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EXTENDER BASED RADIN FORCING

CARMI MERIMOVICH

ABSTRACT. We define extender sequences, generalizing measure sequences of
Radin forcing.

Using the extender sequences, we show how to combine the Gitik-Magidor
forcing for adding many Prikry sequenes with Radin forcing.

We show that this forcing satisfies a Prikry like condition destroys no car-
dinals, and has a kind of properness.

Depending on the large cardinals we start with this forcing can blow the
power of a cardinal together with changing its’ cofinality to a prescirbe value.
It can even blow the power of a cardinal while keeping it regular or measurable.

1. INTRODUCTION

We give some background on previous work relating directly to the present work.
The first forcing which changed the cofinality of a cardinal without changing the
cardinal structure was Prikry forcing [ﬂ} In this forcing a measurable cardinal, ,
was ‘invested’ in order to get cf(x) = w without collapsing any cardinal. Developing
that idea, Magidor [E] used a coherent sequence of measures of length A < & in
order to get cf(k) = A without collapsing any cardinals. In [fj Radin, introducing
the notion of measure sequence, showed that it is useful to continue the coherent
sequence to A > k. For example, s remains regular when A = x*. In general the
longer the measure sequence the more resemblance there is between « in the generic
extension and the ground model.

As is well known, and unlike regular cardinals, blowing the power of a singular
cardinal is not an easy task. A natural approach to try was to blow the power of
a cardinal while it was regular and after that make it singular by one of the above
methods. A crucial idea of Gitik and Magidor [f] was to combine the power set
blowing and the cofinality change in one forcing. They introduced a forcing notion
which added many Prikry sequences at once and still collapsed no cardinals. The
‘investment’ they needed for this was an extender of length which is the size of power
they wanted. Building on the idea of Gitik and Magidor, Segal [E] implemented
the idea of adding many sequences to Magidor forcing. So by investing a coherent
sequence of extenders of length A < x she was able to get a singular cardinal of
cofinality A together with power as large as the length of the extenders in question.
Our work also builds on the idea of Gitik and Magidor. However, we implement
the idea of adding many sequences to Radin forcing. So we introduce the notion of
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extender sequence and show that it makes sense to deal with quite long extender
sequences. As in Radin forcing, for long enough sequences we are left with x which
is regular and even measurable. The power size will be the length of the extenders
we start with.

The structure of this work is as follows. In sectionﬂ we define extender sequences.
In sectionE we define Radin forcing. The definition is not the usual one and is used
to introduce the idea used in section E In section E we define Pz, the forcing
notion which is the purpose of this work. In section ﬂ we show the chain-conditions
satisfied by Pz and how ‘locally’ it resembles Radin forcing. We also show here that
there are many new subsets in the generic extension. In section E we investigate
the structure of dense open subsets of Pz. We show that they satisfy a strong
homogeneity property. In section ﬂ we prove Prikry’s condition for Pgz. The proof
is a simple corollary of the strong homogeneity of dense open subsets. In section
H we show that Pg satisfies a kind of properness. In section | we combine the
machinery developed so far in order to show that no cardinals are collapsed. In
section @ we show how the length of the extender sequences affect the properties of
#. Section [L] summarizes what the forcing Pz does. In section [L we have a result
concerning Pz when 1(E) = 1. We show that there is, in V, a generic filter over an
elementary submodel in an w-iterate of V. We were not able to prove something
equivalent (or weaker) for the general case. Section B contains a list of missing or
unknown points to check. The last point in this list is in preparation.

Our notation is standard. We assume fluency with forcing and extenders. Some
basic properties of Radin forcing are taken for granted.

2. EXTENDER SEQUENCES

2.1. Constructing from elementary embedding. Suppose we have an elemen-
tary embedding j:V — M D V), crit(j) = x. The value of A is determined later,
according to the different applications we have.

Construct from j a nice extender like in [J:

B(0) = ({Ea(0) | a € A), (mpa | B2 a B € A).

We recall the properties of this extender:

AC W[\ &,
A = [Val,
A is k1 -directed,
+ is minimal in A and we write 7, ¢ instead of 7, .,
Va, B € AV° = ma0(v) = mp0(v),
Va,B € Amgo(V) = Tao(ms,a(V)),
7. Va,B,y€ AJA € E,(0) Vv € Ay o(V) = 1g,a(my,5(V)).
If, for example, we need |E(0)| = x*3 then, under GCH, we require A = k + 3. A
typical large set in this extender concentrates on singletons.
If j is not sufficiently closed , then E(0) ¢ M and the construction stops. We
set

AN e

Va € A E, = (o, E(0)).

We say that E, is an extender sequence of length 1. (1(E,) = 1)
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If, on the other hand, E(0) € M we can construct for each & € dom E(0) the
following ultrafilter
A€ Ea,p(0))(1) <= (a, E(0)) € j(A).

Such an A concentrates on elements of the form (£, e(0)) where e(0) is an extender
on % and € € dom e(0). Note that e(0) concentrates on singletons below £°. If, for
example, |[E(0)] = k™3 then on a large set we have |e(0)| = (¢°)T3.

We define T(B,E(0)),{a,E(0)) as

T(8,B(0)),(a, E(0) ((§: €(0))) = (m5.0(£), €(0)).
From this definition we get

J(T(B,B(0)) (0, 2(0))) (B, E(0))) = (o, E(0)).

Hence we have here an extender

E(1) = ((Ela,p0)(1) | a € A),(T5.80),(a.B0) | B> aa,B€A)).

Note that the difference between 73 o and mg £(0)),(a,E(0)) 18 quite superficial. We
can define 7g £(0)),(a,E(0)) in a uniform way for both extenders. Just project the
first element of the argument using 73 4.

If (E(0), E(1)) ¢ M then the construction stops. In this case we set

Va € A Eq = (a, E(0), E(1)).

We say that E, is an extender sequence of length 2. (1(E,) = 2)

If (E(0), E(1)) € M then we construct the extender E(2) in the same way as we
constructed E(1) from E(0).

The above private case being worked out we continue with the general case.
Assume we have constructed

(E(T") | < 7).
If (E(7") | 7/ < 7) ¢ M then the construction stops here. We set
Vo€ AE, = {a, E(7') |7 < 7)),

and we say that E, is an extender sequence of length 7. (1(E,) = T)
If, on the other hand, (E(7") | 7/ < 7) € M then we construct

A € E(a,B(0),....B(r"),../r' <) (T) <=
(a, E(0),...,E(T"),...| 7" < 1) € j(A).
Defining 75, p(0),..., B(),...|7 <), (0, E(0),...E(+"),...,|r"<7) Using the first coordinate as
before gives the needed projection.
We are quite casual in writing the indices of the projections and ultrafilters.

By this we mean that we sometimes write mg, when we should have written
(B E(0),....E(T'),...|7' <7),(c, E(0),.... E(T"),...,| 7' <T) and EQ(T) when we should have writ-

ten B £(0),....B(r),...,|r'<7)(T)-
With this abuse of notation the projection we just defined satisfies

J(m8,0)((B, E(0), ..., E(T'),... | T < 7)) =
(a, E(0),...,EB(T"),... | 7 < T),
and we have the extender

E(r) = (Bo(r) |a € A), (13,0 | B> a a, B € A)).
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We let the construction run until it stops due to the extender sequence not being
in M.

