fourth-order correlation functions with
respect to one of the position variables.

6.2. Spatial antibunching

The experimental observation of the spatial anti-bunching of photons con-
sists in the production of a homogeneous optical field for which it is more
probable to detect coincident photons at spatially-separated positions in the
transverse plane. The original idea of anti-bunching of photons[100] was
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connected to the time interval between the emission of two photons by a
light source. Spatial anti-bunching means that the probability of finding two
photons together at the same position in the transverse propagation plane
is smaller than the probability of finding them at different positions. For a
classical light beam, the best that one can do is to have equal probability of
detecting photons together or apart. A thermal source produces light that
is bunched in time and in space, while an ideal laser produces light which
is neither bunched nor anti-bunched. It is also important to note that both
bunching and anti-bunching require that the fields be stationary (depend
only on τ = t1 − t2) and homogenous (depend only on δ = ρ1 − ρ2). If this
were not the case, it would be possible to simulate temporal anti-bunching
using a low intensity pulsed laser, for instance.

From a mathematical point of view, the inequality

Γ(2,2)(δ, τ) ≤ Γ(2,2)(0, 0), (99)

must be satisfied by any classical field. Γ(2,2) is the fourth-order coherence
function, which is proportional to the coincidence count probability. The
violation of this inequality implies anti-bunching if the condition of station-
arity and homogeneity is fulfilled. This means that the temporal and spatial
arguments of all coherence functions (t, t + τ,ρ,ρ + δ) can be replaced by
(τ, δ). The experiment performed in Ref. [18] is sketched in Fig. 25. The
non-linear crystal is pumped by a Gaussian profile laser beam and collinear
type II down-conversion is produced. Signal and idler photons are sent to
a double-slit aperture equipped with quarter wave-plates (see below). After
propagation through the slits, the photons are sent to a 50/50 beam split-
ter (BS) and single-photon detectors are placed in each output port. The
detectors are carefully calibrated, so that the transverse coordinates in both
detection planes are equivalent. This arrangement is essentially a two-photon
detector. Detector D1 is kept fixed while D2 is scanned in the transverse
plane. For an ordinary double-slit, the resulting coincidence pattern would
display the usual interference fringes, equivalent to the intensity fringes in a
double-slit experiment. To produce a spatially anti-bunched field, a phase
shift of π is produced in the coincidence fringes, so that the interference max-
ima are now minima and vice versa. In this case, the probability of finding
two photons together in the same point (δ = 0) is smaller than the proba-
bility of finding them apart. This is the signature of spatial anti-bunching of
photons, provided the condition of homogeneity is fulfilled.
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Figure 25: Experiment for the observation of the spatial anti-bunching. The vertical axes
in the plots are normalized coincidence rates for the solid lines and single count rates for
the dashed lines. The horizontal axes are D2 detector positions in arbitrary units. The
position of detector D1 is fixed in A) -2.5, B) 0 and C) +2.5 and D2 is scanned.

The π phase shift is obtained using a double-slit aperture with a zero-
order quarter-wave plate placed in front of each slit. The fast axis of one
wave plate is oriented along the vertical direction and the fast axis of the
other is oriented along the horizontal direction. The pump beam is focused
in the plane of the slits, which causes an anti-correlation in the positions of
the photons in this plane [16], so that if one photon crosses one slit, its twin
will pass through the other slit. The type-II SPDC produces photons in the
polarization state |H〉⊗|V 〉. The position anti-correlation at the plane of the
double-slit guarantees that the photons pass through different slits, resulting
in the state

|Ψ〉AB =
1√
2
(|ψ1, H〉|ψ2, V 〉+ eiπ/2|ψ2, H〉eiπ/2|ψ1, V 〉), (100)

where ψ1 and ψ2 are the quantum states describing the spatial variables when
the photons pass through slit 1 or slit 2, respectively. The π/2 phase factors
are due to the delay introduced by the zero-order quarter-wave plates. The
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coincidence probability is [18, 19]

C(xs, xi) ∝ 1− cos

[

kd

z
(x1 − x2)

]

, (101)

where k is the wave number of the down-converted fields, d is the separa-
tion between the slits, z is the propagation distance, and x1 and x2 are the
positions of detectors D1 and D2. The coincidence probability is zero when
x1 = x2, corresponding to a spatially anti-bunched field. Typical coincidence
and intensity measurements observed in Ref. [18] are shown in the insets of
Fig. 25. The coincidence distribution is near zero at when both detectors
observe the same point, and the single-photon intensity is nearly constant
for all positions. The coincidence distributions violate inequality (99), as
Γ(2,2)(δ) > Γ(2,2)(0), for many values of δ. The measurements are performed
for several positions in the transverse planes of both detectors, demonstrating
homogeneity. It was also demonstrated that the same effect can be observed
without the use of a double-slit, with free propagating signal and idler beams
[112]. Spatial anti-bunching has also been produced using Hong-Ou-Mandel
interference of photons in an anti-symmetric polarization state [113]. This
arrangement allows for the production of a beam of photons in a “singlet”
polarization state.

7. Spatial Entanglement

Quantum entanglement is a correlation that can exist between two or
more quantum systems. In the case of pure states, entanglement implies that
the quantum state |Ψ〉12 describing the–say–two systems cannot be separated
into a product of quantum states |ψ〉1 ⊗ |φ〉2. If the bipartite state can be
written in this form it is said to be separable. In the more general case of
mixed states, a separable bipartite state can be written as a convex sum of
tensor products of local density matrices [114, 115]:

ˆ̺sep =
∑

i

pi ˆ̺1i ⊗ ˆ̺2i, (102)

where
∑

i pi = 1 and pi ≥ 0. If a bipartite quantum state cannot be written
in the form (102), it is entangled. For a more in depth discussion of quantum
entanglement in general, we refer the reader to two recent review articles
[114, 115].
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As discussed in sections 4, 5, 6, although many experiments performed
in the 1990’s strongly suggested that photon pairs produced by SPDC were
indeed entangled in the spatial degrees of freedom, it wasn’t until 2004 that
experimental tests confirmed this fact [21, 22]. These experiments made use
of entanglement criteria involving measurements of the sum and difference of
the position and momentum variables [116, 117], or EPR criteria involving
conditional measurements [118, 119].

7.1. Continuous Variable Entanglement Criteria

There has been much work concerning the detection and characterization
of entanglement in continuous variable degrees of freedom. An overview of
the continuous variable formalism, and entanglement criteria for continuous
variables, can be found in a number of review articles [120, 121]. Though the
physical system of interest is usually the field quadratures of intense fields,
continuous variable entanglement conditions are also applicable to spatial
entanglement of photon pairs.

For the spatial degrees of freedom of photon pairs, it is most useful to
consider the global operators

X± = x1 ± x2, (103a)

P± = p1 ± p2, (103b)

where in the present case x and p are the position and momentum operators
for photons 1 and 2, and we assume that [xj , pk] = iδj,k and j, k = 1, 2. In the
case of spatially entangled photons, the position and momentum observables
correspond to measurements in the near and in the far-field respectively,
relative to the source plane, namely the SPDC crystal. The near field is
associated with a position measurement at the source plane, while the far
field is associated with a momentum measurement at the source plane.

In most cases, entanglement can be identified through violation of one
of a number of inequalities, which thus serve as entanglement witnesses.
For instance, the Mancini-Giovannetti-Vitali-Tombesi (MGVT) criteria [117]
reads

〈∆2X±〉〈∆2P∓〉 ≥ 1, (104)

where ∆2 stands for the variance, while the separability criteria of Duan,
Giedke, Cirac and Zoller (DGCZ) [116] is

a2〈∆2X±〉+
1

a2
〈∆2P∓〉 ≥ 2, (105)
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where a is a local scaling parameter which guarantees that the quantities
in the sum are dimensionless. One can optimize condition (105) over a,
in which case one arrives at condition (104) [122]. All separable states of
the form (102) will obey inequalities (104) and (105), and thus violation of
either of them is a sufficient condition for identifying quantum entanglement.
Inequalities (104), (105) are examples of a more general class of entanglement
witnesses involving second-order moments [123], for which Hyllus and Eisert
have provided an optimization procedure [122].

The Simon criterion [124] is a necessary and sufficient condition for 1×N
mode Gaussian states [125]. To evaluate this criterion, it is necessary to
reconstruct the covariance matrix [120, 121]. Violation of the Simon, MGVT
or DGCZ criteria are sufficient for identifying quantum states with negative
partial transpose (NPT)[126, 127, 128]. In the general case, violation of
these criteria is not a necessary condition for entanglement even in the case
of Gaussian states, due to the existence of bound entangled states which have
a positive partial transpose.

For non-Gaussian states, these second-order criteria are sufficient, but
not necessary, and there exist NPT entangled states which do not violate any
second-order criteria. In this case one can use the NPT criteria of Shchukin
and Vogel, which provides a hierarchy of inequalities involving combinations
of second and higher-order moments [129]. In fact, they have shown that in-
equalities (104), (105) and the Simon criterion are special cases of this general
NPT criteria. Violation of any inequality in the Shchukin-Vogel hierarchy
indicates that the quantum state is NPT, and is thus a sufficient condition for
entanglement. Higher-order inequalities obtained from the Shchukin-Vogel
criterion have been violated recently for a spatially non-Gaussian two-photon
state which does not violate any second-order criteria [130]. We note that
there exist several other CV entanglement criteria involving higher order
moments [131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141].

7.2. Correlations in the near and far field

The CV entanglement criteria discussed in section 7.1 can be easily ap-
plied to the spatial correlations of SPDC photon pairs. In this case, the posi-
tion variable x corresponds to the transverse position ρ and the momentum
variable p is related to the transverse wave vector via p = ~q. The position
and wave vector distributions can be observed through intensity measure-
ments in the near and far field of the non-linear crystal, respectively. Using
simple optical systems composed of lenses and free space, it is possible to
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measure the spatial distributions of the down-converted photons in the near
and far field. In the near field, one generally observes a strong correlation
between the positions of the signal and idler photons. An intuitive way to
understand this correlation is through the fact that the two down-converted
photons are “born” from the same pump photon simultaneously. Thus, the
photons are produced at approximately the same transverse position inside
the crystal. If the crystal were infinitesimally thin in the longitudinal direc-
tion, this would produce a point-like correlation between their positions in
the crystal plane.

The field operator which describes detection in the near-field is given by

Enf(ρ) ∝
∫

dρ a(q)e−iqρ. (106)

Assuming that the quantum state of SPDC photon pairs is given by Eq. (59),
the near-field correlations are governed by the profile of the pump beam
W(ρ) and the Fourier transform of the phase matching function: Γ(ρ) =
F{γ(q)}. Typically, Γ(ρ) is much narrower than W(ρ) at the crystal face.
The detection amplitude is defined as Ψnf(ρs,ρi) = 〈0|E+(ρi)E

+(ρs)|Ψ〉 and
its square modulus is proportional to the coincidence rate.

