
TRANSPORT

2009

ISSN 1648-4142 print / ISSN 1648-3480 online DOI: 10.3846/1648-4142.2009.24.274-282
www.transport.vgtu.lt

24(4): 274–282

A TWO-PHASE METHOD FOR THE CAPACITATED FACILITY 
PROBLEM OF COMPACT CUSTOMER SUB-SETS

Jaroslav Janáček1, Lýdia Gábrišová2

1 Dept of Transportation Networks, University of Žilina, Univerzitná 1, 01026 Žilina, Slovak Republic
2 Dept of Mathematical Methods, University of Žilina, Univerzitná 1, 01026 Žilina, Slovak Republic

E-mails: 1jaroslav.janacek@fri.uniza.sk; 2lydia.gabrisova@fri.uniza.sk

Received 22 November 2008; accepted 3 November 2009

Abstract. Th e cost optimal design of the majority of distribution and servicing systems consists of decisions on a 

number and on the locations of facilities from which customers’ demands are satisfi ed; however, there are severe diffi  -

culties in solving exact procedures because the underlying mathematical model is NP-hard. Th ese decisions should re-

spect some additional conditions as a limited capacity of located facilities. Th e objective is to minimize the overall costs 

of the system and to satisfy all customers’ demands. In this paper, we enrich the set of constraints by a new requirement 

called sub-pool compactness. Th is property of customer subset infl uences the quality of vehicle routes s  ubsequently 

formed in a sub-set of customers served by the same facility. Th is paper formulates the problem of the enriched ca-

pacitated facility location considering compactness condition, formalizes and studies the property of compactness and 

suggests the compound method solving this problem.

Keywords: facility, customer demands, capacitated location problem, Lagrangean relaxation, customer sub-set 

compactness.

1. Introduction

Th e mathematical programming approach to the ca-

pacitated facility location problem originates from the 

assumption that goods distribution is performed from a 

primary source via warehouses or other places of goods 

transhipment to the particular customers (Jovanović 

et  al. 2009; Liu et  al. 2009; Baublys 2007, 2008 and 

2009; Brauers and Zavadskas 2008; Bagdonienė 2008; 

Lingaitienė 2008; Afandizadeh and Moayedfar 2008; 

Pocklad 2007; Ziari et  al. 2007; Kabashkin 2007; 

Chakroborty and Wivedi 2002). A number and positions 

of warehouses (facilities) should be determined to make 

the total yearly cost of maintaining the located facilities 

and the yearly cost of customer demand satisfaction are 

minimal.

Th e problem is described by a fi nite set I of possible 

facility locations and a fi nite set J of customers whose 

demands should be satisfi ed. Th e associated costs and 

charges are connected to the particular elements of these 

sets or pairs of the set elements.

Th e fi xed charge for the location of a facility at pos-

sible location i∈I is denoted by fi and includes all costs 

connected with keeping this facility at the location for 

one year. Th is charge does not include items dependent 
on the amount of demands satisfi ed via this location.

Th e cost of j-th customer yearly demand satisfac-
tion via the facility located at the place i is denoted by 
the coeffi  cient cij that includes all transportation costs of 
goods transport from the primary source r to the facility 
location i and from this location to the customer j.

It is presumed that a facility may be placed only at 
some place from the above-introduced fi nite set I of pos-
sible locations. To model the decision on placing or not 
placing a facility at the location i, the variable yi ∈ {0,1} 
is introduced for each location i from the set I.

Let us assume that each customer j ∈ J should be 
supplied with a yearly amount bj of goods. To be able 
to express that a customer is assigned to a given facility 
location and that s/he is supplied via this location, an-
other set of zero-one variables is established. Th e variable 
zij ∈ {0,1} models the decision on assigning or not assign-
ing the customer j to the facility location i. Zero-one vari-
ables yi and zij, will describe each solution of the follow-
ing integer-programming problem. Th is zero-one range 
of decision variables is assumed in each model within 
this paper and that is why this associated obligatory con-
straint is mostly not repeated in the following models.



Let us denote by ai the capacity of a facility located 
at i; then, the complete model of the cost minimal ca-
pacitated facility location problem can be formulated as 
follows:

Minimize  
∈ ∈ ∈

+∑ ∑ ∑i i ij ij
i I i I j J

f y c z ,                     (1)

Subject to 
∈

=∑ 1ij
i I

z  for j∈ J,                     (2)

 ≤ij iz y  for i∈ I, j∈ J,             (3)

 
∈

≤∑ j ij i i
j J

b z a y  for i∈ I,                      (4)

 { }∈, 0,1i ijy z  for i∈ I, j∈ J.               (5)