Definition 2.1. We call i an extender sequence if there is an elementary embed-
ding j:V — M such that v is an extender sequence generated as above and i = |1
for 7 < 1(P). k(j) is the ordinal at the beginning of the sequence. (i.e. k(Ey) = a).
kO() is (k(p))°. (i.e. kK%(Ey) = k).

That is, we do not have to construct the extender sequence until it is not in M.
We can stop anywhere on the way.

Definition 2.2. A sequence of extender sequences {jiy, . . ., fi,,) is called *-increasing
if £%(fy) < - < £O(fiy,)-

Definition 2.3. Let (jiy, ..., fi,) be *-increasing. An extender sequences /i is called
permitted to {(fiy, ..., ,) if kK°(f,) < &°(j).

Definition 2.4. We say A € E, if V¢ < 1(E,) A € E,(£).

Definition 2.5. £ = (E, | a € A) is an extender sequence system if there is an
elementary embedding j:V — M such that all F,, are extender sequences generated
from j as prescribed above and Vo, 3 € A 1(E,) = 1(Eg). This common length
is called the length of the system, 1(E). We write E(ji) for the extender sequence
system to which ji belongs (i.e. E(E,) = E).

The generalization of the measure on the o coordinate in Gitik-Magidor forcing
is Eq.
2.2. E,-tree.

Definition 2.6. A tree T is an E,-tree if its’ elements are of the form

<</_L17 s 7ﬂn>7S>
where

1. Set domT = {{fiy, .., ) | ({B1,---,[pn),S) € T}. Then the function

</7'17 c 7ﬂn> = <<ﬂ17 s 7ﬂn>7s>
from domT to T is 1 — 1 and onto,
t € Levy(domT) = |t| =n+1,
{fiy,- - [i,) are Y-increasing extender sequences,
Levo(domT) € E,, and for each t € dom T Sucgom7(t) € Ea,
S is a fi,,-tree. When 1(j1,,) = 0 we set S = 0.
Note that this clause is recursive.

A

Note 2.7. Later on, we abuse notation and use T instead of dom 7. i.e. Sucyp(t)
instead of Sucgom 7 (t).

Definition 2.8. Assume 7 is a E,-tree and ¢t € T, then:
1. T, ={{(s,9) | (t ™ s,5) e T}.
2. Ty(n) is the tree, S, satisfying (fi, S) € Sucy(t).

Definition 2.9. Let T, S be E,-trees, where 1(E) = 1. We say that T < S if
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1. LeVQ(T) g LGVQ(S),
2. Vt € T'Sucr(t) C Sucs(t).

Definition 2.10. Let T, S be E,-trees. We say that 7' < S if
1. LeVQ(T) g LGVQ(S),
2. Vt € TSuCT(t) - Sucs(t),
3. (i) € Levo(T) T(1) < (i),

Note that the last 2 conditions are recursive.

Definition 2.11. Let S be E,-tree and 3 > a. Define T = wEi(S) by
1. domT = WB_)L(dOm S),
_ -1 _
2 Dy ) (Bn) = T () S 5,05, )) (T8, ().

Definition 2.12. Let T, S be Eg, E,-trees respectively, where 3 > a. We say
that T' < S if

1. T< FE}X(S)

Definition 2.13. Assume we have A(; gy where ¥ is an extender sequence such
that each element in A gy is of the form (f, S) where i is an extender sequence
and S is a tree. (in this work we always have S is [i-tree). We define A?D,R) A.R)
as

(m, S) E(ARO) Ay = Y0, R) k() < k(1) — (fi, Sz,r)) € A, R)-

3. RADIN FORCING

The main aims of this section are B.§, B.1(J. As the simplest way we found to
formulate them was with Radin forcing [[{, ff, [L(] we took the opportunity to depart
from usual formulation in order to introduce ideas that we use in the extender based
forcing later.

The main point is that possible extensions of a condition are stored in E-tree
and not in a set. The « is be fixed, so practically we deal here with a measure
sequence and not an extender sequence.

Definition 3.1. A condition in R, is of the form
(s 8™, ™5y (i, 81), ST, (fgs 8°), 8°)
where
1' ﬂO = EOM.
2. Vi <n S"is fi;-tree,
3. Vi <ns' € Vo, is an extender sequence.

Definition 3.2. Let p,q € R,. We say that p is Prikry extension of ¢ (p <* ¢ or
p <0 q) if p, q are of the form

p = {{fin, "), 8™, (i, 81), ST, (Ea, 8°), 8),
q=((fn, "), T", ..., <ﬂ17t1>7T17 <Ea7t0>7T0>7

and
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o Vi<n S <TY,
o Vi<ns =t

Definition 3.3. Let p = ({fi,,s"),S", ..., (fi;,s"),SL, (fiy, s°), S°) where fi, =
Eq. Let (7) € S'. We define (p) 5 to be
(P)izy = (s 8™), Sy (i1, 877), ST,
(7,5, 84(0), ({i;, 7). S{pys
(1,51, 870 (g, 8°), S9).
Note the degenerate case in this definition when 1(#7) = 0. In this case S*(7) = 0.
Definition 3.4. Let p,q € R, where
g = (> "), 8™, (i, 81), ST, (fig, 8°), 5°).
We say that p is 1-point extension of ¢ (p <! q) if there is (¥) € S? such that
P <" (q)(w)-

Definition 3.5. Let p,q € R,. We say that p is n-point extension of ¢ (p <" q) if
there are p”,...,p° such that

p=p" <t <pl =g

Definition 3.6. Let p,q € R,. We say that p is an extension of ¢ (p < ¢) if there
is n such that p <" q.

=338 is needed in the proof of EI Very loosly speaking means that if “some-
thing” happens on a measure one set for one of the measures, that “something” is
happenmg on a measure one set for all the measures.

T 33is proved by induction and E is the first case of the induction.

Lemma 3.7. Suppose 1(E,) = 2 and T is a tree such that Levo(T) € Eo(i) for
i <2, and ¥(v) € T Ty is an E-tree. Then there is an E,-tree, T*, satisfying

L Y(w) e TNT* Ty, < Ty, T () < T(v),
2. If p< ((Eq, (), T*) then there is (i) € T*NT such that

P (a0 T%) .
Proof. There are 2 cases which to deal with:
o Ay = Levo(T) € E,(0): If Ay € En(1) we set T* = T and the proof is
finished. So suppose Ag ¢ E,(1). We would like to build A1 € Eu(1). Set
V(@ >€TAMO)1—{<H1aS> Tia,) |Aoﬂn(,u1 € i1 (0 ul)}
As Ag € E,(0) and Sucr((fiy)) € Ea(1) we get that A )1 € Eq(1). Let

A= A% Agoa
(fg)ET
We can construct now 17:
LGVO(T*) = AO U Al,
Vin € A Ty = () Tl
(fifir )ET
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o A) =Levo(T) € Eo(1): If A1 € E,(0) we set T* = T and finish the proof.
So assume A; ¢ E,(0). We would like to build Ag € E,(0). Set

§ = J(T) (. B(0))).
A = Levo(S) \ A;.
We construct 7™:
Levo(T*) = Ao U A4,
Vi € AL Ty =Ty
We are left with the construction of T, \ for fiy € Ag. For all i € Ay set

Ay = Sucs (),

Agya = {<ﬂ1vT(ﬂ1)(ﬂ0>> | () € T, (fig) € T(ﬂl)}v

Sucr- ({#0)) = Agig).0 U Agg).15

ity € Aoy Ty = Tl
We continue one more level and hope this will convince the reader we indeed
can complete T*. We are left with the construction of T i) for (fig, 11) €

Ay X A<ﬂ0>)0. For all <,L_LO,,L_L1> € Ay x A(ﬂ0>70 set

A<ﬂ07ﬂ1>x0 = SUCS (<ﬂ07ﬂ1>);
Ay ) = {<ﬂ27T(ﬂ2)(ﬂ0,ﬂ1)> | (fia) € T, (fig, fiy) € T(ﬂz)}7
SuCT* (<'a07'a1>) = A<ﬁ07ﬂ1>70 UA<ﬂ0>ﬁ1>717

Vﬂ2 € 14("7‘0‘47‘1%1 TZbo»ﬁhﬁz) = T<p‘2>'
We are left with the construction of (7, - - for ([, iy, [ig) € Ao X Ay),0 %
Az, .my),0 and we hope that by now the continuation is clear.