If W(ρ) is approximately constant in the region where Γ(ρ) varies appre-
ciably, then the near-field detection amplitude is given by

Ψnf(ρs,ρi) ∝ Γ(ρs − ρi). (107)

Γ(ρ) is generally a narrow function peaked at ρ = 0, which guarantees that
the positions of the down-converted photons are correlated: ρi = ρs. We
note that this is a much simplified picture of near-field correlations. It has
very recently been shown that the near-field distribution of the biphoton may
present a complex structure due to fourth-order interference of photon pairs
that originate from different transverse planes of the crystal, and is strongly
dependent upon the collinear phase mismatch [142, 143].

In the far-field region, the down-converted photons exhibit anti-correlation.
This is understood intuitively via momentum conservation in the SPDC pro-
cess. If the pump beam is centered around q = 0, momentum conserva-
tion guarantees that the down-converted photons are produced such that
qs ≈ −qi. Since the transverse position in the far-field is associated with the
momentum distribution at the crystal, this translates into anti-correlation in
the detection positions in the far-field. Equivalently, if W(ρ) is much larger
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than Γ(ρ), then this implies that for the Fourier transforms of these func-
tions the inverse is true: v(q) is much narrower than γ(q). The field operator
corresponding to detection in the far-field as

Eff(ρ) ∝ a

(ρ

b

)

, (108)

so that the detection amplitude can be approximated by

Ψff(ρs,ρi) ∝ v

(

ρs

bs
+

ρi

bi

)

, (109)

where bs and bi are scaling factors with dimension of length−2, as the ar-
gument of the function v has units of a transverse wave vector (spatial
frequency). Equation (109) shows that position measurements in the far-
field are associated with the momentum profile v(q) in the near-field. Thus,
through position measurements in the near and far-field, one can test the
entanglement criteria (104) or (105). For example, in this case the MGVT
criterion (104) gives

〈∆2X−〉〈∆2P+〉 = ∆2v∆2Γ ≥ 1, (110)

where ∆2v and ∆2Γ are the variances of the functions v and Γ, respectively.
For a Gaussian pump beam with width w at the crystal face, ∆2v = 1/w2,
and ∆2Γ ≈ λpL/(2π) [144], where L is the crystal length and λp is the
wavelength of the pump beam. Since v and Γ are independent functions, they
need not respect the limit on the right-hand side. In fact, for a λ = 400nm
Gaussian pump beam with width w = 1mm, and L = 1mm crystal, the
left-hand side is on the order of 10−4.

The strong spatial correlation depends explicitly on the widths of the
pump beam and phase matching function. For long crystals and strongly
focused pump beams, this correlation can be decreased so that the two-
photon state is almost separable [145, 146]. In this regime the shape and
form of the pump beam and phase matching function become very important.
In the approximation where both functions are described by Gaussians, the
two-photon state is separable when ∆2v = ∆2Γ.

A condition similar to inequalities (104) and (105) was tested by D’Angelo
et al. for down-converted photons using a ghost imaging setup [22], as illus-
trated in figure 26. Here a double slit was placed in the path of the signal
photon, which is detected by a stationary “bucket” detector. The idler pho-
ton is detected by scanning a point-like detector in either the near-field or
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Figure 26: Experimental setup for test of spatial entanglement performed by D’angelo et
al. [22]. Measurements in the near field are performed by scanning detector D2 in the
image plane of an imaging lens system. Far-field measurements are realized by scanning
detector D3 in the Fourier plane of the lens. Detector D1 is a bucket detector, placed in
the focal plane of a lens.

far-field, resulting in a ghost imaging or ghost interference scenario. The
non-classicality conditions tested were

∆2(x1 − x2) < min(∆2x1,∆
2x2);

∆2(p1 + p2) < min(∆2p1,∆
2p2). (111)

Violation of both inequalities by the same quantum state implies entangle-
ment. In the experiment, ∆2(p1 + p2) was evaluated through the visibility
of the ghost interference setup, while ∆2(x1 − x2) is determined through the
ghost imaging of the double slit. By further considering the divergence of
the down-converted beams and the localization of photons by the double slit,
both inequalities in 111 are violated.

7.3. Einstein-Podolsky-Rosen Non-locality

In 1935, Einstein, Podolsky and Rosen (EPR) began the ongoing dis-
cussion and study of quantum entanglement in their seminal paper “Can
Quantum-Mechanical Description of Physical Reality Be Considered Com-
plete?”. EPR argued that quantum mechanics was inconsistent with seem-
ingly reasonable notions of locality and “elements of reality”. Through analy-
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sis of a gedanken experiment involving two particles with perfectly correlated
position and momentum, they argued that one should be able to attribute
well-defined values to complementary physical quantities of one of the par-
ticles. This conflicted with the predictions of quantum mechanics, in par-
ticular with Bohr’s complementarity principle, quantified by the Heisenberg
uncertainty relation. EPR then argued that quantum mechanics must be
incomplete. The EPR paradox illustrates the incompatibility between what
is now known as local realism and the standard quantum theory.

Though EPR considered perfect position and momentum correlations, it
is possible to apply the EPR argument to a more realistic setting. Reid and
collaborators have shown that EPR-like correlations can be identified by the
violation of the inequality [118, 119, 147]

∆2
min(x1|x2)∆2

min(p1|p2) >
1

4
. (112)

Here ∆2
min(r1|r2) is the minimum inferred variance, which represents the min-

imum uncertainty in inferring variable r1 of system 1 conditioned upon mea-
surement of variable r2 of system 2. Explicitly,

∆2
min(r1|r2) =

∫

dξ2P(ξ2)∆
2(r1|ξ2), (113)

where ∆2(r1|ξ2) is the variance of the conditional probability distribution
P(r1|ξ2), which gives the probability of r1 given that the measurement of
system 2 gave result ξ2, and P(ξ2) is the probability that result ξ2 is obtained.
Inequality (112) was first violated with quadrature measurements of two
intense beams [148].

Using SPDC, it is possible to produce a two-photon quantum state that
is similar to the original EPR state. The SPDC state (see section 3) in the
limit w −→ ∞ and L −→ 0 becomes

|ψ〉EPR =

∫

dq |q〉1 |−q〉2 =
∫

dρ |ρ〉1 |ρ〉2 , (114)

where the equality on the right side is obtained by Fourier transform. In-
equality (112) for spatial correlations was first tested experimentally by
Howell et al. [21], using the experimental setup illustrated in figure 27.
The near (x) and far-field (p) distributions were measured using an imag-
ing lens system and a Fourier transform lens system, respectively. A value
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Figure 27: Experimental setup for test of the EPR criteria performed by Howell et al. [21].
a) Position measurement are performed by scanning a slit aperture in the image plane of
an imaging lens system. b) Momentum measurements are realized by scanning the slit in
the Fourier plane of a lens.

of ∆2
min(x1|x2)∆2

min(p1|p2) = 0.01 << 0.25 was obtained, demonstrating the
high correlation of the spatial degrees of freedom of the photon pairs. The
separability condition (104) was also tested and violated.

A thorough discussion of the EPR paradox, including the experimental re-
sults to date can be found in a recent review article [147]. As inequality (112)
deals with EPR non-locality, it is generally more restrictive than those which
identify non-separability of continuous variable systems [116, 117]. Recently,
it has been shown that violation of the EPR inequality (112) is sufficient to
discard “local hidden state” models, which have been related to Schrödinger’s
“steering” phenomenon [149, 150, 151]. An EPR inequality based on an en-
tropic uncertainty relation was introduced and tested experimentally in Ref.
[152].

7.4. Propagation of spatial entanglement

The above experiments show quantum entanglement and EPR non-locality
by identifying correlations in the near and far field of the SPDC crystal. In
general, after free propagation, the transverse spatial correlations switch from
a correlation in the near-field, given by equation (107) to an anti-correlation
in the far-field, given by equation (109). Chan et al. have shown that this
change from correlation to anti-correlation implies that at some intermediate
plane there must be very little correlation present in the spatial intensity
distributions [144]. Following Chan et al., let us consider the case where the
cardinal sine function in the momentum configuration is approximated with
a Gaussian: sinc(bq2) ∝ exp(−αbq2), with α = 0.455(α = 0.455 optimizes
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the approximation), and the pump is a Gaussian beam. After propagation,
the wave function in q-space is

Φ(qs, qi, z) = C exp

[

− a+ + ib+(z)

4
(qs + qi)

2 − (115)

a− + ib−(z)

4
(qs − qi)

2

]

,

where C is a normalization constant and a+ = w2
o/(1+ z

2
R/R

2), a− = αL/K,
b+(z) = 2(z + L)/K + 2R/K(1 + z2R/R

2), and b−(z) = (2z + L)/K. Here
R and zR are the radius of curvature and Rayleigh range of the Gaussian
pump beam in the source plane, respectively. The ρ-space wave-function is
the Fourier transform of (116), and is given by

Ψ(ρs,ρi, z) = D exp

[

− a+ − ib+(z)

4(a2+ + b2+(z))
(ρs + ρi)

2 − (116)

a− − ib−(z)

4(a2− + b2−(z))
(ρs − ρi)

2

]

.

One can see that both wave functions (116) and (117) are completely separa-
ble (un-entangled) when a+ = a− and b+(z) = b−(z), and thus Ψsep(ρs,ρi, z) =
ψs(ρs, z)ψi(ρi, z). This condition depends upon the initial parameters of the
pump beam, as well as the length of the non-linear crystal, and cannot be
met by propagation alone. However, at a certain distance z = z0 from the
non-linear crystal, such that a+[a

2
− + b2−(z0)] = a−[a

2
+ + b2+(z0)], the modulus

squared of the wave function is separable:

|Ψ(ρs,ρi, z0)|2 = |ψs(ρs, z0)|2|ψi(ρi, z0)|2. (117)

Thus, in the transverse plane located a distance z = z0 from the crystal, there
is no correlation present in the intensity distribution. Since at z0 we have
b+(z0)(a

2
−+ b2−(z0)) 6= b−(z0)(a

2
++ b2+(z0)), Ψ(ρs,ρi, z0) is not separable, and

we conclude all initial spatial correlations have “migrated” to the phase of the
two-photon state [144]. Thus, to properly identify the entanglement present
at z = z0, some type of interferometric measurement capable of accessing
phase information must be performed [144].

In the above arguments, the phase matching function γ(q) is approxi-
mated by a Gaussian function, which is necessary for the separability of the
modulus of the wave function (117). When considering the phase matching
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Figure 28: a) Free space propagation as an FRFT. b) Optical lens system used to imple-
ment an FRFT.

function in the form of a sinc function(in the momentum space), the corre-
lations in principle never completely disappear. Nevertheless, one observes a
strong decrease in spatial correlations at z = z0.

Since the correlations present in the two-photon state migrate from the
amplitude to the phase due to local unitary evolution in the form of free
propagation, it should be possible to retrieve the correlations by undoing the
unitary evolution. In this vein, it is convenient to parametrize the evolution
in a more general framework.