In this integer programming model, the constraints 
(2) ensure that each customer demand must be satisfi ed 
from exactly one facility location and the constraints 
(3) force out the placement of a facility at the location 
i whenever any customer is assigned to this facility lo-
cation. Th e constraints (4) ensure that the total supply 
provided via the facility location i does not exceed the 
given capacity ai. Having omitted or relaxed the con-
straints (4), the problem (1)−(3), (5) is known as the 
uncapacitated facility location problem and can be eff ec-
tively solved making the use of implementing the branch 
and bound method, see works by Erlenkotter (1978) and 
Körkel (1989). Th e computational behaviour of the tech-
nique was broadly examined and presented by Janáček 
and Buzna (2007 and 2008). It was shown that this ap-
proach was able to manage real-world problems. Th e ca-
pacitated problem (1)−(5) loses the integrality property 
of variables zij due to the capacity constraints and thus 
constitutes a very hard problem of exact solving when a 
real-sized instance of the problem is considered.

2. Compactness of Sub-Sets

Let customers be located at the nodes of the transporta-
tion network. Considering the partitioning of custom-
ers into a system of disjoint fi nite sub-sets, a question 
emerges: What property of the fi nite sub-set may be de-
noted as compactness? Th is term must be obviously taken 
relatively to the neighbouring sub-sets. One case that 
can be intuitively taken as incompactness is depicted 
in Fig. 1, where the black nodes of the graph represent 
the customers of one sub-set and the white nodes cor-
responds with the customers of the second sub-set.

Fig. 2 depicts the partitioning of the node set that 
could be denoted as compact. Th is intuitively defi ned 
property plays an important role in the subsequent 
service of customers located at the network nodes. Th e 
service of a sub-set is usually performed by the routes 
of vehicles starting and fi nishing at a depot associated 
with the serviced sub-set. Th e shapes of the serviced 
sub-sets considerably infl uence the eff ectiveness of ve-
hicle routing algorithms used for the construction of 
vehicle routes, as shown by Matis (2008). As we shall 
deal mostly with the cases where each of the sub-sets is 
associated with one unique node (centre, median etc.), 
we can defi ne compactness relative to these unique seed 
nodes, as in Janáček (2008).

Let us consider that partitioning is given by a sys-
tem of sub-sets Si, i ∈ I1, where the set I1 ⊆ I includes 
the locations of facilities in an optimal solution of the 
capacitated location problem. Let each sub-set Si is rep-
resented by a seed node n(i). Let dkj denote the distance 
between the nodes k and j of the underlying network.

We say that each sub-set of system Si, i ∈ I1 is com-
pact; if the following condition holds for each pair <Si, 
Sk> of sub-sets and for each pair <j, s> of nodes, where 
j ∈ Si and s ∈ Sk (see Fig. 3):

djn(i)+dsn(k) ≤ djn(k)+dsn(i).  (6)

An algorithm that can verify the compactness of all 
the sub-sets of the given partitioning Si , i ∈ I1 of the set 
J of n customers can be written as follows:

for i:=1 to ⎜I1⎜-1 do

  for k:=i+1 to |I1| do

    for j ∈ Si do

      for s ∈ Sk do

        if djn(i)+ dsn(k) > djn(k)+ dsn(i) then begin

          message (‘Partitioning is incompact’);

          break;

       end;

Fig. 1. Incompact partitioning

Fig. 2. Compact partitioning

Fig. 3. Illustration of the left -hand side (in the 1-th graph) 

and right-hand side (in the 2-th graph) of inequality (6)
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For n customers and m= ⎜I1⎜the sub-sets and a uni-
form distribution of customers over the sub-sets, this 
process of verifi cation needs O (n4.m2) operations, i.e. 
the evaluations of the logical expression.

Now, a question How to reduce computational eff ort 
making the use of the special properties of the sub-sets? 
arises.

Th eorem 1 (Th e separation theorem)

Let
max{djn(i): j∈Si }+max{dsn(k): s∈Sk }≤ dn(i)n(k), (7)

then inequality djn(i)+dsn(k) ≤ djn(k)+dsn(i) holds for each 
j ∈ Si and s ∈ Sk..

Proof:
By triangle inequality, we have dn(i)n(k) ≤ djn(i) + 

djn(k) and dn(i)n(k) ≤ dsn(i) + dsn(k). From the assumption 
of the theorem, it follows that djn(i) + dsn(k) ≤ dn(i)n(k).

Having multiplied this inequality by 2, we get
2.djn(i) + 2.dsn(k) ≤ 2 dn(i)n(k).

Th e right-hand- side is less than djn(i)+ djn(k)+ djn(i)+ 
dsn(k).

Th us, djn(i)+dsn(k) ≤ djn(k)+dsn(i).

Corollary: Compactness need not be verifi ed for 
pairs <i, k>, for which (7) holds.