O

Lemma 3.8. Let & < 1(E.), T a tree such that Levo(T) € Eo(&) and V(i) € T

Ty is an Eq-tree. Then there is an E-tree, T*, satisfying
1. Y(w) € TET T T < Ty, () < T(p),
2. If p< ((Ea, (), T*) then there is (i) € T*NT such that

I ({({Bas 00 T7)) 1y

Proof. Our induction hypothesis is that this lemma is true for fi’s with 1(z) < 1(E,,).
The previous lemma is the case for 1(f1) = 2.

Let S = j(T)(Eal&). The tree S is an E,[&-tree. We extend it step by step
to a full E,-tree as requested.

Let

Ag, = Levo(T),
Ace, = Levg(9) \ Ag,.
For & < € <1(E,) do the following:
Ne = Ult(V, Ea(8)),
k(Mg (e) = 3(h)(Ealf).
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| A

Ne = Ult(V, Ea(£))

and recall that crit(ke) = (kT T)Ne. As
(o, B£(0),..., E(7T),... | T < &) = ke([id] g (e)) € ran(ke)
there is in N¢ a preimage for it:
(' E(0),...,E'(7")...| 7" < &).

As Ago € Ey(&), & < & we have 7/ < ¢’ such that Ago € E/ (7'), (where o/ =
[k(id)]| . (¢)- Taking a function he such that [he]g, ) = 7' we get

{in| Agy N&°(1) € fulhe()n(ay } € Balf)-
For each fiy € Ag, we set

A (g 7o)y = {1, R) € Ty | Agy N K2(i1) € iy (he (1)) (i) }

0
AL = AT Ae (5 T ()
(Ro,T(Ag))

For any tree R which appears in a pair (fi;, R) € A; we can invoke by induction
our lemma and generate R* which is a fi;-tree. Define now A¢ as:

<ﬂ15R*>€AE — <ﬂ17R>€A/£
When we have {A¢ | § < £ <1(Ea)} we set
Ase, = U Ae \ (A<Eo U Aff))a

Eo<€<l(Eq)
LeVQ(T*) = A<£0 U Ago U A>£0,

V(fo) € Ag, Ta) = Tiay.
V(i) € Asg, Tiny = () Tisous

We are left to define Ty y for (fiy) € A<£0. For each fiy € Ag, set:

A(ﬁo 50:{ (11, R >>|<ﬂ17 >€A507 </7'0>ER}7
A ><£O—SUCS(< o) \ A,

For each 1, € Ag, we set

A(ﬂ0>7£7<ﬂ1>T(ﬂ1)<ﬁo>> = {<ﬂ2’R> o Ag Nk Uiaz) € i (he(fis)) uQ)}
0
Appe= D A(ﬂo>757<ﬂ1;T(ﬂ1)<ﬂo>>'

(A1, T(R1) ()
We define

<ﬂ05 R*> € A(ﬂo)»f — <ﬂ0, R> € A/(ﬁ0> £
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where R* is generated from R using the current lemma by induction. Now we set
A= U Algne \ (Agagh<eo U Aty 60):
£o<é<l(Eq)
Sucr- ((fig)) = A<uo> <€0 YA .0 YAy >0
V(1) € Apgeo T <ﬂ0 i) = Ly

v<ﬂ2> € Aﬁo,>fo :“0 o) ﬂTHqu)

This leaves us with the definition of Ty 5y for (fig, fi;) € A<, X A(z,), <, Which
is done exactly as in this step. (|

3710 is needed in the proof of @ Loosly speaking it says that if “something”
happens on all extensions which are taken from dom7T, then that “something”
happens on all extensions from T'.

3.10 is proved by induction where @ is the first case.

Lemma 3.9. Assume 1(E,) =2 and let T be E,-tree. Then there is T* < T such
that if

P < ((Bay (), T7)
then there is (D1,...,0n) € T such that

P < (B OWTY) o

.....

Proof. As is usual in this section the proof is done level by level. Let us set 7' =T
and it is trivially true that if

p <" ({Ea, 0), T)
then there is (1) € T' =T such that
P <" (((Bas 00, TY)) 10y
We continue to the second level. Let us set
Ay, 51y = Suer ((71)),

0
Ay = A" Ay, sy
(71,51)

B<> = {<52> | 1(52) =0or LeVO(Tl) N Ko(ﬂg) S 92} ,
LeVO(T(O)) = A<> N B<>,

0) _ 1
T(f/g) - ﬂ T(171>172>’
(Dl)GT(O)(D2)

T =T'NnTO.

Let us assume that
p <* ((Ea, (), T?).
There are 2 cases to consider here:
1. p <2 ({{Ea, <>>’T2>)<91,92) where (1, 72) € T?: At once we have (1, 72) €
T <T.
2. p <? ({{Ea, (), T2>)(;7 ) Where (73) € T2, (1) € T?(3): By construction
V(i) € T?(vg) (v9) € T< ). As () € T%(vy) we get (1,09) € TV < T.
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We show how to continue to the third level. Let us set

A(p,,51,55,52) = Sucr: (U1, 72)),

Ap, 51y = 7AO A(p,,51,5,,52)
(72,52)

B, s1y = {(73) | 1(73) = 0 or Sucyz((71,S")) Nk (73) € 73},
Levo(T) = Levo(T?),
Sucpo ((71)) = A<171)Sl> N B(,;hSl),

(0) _ 2
T(l711'73) - ﬂ T<1717'727'73>’

<l72>€T<(gi>(173)

0
A<> = 7& A(,;1751>,
(71,51)

By = {(73) | 1(73) = 0 or Levo(T?) N k" (v3) € U3},
LeVO(T(l)) = A<> N B(),

SUCT(U(<53>) = m T(2171,172J73>’
(D1,02)€T () (3)

3 =7>nTO 7M.
Let us assume that
p<* ((Ea, (), T?).

There are 3 cases to consider here:

1l.p <* (<<Ea,<>>,T3>)<ﬁth)f/3> where (v1,02,73) € T3 At once we get
(01,02,03) €T.

2. p <* (((Bas <>>,T3’>)<Dl)53792> where (71,73) € T%, (72) € T, (73): In this

> S T<3171>(ﬂ3) <I73> S T<3171 ) As <I72> S T<3171>(173) we get <ﬂ3> S

In this way we continue to all levels. (|

Lemma 3.10. Let T be E, tree. Then there is T* < T such that if

p < <<Ea7 <>>=T*>

then there is (U1,...,0,) € T such that

p < ((Bay 0).TY),

Proof. The proof is by induction on 1(E,). The first case was done in @ The
proof is almost the same. We just make sure to invoke the induction hypothesis
while repeating the construction.