7.5. Fractional Fourier Transform

The analysis of the propagation of spatial correlations can be cast in a
general setting using the concept of the fractional Fourier transform (FRFT)
[153, 154, 155, 156]. Since its first appearance in 1929 [157], the FRFT has
found widespread use in quantum mechanics [158, 159, 160] as well as signal
processing and optics [156]. The FRFT of order φ of a function E(ζ) can be
defined by the integral transform [154]

Fφ [E] (ξ) =

∫∫

Fφ(ξ, ζ)E(ζ)dζ, (118)

where the FRFT kernel is given by

Fφ(ξ, ζ) =
i exp (−iφ)
2π sinφ

exp

(

−iξ
2 cotφ

2
−iζ

2 cotφ

2
+ i

ζ · ξ
sin φ

)

, (119)

and ζ and ξ are two-dimensional variables. Note that φ = π/2 corresponds
to the usual Fourier transform. Furthermore, in the limit φ −→ 0, F0 −→
δ(ζ − ξ), and when φ −→ π the kernel Fπ −→ δ(ζ + ξ). Just as the Fourier
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transform appears naturally in the context of Fraunhofer diffraction, it has
been shown that the FRFT appears in the Fresnel diffraction regime [154]. To
identify ordinary free space propagation with the fractional Fourier transform
it is necessary to choose properly scaled coordinates [154]. Consider the usual
Fresnel diffraction integral corresponding to the propagation of a field from
the plane A to plane B, as shown in Fig. 28 a). Choosing dimensionless
coordinates ζ =

√

k tanφ/Dρ and ξ =
√

k sinφ cosφ/Dρ′, where D the
distance between planes, leads to

EB(ξ) = exp(iφ) cosφ exp(−iξ2 tanφ/2)Fφ [EA] (ξ), (120)

which expresses EB as a FRFT of EA multiplied by a phase term [154]. It
is possible to eliminate the phase term if one observes the output field on a
spherical surface of radius Rφ = −D/ sin2 φ, as shown in Fig. 28 a). This
spherical surface can also be mapped to a plane using a lens with focal length
equal to −Rφ.

It has also been shown that one can implement a FRFT using lenses
[161, 155]. For example, consider the symmetrical optical system shown in
Fig. 28 b). Here l is the focal length of the lens and z is the propagation
distance before and after the lens. Using z = 2l sin2(φ/2) and f = l sin φ,
it has been shown that this optical system implements a FRFT operation
given by

Fφ [E] (ρ
′) =

∫∫

Fφ

(

k

f
ρ′,

k

f
ρ

)

E(ρ)dρ, (121)

which is equivalent to the transform given in Eq. (118) when one chooses
scaled variables ζ =

√

k/fρ and ξ =
√

k/fρ′.
A generic optical system consisting of lenses, mirrors and sections of free

space can be described in terms of FRFTs by scaling the transverse spatial
coordinates appropriately. The convenience of the FRFT comes from the fact
that it can be viewed as a simple rotation in phase space. This can been seen
most easily using geometrical optics. Consider the symmetrical lens system
shown in Fig. 28 b). Free propagation of an optical ray r = (r, θ) can be
represented by the ABCD matrix [162]

Sz =

(

1 z
0 1

)

, (122)

where z is the propagation distance. Passage through a thin lens is described
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by the matrix

Ll =

(

1 0
−1/l 1

)

, (123)

where l is the focal length of the lens. Choosing z = 2l sin2(φ/2) and defining
f = l sinφ as a scaled focal length, the complete optical FRFT system is given
by the matrix

Fφ = SzLlSz =

(

cosφ f sin φ
− 1

f
sinφ cos φ

)

. (124)

Matrix (124) represents a φ-order FRFT, and is recognized as a rotation
matrix scaled by f . This scaling is necessary since r has dimension of length
and θ is adimensional, and thus the scaled focal length f acts on θ so that
fθ has dimension of length. If the scaled focal lengths f of two FRFTs are
equal, it is easy to see from the ray matrix in Eq. (124) that the FRFT
is additive, that is Fφ1

Fφ2
= Fφ1+φ2

, such that the order of the combined
optical FRFT is φ1 + φ2. By introducing the FRFT with properly scaled
coordinates, and using the additivity property, one can describe propagation
through any first-order optical system consisting of lenses, mirrors and free
space. Propagation is now parametrized solely by the order of the overall
FRFT, given by the angle φ.

In quantum-mechanical operator formalism, the FRFT operator is defined
as [156]

Fφ ≡ eiφ/2 exp

[

−iφ
2
(x2 + p2)

]

, (125)

where x and p are the dimensionless position and momentum operators sat-
isfying [x, p] = i. This operator is equivalent to the evolution operator of the
quantum harmonic oscillator, which has the hamiltonian H = (x2 + p2)/2.
Application of the FRFT operator Fφ to the x and p corresponds to rotation
of angle φ in phase space [161, 156]:

F
†
φ

(

x

p

)

Fφ =

(

cosφ sinφ
− sin φ cosφ

)(

x

p

)

≡
(

xφ
pφ

)

, (126)

where xφ and pφ are the rotated operators.
The FRFT is a rotation in the x,p phase space. In this respect, it can be

used to measure the marginal probability distribution along any axis in phase
space, and to perform tomography of the spatial Wigner function [163, 164].
We note that spatial tomography of a field can also be performed using
interference of rotated and displaced halves of the field [165, 166].
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7.6. Correlations at Intermediate Planes

To describe the spatial correlations of photon pairs at some propagation
distances zs and zi, through arbitrary first-order optical systems, it suffices
to consider FRFT’s of arbitrary order angle α and β. A two-photon state
|Ψ〉 after arbitrary propagation is given by |Ψα,β〉 = F(1)

α ⊗ F
(2)
β |Ψ〉. The

two-photon wave function then becomes Ψα,β(x1, x2) = 〈x1, x2|Ψα,β〉, where

Ψα,β(x1, x2) =

∫∫

dx′1dx
′
2 〈x1|Fα |x′1〉 〈x2|Fα |x′2〉Ψ(x′1, x

′
2) (127)

=

∫∫

dx′1dx
′
2Fα(x1, x

′
1)Fβ(x2, x

′
2)Ψ(x′1, x

′
2),

and the kernels are defined in Eq. (119). For simplicity, we consider only
one spatial dimension. As an example, let us consider the propagation of the
EPR state in one dimension

∣

∣ΨEPR
〉

=

∫∫

dx1dx2δ(x1 − x2) |x1〉1 |x2〉2 , (128)

which presents a perfect correlation, since detection of photon 2 at position
x projects photon 1 onto a position eigenstate |x〉. This situation is approxi-
mated by the state produced by SPDC when the pump beam can be treated
as a plane wave. This state evolves to [167]

∣

∣ΨEPR
α,β

〉

= Aα+β

∫∫

dx1dx2 exp

[

i
cot(α + β)

2

(

ρ21 + ρ22
)

]

×

exp

[

−i x1 · x2
sin(α + β)

]

|x1〉1 |x2〉2 . (129)

We can now analyze the type of correlations present. Whenever α +
β = 0 (mod2π), the original state (128) is recovered. That is, the EPR
state (128) is an eigenstate of operators of the type FαF2π−α, FαF4π−α, etc.
When α + β = π (mod2π), the correlated EPR state (128) evolves to an
anticorrelated EPR state

∣

∣ΦEPR
〉

=

∫∫

dx1dx2δ(x1 + x2) |x1〉1 |x2〉2 . (130)

In this case the detection of photon 2 at x projects photon 1 onto the state
|−x〉. When α + β = π/2 (mod2π), this state becomes

|Ω〉 =
∫

dx |x〉1 |p(x)〉2 , (131)
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which presents no intensity correlation. Here |p(x)〉 ∝
∫

exp(ip(x) · x) |x〉 is
the momentum eigenstate conjugate to |x〉. An equivalent result is found
for α + β = 3π/2 (mod2π). We note that the conditions for correlation,
anti-correlation, and no-correlation depend on the sum of the FRFT angles
of the down-converted fields, and not the individual angles α and β. Thus,
for any propagation characterized by an FRFT Fα on photon 1, one can
find a suitable transformation Fβ on photon 2 such that a correlation, anti-
correlation or no intensity correlation is recovered. These conditions were
tested experimentally in Ref. [167].

This simple picture drawn for the ideal EPR-state is followed approxi-
mately by the two-photon state in Eq. (117). Let us consider two simple
cases. First, let us assume that the FRFT angles are the same for both
down-converted photons: α = β. Then, no intensity correlation is observed
whenever

cot2 α =
a−(a

2
+ + b2+)− a+(a

2
− + b2−)

a+ − a−
, (132)

where parameters a± and b± are defined in (116) and b± refers to b±(z) at
the crystal plane. Consider another simple case in which b+ = b− = 0 at the
crystal face, with no restriction on α and β. Analytical calculation shows
that, in order to have no intensity correlation,

cotα cot β = a−a+. (133)

Eq. (133) is satisfied by FRFT orders such that α + β = π/2 (mod2π) or
α + β = 3π/2 (mod2π) only when a− = 1/a+. Nevertheless, the intensity
correlations present in the state Eq. (117) propagate in a fashion similar to
idealized case of the EPR state.

The above arguments apply to intensity correlations, the absence of which
does not necessarily imply that a quantum state is separable. Let us now
discuss the identification of entanglement via intensity correlations of trans-
verse spatial variables. The DGCZ inequality (105) for transverse variables
rotated using the FRFT operator (126) is [168]:

〈(∆X′
−)

2〉+ 〈(∆P′
+)

2〉 = 1+cos(α+β)
2

[〈(∆X−)
2〉+ 〈(∆P+)

2〉] +
1−cos(α+β)

2
[〈(∆X+)

2〉+ 〈(∆P−)
2〉]−

sin(α+β)
2

[〈{X+,P+}〉 − 2〈X+〉〈P+〉] +
sin(α+β)

2
[〈{X−,P−}〉 − 2〈X−〉〈P−〉] , (134)
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Figure 29: Laguerre-Gaussian and Hermite-Gaussian modes.

where X′
− ≡ xα − xβ and P′

+ ≡ pα + pβ , are defined in terms of the rotated
variables, and X− = x1 − x2 and P+ = p1 + p2 in terms of the variables at
the source. The sum of variances for the rotated variables coincides with the
sum of variances for the variables at the source when α + β(mod 2π) = 0.
If the two-photon state is entangled, with intensity correlation in the x and
p variables at some initial plane, then, for any propagation of the signal
photon, characterized by α, it is possible to find a propagation of the idler
field, characterized by β, so that an intensity correlation is recovered and
entanglement can be identified. It is important to note that Eq. (134) does
not depend on the state and is applicable to any bipartite continuous variable
systems. Eq. (134) was experimentally tested for intermediate propagation
planes of SPDC photons in Ref. [168].