Th eorem 2

Th e sub-sets formed by all customers assigned to 
the same facility location in an optimal solution of the 
uncapacitated location problem (1)−(3), (5) are compact 
under an assumption that the associated cost cij of cus-
tomer demand satisfaction is computed in accordance to 
the formula cij=(e1dri+e0dij+gi) bj, where:

• e1, e0 denote the unit costs of demand for one 
unit of transport along with a unit of distance,

• gi denotes the cost of a transhipment unit,
• dri denotes the distance between the primary 

source r and the transhipment location i,
• dij denotes the distance between the tranship-

ment location i and the customer j,
• bj denotes demand for the customer j.
Th e coeffi  cients e1, e0 , bj are positive real numbers.

Proof:
Let us consider that an optimal solution <y*, z*> 

of the uncapacitated location problem (1)−(3), (5) has 
been found.

Th e individual sub-sets are formed for each occu-
pied location i, for which yi

*=1.

Th e sub-set Si is formed by those customers j∈J, for 
which zij

*=1 holds.

It is obvious that cij ≤ ckj follows from zij
*
 =1 for 

each k∈I with yk
*=1.

Let us consider an arbitrary pair i, k of locations, 
for which yi

*=1 and yk
*=1 hold.

Let us take an arbitrary pair of customers j, s, for 
which zij

*
 =1 and zks

*
 =1, thus cij≤ ckj and cks≤ cis.

Aft er substitution, we obtain:
(e1dri+e0dij+gi) bj ≤ (e1drk+e0dkj+gk) bj and

(e1drk+e0dks+gk ) bs ≤ (e1dri+e0dis+gi )bs.

Th ese two inequalities can be rewritten as
e1dri+e0dij+gi ≤ e1drk+e0dkj+gk and

e1drk+e0dks+gk ≤ e1dri+e0dis+gi.

Th e summation of these inequalities gives
e1dri+e0dij+ e1drk+e0dks+gk+

gi ≤ e1drk+e0dkj+ e1dri+e0dis+gi+ gk

and consequently dij +dks ≤ dkj+ dis.

Th is proves the compactness of partitioning in-
duced by the optimal solution <y*,z*>.

3. Lagrangean Relaxation

Th e Lagrangean relaxation of the problem (1)−(5) con-
sidered in this case consists of removing constraints (4) 
from the model and of embedding a measure of their 
dissatisfaction into an objective function, see work by 
Beasley (1993). Th e measure of capacity constraint dis-
satisfaction is calculated as the diff erence between ca-
pacity and demand modelled by an expression on the 
left -hand side of capacity constraint. Th is overload of 
facility is weighed by the nonnegative weight called the 
Lagrangean multiplier representing a penalty paid for 
breaking constraints by one unit of capacity.

Having denoted ui, the Lagrangean multiplier of 
capacity constraint for i, we can transform the objective 
function (1) to the form:

∈ ∈ ∈ ∈ ∈
+ + −∑ ∑ ∑ ∑ ∑( )i i ij ij i j ij i i

i I i I j J i I j J

f y c z u b z a y =

∈ ∈ ∈
− + +∑ ∑ ∑( ) ( )i i i i ij j i ij

i I i I j J

f a u y c b u z .            (8)

If all Lagrangean multipliers in this objective func-
tion are fi xed as real nonnegative values, then the prob-
lem of minimizing (8) subject to (2), (3), (5) takes a 
form of the uncapacitated facility location problem.

An optimal solution to this relaxed problem pro-
vides us with a lower bound of the optimal solution and 
with an infeasible solution of the original problem. Th is 
infeasibility breaks only capacity constraints.

Nevertheless, this relaxation makes the model too 
loose and results in a bad lower bound. Th is defect can 
be partially removed introducing one strengthening con-
straint derived from the system of capacity constraints. It 
is obvious that at least such a number of facilities must 
be located to cover all customer demands. If a = max 
{ai  : i ∈ I} and B is the sum of all customer demands, then 
the minimal number p of the necessary located facili-
ties is p = B / a and the strengthening constraint can be 
constructed as:

∈
≥∑ i

i I

y p . (9)

To keep the form of the uncapacitated location 
problem, this constraint can be also relaxed as the other 
capacity constraints using nonnegative Lagrangean mul-
tiplier v (Janáček and Buzna 2008). Aft er this reformula-
tion we get:
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Minimize

    ∈ ∈ ∈
− − + + +∑ ∑ ∑( ) ( )i i i i ij j i ij

i I i I j J

f a u v y c b u z pv  (10)

Subject to
∈

=∑ 1ij
i I

z  for j ∈ J                       (11)

  ≤ij iz y  for i ∈ I, j∈ J                (12)

  { }∈, 0,1i ijy z  for i ∈ I, j∈ J                 (13)

To obtain a solution meeting the strengthening 
constraint, the problem (10)–(13) is repeatedly solved 
for the fi xed values of Lagrangean multipliers ui and for 
the changing values of the multiplier v. To determine 
such value of v, for which the constraint (9) is satisfi ed 
as equality, the dichotomy scheme is used.