Construction of 7" and 7?2 is exactly like in B.J. We show the construction at
the 3rd level.

’717~~~;17n> ’
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Let us set

A(p,,51,05,52) = Sucrz ((V1,72)),

A, sy = A% Ap, 51555,
(72,52)

B, sty = {(73) [ (73) = 0 or Sucya((71,5%)) N K" (73) € 73},
Levo(T) = Levo(T?),
SuCT(o) (<51>) = A<f,1)51> n B(,;1751>,

(0) _ 2
T(91,173> - m T<1717172,173>’

(22)eT() | (73)

,S3) | (3, 8%) € Ajy S is generated from S¥ by induction} )

U3
I73> | 1(173) =0or LeVQ(TQ) N KO(Dg) S 53} R

=
@
p
o
~
Il
=
D)
=

Sucra) ((73) = (O Tl
(D1,02)€T ) (D3)

T3=1>NnTO N7,

Let us assume that

p2 " p1 T po=p <P ((Eq, (), T?).
There are 3 cases to consider here:

1.p <* (<<Ea’<>>’T3>)(171,172,173) where (i1,79,73) € T3 At once we get
<51,172,ﬂ3> eT.

2. p <* (((Ea, <)),T3>)<911937U2> where (v1,73) € T3, (2) € T<3171>(53): In this
case V(i) € T, \(73) (73) € T, oy As (p2) € T), ,(73) we get (v3) €
T<1717172>'

3. p < (((Ba, (), 1)),y Where (73) € T and p2 ~ p1 <2 ({73, (), T°(73))
By induction there is (71, 72) € T(73) such that

p2/-\p1 S* (<<DSa <>>7T2(773)>)<17 7

1,72)°

By construction V{fiy, fio) € T?(v3) (73) € T<2ﬁ17ﬁ2> hence (73) € T5, 5,)-
In this way we continue to all levels. |

4. Pg-FORCING
Definition 4.1. A condition in PE is of the form
{(3,p7) |7 € g} U{T}
where
1. gCE, |9 <k,

2. min E € g and g has a maximal element,
3. p7 € V, is an extender sequence. We allow p7 = 0,
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4. pO — (pmaxg)O'
This condition is not really needed here. It is needed in a later forcing based
on this one,

5. T is a max g-tree such that for all t € T p™a*9 ™ ¢ is O-increasing,

6. For all ¥ € g, p™®*9 is not permitted to p7,

7. V() € T |{¥ € g | ¥ is permitted to p7}| < k%(v),

8. V() € T if v is permitted to p”,p7 then m,,, o 5(7) # Tmax g,5(7)-

We write mc(p), p™¢, TP, E(p), suppp for max g, p™*9. T, E, g respectively.

Support E,. E., E.,, Eqy  Ea, =mc

FIGURE 1. An Example of Condition in Py

Definition 4.2. Let p,q € P;. We say that p is a Prikry extension of ¢ (p<*qor
p<q) if

1. suppp 2 suppg,
2. Vy €suppg p? =¢7,
3. TP < T1.

We include in this definition the degenerate case 1(E) = 0. There is neither
extender nor tree in this case. By p <* p we mean p = q.

FIGURE 2. An Example of Direct Extension

Definition 4.3. A condition in Pj is of the form

—~ —~

Pn -+ Do
where
® po € PE‘?
e p € PEI,
.
* pn € P,
where F s iy, - - - [y, are extender sequence systems satisfying

R(,) < - < K0(Ay) < KO(E),
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To TL T2 T3 T4 R fHs P Hy Pg  fg S Do V1 Us Vg Vg T

fo P o figjly=mc Dy Dy Dy U3vg=mc E, Ey FEo,Eola, =mc
FIGURE 3. An Example of a Condition in Pj

Definition 4.4. Let p,q € Pg. We say that p is a Prikry extension of ¢ (p <* g or
p <Y q) if p, q are of the form

p=rn" - po,

q=aqn" " qo,
and

® Po,qo0 € PE,, Do S* qo,
® D1,q1 € P}i:l’ P1 S* q1,

e .

® Dn,Qn € PEn’ Pn <F Gn-

Definition 4.5. Let p € P% and (v) € T?. We =define (p) s to be p; ~ py where

. supp Py = {Tme(p),5(7) | 7 € suppp, £2(p7) < K°(7)},
Tmc(pm(ﬁ) _ pfy7

TP = T?(p),

. suppp( = suppp,

=W N =

7Tmc(p)ﬁ(p) KO(p"y) < HO(D)
p7 otherwise

(@31

. V7 € suppph py =

o _ P
6. TPo = T<l7>.

Definition 4.6. Let p,q € Pz. We say that p is a 1-point extension of ¢ (p <! q)
if p, g are of the form
P=DPnt1 Pn " Do,
4=an" - qo,
and there is 0 < k < n such that
® pi,qi € P, pi <" ¢ fori=0,....k—1,
® pit1,¢i € Py, piy1 <" gifori=k+1,....n,
e There is (7) € T9% such that pry1 ™ pr <* (qr)(5)-

/_LO /_Ll :L_L3 :L_L4T(D) 170 7T0447011(ﬂ) 'aQ 7Ta4,0t3(ﬂ) v T<l7>

70 77044,041(’7) 7Ta4,043(’/) v E, Eal Eq, Ea, Ea,

FIGURE 4. An Example of 1-point extension
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Definition 4.7. Let p,q € Pz. We say that p is an n-point extension of g (p <" q)
if there are p™,...,p° such that

Definition 4.8. Let p,q € Pgz. We say that p is an extension of ¢ (p < ¢q) if there
is n such that p <" q.

Later on by Pz we mean (Pg, <).

Note 4.9. When lﬁE) = 1 the forcing Py is the Gitik-Magidor forcing from section
1 of [§]. When 1(E) < & the forcing Pj is similar to the forcing defined in [§].

In several places we want to prevent enlargment of the support of a condition.
This makes all the conditions which are stronger than some condition but with the
same support resemble Radin forcing. The following definition catches the meaning
of not enlarging the support. The ‘resemblence’ we look for is @

Definition 4.10. Let p,q € Pz. We say that p <} ¢ if
L.p<ty,
2. suppp = suppq.

Definition 4.11. Let p,q € Pz. We say that p §}% q if

L p<tyq,
2. In the definition of <! we can substitute <* by <%,.

Definition 4.12. Let p,q € Pz. We say that p <% ¢ if there are p™,...,p° such
that

p=p"<p-<pp’=q
Definition 4.13. Let p,q € P5. We say that p <g ¢ if there is n such that p <% q.

Note 4.14. The above definitions imply that if ¢ < p then there is r such that
qg<*r<gp.
Definition 4.15. Let € be an extender sequence such that k°(€) < k%(E).

Pg/P-={p|qe P:,q pe Pg}.

5. BAsiC PROPERTIES OF Pg

Claim 5.1. Pj satisfies k™ -c.c.

Proof. The usual A-lemma argument on the support will do. O

Claim 5.2. Letpe Pz, P* ={q<grp|p€ Pg}. Then

1. (P* <R) satisfies kT -c.c.,
2. (P*,<Rg) is sub-forcing of (Pg/p,<).
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Proof. Showing kT-c.c. is trivial.