8. Transverse Modes

A simple way to describe spatial correlations in the paraxial regime is
through the use of transverse spatial modes described by discrete indices, such
as the Laguerre Gaussian (LG) modes or the Hermite Gaussian (HG) modes.
Like the well known Gaussian beam, the Hermite-Gaussian and Laguerre-
Gaussian beams are also solutions to the paraxial Helmholtz equation (41)
[35]. In section 8.1, we will introduce the Laguerre Gaussian modes, which
have well defined orbital angular momentum (OAM). In section 8.2 we review
the conservation of OAM in SPDC and the generation of entangled OAM
states. In sections 8.5 and 8.6 we present the Hermite-Gaussian modes and
their application to SPDC.
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8.1. Laguerre Gaussian modes: orbital angular momentum of light

Since the 1990’s it has been known that any electromagnetic paraxial
beam with an azimuthal phase dependence of the form eilφ carries an or-
bital angular momentum l~ per photon [169]. The Laguerre-Gaussian beams
are probably the most well-known and studied examples of beams carrying
orbital angular momentum. They are given by [170]

U ℓ
p(ρ, φ, z) =D

ℓ
p

1

w(z)

(√
2ρ

w(z)

)ℓ

Lℓ
p

(

2ρ2

w(z)2

)

exp

(

− ρ2

w(z)2

)

exp

{

−i
[

kρ2

2R
− (n+m+ 1)γ(z)

]

− (p− ℓ)φ

}

, (135)

where (ρ, φ, z) are the usual cylindrical coordinates, Dℓ
p is a constant which

depends on the azimuthal index ℓ and radial index p. Lℓ
p are the Laguerre

polynomials. Here z is the longitudinal propagation direction, R(z) is the
radius of curvature, w(z) is the beam waist, and γ(z) is the phase retardation
or Gouy phase. The parameter zR is the Rayleigh range. The order of the LG
beam is defined as N = |ℓ|+2p. The usual Gaussian beam is the zeroth-order
U0
0 beam. See plots of LG modes in Fig. 29(left).
In addition to interesting implications in classical and quantum optics,

the orbital angular momentum of a light field raises possibilities for techni-
cal applications. It has been shown that the orbital angular momentum
of light can be used to rotate micro-particles in optical traps [171]. In
terms of quantum optical applications, the orbital angular momentum of
single photons in LG modes provides a possible d-dimensional qudit encod-
ing scheme [172, 173, 174, 175, 176, 177], which allows for the creation of
multi-dimensional entanglement in discrete bases. Devices that discriminate
the orbital angular momentum of Laguerre-Gaussian beams have been pro-
posed [178] and experimentally tested [179, 180].

8.2. Entanglement and Conservation of Orbital Angular Momentum in SPDC

The first experimental investigation of OAM conservation in SPDC sug-
gested that OAM is not conserved [181], in contrast to previous experimental
investigations of other non-linear optical processes such as second-harmonic
generation (SHG). Using an LG mode as the fundamental beam in SHG
showed a conservation relation, such that the OAM of the second-harmonic
beam is double that of the fundamental beam: ℓSH = 2ℓfund [182, 183]. In
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these experiments, the intensity and phase structure of the output beam was
observed using a CCD camera. The same measurement method was used
in the inverse experiment, investigation of OAM conservation in SPDC by
Arlt et al. [181]. However, by imaging the near and far field of the collinear
down-converted fields using a CCD camera, correlations in second-order are
observed. Theoretical investigations by Arnaut and Barbosa showed that,
under suitable experimental conditions, OAM conservation appears only in
fourth-order [172]. The two-photon state has well-defined OAM equal to that
of the pump beam, and ℓsignal+ℓidler = ℓpump. Moreover, they showed that the
two-photon state is entangled in OAM, and thus the individual signal and
idler beams do not have well defined OAM. For this reason, the experiment
by Arlt et al. did not observe OAM conservation. Shortly thereafter, a clever
experiment by Mair et al. confirmed the conservation and entanglement of
OAM in SPDC [184].

The experiment by Mair et al. [184] is illustrated in figure 30. The
OAM correlation was measured using forked holographic masks and single-
mode optical fibers to project onto individual OAM values of m. The forked
hologram mask functions in much the same way as a diffraction grating. A
Gaussian mode passing through a mask with m dislocations and diffracting
into the nth-order becomes an LG mode with l = mn. The detection scheme
of Mair et al. exploits this process in the reverse. A mode with OAM m
that diffracts into the first-order of a forked mask with m dislocations will
now be in a Gaussian mode. Single mode fibers are used to select only those
photons in the Gaussian mode, which are then registered by single photon
detectors. The pump laser beam with l = −1, 0, 1 was shown to produce
entangled photons with msignal = l −midler. However, this confirms only a
classical correlation between the OAM of the down-converted photons. To
prove that the photons are indeed entangled in OAM, Mair et al. projected
the photons onto superpositions of OAM states. This was done by shifting
the position of the holographic mask. A shifted mask withm dislocations and
the single-mode fiber detection scheme described above projects the single-
photons onto superposition states of the form α |0〉 + β |m〉, where α and β
depend on the position of the mask.

The two-photon state for frequency degenerate down-converted fields
(λs = λi = 2λp) in a quasi-collinear geometry can be decomposed in terms of
LG modes in a relatively simple form [172, 185, 186, 187]. The wave function
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Figure 30: First measurement of OAM entanglement in SPDC by Mair et al. [184]. Forked
holographic masks of OAM ls and li are used in conjunction with lenses and single mode-
optical fibers to project onto modes with well-defined OAM. To project onto superpositions
of OAM, the masks are shifted in the transverse direction.

in this case can be written as

Ψ(ρs,ρi) = U l
p

(

ρs + ρi√
2

)

F
(

ρs − ρi√
2

)

, (136)

where U l
p describes the pump beam profile and F is the phase-matching

function.
Decomposing this wave function into signal and idler LG modes results

in an alternative form:

Ψ(ρs,ρi) =
∑

ls,ps

∑

li,pi

N lsli
pspi

U ls
ps(ρs)U

li
pi
(ρi), (137)

where the coefficient N lsli
pspi

is given by [186]

N lsli
pspi

=

∫∫

dρsdρi U
l
p

(

ρs + ρi√
2

)

F
(

ρs − ρi

2

)

× U∗ls
ps (ρs)U

∗li
pi
(ρi). (138)
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Assuming that the crystal length L is much smaller than the Rayleigh range
zR of the pump beam, and the function F ∼ 1, the coefficient N lsli

pspi
becomes

N lsli
pspi

∝ δls+li,l

∫

q dq vlp(
√
2 q) v∗lsps (q) v

∗li
pi
(q), (139)

where vlp(q) is the Fourier transform of the radial component of U l
p(ρ). The

presence of the Kronecker delta function guarantees that OAM is conserved:
li+ ls = l, and the down-converted signal and idler photons are emitted with
correlated OAM. For simplicity, let |m〉 denote a single photon state carrying
an orbital angular momentum m~ and l be the azimuthal index of the LG
pump beam. Coherence of the SPDC process guarantees that the two-photon
state can be written as a Schmidt decomposition of the form [145]

|ψ〉 =
+∞
∑

m=−∞
Pm |l −m〉 |m〉 . (140)

Here the states |m〉 represent spatial modes with well-defined OAM m.
The derivation of the two-photon state (140) is valid for quasi-collinear

paraxial fields in the thin-crystal approximation. Other effects, such as the
birefringence and anisotropy of the non-linear medium, as well as a non-
collinear geometry, were ignored. Some authors have studied SPDC and
OAM conservation in more general contexts [45, 43, 188]. A comprehensive
discussion has been provided recently by Osorio et al. [188]. They have
shown that when one considers all the photon pairs produced by the crystal,
distributed along the entire down-conversion cone, OAM is conserved. In
a more realistic setting, in which signal and idler photons are detected in
small regions of the down-conversion cone, the two-photon wave function
may be spatially asymmetric and not reproduce the angular spectrum of
the pump beam. The deformation generally corresponds to an ellipticity
that depends upon the non-collinear angle ϕ, the crystal length, and the
width of the pump beam w , and can be quantified by the quantity Ld =
w/ sinϕ. When the crystal length L ≪ Ld, the two-photon wave function
reproduces the transverse field of the pump beam, and OAM is conserved.
If this condition is not fulfilled, the two-photon wave function is not given

by Ψ(ρs,ρi) = U l
p

(

ρs+ρi√
2

)

, and OAM will not be conserved. Ellipticity of

the two-photon spatial wave function caused by non-collinear geometry and
focusing of the pump beam has been observed experimentally [47]. Torres,
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Osorio and Torner [189] have considered the extreme situation in which the
down-converted fields are either counter-propagating and perpendicular to
the pump field, or co-propagating with respect to each other but counter-
propagating to the pump field. In these cases the usual OAM selection rule
(as in the collinear geometry above) does not apply.

Another consideration is the spatial walk-off caused by the birefringence
of the non-linear SPDC crystal, which occurs for either the pump and/or one
of the down-converted fields. In the case of type-I down-conversion, in which
only the pump field is polarized in the extraordinary direction, the critical
parameter is the “walk-off length” Lw = w/ tan ρ0 [43, 188]. Here ρ0 is the
spatial walk-off angle, which depends upon the extraordinary refractive index
and the propagation direction in the crystal. When the length of the non-
linear crystal L≪ Lw, the effect of walk-off on the shape of the two-photon
wave function is negligible, and OAM is conserved. Fedorov [44].

8.3. Probing the phase structure of the two photon state: two-photon inter-
ference

Two-photon interference at a beam splitter was first demonstrated by
Hong, Ou and Mandel (HOM) [190]. It has subsequently become the key
process for two-photon quantum logic, and is used in quantum information
protocols such as Bell-state measurements [191, 192] and to construct two-
photon logic gates [193, 194, 195, 196, 197]. On the one hand, these ap-
plications are designed for perfect interference with a single spatial mode.
On the other hand, multimode interference is a useful method to probe the
transverse phase structure of the two-photon state [198, 199], and has been
used to show the conservation of orbital angular momentum in SPDC [186],
as well as to quantify spatial entanglement [200]. It has also been shown to
be useful in Bell-state analysis of polarization entangled photons [201], and
to produce two-photon fields exhibiting spatial antibunching [113].

Let us illustrate the probing of the phase structure. Consider the HOM
interferometer shown in Fig. 31, in which two photons are generated by
SPDC and then reflected onto opposite sides of a beam splitter (BS). If
the path length difference is greater than the coherence length of the down-
converted photons, then there is no interference and the photons leave either
side of the beam splitter randomly. Here we will assume that lengths of
paths s and i are equal. Using the reference frames illustrated in Fig. 31,
the annihilation operators in exit modes 1 and 2 after the beam splitter can
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Figure 31: Illustration of Hong-Ou-Mandel interference with multiple spatial modes.

be expressed in terms of the operators in input modes s and i:

a1(q, σ) = tas(qx, qy, σ) + irai(qx,−qy, σ) (141a)

a2(q, σ) = tai(qx, qy, σ) + iras(qx,−qy, σ), (141b)

where σ is the polarization, qx and qy are the transverse components of
the momentum and t and r are respectively the transmission and reflection
coefficients of the beam splitter (|t|2 + |r|2 = 1). A field reflected from the
beam splitter undergoes a spatial inversion in the horizontal (y) direction,
while a transmitted field does not suffer any inversion, as illustrated in Fig.
31. The negative sign that appears in the qy components of the reflected
field is due to this spatial inversion. The two-photon wave function is split
into four components, according to the four possibilities of transmission and
reflection of the two photons [198, 199]:

Ψtr(r+, r−) = Ψrt(r+, r−) =itr exp

{

2iK

Z
(x2− + y2+)

}

×

[W (x+,−y−, Z) +W (x+, y−, Z)] , (142)

Ψtt(r+, r−) = t2 exp

{

2iK

Z
(x2− + y2−)

}

W (x+, y+, Z) , (143)
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Ψrr(r+, r−) = −r2 exp
{

2iK

Z
(x2− + y2−)

}

W (x+,−y+, Z) , (144)

where r± = (x±, y±) = (xs/2 ± xi/2, ys/2 ± yi/2). Let us assume that
t = r = 1/

√
2. If the pump beam profile W is symmetric with respect to

the y coordinate (W[y] = W[−y]), then the two photons always leave in
the same output port of the BS, since the amplitude for coincidence counts
in different output ports is Ψtt + Ψrr = 0. This results in the usual HOM
interference dip. If W is antisymmetric with respect to y (W[y] = −W[−y]),
then Ψtr = Ψrt = 0, and the photons always leave the BS in different output
ports, giving an interference peak.