It is true that this algorithm does not ensure con-
straint satisfaction (9) in general; however, we did not 
meet any real instance of the solved problem in which 
the algorithm failed.

We start this process with determining the lower 
and upper bound of the sought value v*. It is obvious 
that if the value of v increases, a number of located fa-
cilities drop to one.

Th e following sub-section shows how a suitable vec-
tor u of multipliers can be found for the given value v*.

3.1. Sub-gradient Method

Th e sub-gradient method used in our approach was 
designed to maximize a lower bound of the objective 
function value of the optimal solution of the original 
capacitated facility location problem, see Janáček and 
Gábrišová (2006). The method improves the lower 
bound by the steps in which the values of Lagrangean 
multipliers ui for each i∈I are adjusted. During this it-
erative process, the overloads of facilities with dissatis-
fi ed capacity constraints are penalized by the higher val-
ues of the associated Lagrangean multipliers, and hence 
the algorithm is forced to minimize the overloads. Th is 
process may lead either to complete capacity constraint 
satisfaction or, what is a more frequent case, to a slightly 
infeasible solution.

Th e sub-gradient method maximizes function F(u) 
over all vector u = <u1, u2, ..., u⏐I⏐>, the components of 
which take arbitrary non-negative real values. Th e value 
of function F(u) for the fi xed values of ui, i ∈ I is defi ned 
as a minimal value of the expression (8) subject to con-
straints (9), (11), (12) and (13) and the assumption that 
variables yi and zij take either the value of 1 or 0.

Th e problem of minimizing (8) subject to (9), 
(11), (12) and (13) is solved by the customized branch 
and bound algorithm applied on relaxation formulated 
as minimize (10) subject to (11), (12) and (13) for the 
fi xed value of Lagrangean multiplier v. Th e suitable value 
of multiplier v is determined using the dichotomy al-
gorithm repeating the branch and bound algorithm for 
various values of v and searches for such a value, for 
which the associated solution fulfi ls constraint (9) as 
equality.

Th e procedure minimizing F(u) over a non-nega-
tive part of the Euclidean space of Lagrangean multipli-
ers ui, i∈I, starts from the initial point u0 which is usu-

ally the zero vector. Th e procedure subsequently forms a 
sequence of vectors u0, u1, u2 ,..., where F(u0) < F(u1) < 
F(u2) < .....

A move from the current point uk to the next point 
uk+1 is made along the direction, in which the function 
increases in the neighbourhood of the point uk. Th e 
steepest increase in F(u) in the neighbourhood of the 
point uk is realized along the gradient of this function 
at the point uk. Th e components of the gradient can be 
computed as the values of the partial derivatives of (10) 
by individual multipliers ui with a consequent substitu-
tion of values ui

k. Hence, the i-th component takes the 
value of the associated located facility overload.

To follow the direction of the gradient, the move 
should be performed in accordance to the equality:

+ = + α1 /k ku u grad grad ,

where i-th component of grad is computed as 

∈
= −∑i j ij i i

j J

grad b z a y .

Unfortunately, if this formula is applied, the re-
quirement for the non-negativity of multipliers may be 
broken. Th at is why the following formula is used in the 
procedure:

+ = + α1 max{ , . / }k ku 0 u grad grad .

Th erefore, the move is not performed exactly along 
the gradient but along the direction of the sub-gradient. 
Th e length of the step is given by parameter α, the value 
of which is chosen from interval <αmin ,αmax>. Aft er 
each step, the values of F(uk) and F(uk+1) are compared, 
and if F(uk) ≥ F(uk+1) holds, then return to uk is done 
and the move is repeated with a lower value of α. Th e 
process terminates if parameter α reaches the value of 
αmin or if resulting improvement on the last step is less 
than the given value ε.

3.2. Sub-Set Compactness in the Obtained Solution

Th eorem 3

Partitioning created by the sub-sets formed by all cus-
tomers assigned to one facility in an optimal solution 
of the Lagrangean relaxation of the capacitated facility 
location problem is compact for arbitrary non-negative 
Lagrangean multipliers under the assumption that as-
sociated costs cij are computed in accordance to the for-
mula cij=(e1dri+e0dij+gi )bj.

Proof:

Let <y*,z*> denote an optimal solution of the re-
laxed problem (10)−(13).

Let us consider an arbitrary pair i, k of locations, 
for which yi

*=1 and yk
*=1 hold. Let us have an arbitrary 

pair of customers j, s, for which zij
*=1 and zks

*=1 hold.