Showing that P* is sub-forcing of Pg/p amounts to showing that any maximal
anti-chain of P* is also a maximal anti-chain of Pg/p.

Let A be a maximal anti-chain of P*. Let ¢ € Pg/p. As ¢ < p, there is
r’ € P* such that ¢ <* v/ <p p. Assume that ' = ), ~--- 7" r{. Then also
q=qn " -+ " qo. Let r; be r} with T substituted by 77 N Tme(g:),me(r?) (T%) and

—~

r=r, - "1r9. Asr € P* and A is a maximal anti-chain there is a € A such
that a || . Take s <g a,r. Considering how we constructed r from 7’ we must
have ¢ <* s such that ¢t < ¢. Hence ¢ || a. So we get that A is a maximal anti-chain
of PE/p. ([l

Claim 5.3. Let p € Pg, P* = {q<rp|p€ Pg}. Then there is r € Ry, such
that P* >~ Ry,c(p)/T

Proof. For simplicity assume that p = pg. Then we set r = ((mc(po), p§°), T?).
We give the isomorphism: The image of ¢ € P* is s € (Rye(p) /7, <) such that

1. ¢g<*s
2. T% =T% where s=35," - " 50,g=¢n " - Qo-

Let G be Pg-generic.

Definition 5.4. EG is the enumeration of { E(py) | pn ™ -+~ po € G} ordered in-
creasingly by x°(E(p)).

Definition 5.5. Let ¢ < otp(Eg). Then

LGIC={pn ™ "pelpa ™ "o T po € G E(pr) = Ec(Q)}
2. G\¢C={pr—1 ™ "o lpn T T T Tpo€G, E(pr) = Ec(Q)}.

Definition 5.6.
ME — U{M§|p€G,ﬂ=p5‘}U{o’c} dp e G acsuppp
G - =~ .
{a} otherwise

Cé = {r(p) | p e M&}

Proposition 5.7. 1. CgN \ {k} is a club in &,
2. C5~ \ {a} is unbounded in x,
.a#p = C&+C&.
Proof. The first two claims are immediate as these are sequences which are gener-

ated by Radin forcing. )
The last is by density and noticing that when p®,p” are permitted for 7 we

required Te(p) (%) 7 Tone(r) 5(7)- O

6. HOMOGENEITY IN DENSE OPEN SUBSETS

Our aim in this section is to prove the following
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Theorem 6.1. Let D C Pg be dense open andp =pr ~ --- " po € Pg. Then there
is p* <* p such that

3% N Dha, - Ohony) € SFL..380 IngY(Do 1, D0.n,) € S°

(pZ)@m »»»»» Dkny,) - "A(pz;)(ﬁo,l »»»»» o.ng) € D

where
1. 8" C TP |[Vi]™, .
2.Vl < nN(Dl, .. .,171> e St Squi(<171, .. .,ﬂl>) S Emc(p;_«)(g).

The proof is done by a series of lemmas.

Definition 6.2. Let p € P. Let s be a function such that dom s C E. and for all
a,B € doms, a # f3
s(@) is an extender sequence,

I(s(a)) =1(s(B)),_

K9(s(a)) = K%(s(B)),

- s(a@) # s(f).

We define (p)(s) to be pj ™ p{ where

suppp)| = {5(64) | @ € suppp Ndom s, k%(p%) < HO(S(@))},

va € suppp) pi' ™ = p?,

If s(mc(p)) € TP then T?1 = TP(s(mc(p))). Otherwise we leave T?' undefined,
Supp py = supp p,

—_

B e

Ll O

s(@) @€ doms and x%(p%) < k% (s(@))

5. Yo €supppy ppt =4 o

)

otherwise

6. If s(mc(p)) € TP then TP = T{;(mc(p)». Otherwise we leave T?0 undefined.

Definition 6.3. Let p € P. Let s be a function with doms = 1,...,n such that
for all i s(i) satisfies definition [6.4. Then we define (p) s as p™ where p™ is defined
by induction as follows:

P’ =p,

P =0T Tl T (00) sty
We note the following: If (71,...,7,) € TP and we set for all 1 <i <n

5(1) = {{@ Tme(p),a (7)) | & € supp p}
then

(p)<171,...,13n> = (p)(s>'
We use this operation also in cases where p is not strictly a condition. That is if
pU{T} € Pp we also use (). In this case we ignore the trees in the definition.
This definition is used in the proof of the homogeneity for the following reason:
Beforehand we do not know what a legitimate extension is. By checking with all
the possible p’s we check on all legitimate conditions which might be extensions.

Claim 6.4. Let D be dense open in Pg/P-, p = po € Pg/P-, 0 < n < w. Then
there is p* <* p such that one and only one of the following is true:
1. There is S C TP |[V,]" such that
(1.1) Vk < n3¢ <1(E) Sucs((v1,...,0k)) € Encp)(€),
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(1.2) V<ﬂ1,...,l7n> ES (p*)<l71 _____ l7n> ED.
2. V(01,0 0n) € TP NG < (p")(5y,.00) 4 ¢ D-
Proof. We give the proof for n = 1. Adapting the proof for higher n’s require that
whenever we enumerate singletons we should enumerate n-tuples and when we use

7 we should use j,.
We start an induction on £ in which we build

(@%,uf | € < R).
We start by setting
u’ = po \ {T7},
6 = me(po),
70 = %0 [w;[}’o {v | k°(v) is inaccessible} ,
and taking an increasing enumeration
{K°(@) | (7)) €T} = (e | € < r).
Assume that we have constructed
(@f,u | € < o).
We have 2 cases: & is limit: Choose a% > a¢ for all £ < & and set
u®® = U ut U {(6450, t)} where k°(t) = 7¢,.
£<&o
& =&+ 1: For each 7 such that x°(7) = 7¢ we set
soy=( [ {rlsm=r®})x{®?}.

6¢€su;3pu5
r((u®)¥)<me

Let
sS= | s
KO (P)=¢
and set enumeration of S
S = (s | p < 1g,).

There are fewer than 7¢, elements in S. We use ¢, as this is the maximum size S
can have which is not ‘killing’ the induction.
We do induction on p which builds

(@507 w50 uf®? T | p < )

from which we build (@, u). Set

o0 — @5,
£0,0 _ ¢
Uy = Uy

Assume we have constructed (a%0?, ugo,P7T§o,P | p < po).
We have 2 cases:
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po is limit: Set
Vp < po aforo > @Eoyp,
usoPo = U us0P U {(dgo’po,w} where k°(t) = 7¢.
pP<po

We set Téo’po, TE7 to anything we like. We do not use them later.
po=p+1: Let (¥) = s50:°(2). set
u” = ’U,Ill - ’U,g = (ugo’p)<sgo,p>,
~1 0
T(;I = F@&)@O (T<17))7
—1 0/ —
Tl” = ﬂ-mc(’u/ll)ﬂj(T (1/))
If there are
¢ <" uf U{T'},
o< AT
such that
9 gy €D
then set