The analysis above considered that all other degrees of freedom are in
symmetric states. Combining the spatial degrees of freedom with the polar-
ization degree of freedom, for instance, provides a way to control two-photon
interference of different polarization states. This allows for partial Bell-state
analysis in the coincidence basis [201], as well as for the creation of a two-
photon “singlet” beam, in which the photon pairs in the same beam are in
an anti-symmetric polarization state, and consequently are spatially anti-
bunched [113].

Other experiments have used two-photon interference to probe the phase
structure of the two-photon state, and have shown that the down-converted
photon pairs are entangled in OAM [186, 199]. For a pump beam in a LG
mode, the two-photon coincidence detection probability at the output of the
HOM interferometer is

P (r1, r2) ∝ |uℓp(R)|2 sin2 lθ, (145)

where uℓp(R) is the radial component of the LG mode, ℓ is the OAM of the
pump beam which is transferred to the two-photon state, R = |ρ1 + ρ2|,
and sin θ = (ρ1 sin φ1 + ρ2 sinφ2)/R. When r2 = 0, the coincidence profile is
P (r1, 0) ∝ |uℓp(ρ1/

√
2)|2 sin2 ℓφ1. Thus, fixing one detector and scanning the

other, oscillations with period ℓ will appear in the azimuthal coordinate φ1.
In Ref. [186], the phase structure was observed for LG pump beams with
ℓ = 1, 2.

8.4. Quantifying Spatial Entanglement

In section 7, the detection of spatial entanglement using entanglement
witnesses was discussed. In many cases, these witnesses involve only a few
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measurements of the transverse spatial variables. Quantifying spatial entan-
glement, on the other hand, presents a considerable challenge, due to the
large dimensionality of the involved Hilbert spaces. Nonetheless, theoret-
ical and experimental methods exist which allow for the quantification of
bipartite spatial entanglement of photon pairs.

8.4.1. Schmidt decomposition of SPDC

The Schmidt decomposition [202] of the two-photon state produced by
SPDC has been derived by Law and Eberly [145]. Absorbing any phase
factors into the states |m〉 allows one to write the two-photon amplitude
(140) in the form [145]

Ψ(ρs,ρi) =

+∞
∑

m=−∞

∞
∑

n=0

√

λn,mun,l−m(ρs)un,m(ρi), (146)

where the real numbers λn,m are the eigenvalues of the reduced density opera-
tors. The functions un,m are normalized transverse mode functions with well-
defined OAM [145]. The entanglement depends upon the number of non-zero
Schmidt coefficients λn,m. Each λn,m depends on the OAM ℓ, wavenumber
and width of the pump laser beam, and the length of the non-linear crystal,
and can be calculated by determining the overlap integral of the product of
mode functions with the two-photon amplitude given in equation (136):

√

λn,m =

∫

ρsρiu
∗
n,l−m(ρs)u

∗
n,m(ρi)U

l
p

(

ρs + ρi√
2

)

F
(

ρs − ρi√
2

)

. (147)

Again, effects due to crystal anisotropy and non-collinear geometry have
been ignored. Law and Eberly [145] have used the decomposition (146) to
calculate the entanglement of the two-photon state generated by a Gaussian
pump beam using the so-called Schmidt number, S = 1/

∑

n,m λ
2
n,m [145].

They have shown that the entanglement depends upon the parameter L/2zR,
where zR is the Rayleigh range of the pump beam and L is the crystal length.
If one approximates the phase matching function by a Gaussian function with
the same variance, γ(q) ≈ exp(−Lq2/8K) [144], the Schmidt number in this
case can be put in the analytical form S = (

√

L/4zR +
√

4zR/L)
2/4. The

entanglement in this Gaussian approximation serves as a lower bound, since
Gaussian states are always less entangled than non-Gaussian states with the
same covariance matrix [203].
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For typical values of the experimental parameters, the predicted Schmidt
number can be very large. For example, for L = 1mm and zR = 1m, the
predicted Schmidt number is on the order of 103. However, as has been
pointed out by van Exter et al. [204], and Osorio et al. [188], even in
the case of collinear propagation and negligible crystal anisotropy, this does
not necessarily correspond to the usable entanglement present in a realistic
experimental scenario. The effect of spatial filtering due to the finite spatial
bandwidth of an optical setup is to decrease the Schmidt number, and hence
the entanglement. This can be a rather large effect, of several orders of
magnitude.

In Ref. [205], Di Lorenzo Pires et al. demostrated that for the case of a
two-photon pure state such as (59), the overall Schmidt number (including
contributions from radial and azimuthal parameters) is given by the inverse
of the overall degree of coherence of either down-converted field. Assuming
that–say–the signal field is quasihomogeneous, the Schmidt number takes the
form

S ≈ 1

(2π)2

[∫

Inf(ρs)dρs

]2

∫

I2nf(ρs)dρs

[∫

Iff (qs)dqs

]2

∫

I2ff (qs)dqs

, (148)

where Inf and Iff are the near-field and far-field intensity distributions of
the signal photon field, respectively. Thus, through second-order intensity
measurements, the spatial entanglement of the two-photon state can be de-
termined. It was shown that the entanglement depends critically on the
collinear phase mismatch [205]. Schmidt numbers above 400 were obtained
experimentally.

An experimental technique to measure the Schmidt number associated
with the OAM decomposition (146) was developed by Peeters et al. [200],
who investigated multimode HOM interference in the presence of image ro-
tation of the signal beam before the beam splitter. They showed that the
amount of spatial entanglement can be inferred from the visibility of the
HOM dip:

V (ϑ) =

∞
∑

m=−∞
Pm cos(2mϑ), (149)

where ϑ is the angle of image rotation of the signal field. Here Pm are the
coefficients of the Schmidt decomposition (140). To quantify spatial entangle-

ment, an azimuthal Schmidt number can be defined as Saz = (
∞
∑

m=−∞
P 2
m)

−1.

The Schmidt coefficients can be determined by measuring V (ϑ) for a number
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of values of ϑ and inverting the Fourier series (149). In Ref. [200], this was
done for a number of different types of spatial filtering systems. Schmidt
numbers as high as 7.3±0.3 were determined experimentally. More recently,
Di Lorenzo Pires et al. performed a similar experiment in a collinear ge-
ometry using a bucket detector system [206]. This impressive experiment
allowed for the measurement of the complete OAM distribution of the cor-
related down-converted photons, and Schmidt numbers above 35 were mea-
sured. This was in excellent agreement with theoretical predictions based on
the experimental parameters. It was also shown that the phase mismatch
could be used to increase the entanglement. In this case, the mismatch could
be controlled through the temperature of the periodically poled crystal.

Another method to quantify entanglement using multimode HOM inter-
ference has been proposed in [146]. In this scheme, it is possible to measure
the concurrence directly using two copies of the quantum state [207, 208].

An interesting series of experiments have been performed employing phase
plates and single-mode fibers to detect and analyze spatial entanglement
[209, 210, 211]. Two main types of phase plates have been investigated: spi-
ral phase plates and Heaviside step plates. When a Gaussian mode passes
through a half-integer spiral phase plate, it is transformed into a superposi-
tion of LG modes, given by [212]

∑

p,ℓ

|Cp,ℓ|eifp,ℓ(α)U ℓ
p(ρ, φ), (150)

where fp,ℓ(α) is a function which depends upon the orientation angle α of the
phase plate. By considering the inverse scenario, it is apparent that the spiral
phase plate transforms the superposition (150) into a Gaussian mode, which
can be selected with a single mode optical fiber. By changing the orientation
angle α of the plate, one can project onto a number of superposition states of
the form (150). In Ref. [212] it was shown that the number of non-zero terms
in the superposition (150) can be quite large (∼ 102−103), and depends upon
the half-integer value of the plate.

Half-integer spiral phase plates were used to observe fractional OAM en-
tanglement in down-converted photons [209]. The experimental setups are
similar to that of Figure 30, with the forked holographic masks replaced by
the phase plates. The coincidence detection probability, given by [209]

P (αs, αi) ∝ (π − |αs − αi|)2 , (151)
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depends only upon the relative angle |αs − αi| between the analyzers in the
signal and idler fields, which is typical of a quantum correlation.

Another type of phase plate which has been studied is a Heaviside phase
plate, in which there is relative phase difference of π between the phase im-
parted by each section of the plate [212, 210]. The transmission function is
given by T (φ, α) = 1− 2[Θ(φ−α)−Θ(φ−α−β)], where Θ is the Heaviside
step function, α is the orientation angle of the plate and β is the angular
width of the π-step section. The simplest case corresponds to two half-circle
sections (β = π). These step phase plates can also be used to probe multidi-
mensional entanglement. Pors et al. have shown that the amount of usable
entanglement that is available is given by the dimensionality of the mea-
surement apparatus [210, 211]. The authors have dubbed this the “Shannon
dimensionality”, in analogy with the Shannon number of a classical commu-
nication channel [213]. The Shannon dimensionality is an effective Schmidt
number, corresponding to the amount of entanglement which can be accessed
by the measurement system. In the case of the phase plate analyzers, the
dimensionality has a simple experimental interpretation. It is given by 2π
divided by the area under the normalized coincidence curve, plotted as a
function of the relative angle of the phase plates. Experimental and theoret-
ical results show that the half-circle plate corresponds to dimensionality of
three, while a quarter section plate gives dimensionality of six. The authors
also considered step plates with multiple sections, and have shown that it
should be possible to probe spaces with dimension on the order of about 50
[211].

There is thus an inconsistency between the amount of entanglement which
is theoretically available and the amount of entanglement actually accessible
in a given experimental scenario, due in particular to the geometry of the
down-conversion setup and the spatial bandwidth of the optical systems used
in manipulation and detection of the fields involved.