From the optimality of the solution, it follows that
cij+uibj ≤ ckj+ukbj and cks+ukbs ≤ cis+uibs.

Aft er substitution for cij, we obtain
(e1dri+e0dij+gi)bj+uibj ≤ (e1drk+e0dkj+gk)bj+ukbj

and

(e1drk+e0dks+gk)bs+ukbs ≤ (e1dri+e0dis+gi)bs+uibs.
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Th ese two inequalities can be rewritten as
e1dri+e0dij+gi+ui ≤ e1drk+e0dkj+gk+uk and

e1drk+e0dks+gk+uk ≤ e1dri+e0dis+gi+ui.

Th e summation of the inequalities gives
e1dri+e0dij+e1drk+e0dks+gk+uk+gi+ui ≤ e1drk+

e0dkj+e1dri+e0dis+gi+ui+gk+uk, that implies

dij +dks ≤ dkj+ dis.

We have proved that an optimal solution of the 
relaxed problem (10) − (13) satisfies the condition 
of compactness but it need not satisfy relaxed capac-
ity constraints. Th is defect can be partly removed us-
ing various techniques based on multiplier adjustment. 
Nevertheless, these techniques have a limited ability to 
improve solution infeasibility and fail in obtaining a 
feasible solution. A classical approach to decreasing this 
infeasibility is based on the use of some exchange heu-
ristic moving surplus customers from their original sub-
set to another one. Th is classical approach is little used 
in our case due to the demanded compactness property 
of the sub-sets. Th erefore, we have studied the property 
of compactness in a more detailed way. Based on stud-
ies, we have suggested a special exchange heuristic con-
siderably improving the infeasibility of the solution and 
preserving the compactness of the sub-sets.

4. Reformulating the Defi nition 
of Partition Compactness

Let us remind the original defi nition and consider that 
partitioning is given by a system of sub-sets Si, i ∈ I1 
where each sub-set Si is represented by a seed node n(i).

Let dkj denote the distance between nodes k and j 
of the underlying network. We accept that each sub-set 
of the system Si, i ∈ I1 is compact if the following condi-
tion holds for each pair <Si, Sk> of sub-sets and for each 
pair <j, s> of nodes, where j ∈ Si and s ∈ Sk: djn(i)+dsn(k) 
≤ djn(k)+dsn(i).

Let us introduce the following denotations:
vik (x) = dxn(k) − dxn(i) and vik = min { vik (x): x ∈ Si } 

for i, k ∈ {1,…,m }, m = ⏐I1⏐.

Th eorem 4

Th e defi nition of original partitioning compactness 
can be now expressed as follows: partition S1,…,Sm of 
node set N with seeds n(1),…,n(m) is called to be com-
pact if for each pair <i, k> from set {1,…,m}, ≠i k  the 
following inequality holds: − vik ≤ vki .

Proof:
Inequality − vik ≤ vki can be expressed as:
− min {dxn(k) − dxn(i):x∈ Si} ≤ min {dyn(i) − 

dyn(k):y∈ Sk}

or

max {dxn(i) − dxn(k):x∈ Si} ≤ min {dyn(i) − 

dyn(k):y∈ Sk}.

Th is is equivalent to dxn(i) − dxn(k) ≤ dyn(i) − dyn(k) for 
each x ∈ Si and y ∈ Sk.

Th eorem 5

Let us assume that a partition S1,…,Sm of node set 
N with seeds n(1),…,n(m) is compact.

Let node x is a node from cluster Si.
Th en the necessary and suffi  cient condition of pre-

serving compactness when moving x from Si to Sk is:
a) vik (x) = vik

b) − min { vkj (x), vkj } ≤ vjk , or equivalently
vjk (x) ≤ vjk for j = 1,…,m, ≠ ,j i k .

Proof:
Let us prove the necessity of a) contradiction. Let 

us assume that vik (x) > vik.

Having moved x from Si to Sk, we obtain 

= ∪ { }k kS S x , = − { }i iS S x , vik = vik and vki = 

min { vki (x), vki } = min { − vik (x), vki } = − vik (x).

Now, it is obvious that vki < − vik, what leads to 
contradiction with compactness condition − vik ≤ vki for 
andi kS S .

Let us prove the necessity (b) now.

Let us assume that the condition (b) is not satisfi ed 
with some particular j, i.e. − min { vkj (x), vkj } > vjk.

By moving the node x from Si to Sk, we obtain
=j jS S  and = ∪ { }k kS S x  with vjk = vjk and vkj =

min {vkj (x), vkj }.

It can be seen that vkj ≥ vjk, which is in contradic-
tion with compactness condition.