Gosro — mC(qé),

u§P = usor U (gh \ (uy U {19 })),

T(;éoﬁpo — Tq(’)7
ufr =g\ (uf U {1},
Tl‘éoﬁpo — Tq;7

otherwise set
0P — @50797

0,00 _ ,,€0,p
ug = us0r

§o0,p0 __ 1!
TO - +0>

usoro = ),
TR =17
When the induction on p terminates we have (a0, u§®?, Ts? u§o? T | p <
Teo). We continue with the induction on . We set
Vp < g, @50 > a0,
uld = U uso? U {(a%,t)} where maxr’(t) = 7.
p<Te,
When the induction on ¢ terminates we have (¢, u§ | € < k). Let
VE <k at > ab,

= U u§ U {(@,t)} where max £°(t) = max pj.
§<k
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We set
Levo(T7') = 7}, Lo Levo(T°).
Let us consider (#) € Levo(T?"). There is ¢ such that £%(7) = Te. We set
s(1) = {(a, 75+ ,a(7)) | & € supppo}
s(2) = {<7Ta*',a° (’7)>} :
Let &g = € + 1. By our construction there is p such that
(ug™™) () = (Ugo’p0)<s£w>

where pp = p+ 1. We set

*/ 71 71
Tf;jo) = ﬂ-d*lﬁaﬁomo (T&)’po) N W@*QQO (Tg-r&*@o(ﬁ)))a
p*/ =\ _ —1 £0,P0
T 0 (V) - Wﬁ)mc(u§OvP0)Tl )
o) =

Let us show that p§ approximates the p* we look for. So let (7) € 7" and
assume

(6.4.1a) a1 < P () U (0 ) o)1
(6.4.1b) 2 <™ ((P5)(5))os
(6.4.1c) ¢, " qy € D.

Let € be such that x%(7) = 7¢. Set s as

(1
2

»

= {{@, 7~ a(V)) | @ € supppp},

{(ma=r a0 (D))}

where g = £+ 1, po = p+ 1. By our construction there is p such that
(u§0790)<550’p> — (quﬁpo)<S>_

)
)

V)

Let us set
r= (i) 0 {zf ) (s o u {75 ).
By construction we have
(P () U (0 ) y)1) ~ (05 ) y)o <* .
So what we have is
D>q, gy <

This is a positive answer to the question in the induction, hence

rebh,
which gives us, by openness of D, that
(6.4.2) (PL(7) U (05 ())1) ~((05) ()0 € D.

Having proved this approximation property of py’, let us consider the set

B={(n) e T |30 <* () U (05 y)) ~(@8)e))o a € D}

Let @* = me(p’). There are 2 cases here:
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1. 3¢ <1(E) B € Ez(C).

Let us set

P = i) (Ea10),

B = me(pf),

A= {@) (0D w), = Pi(mge e ()}
Clearly

Let 3 be the larger of 3. a*. Set
TC = (mge ) (TP,
Pt =pfUpy U{T}.

The nice property of p¢ is that when () € T¢ (3¢ Bc,)_l(AC) we get that

(P*) ) <" (1 (mge 5 () U5 Vim e oon)t) T (08 (s oro) Do
We set
p* =",
A = LeVO(TC) n (ﬂ'Bg)Bg/)ilAC,
and show that the claim is satisfied: Assume that
(7) € A,
@ <" ((0") o)1
a0 <" ((p")(m))os

/o~ ]

g1 qp € D.
Note that
((p*)(17>)1 S* p&(ﬂﬁ’C7a*/) U ((pg/)ﬁfggya*/(f’)))l’
((p*)(r,))o < ((psl)ﬁggya*/(ﬁ)))o'
Hence, we know that
g1 < P 0er () U (08 iy o)1
a0 < ((06) (my (@)

o~ _/

@ qED.
This is the assumption (p.4.1). So from (p.4.4) we know that
(P2 (T3¢ e (7)) U (05 ) e or o)1) (P Vi ro))0 € D
hence by openness of D

(p*)(17> € Da
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2. V¢ <1(E) B ¢ E5+~(¢) which is the same as saying that
{9y T | va <* (0 ) U (03 0)1) ™ (05))o a & D} € B,
In fact from the construction we can see that
{<a> e 7 |, (7) = @} € Eger.
So we really have
A={(@ e 1" |Vg <" (4))5) 4 ¢ D} € Ear
and the completion is quite easy now, we set

Tp* _ Tp*/ [A7
p* :psl U {Tp*} .
g

Claim 6.5. Let D be dense open in Pg/P:, p=po € Pg/P:. Then thereis p* <* p
such that one and only one of the following is true:
1. There are n < w, S C TP [[V,]"* such that
(1.1) Vk < n3¢ <1(E) Sucs((v1,...,0k)) € Ennep)(€),
(1.2) V<Dl, .. .,I7n> cs (p*)<,;1)m7,;n> eDbD,
2. Vn < wY(Dy,...,0,) € TP Vg <* (P*)or,.ony 4 & D.
Proof. Let p° = p.

Generate p"+1 <* p™ by invoking @ for n + 1 levels.
Take Vn < w p* < p™. |

Claim 6.6. Let D be dense open in Pg/P:, p = py € Pg/P:. Then there are
n<w, p"<*p, S CTP|[V.]" such that

1. Vk < TLE|§ < I(E) Sucs(<Dl, .. .,Ijk>) S Emc(p*)(g);

2. V(01,.., V) €8 (0%)oy,....00) €D
Proof. Towards a contradiction, let us assume that the conclusion is false. That
means that for all p* <* p, for all n < w, for all S C TP [[V,]" such that

Vk < nV(Dl, e Dk> eSI< I(E) SUC5(<I71, R ﬂk» S Emc(p*)(f)
we have
V1, Un) €S 0 ) (o1, pn) ED-

We construct a <*-decreasing sequence as follows: We set p® = p. We construct
p"*1 from p" using @ for n + 1 levels. Due to our assumption we get

V(1. 0n) € TP NG <* (p™) oy, 5y 4 & D.
We choose p*’ such that Vn < w p* <* p™ we get
Vn < w¥{in, ..., o,) € TP Vg <* (0" o1,y 4 € D.

.....

Construct tree T from TP using . Let us call p* the condition p* with T'
substituted for T?". Now if we have

*

q<p
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then there is (i71,...,7,) € TP such that

q<” (p*/)(ﬁl,...,ﬂn)-
Hence

q¢D.

However, D is dense. Contradiction. [l

Claim 6.7. Let D be dense open in Pg, p=p1~ po € Pg. Then there is p* <* p
such that

351! Hnlv<ﬂl71, ceey I71)n1> est...3s° 3”0V<170)1, e, 50,n0> e s

(pI)<Dl,1;~~~7DI,nl> T A(p6)<l70,17~~,170,no> €D

where
I IALS |
2. VIl < nN(ﬂl, .. .,171> e St SuCSi(<171, ceey ﬂl>) € Emc(pf)(é)

Proof. Let € be such that p; € P.. We prove that there are n < w, p§j <* po,
q1 < p1, S C TP [[Vi]™ such that

1. VE<n3d < I(E) SUCS(<51, .. .,Dk>) S Emc(p*)(f),
2. V<51,...,17n>€sqlf\(p*)<f,l Dn) ED.

Set

.....

E={rePz|3g ¢ " reD,q <pi}.

This E is dense open in Pz /P Let r € Pg/P.. Then p1 ~r € Pp. By density of
D, there is ¢1 — s € D such that ¢; < p1, s < r. By the definition of F, s € FE.
Hence E is dense. Openness of F is immediate from openness of D.