Another experiment investigating this kind of entanglement quantifica-
tion, used entangled states prepared placing apertures in the path of the
beams generated by SPDC. In this case the aperture photon path defines
the qubit state. In reference [214], two double-slits placed at the path of the
idler and signal photons were used to generate two-qubit entangled states.
States with different degrees of entanglement were prepared by modifying the
pump beam profile that generates the twin photons. Measurements of either
two-photon conditional interference or marginal probabilities were used for
characterizing entanglement in two-qubit spatial pure states.
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The concurrence C is an entanglement quantifier for bipartite systems
[215]. For a general pure entangled state of two qubits,

|ψ〉 = c11|11〉+ c10|10〉+ c01|01〉+ c00|00〉 , (152)

the concurrence is given by

C(ψ) = 2|c11c00 − c10c01| . (153)

State (152) may be written as a Schmidt decomposition [216]

|ψ〉 = c′11|11〉′ + c′00|00〉′ , (154)

where |ii〉′ (i = 0, 1) is the Schmidt basis, and the coefficients c′ii are real
and positive. In terms of these coefficients, the concurrence is given by the
simpler expression

C(ψ) = 2c′11c
′
00 . (155)

In Ref. [214], states |0〉, |1〉 represent the single photons which pass through
either slit of the double slit aperture. The strategy used for characteriz-
ing entanglement consists in performing measurements in the Schmidt basis,
either by directly measuring the Schmidt coefficients or through a direct
connection between concurrence, given by Eq. (155), and the visibility of
interference patterns obtained when one of the detectors is used as trigger.
The Schmidt basis is selected by letting the photons propagate through an
appropriate lens system and keeping one of the detectors fixed at some spe-
cific positions, while the other is scanned at the Fourier plane of the lens.
The Schmidt coefficients are then obtained from these conditional interfer-
ence patterns. In the second method the fixed detector used as trigger is
completely opened detecting all photons that crossed one of the double-slits
while the second point detector is scanned at the lens Fourier plane. This
corresponds to a measurement of the marginal probability which is defined
as the probability, P̄1(xi), of observing a photon idler at xi and the signal at
any location (−∞ < xs < +∞) [84] and is related to the concurrence as

P1(xi) ∝
[

1 +
√

1− [C(Ψ)]2 cos(αxi)
]

. (156)

In reference [55] different two-qubit states are generated by using collinear
type II SPDC and a double-slit. Different states are produced by tailoring
the imaging system in between the two-photon source and the double slit.
More than 30 different two-photon states are characterized by measuring
their complete two-photon interference patterns in the far field of the double
slit.
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8.5. Hermite-Gaussian modes

The mode decomposition of the two-photon state produced in SPDC can
also be performed using the Hermite-Gaussian modes, which are given by
the complex field amplitude [170]

UHG
nm (x, y, z) =Cnm

1

w(z)
Hn

(√
2x

w(z)

)

Hm

(√
2y

w(z)

)

exp

(

−x
2 + y2

w(z)2

)

exp

{

−i
[

k(x2 + y2)

2R(z)
− (n+m+ 1)γ(z)

]}

. (157)

Here Cnm are the coefficients, Hn(x) is the nth-order Hermite polynomial,
which is an even or odd function of x if n is even or odd, respectively. The
order N of the beam is the sum of the indices: N = m + n. The usual
Gaussian beam is the zeroth-order UHG

00 beam. See plots of HG modes in
Fig. 29(right).

8.6. Down-conversion with Hermite-Gaussian modes

Consider SPDC in which the pump beam is described by a HG mode
UHG
nm . The two-photon state can be expanded as [146, 217]

|ψnm〉 =
∞
∑

j,k,u,t=0

C nm
jkut |vjk〉 |vut〉 , (158)

where |vab〉 are Hilbert space vectors such that vab(q) = 〈q|vab〉 corresponds
to the HG mode written in k-vector space, given by the Fourier transform of
Eq. (157). The coefficients C nm

jkut are related to the pump beam and phase
matching function through

C nm
jkut =

∫∫

dqu dqiv
∗
jk(qs)v

∗
ut(qi)Φnm(qs,qi), (159)

where Φnm(qs,qi) is given by the product of the angular spectrum for a HG
pump beam and the phase matching function (see section 3). An analytical
expression for the coefficients C nm

jkut was calculated in Ref. [217], showing
that spatial parity is conserved in the x and y directions. That is, the indices
j+u (k+t) must have the same parity as the pump beam index n (m). Since
the parity of each down-converted photon is undetermined, yet the sum of
parities is well-defined, the two-photon state is entangled in parity. Thus,
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assuming that the pump beam has well-defined parity in the y direction, and
ignoring the x direction, the two-photon state can be written as

|ψ〉even =
1√
2
(|ψEE〉+ |ψOO〉) , (160)

or

|ψ〉odd =
1√
2
(|ψEO〉+ |ψOE〉) , (161)

where E and O stand for the y indices of photons 1 or 2 being even (odd)
and odd (even) numbers, respectively. If the pump beam is a HG mode, the
states |ψXY〉 (X, Y = E,O) are given by linear combinations of modes with
the same y parity. For example,

|ψEO〉 =
∑

k even, t odd

∑

j,u

C nm
jkut |vjk〉 |vut〉 , (162)

and similarly for the other states in (160) and (161). Yarnall et al. [218, 219]
have used this type of parity entanglement to violate Bell’s inequalities with
parity measurements, which we describe in detail below in section 8.7.

Using the expansion (158), the concurrence of the two-photon state can
be calculated as a function of the pump beam profile and the length of the
non-linear crystal. Numerical results reported in [146] show that in general
the entanglement increases with the order n+m of the pump beam.

8.7. Bell Non-locality

The Einstein-Podolsky-Rosen paradox showed an inconsistency between
local-realism and the completeness of quantum mechanics. In 1965, John
S. Bell considered the predictions of local realism against those of quantum
mechanics [220]. His argument, made in the context of David Bohm’s version
of the EPR paradox involving two entangled spin-1/2 systems [221], showed
a conflict between the predictions of quantum mechanics and local realistic
theories. This provided an experimentally accessible testing ground for these
theories. The Clauser-Horne-Shimony-Holt inequality [222], also derived in-
dependently by Bell [223], shows that any local realistic theory should obey

S = |E(a, b) + E(a′, b) + E(a, b′)−E(a′, b′)| ≤ 2, (163)

where −1 ≤ E(a, b) ≤ 1 is the correlation function of dichotomic measure-
ments a and b on systems A and B. For a pair of maximally-entangled spin-1

2
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particles, quantum mechanics predicts Smax = 2
√
2. This set the stage for

tests of quantum mechanics versus local realism beginning with the work of
Freedman and Clauser [224] and Aspect and collaborators [225, 226]. With
the advent of down-conversion sources, recent experiments have reached a
considerable degree of sophistication, with the objective of performing a con-
clusive loop-hole free test [48, 227, 228], and also to discard more complex
alternatives to standard quantum theory [229, 230].

An early adaptation of the Bell inequality to continuous variables was
provided by John Bell, who considered linear combinations of position and
momentum observables of the form x+αp, where α is a continuous parameter
[223]. By binning the results, for instance into non-negative and negative
values, one can translate these continuous measurements into two outcomes
and apply the Bell-CHSH inequality (163). Bell reached a striking conclusion:
quantum states with positive Wigner functions should allow for local realistic
descriptions, since in this case the Wigner function itself serves as a classical
probability distribution of the x and p variables [223]. A surprising example
is the EPR state (128), with Wigner function given by [223]

WEPR(x1, p1, x2, p2) = 2πδ(x1 − x2)δ(p1 + p2), (164)

which is non-negative everywhere. This state displays an infinite amount of
entanglement, and as such it is remarkable that it does not violate the Bell-
CHSH inequality (163). The EPR state is not physical, however it represents
the limit a−/a+ −→ 0 (and b+ = b− = 0) of the Gaussian state (117).

Despite these arguments against the use of continuous variables in this
context, it was later shown by Banaszek and Wódkiewicz [231, 232] that
the EPR state does violate the Bell-CHSH inequality when one considers
measurements of the displaced parity operator. The parity operator does
not have a well-behaved Wigner-Weyl representation, and thus expectation
values of this operator do not correspond to averages over classical probability
distributions. This point has been explored in more detail by Revzen et al.
[233]. Thus, the state of a given system alone is not enough to determine
whether it is suitable or not for a Bell-type experiment, but rather one must
also take into account the observables measured.

Extending the idea of the parity operator, it possible to define a set of
pseudo-spin operators, forming an analogy with the Pauli operators for a
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Figure 32: Asymmetric interferometer used as a parity projector. When δ1 = δ2 and the
beam splitters are 50:50, transverse modes with even parity leave the interferometer in
port 1, and odd transverse modes in port 2.

spin-1/2 system. Chen et al. have shown that the operators [234]

X =
∞
∑

n=0

|2n+ 1〉 〈2n|+ |2n〉 〈2n+ 1| (165a)

Y = i
∞
∑

n=0

|2n+ 1〉 〈2n| − |2n〉 〈2n+ 1| (165b)

Z =
∞
∑

n=0

|2n〉 〈2n| − |2n+ 1〉 〈2n+ 1| , (165c)

defined in terms of photon number Fock states |n〉, obey a SU(2) algebra.
One can recognize Z as the parity operator. These operators were originally
formulated for single-modes of the electromagnetic field, and their realization
presents considerable experimental challenges [234].

An insightful contribution was made by Abouraddy et al., who recog-
nized that the operators (165) could be constructed for the spatial degrees of
freedom of photons [218]. This is possible due to the isomorphism between
the photon number Fock states |n〉, and the spatial degrees of freedom of a
field described by a one-dimensional Hermite Gaussian mode with index n
[218]. To employ the full power of the analogy between the spatial version
of the pseudo-operators (165) and the Pauli operators, one must be able to
implement arbitrary rotations, composed of linear combinations of X,Y and
Z. In Ref. [218], the authors showed that arbitrary rotations of the “spatial
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parity”, can be manipulated through a series of linear optical components.
This allows for the use of the spatial parity of single photons as a quantum
bit in quantum information tasks [235]. -For example, Z can be implemented
by a mirror reflection or a lens system. One can discriminate between even
and odd spatial modes of a single photon by interfering the field with its mir-
ror image [236]. This can be achieved using the asymmetric Mach-Zehnder
interferometer shown in figure 32. Photons traveling through arm 1 of the
interferometer are subject to 2 mirror reflections, while photons in arm 2
are subject to 3 mirror reflections. Each reflection transforms the transverse
wave vector as (qx, qy) −→ (qx,−qy). Assuming a single-photon detection at
an exit port, the photon annihilation operators at the exit ports are related
to the input port by

a1(q) = t2eiδ1a0(qx, qy)− r2eiδ2a0(qx,−qy) (166)

a2(q) = itreiδ1a0(qx,−qy) + itreiδ2a0(qx, qy) (167)

where t and r are the transmissivity and reflectivity of the beam splitters.
δ1 and δ2 are phases due to propagation through arms 1 and 2. Assuming
|δ1 − δ2| mod 2π = 0, and t = r, an even input mode will leave the interfer-
ometer in output 2 while an odd mode will exit in output 1. The asymmetric
interferometer is thus capable of projecting onto even or odd modes, and is
the spatial parity analog to the polarizing beam splitter [218].

To perform rotations in parity space, it is necessary to imprint a variable
phase on half of the light beam. In Ref. [218] it was shown that this can be
done using two phase plates. Each plate is placed in half of the input field,
so that plate 1 covers the region x < 0 and imprints a phase exp(−iθ/2), and
plate 2 covers the region x ≥ 0 and imprints a phase exp(iθ/2). The parity
rotation depends upon the overall phase difference between the two halves of
the field.

Using a set of variable phase plates and asymmetric interferometers for
each of the down-converted fields, Yarnall et al. violated Bell’s Inequality in
spatial parity space for pump beams with different spatial parity [219].