If conditions a) and b) are satisfi ed for given x, i, 
k and for all ≠ ,j i k , then compactness conditions hold 
for all pairs of changed clusters and it follows that new 
partitioning obtained by the move of the node x from Si 
to Sk is compact.

5. Exchange Algorithm

Th e exchange algorithm preserving compactness needs 
the following input structures: Si, i =1,...,m is a list of 
customers assigned to particular clusters, n(i), i=1 , ..., m 
is a list of the cluster seeds.

In accordance to theorems 4 and 5, the following 
auxiliary structures are created, initialised and updated 
during the run of the algorithm: v ={vik} is introduced 
accordingly to the upper defi nition and, in addition, 
the matrix x = {xik} is defi ned so that xik∈Si and equality 
vik(xik) = vik holds.

Furthermore, matrix a={aik} is introduced to iden-
tify pairs <i,k> using aik =1, for which the assumption 
(b) of Th eorem 5 is satisfi ed. Otherwise, the value of aik 
equals to zero.

Th e key structure of the algorithm is an ordered 
list L of pairs <Sp,Sq> of clusters where a total demand 
of Sp is greater than its capacity, the associated overload 
is greater than the possible overload of Sq and the move 
of customer xpq is feasible from the point of compact-
ness (apq=1).

Th e list L is ordered in accordance to the criteri-
on that prefers a maximal decrease in the overloads of 
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clusters and a minimal increase in the original objective 
function. Th e proposed algorithm follows these steps:

1. Initialize v, x, a and L for the current partition-
ing.

2. If list L is empty, then terminate, otherwise go 
to step 3.

3. While L is nonempty, perform steps 3.1, 3.2 and 3.3.

3.1. Let <Sp,Sq> be the fi rst element of L. Move 
xpq from Sp to Sq.

3.2. Update matrices v, x and a.

3.3. Update L by discharging elements ceased to 
satisfy the conditions of L.

4. Go to step 1.

6. Numerical Experiments

Th e series of 192 problem instances were designed and 
solved to verify the proposed methods and fi nd out the 
behaviour of the implemented algorithms. Th e solved 
instances were derived from the Slovak road network 
with 2907 customers representing towns, villages and 
hamlets. Th e numbers of the inhabitants (taken in hun-
dreds) of these places were used as volumes of demand 
mentioned as bj in models (1)−(5) and (10)−(11). Th e 
set of possible facility locations was represented by a set 
of 71 district centres.

Th is set of possible facility locations was used in all 
above-mentioned instances as the set I. Th e series of 192 
instances was divided into four sets accordingly to the 
generated capacities ai of the located facilities. Each of 
these sets contained 48 instances and the same capacity 
was used for all possible locations in each instance from 
one set. Th ese sets of instances are denoted as SI1, SI2, 
SI3 and SI4 in the reminder of this paper and the asso-
ciated capacities (also taken in hundreds of inhabitants) 
were 3408, 5380, 5390 and 8710 respectively.

Th e instances of one set diff er in the fi xed charges 
fi. Th ere is an assumption that facilities at all possible 
locations from the set I are the same in every instance, 
however, in each set of instances, four diff erent values 
of the fi xed charge were used to vary the discussed in-
stances.

Further diff erences among the instances of one set 
were achieved modifying costs cij. Cost cij in the consid-
ered problems is computed accordingly to the expression 
cij =(e1dri + e0dij + gi )bj where the meanings of coeffi  cients 
e1, e0, gi, dri and dij are explained in Th eorem 2. In all in-
stances, we use coeffi  cients e0=1, gi = 0 and coeffi  cient e1 
taking the values of 2, 4 and 6 in each set of the instances.

Th e next modifi cation of coeffi  cients cij consisted 
of choosing a position of the so-called primary source r. 
Four diff erent primary sources were used in each set of 
the instances to modify the coeffi  cients of the associated 
models. A set of cities including Bratislava, Kosice, Ban-
ska Bystrica and Zilina was used as the set of possible 
primary sources. Combining these three parameters, we 
obtained 48 diff erent instances in each of sets SI1, ..., SI4.

Th e results reported in the reminder of this paper 
are the average values of resulting values obtained by 
solving all instances of a particular set of instances.

Th e resulting version of the designed methods 
consists of three phases that can be denoted as BBDual, 
Subgrad and Part. Th e fi rst phase BBDual solves the re-
laxed problem where capacity constraints are neglected. 
Th en, the solution satisfi es the constraints of compact-
ness and its objective function value represents a lower 
bound of the optimal solution of the original problem, 
but nevertheless, may break considerably capacity con-
straints.