By @ there are pf <* po, S, n < w such that

1. Wk < n3¢ < I(E) Sucs (71, .., 7)) € Emepes (€,
2. V<51, .. .,17”> es’ (p8)<,71 _____ 7n) € FE.

This means that V{71, ...,0,) € S’ there is ¢1 (¥1,...,75n) < p1 such that
V<171, ceey Ijn> c S/ ql(ljla ey Dn) A(pg)(pl)...pn) e D.
As |P:| < &, q1(P1,...,Py) is in fact almost always constant. Hence, by shrinking
S’ to S and letting ¢; be this constant value, we get
V<Dlv R Dn> €S q A(pS)(Dh...,f/n) eD.

With this, we finished the first part of the proof. We use this claim for all conditions
in Pg.

Let P; = {pg | (< /\} where A\ < k.

We construct by induction a <*-decreasing sequence (p§ | ¢ < A). Set

Py = po-

Assume we have constructed (p | ¢ < (o).
(o is limit: Choose py® <* pg for all ¢ < (p.

Co = ¢ + 1: Use the first part of the proof on pg Apg to construct pg°.
When the induction terminates we have (p§ | ¢ < A). Choose

Y < A py < ps.
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Let

D = {ql € P |InASV(D1,...,00) €S 1 " (P)(71,....5m) € D}.

.....

Dr is dense open: Let g1 € P:. Then there is  such that ¢; = pg. By the induction
we have that there are n, S, r; < ¢ such that

V(D1 Tn) €S 11T (D) (o
By openness of D we get

Y(U1,.. s Un) €8 117 (D0)(51,..5m) € D-
Hence

71 € De.

As D¢ is dense open we can use @ Hence there are p; < p1, S', ny such that

V{01, V) € S (D1) (1,00im,) € Do
This means that

V{011, O1n) €S 38 InV(Doa,...,00n) €S
(pf)o’/l,l,...,ﬁl,nl) “(P0) (0, p0m) € D,

which is what we need to prove. [l

Finally, we add the last touch.
Proof of. The proof is done by induction on k. The case k = 1 is @ We

assume, then, that the theorem is proved for k and prove it for k£ + 1.
Then p = pgr1 " pr -+ -po- Let € be such that ppy1 € P-. We just repeat the
proof of @ with Pz and use the induction hypothese to conclude the proof. O
7. PRIKRY’S CONDITION

Theorem 7.1. Let p € Pz and o a formula in the forcing language. Then there
is p* < p such that p* || 0.

Proof. The set {¢ € Pz | q| o} is dense open. Assuming p = p; ~ -+ " po and
using f.1] we get that there is ¢ <* p such that

3% IV (Thty - Vhny) € 8% .. 380 IngY(Do.1, -, Do.ng) € S°

(pz)<17k,1 »»»»» Ukyny ) T 'A(p8)<90,1 »»»»» D0,nq) H a.
Recall that we really should write
S s V),

k—2/— = - —
S (Vk,la'")Vk,nkvykfl,lv"'1Vk71,’n,k)a

In order to avoid (too much) clutter, we use the following convention in the proof.
When we write
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we mean that

<I7k)1, .. ~7Dk,nk> S Sk,

<I7171, RN ﬂl,n1> S Sl,
and r(7) is
(qk)<l7k,17~~~)l7k,nk> e A(Q1)<171,17~~,171,n1>'
We start by naming g as ¢;° and T% as T%"™. For (y,...,Up,-1) € S° set

A% = L(Dn,) € Sucqoum (71, 7u1)) | 7(7) (@5 5r,. g IF a} :

{
A = {(Fny) € Sucrons (71, - Fng-1)) [ 7(7) (@) 5,500 1770}
Note that
Sucgo (D1, ..., Ung—1)) € AU A,
A'NA =9
Hence, there is £ < 1(E) such that one and only one of the following is true:

1. A° € Emc(qgo)(g)v
2. Al S Emc(qSO)(g).

In either case, using , we can shrink T<017)?>L»}~J7n0—1> and get a condition ¢ such
that r(7) ™ qul vvvvv Pag—1) | o
So we shrink now T&Tf..,z?n(rl) for all (71,...,Un,—1) € S° and we call this tree
7970~ The name of the condition ¢ with 7%~ substituted for 790 is gjo~".
gt satisfies
V{01, Ung-1) € SO (D) T (g6° ™ Vi sing ) |l O

We are now in the same position as we were when setting ¢;°. So by repeating the
above arguments we get

Po>"qo=q)° > qp° T =T > g0 =" qf
such that for each | = ng,ng —1,...,1,0
Y(i,...,m) € S° T(ﬁ)/\(qlo)<l71 oy |l o

.....

Specifically we get
(@) " (45) || 0.

Of course ¢ depends on 7. Note that we got from ¢g° to ) only by shrinking the
trees. So, we repeat this process for all i/ calling the resulting condition ¢J(#). So
we have

1<i<k

By setting
TP — ﬂ T (?)
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and letting pj be go with TP substituted for 7% we get
vie [ ' r@ " pilo
1<I<k

We are in the same position as in the beginning of the proof. So we can generate
in the same way pj from p; and so on until we have

P po o

8. PROPERNESS
The notions (N, P)-generic and properness are due to Shelah [g.

Definition 8.1. Let N < H, such that
1. |N| =k,
2. NDV,,
3. N D N<*,
4. Pe N.
Then p € P is called (N, P)-generic if

plk"VD e N Disdenseopenin P = DNGNN #£10".

Definition 8.2. A forcing notion P is called proper if for all N < H, such that
1. |N| =k,
2. N2V,
3. NDN<H
4. Pe N,
and for all ¢ € PN N there is p < ¢ which is (N, P)-generic.

Claim 8.3. Letp € Pg, N < H, such that
1. |[N| =&,
2. NDV,,
3. N D N<~,
4. Pz €N,
5. pe PN N.
Then there is p* <* p such that p* is (N, Pg)-generic
Proof. Let p=prpy ™ - p1” Ppo-
Let (D¢ | £ < k) be an enumeration of all dense open subsets of Pz which are in

N. Note that for § < x we have that (D¢ | £ < &) € N.
We start now an induction on & in which we build

(@, ub | € < K).

The construction is done ensuring that (a¢,ué | € < &) € N for all & < k. We
start by setting

u’ = po \ {T™},
0_50 = HlC(po),

T0 = TPo [w;(}_’o {v | k°(v) is inaccessible} ,
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and taking an increasing enumeration in N
(K@) | (1) € T} = (7e | £ < k).
Assume then that we have
(@, uf | € < &).

The constructions splits now according to wether £y is limit or successor. In both
cases the work is done inside N.
&o is limit: Choose a% > af for all £ < & and set

u®® = U ut U {(6450, t)} where k°(t) = 7¢,.

§<&o
& =&+ 1: For each 1y, ..., 0, such that K%(01) < -+ < K%(D,,) = 7¢ we set
S@r,.m)=( [ {m | 6%m) = £°(1)}) x
aesupp u
( H {2 | K% (11y) = K (72)} ) x
aesupp u

( IT ARa 1 5%) = " a)}) %

aesupp u
{D1,...,0n)}.
Let

S = U S(1,... )

KO(D1) <+ <K (D )=T¢
and set enumeration of S
S = (s | p < 7e,).
We do induction on p which builds
(@00 T | < ),

from which we build (a0, u). Set

o0 — 075,
§0,0 _ &
ug”” = ug.