9. Applications to quantum information

The facility with which one can produce highly-entangled states from
SPDC and manipulate the spatial characteristics of the pump and down-
converted fields allows for the investigation of a wide range of quantum in-
formation applications and phenomena. A principal advantage of the spatial
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degrees of freedom of photons, as compared to the polarization degree of
freedom, for example, is the high-dimensionality of the system. This al-
lows for the generation of entangled continuous variable states or entangled
d-dimensional qudits. Higher dimensional (D > 2) quantum systems have
been shown to allow for higher security and transmission rates in quantum
cryptography [237, 238, 239], increased security in two-party protocols such
as bit commitment [240] and coin tossing [241, 242], and more robust tests of
Bell’s inequalities [243]. In sections 7 and 8 we showed that the two-photon
quantum state produced by SPDC can be highly entangled. Furthermore,
there exist schemes for engineering the two-photon entanglement by properly
shaping the two-photon angular spectrum [16, 244, 245]. There is also a wide
array of gadgetry devised to manipulate these spatial degrees of freedom, in-
cluding lens systems [21, 168, 167, 246], holographic masks [184, 247], phase
plates [209, 210, 219] and more recently the development of spatial light mod-
ulators have opened up even more possibilities for the synthesis and control
of the spatial degrees of freedom of photons [248, 249, 250, 251].

Orbital angular momentum is a natural choice for encoding single- and en-
tangled qudits, and a number of proof of principle experiments have been per-
formed which employ these degrees of freedom. These include the demonstra-
tion of bit commitment [252] and coin tossing protocols [176] with entangled
qutrits (D = 3), manipulation of heralded qutrits [175], violation of Bell’s
inequality and entanglement concentration of entangled qutrits [173, 174],
violation of Bell’s inequality in various two-dimensional subspaces of the
infinite-dimensional OAM space [250] and quantum cryptography [253, 254].

Higher-dimensional quantum information protocols can also be imple-
mented using the linear transverse position and momentum. In this respect,
entangled qudits have been produced using D-slit apertures [20, 255], and by
binning the near and far-field detection positions [256] and quantum cryp-
tography with a 37-dimensional alphabet has been demonstrated [257].

Another notable use of spatial entanglement is the creation of multiply
entangled states, which are entangled in multiple degrees of freedom [258,
259]. In fact, pairs of photons which are hyperentangled (entangled in all
degrees of freedom) have been produced and tomographically analyzed [260].
It has been shown theoretically [261, 262, 263] and experimentally [201, 264,
265], that entanglement in an auxiliary degree of freedom can improve Bell-
state analysis of photon pairs. Barreiro, Wei and Kwiat have used auxiliary
OAM entanglement to surpass the channel capacity imposed by linear optics
in the quantum superdense coding protocol [265]. First-order transverse
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Figure 33: Multiple-slit scheme used to produce entangled qudits.

modes and polarization can be used to define single-photon logical qubits
which are invariant under azimuthal coordinate rotations [266, 267], and to
implement small-scale quantum algorithms [268].

9.1. Generation of Entangled Qudits

There are a number of ways to generate entangled qudits using the spatial
degrees of freedom of twin photons. A natural choice is using a set of trans-
verse modes with discrete quantum numbers, such as the Hermite-Gaussian
or Laguerre-Gaussian modes. A number of experiments in this direction have
been performed [173, 174, 175, 176, 252].

Another possibility is through D-slit apertures placed in each down-
converted field [255, 20]. as illustrated in Fig. 33. By focusing the pump
beam in the plane of the apertures, one can guarantee that the photons al-
ways pass through symmetrically opposite slits of their respective apertures.
In this fashion, the two-photon state immediately after the apertures can be
written as [20, 255]:

|ψ〉 = 1√
D

(D−1)/2
∑

j=(1−D)/2

exp
(

ikd2j2/2z
)

|j〉1 |−j〉2 , (168)

where d is the distance between the slits, z is the distance from crystal to
slits, k is the wave number and |j〉 are states describing the spatial profile of
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a single photon which has passed through slit j, which are given by

|j〉 =
∫

dρR(ρ− jd) |ρ〉 . (169)

Here R(ρ) are the aperture functions describing each individual slit. The
position correlation of these photons as well as the entanglement can be
confirmed by measuring in the near-field and far-field of the apertures, re-
spectively. In reference [251], it was demonstrated that different spatial qu-
dit states can be generated by sending one of the down-converted beams
through diffractive apertures with controllable transmission coefficients, pro-
duced with a spatial light modulator.

Another technique for generating spatial qudits is by simply defining a
discrete array of spatial regions. This has been realized in the single-photon
regime[257] for dimensionD = 37 and entangled-photon regime for up toD =
6 [256]. Using lens systems, it is possible to create and measure superposition
states [269].

Possible applications of two entangled qudits in quantum communication
rely on the ability of transmitting these photonic high dimension entangled
states between different communicating parties. The propagation of entan-
gled states of qubits have been subject of recent studies. Optical-fibers links
were used to send energy-time entangled qubits for receivers separated by
more than 10km [270] and a test of the Bell inequality [220] showed that
the two-photon state was still in an entangled state. Free-space distribution
of polarization entangled qubits through the atmosphere was demonstrated
for a distance of 144km [271]. The experimental free-space propagation of
two entangled four-dimensional qudits or “ququarts” produced by four-slit
apertures was reported in reference [272]. Free space propagation of the en-
tangled photons was performed on a laboratory scale. The spatial correlation
of the propagated state was observed at the image plane of two lenses and
high-fidelity with its original form was measured. Far from the image plane a
conditional interference pattern of the propagated state was measured. The
presence of the conditional interference pattern shows that the state of the
propagated ququarts is entangled [20]. Several studies of free space propaga-
tion of single and biphoton fields with OAM have been performed, and are
mentioned in more detail in section 9.2.

An important step in future use of entangled spatial qudits is the de-
velopment of quantum tomography suitable for this degree of freedom or a
method for the determination of the density matrix of the compound system.
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In references [273, 274] a technique for determination of the density operator
was developed for the case of two spatial qubits, generated with two double-
slits placed in the path of the photon pair. Measurements were performed at
the image plane and in the focal plane of a lens for different positions of the
detector in the transverse plane. This method can be used for the tomog-
raphy of two spatial qubits in a mixed state [275]. In a second method, the
interference patterns obtained at the intermediate plane between the image
and the focal plane are used for reconstruction of the quantum state of two
spatial qubits [276] and qutrits [277].

9.2. Quantum Cryptography

An interesting application for spatial qudits is quantum key distribution,
in which the increased dimensionality presents benefits not only in terms
of the information transmission rate but also the security of the protocol.
It is straightforward to generalize the well-known BB84 [278] or BBM [279]
protocols to qudits [237, 238, 239]. In this case, it is possible in principle to
send on average log2D bits per sifted qudit, while an eavesdropper employing
an intercept-resend strategy would induce a qudit error rate of ED = 1

2
D−1
D

,
which saturates at 1/2 for large D. The increased security is due to the
increased disturbance, since half the time the eavesdropper measures in the
wrong basis, and consequently sends the wrong state with a probability of
(D − 1)/D.

One can achieve the advantages mentioned above using discrete sets of
transverse modes or employing the continuous position and momentum corre-
lations present in the down-converted photons. For discrete modes, the quan-
tum cryptography protocol and theoretical security analysis should be nearly
identical to the general cases of qudits covered in Refs. [237, 238]. Theoret-
ical proposals and experimental investigations in this direction have focused
primarily on the orbital angular momentum degree of freedom [280, 253, 254].

The conjugate position and momentum correlations provide an interest-
ing scenario from a practical point of view and in addition to the advantages
mentioned above, have been shown to present particular security features.
Figure 34 shows an illustration of the main idea. Alice and Bob receive spa-
tially entangled photon pairs. Independently, they choose randomly between
two conjugate bases: the near field variable ρ and far-field variable q. The
random selection can be performed passively using a 50:50 beam splitter.
Using optical lens systems (represented by lenses NF and FF ), they map
the near and far-field distributions onto their respective detection planes.
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Figure 34: Quantum key distribution using transverse position and momentum of entan-
gled photons. Photons are sent to Alice and Bob’s input planes via optical transmission
systems. The random basis selection can be performed using beam splitters (BS).

Using an array of single-photon detectors, they register the detection posi-
tion, and thus infer the variable ρ or q. Several experimental investigations
of this scheme have been performed in the case of entangled photons [281]
and single photons [257].

A first motivation for the study of spatial QKD is the increased infor-
mation transmission rate per photon pair. In the case that Alice and Bob
measure in the ρ basis, the secret key rate ∆Iρ is given by the difference
between Alice-Bob and Alice-Eve mutual information: [282, 283]

∆Iρ = I(ρA|ρB)− I(ρA, E), (170)

where the mutual information is given by

I(x1,x2) = H(x1)−H (x1|x2) , (171)

and

H(x) = −
∫

dxP (x) lnP (x), (172)

H(x1|x2) = −
∫∫

dx1dx2P (x1,x2) lnP (x1|x2), (173)
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are the entropy and conditional entropy respectively, for a continuous dis-
tribution [213, 284]. P (x) is the probability distribution for x, P (x1,x2) is
the joint probability distribution for x1,x2 and P (x1|x2) is the conditional
probability distribution for x1 conditioned on measurement of x2. A simi-
lar expression can be written for the secret key rate ∆Iq corresponding to q

measurements. Here E stands for the Eve’s measurement, and we are con-
sidering the case of forward reconciliation [282]. Using the above equations,
the key rate can be put in the form

∆Iρ = H(ρA|ρB)−H(ρA|E), (174)

and similarly for ∆Iq. For individual attacks, one can consider that Alice,
Bob and Eve share a pure state [282]. Thus, upon measurement, Bob and
Eve prepare Alice’s photon in some state, which must satisfy the entropic
uncertainty relation [285]:

H(ρA|E) +H(qA|qB) ≥ ln πe. (175)

To establish a secret key requires ∆I ≥ 0. This leads to [282]

∆I ≥ ln πe−H(qA|qB)−H(ρA|ρB) ≥ 0. (176)

For any distribution with variance σ2, the entropy satisfies H ≤ ln
√
2πeσ2

[213, 284]. Thus, the key rate can be bounded by [283]

∆I ≥ − ln 2∆(qA|qB)∆(ρA|ρB), (177)

where ∆(x|y) is the variance of the distribution of x given a measurement
of y.

This condition is fulfilled when ∆(qA|qB)∆(ρA|ρB) ≤ 1/2, which is equiv-
alent to the EPR variance criterion (112). For photons produced by SPDC,
the EPR criteria depends on the characteristics of the pump beam and the
length of the non-linear crystal L.