Th e second phase Subgrad starts from the solu-
tion obtained by BBDual and tries to improve capacity 
constraint satisfaction by a sequence of multiplier ad-
justments. Th e resulting solution also satisfi es the con-
straints of compactness and gives a better lower bound 
of the objective function of the original problem. Nev-
ertheless, the solution given by Subgrad may also break 
capacity constraints.

Th e third phase Part starts from the solution ob-
tained by BBDual or Subgrad and uses exchange heu-
ristic to keep compactness constraint and to improve 
infeasibility in capacity constraints. Th e objective func-
tion value of the resulting solution need not represent a 
lower bound of the objective function value of the origi-
nal problem.

As this compound method is focused on minimiz-
ing the facility overload of goods, however, in general, we 
get an infeasible solution considering capacity constraints 
where the overloads of resulting solutions were studied. 
Especially, a relative overload of facility located at i was 
introduced as the value of the following expression:

∈
−∑ j ij i i

j J

i

b z a y

a
 for all i ∈ I  (14)

for the values of zij and yi of the resulting solution. Con-
sidering each of the solved instances, it is obvious that 
several located facilities may be overloaded. To evalu-
ate such solution, two parameters were used the fi rst of 
which was an average value of all relative overloads of 
the solution. Th is parameter was denoted as AO. Th e 
second parameter was a maximal value of all relative 
overloads of the solution and was denoted as MO.

As the results obtained for one set of instances must 
be reported in a comprehensive form, we report an aver-
age value of average relative overloads (denoted as AAO) 
and the maximum of maximal relative overloads (de-
noted as MMO) in the results of numerical experiments. 
Th e average computation time in seconds of one set of 
instances is denoted as AvgT and also a standard devia-
tion StdT is reported. Th e average of objective function 
values is referred as AF (in thousands) in the following 
tables.

To be able to study an impact of a particular phase 
on the observed parameters of resulting solutions, we 
completed four algorithms by combining three above 
mentioned phases. Th is way we performed numerical 
experiments with the following compositions of phases 
BBDual, BBDual and Part, BBDual and Subgrad, BBDu-
al and Subgrad and Part. Th ese algorithms are denoted 
as B, BP, BS and BSP respectively in Tables 1–6.
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Table 1. Th e average results of the algorithm BBDual 
computed for individual sets SI1, …, SI4

Set AF AvgT StdT AAO MMO

SI1 21352 0.65 0.58 1.56 5.14

SI2 21352 0.65 0.58 0.76 2.89

SI3 21352 0.65 0.58 0.76 2.88

SI4 21352 0.65 0.58 0.36 1.40

Table 2. Th e average results of the compound algorithm 
BBDual and Part computed for sets SI1, …, SI4

Set AF AvgT StdT AAO MMO

SI1 22905 0.03 0.01 1.52 3.01

SI2 22761 0.03 0.01 0.61 1.54

SI3 22791 0.03 0.01 0.61 1.54

SI4 22008 0.02 0.01 0.18 0.57

Table 3. Th e average results of the compound algorithm 

BBDual and Subgrad computed for individual sets SI1, …, SI4

Set AF AvgT StdT AAO MMO

SI1 26200 168.04 65.24 0.13 0.88

SI2 23462 177.69 179.1 0.13 0.44

SI3 23472 144.58 117.05 0.13 0.43

SI4 22205 46.38 74.18 0.04 0.35

Table 4. Th e average results of the compound algorithm BBDual, 
Subgrad and Part computed for individual sets SI1, …, SI4

Set AF AvgT StdT AAO MMO

SI1 26566 168.07 65.26 0.03 0.15

SI2 23699 177.7 179.11 0.02 0.07

SI3 23732 144.6 117.06 0.02 0.12

SI4 22255 46.38 74.19 0.00 0.03

Table 5. Th e average relative overloads (AAO) computed by 
the particular algorithms for sets SI1, …, SI4

Set B BP BS BSP

SI1 1.56 1.52 0.13 0.03

SI2 0.76 0.61 0.13 0.02

SI3 0.76 0.61 0.13 0.02

SI4 0.36 0.18 0.04 0.00

Table 6. Maximal relative overloads (MMO) computed by 
the particular algorithms for sets SI1, …, SI4

Set B BP BS BSP

SI1 5.14 3.01 0.88 0.15

SI2 2.89 1.54 0.44 0.07

SI3 2.88 1.54 0.43 0.12

SI4 1.40 0.57 0.35 0.03

To evaluate the objective function values of the re-
sulting solutions obtained by the suggested compound 
algorithm, we introduce the following denotations. Let 
AF(B) and AF(BSP) denote the objective function val-
ues of solutions obtained by the algorithms BBDual and 
BBDual, Subgrad, Part respectively. We use the symbol 
SLB to denote a lower bound obtained from the opti-
mal solution of the Lagrangean relaxation of the original 
problem where capacity constraints are relaxed and the 
objective function is charged by the sum of the products 
of the Lagrangean multiplier and the diff erence between 
a total demand satisfi ed by a facility and the capacity of 
the facility. Let Gap denote the diff erence between the 
objective function value of the resulting solution and the 
highest associated lower bound. Th e symbol Gap [%] de-
notes the value of Gap given in a percentage of the high-
est associated lower bound (see Table 7).