Implementation of QKD requires preservation of quantum information
over long transmission distances, and as such is a technical challenge. QKD
with spatial variables should be most aptly suited to a free-space transmis-
sion, as opposed to optical fibers, due to the multi-mode character of the
down-converted fields. There are at least two main factors which limit the
distance at which spatial QKD could be a viable endeavor. The first are fluc-
tuations in the index of refraction along the free-space transmission path.
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This causes local phase fluctuations which distort the single-photon fields,
increasing the error rate. Atmospheric turbulence causes fluctuations in the
index of refraction which transform an initial field ψ(ρ) −→ exp[iδ(ρ)]ψ(ρ),
where the position-dependent phase δ(ρ) describes the phase fluctuations in
the wave function. The transmission of spatial quantum information un-
der these conditions has been considered in Refs. [286, 287] in the case of
Laguerre-Gaussian modes and in Ref. [269] for single-photon spatial QKD.
Assuming that the phase fluctuations are isotropic and a random Gaussian
process, the induced error rate is dependent upon the initial field and the
length scale of the phase fluctuations known as the Fried parameter [288, 286].
Typical values of the Fried parameter are 10− 60cm [289]. For realistic ex-
perimental parameters, it was shown in Ref. [269] that spatial QKD should
be feasible up to a few kilometers. It is important to note that the recent
progress in the field of classical optical communication has shown that it
should be possible to correct the effects of turbulence in real time with adap-
tive optics and a reference beam [289, 290, 291]. A recent experiment by Pors
et al. has shown that OAM entanglement should resist typical atmospheric
turbulence for up to a few kilometers [292].

The second limiting factor is the presence of losses due to absorption,
which reduces the transmission rate as well as the signal to noise ratio, which
Eve can exploit to her advantage. The noise present in spatial QKD comes
from spurious ambient photons and detector dark counts. Following Zhang
et al. [283], three types of events can contribute to the coincidence count
rate, occurring with probabilities P (spdc,spdc), P (noise, spdc) or P (spdc,
noise), and P (noise, noise). Focusing only on dark counts, they show that
for reasonable experimental parameters, one can tolerate losses of a few dB
and still satisfy Eq. (177). This level of loss corresponds to free-space trans-
mission distances on the order of a few km. However, it is important to note
that the left-side of inequality (177) is an upper-bound which is saturated
only when Alice and Bob’s coincidence distributions are Gaussian. However,
assuming a constant dark count rate for each detector, the coincidence counts
in the presence of loss will be composed of a Gaussian distribution of cor-
related photons, combined with a constant background count, resulting in a
non-Gaussian distribution. The interesting eavesdropping strategy for Eve
is to perform measurements so that she can mask her disturbance with the
counts due to noise, so that, in this case, her disturbance should appear as
a constant background noise. This can be achieved with a simple intercept
resend strategy, so that when she measures in the same basis as Alice and
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Figure 35: Illustration of teleportation of the spatial degrees of freedom of a single pho-
ton. A nonlinear crystal is used to perform second harmonic generation(SHG). Bob’s
momentum shift can be performed using spatial light modulation (SLM).

Bob, she goes undetected. Zhang et al. [283] have shown that consider-
ing the non-Gaussian nature of the total coincidence distribution allows one
to increase the allowable losses by at least a factor of ten, giving a secure
transmission distance of several tens of kilometers. Thus, in a realistic sce-
nario, the noise due to dark counts can increase the allowable losses, while
maintaining security of the protocol.

9.3. Quantum Teleportation

Quantum teleportation is a method to transfer quantum information be-
tween distant locations, without direct transmission of the physical system
containing the information. The original quantum teleportation proposal
[293] considered discrete D-level(D = 2) systems. Further proposals general-
ized it to continuous variables [294, 295, 296]. Quantum teleportation plays
an important role in quantum information processing since it is the basis
for quantum repeaters [297], non-local interactions between light and matter
[298], as well as linear optics quantum computing [299].

A quantum teleportation protocol which uses transverse spatial properties
of intense light fields has also been proposed [300, 301], and a teleportation
procedure which can transmit the angular spectrum of a single-photon has
been proposed in Ref. [302].

We will describe the teleportation procedure of Ref. [302] in more detail.
Figure 35 illustrates the main idea. Alice is in possession of a single photon
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described by the quantum state

|φ〉1 =
∫

dq u(q) |q〉1 , (178)

where u(q) is the normalized angular spectrum of the field in the z = 0 plane.
She would like to send the angular spectrum u(q) of the single-photon field
to Bob. To do this, Alice and Bob share a pair of spatially entangled photons
described by the quantum state

|ψAB〉 ∝
∫ ∫

dqidqsv(qi + qs)γ(qi − qs), (179)

where v is the angular spectrum of the laser and γ is the phase matching
function defined in Eq. (59). Assuming that Alice is in possession of fields 1
and 2 and Bob of field 3, she follows the usual recipe for quantum teleporta-
tion [293]. First, it is necessary for Alice to perform a joint measurement on
her fields, and sends the measurement result to Bob using classical commu-
nication. Depending on the outcome, Bob performs a unitary operation on
his field, and then recovers the initial quantum state of field 1.

Alice can perform the joint measurement on the spatial degrees of freedom
of photons 1 and 2 by injecting then into a nonlinear up-conversion crystal cut
for second harmonic generation (SHG) or sum frequency generation. The full
multimode Hamiltonian operator for SHG has been described in Ref. [303],
and in the thin-crystal limit can be written as

H ∝
∫∫∫

dq dq′ dq′′ δ2(q + q′ − q′′)a1(q)a2(q
′)a†4(q

′′) +H.c.. (180)

Index 4 denotes the second-harmonic field, which is assumed to be initially
in the vacuum state. After the nonlinear interaction, Alice measures the
transverse wave vector q′′ of the up-converted field, and sends the measure-
ment result to Bob. The detection position is sent to Bob by a classical
communication channel, as shown in figure 35. The paraxial field operator
which describes photodetection at position ρD in the far-field is given by Eq.
(108). Applying this operator to the state at the output of the beam splitter,
detection of a photon at the position ρD selects the state

|ψf 〉 ∝
∫∫

dq dq′ u(q)Φ

(

κ

f
ρD − q, q′

)

|q′〉3 , (181)
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where all modes in the vacuum state have been excluded, κ is the wave
number of the SHG field, f is the focal length of the lens, and Φ is the
two-photon angular spectrum defined in Eq. (57).

In the limiting case of an EPR-like state, in which the angular spectrum of
the SPDC pump field is a plane wave, v(q) ∝ δ(q), and the phase matching
function is very broad, so that it is reasonable to approximate γ(q) ∝ 1.
This is the thin crystal approximation described in section 3.4. Under these
conditions the state teleported to Bob (181) is

∣

∣ψEPR
f

〉

=

∫

dq u

(

q +
κ

f
ρD

)

|q〉3 , (182)

which is equivalent to the original state (178) except for a translation in q.
Applying a momentum translation:

P(α) |q〉 = |q +α〉 , (183)

Bob will then have P(κρD/f)
∣

∣ψEPR
f

〉

= |φ〉3, which corresponds to perfect
teleportation of the initial state |φ〉1. The momentum translation can be
implemented using a spatial light modulator.

In a more general case where γ cannot be approximated by unity, the
final state after momentum translation is

|ψf 〉 = C

∫∫

dq dq′u(q)v(q′ − q)γ

(

2
κ

f
ρD − q′ − q

)

|q′〉3 , (184)

where C is a normalization constant. Assuming that Alice detects a photon
in beam 4, the fidelity measures the success of the teleportation protocol
[202], and is defined as F = |〈φ|ψf〉|. The fidelity depends on the format of
the angular spectrum v(q) and phase matching function γ(q), respectively.

This teleportation procedure has not yet been realized experimentally,
and prevents several serious technical challenges. The principal obstacle is
the low up-conversion efficiency for single-photon fields. New materials, such
as periodically-poled crystals [304] or photonic crystal structures may im-
prove these conversion rates. In spite of the low conversion efficiency, a
similar experiment using pairs of non-linear crystals to implement a com-
plete Bell-state measurement in the polarization degree of freedom has been
performed [305].

The same scheme can be used to swap entanglement between spatially
entangled photons pairs, which would be necessary for long-distance spatial
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quantum communication using a large portion of the available Hilbert space.
Another application of this teleportation procedure is the frequency tuning
of one photon of a spatially entangled pair. This can be done by replacing
photon 1 with an intense field, increasing the up-conversion rate. Frequency
tuning of entangled photons has been realized using a periodically-poled crys-
tal [304].

10. Conclusion

Parametric down-conversion has definitely played a very important role
in the development of Quantum Optics and more recently Quantum Infor-
mation. This review focused on the spatial degrees of freedom of the down-
converted fields, which have been an important ingredient. The quantum
correlations between down-converted photons have allowed for the produc-
tion of quantum states of light, leading to the observation of non-classical
effects and the study of entangled states and their application in Quantum
Information tasks. Initially, the concept of spatial coherence in Optics was
generalized to include two-photon coherence. Counter-intuitive aspects of
the quantum world have been experimentally observed with the transverse
spatial degrees of freedom, such as the measurement of the De Broglie wave-
length of a two-photon wave packet, the anti-bunching of photon pairs, condi-
tional two-photon interference patterns, quantum erasure, ghost images and
ghost interference. These investigations have led to a considerable concep-
tual improvement and a real advance in the knowledge of the quantum world
through the study of the spatial correlations in parametric down-conversion.
Applications immediately arose from these new concepts, such as quantum
lithography and metrology, quantum cryptography schemes, quantum tele-
portation and spatial qudits for quantum computation.

This field is still very active and contributions in the fundamental and ap-
plied domains appear regularly in the literature. Among the most promising
research in the field, we would like to mention the study of the transverse cor-
relations as a resource for quantum information in the domain of continuous
variables and high dimension discrete states. Transverse spatial variables are
natural entangled continuous variables that can be prepared in a vast range
of entangled states whose properties and applications are just beginning to
be explored.
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[20] L. Neves, G. Lima, J. G. A. Gómez, C. H. Monken, C. Saavedra, , and
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[115] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).

[116] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84,
2722 (2000).

[117] S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys. Rev. Lett.
88, 120401 (2002).

[118] M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60, 2731 (1988).

[119] M. D. Reid, Phys. Rev. A 40, 913 (1989).

[120] S. L. Braunstein and P. van Loock, Reviews of Modern Physics 77, 513
(2005).

[121] G. Adesso and F. Illuminati, J. Phys. A: Math. Theor. 40, 7821 (2007).

[122] P. Hyllus and J. Eisert, New J. Phys. 8, 51 (2006).

[123] V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. A
67, 022320 (2003).

[124] R. Simon, Phys. Rev. Lett. 84, 2726 (2000).

[125] S. Braunstein and A. Mann, Phys. Rev. A 51, R1727 (1995).

[126] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[127] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1
(1996).

[128] H. Nha and M. S. Zubairy, Phys. Rev. Lett. 101, 130402 (2008).

106



[129] E. Shchukin and W. Vogel, Phys. Rev. Lett. 95, 230502 (2005).

[130] R. M. Gomes, A. Salles, F. Toscano, P. H. S. Ribeiro, and S. P. Wal-
born, Proc. Nat. Acad. Sci. 106, 21517 (2009).

[131] G. S. Agarwal and A. Biswas, New J. Phys. 7, 211 (2005).

[132] M. Hillery and M. S. Zubairy, Physical Review Letters 96, 050503
(2006).

[133] M. Hillery and M. S. Zubairy, Phys. Rev. A 74, 032333 (2006).

[134] X.-y. Chen, Phys. Rev. A 76, 022309 (2007).
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