Table 7. Th e average lower bounds (AF(B), SLB), objective values 

(AF(BSP)) and gaps computed for individual sets SI1, …, SI4

Set AF(B) SLB AF(BSP) Gap Gap[%]

SI1 21352 25992 26200 208 0.8

SI2 21352 23207 23462 255 1.1

SI3 21352 23222 23472 250 1.08

SI4 21352 21969 22205 237 1.08

7. Conclusions

Th is paper outlines a framework for the solution of the 
capacitated facility location problem with demand for a 
cluster shape of resulting clusters.

Demand for a cluster shape denoted as compact-
ness was exactly defi ned, its properties were explored 
and some associated theorems were formulated and 
proved. Th e main result of the theoretical study reveals 
that any optimal solution of the uncapacitated facility 
location problem induces compact clusters under the 
assumption that the costs of customer’s demand satis-
faction are computed from the network distances and 
prime costs.

It has been proved that this result holds even for 
solutions to such uncapacitated facility location prob-
lem that is obtained by the Lagrangean relaxation of the 
capacitated facility location problem.

Based on these fi ndings, a compound algorithm 
was suggested, in which an initial solution is obtained as 
an optimal solution of the uncapacitated facility location 
problem and the infeasibility of this solution concern-
ing capacity constraints is subsequently improved by the 
sub-gradient algorithm.

Th e resulting solution, that usually remains slightly 
infeasible, is further improved by special exchange heu-
ristic designed so that it does not break the compactness 
of the processed solutions.

Th e suggested compound algorithm was thorough-
ly tested using the pool of 192 instances of the capaci-
tated facility location problem and the characteristics of 
the resulting solutions were studied. Great attention was 
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paid to the average relative overload and maximal rela-
tive overload and to the contribution of the particular 
phases of the algorithm in order to improve these char-
acteristics.

Based on the results reported in comprehensive 
Tables 5 and 6, we can state that the suggested algorithm 
is able to considerably decrease the relative overload. In 
the worst case, which is connected with the set SI1 of 
problem instances, the maximal relative overload was 
15% of the original capacity of the most overloaded fa-
cility.

Nevertheless, the average relative overload was less 
than 3% and the procedures used in the algorithm guar-
antee that each resulting solution keeps the property of 
compactness. Tables 5 and 6 show a synergy eff ect of 
sub-gradient and exchange procedures. When only an 
exchange procedure is used to improve the rough in-
feasible solution obtained by the procedure BBDual, the 
results are much worse than the fi ndings obtained by 
the sub-gradient method and the overload of an input 
solution is improved at most by 20% or 50% concern-
ing the average and maximum overload respectively (see 
column B and BP in tables 5 and 6). However, when the 
exchanged heuristic is combined with the sub-gradient 
method, it is improved by 80% of the overload obtained 
by the sub-gradient method.

Th e objective function of an optimal solution of 
any instances of the original problem is bounded from 
downside by a rough lower bound represented by the 
objective function value of the optimal solution of the 
relaxed problem (see column AF in Table 1).

If we compare these values with the values of the 
objective function reported in Table 4, it could be seen 
that the resulting solution of instances from SI2, SI3 and 
SI4 can be worse at most by 10% than the unknown op-
timal solution. For set SI1, it is 20% of a lower bound.

Nevertheless, the sub-gradient method can pro-
vide us with a more precise lower bound if values of 
Lagrangean multipliers and the associated overloads are 
taken into account. Th ese lower bounds are reported in 
column SLB in Table 7 and show that optimal solutions 
are much nearer to the obtained solutions than the sug-
gested tough lower bounds. Taking into consideration 
slight infeasibility, we can declare that the diff erence 
between the optimal and obtained solutions is equal ap-
proximately to one percent.

Th e carried out experiments show that the sug-
gested compound algorithm can eff ectively reduce the 
maximal overload and constitutes an eff ective tool for 
obtaining a near optimal solution of the original prob-
lem. Th is approach to the capacitated facility location 
problem seems to be worth enough for further develop-
ment in the future research. Especially, other approaches 
to Lagrangean multiplier adjustment seem to constitute 
a promising way to better solutions. Besides designing 
a private distribution system, the suggested algorithm 
can be used to develop a public service system with a 
weakly limited capacity of servicing facilities (Marianov 
and Serra 2002; Jánošíková 2007).
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