Assume we have constructed (a%0?, ugo-,P7T(;éo,P | p < po).
po is limit: Set

Vp < po aboro > 6650-117

w00 — U wéoP {<d507po7t>} where Ko(t) =Te,.
pP<po

We set 750 to anything we like as we do not use it later.
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po = p+1: Let s50°(n(s) + 1) = (U1,..., 7).

u! = (ugo’p)(sﬁom);
T(;/ = 2. (TO )

as,al <1717~~~;17n>

Tl// = W;i(ulll)pn (T(ODI,...,Dn,l) (Zn))s

n—1= Wr;i(uxil),f,? (T<0171)(ﬂ2))7
T) =x! (T°(i1)).

mc(u!!),v1

Take enumeration
{Ds |0 <Te} %

{014 <P ™ 7P T ul LT - T U} =

<<E£o,po,<7qﬁo,po,<> | ¢ < T£o>-

We start induction on (. Set
F50:P0,0 — @Eow,

ugoﬁpo,o — yfor.
Assume we have constructed (@%0:P0:¢, ugo,po&’ Tgo’po’g | ¢ < Co)-
Co is limit:
V¢ < o Gto:poCo aﬁo»PmC,

uS0PoCo — U usO P {(@aforoo )1 where k0(t) = 7¢,.
(<o

We set T%0:,0:¢ to whatever we want as no use of it is made later.
Co=C+1: We set

"n_ (ugo,po,C)

u s€0:0
Ty = ﬂ-;ﬁloVPOvC,doT?Db”"D”'
If there is
uy <*ug U{Ty'}
such that
q501P0>< U u6 € Eorrors
then set

Fo:posCo — mc(ué),
uf S = u U (g \ (U T ),

T€0:p0:C0 — TUE)7

27
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otherwise set
~£0,00,C

)

50:P0,Go

£0,p0,C0 __ ,,60,P0,C
Ug = Ug )

€0,00,C0 _
TOO POs60 Tél.
When the induction on ¢ terminates we have (af00:¢ y50P¢ Té0:r0:C | ¢ < 7))
We continue with the induction on p. We set
V¢ < Te, aforo 5 dﬁmpo;C’
ugo’po = U ugo’po’c U {(6450”’0,&} where £°(t) = 7¢, .
(<Tgq

When the induction on p terminates we have (a0 ul®” TéP | p < 7¢,). We
continue with the induction on £&. We set

Vp < 1o @0 > AP,
ugo = U ugo’p U {(a*,t)} where k°(t) = 7¢,.
P<Tgq

When the induction on ¢ terminates we have (a,uf | ¢ < k). We note that this
sequence is not in N. Let

VE < k a* > af,
x U 13 — 0 _ 0
Do = ug U {(a*,t)} where k”(t) = maxpy.
E<k

: n J n
We construct a series of trees, R", and T? is [, _,, R™.

Levo(R°) =m0 Levo(T?).

Let us consider (1) € Levo(R?). There is ¢ such that £°(71) = 7¢. We set

s(0) = {{@, ma- a(71)) | @ € supppp},

s(1) = {<7Td*10—‘0(171)>} .
Let &g = € + 1. By our construction there is p such that

(u807P0)<S> = (ugoyp0)<s50’ﬁ>7
where pp = p+ 1. We set
R%7 = /n—(;*l,(iﬁ)vﬂo (T&))po) n ﬂ-(;*l,@o (T?ﬂa*Ydo(Dl»)'

Assume that we have constructed R”. We set the first n levels of R"t! to be the
same as the first n levels of R"™ and we complete the tree as follows. Let us consider
(U1,...,0n) € R™. There is € such that °(v,,) = 7¢. We set s as folows

V1 <k <ns(k)={{a s a(P)) | @€ supppg},
S(?’L + 1) = {<7Ta*,d0(ﬂl)7 R ,W@*ﬂao(ﬂn»} .
Let &g = € + 1. By our construction there is p such that

(Ugo’po)(5> = (ugomo)<siom) )
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where pg = p+ 1. We set
R =7 g (TP Nt o (T ).

(T150s7n) a*,a80:°0 a*, a0\ (T w50 (P1)5e- T gx 50 (Pn))
After w stages we set
7% = (| R".
n<w
We finish the construction by setting
P =prp) T P1T Do
We show that p* is as required.
Let G be Pg-generic such that p* € Pz. Let D € N be dense open in P;. We

want to show that DN G NN # 0.
Choose ¢ ™ rg € D NG such that

ro <* pg,
q<prpy oy Y,
where
(D1,...,Un) € dom 770,

Iio(ﬂn) = T¢,

D e (D¢ | ¢ <),
1 *

b = (p0)<171>~~~7’7n>'

We set s to be
V1 <k <n s(k) = {(@ mara(70)) | & € supppi}
s(n+1) = {{ma=a0(71), ..., Tae a0 (Zn)) } -
We get that
(P8) (71,..5m) = (25)s)-

We let £g = £+ 1. Recall the enumeration of S in the construction. There is p such
that

(po \ {{me(po), (po)™)}) () U {me(pp), (P5) ™)} = (P0) (sc0-0)-
We let pg = p + 1. Considering the construction of T%0, we see that

;
T

(D1,.s7n)

< To:po
hence
(Po) sy <™ (U§"°) (se0 .00} -
We note that
V1 <k <npy=((p5)s)k-

Recalling that ¢ was chosen so that

—~ N~ —~ N

q<DPr@p) - P1 Py P

we conclude that there is ¢ such that ¢ = ¢%*0:¢ and D = E%-ro:¢. That is

Efo:posC 5 q€0>P0>C Ty <* q50>P07C A((uﬁoyl)o»C)@&O,pQO_
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Note that this is an answer to the question we asked in the construction. Hence,
due to elementarity of N, there was such a condition in N. Hence

q£o7po7CA((uﬁo,poﬁ)(S&O,p))O cDNN.
The last point to note is that
qfoypm(f ’\((uEmPoyC)(SgOm))o >* 'qfoﬁpoyC ’\pg >* ¢ roeG
Hence
qﬁmpo,C A((U&)’p”’g(Sso,p))o cq.

Corollary 8.4. P is proper.

9. CARDINALS IN VP&

Lemma 9.1. « remains a cardinal in V5.

Proof. The proof really has no connection to the specific structure of Pg. It is an
exercise in properness.

Let

p - rf:?% — Rt

Choose x large enough so that H, contains everything we are interested in. Take
N < H, such that

1. p,Pg, [ €N,

2. |N| = &,

3. NDV,,

4. N D N<~,
By @ there is ¢ < p which is (N, Pg)-generic. Let us set

A=Nnkt,

where ) is an ordinal < k™.

Let G be Pg-generic with ¢ € G. The (N, Py)-genericity ensures us that for all
¢ <k fIEONE e N and f(6)NIE = f(£)HxIG]. Hence ran fVIG) C \. That is

ql- rchvis bounded in k1.

Lemma 9.2. No cardinals > k are collapsed by Ppg.

Proof. x* is not collapsed by P.1]. No cardinals > £+ are collapsed as Py satisfies
kT t-c.c. O

Lemma 9.3. Let & < K and ( the ordinal such that K(Ec(() < ¢ <
KY(Eg(¢C+1)). Then P(&) NV[G] = P(€) NV[GIC].
Proof. Take p = pn ™+ " pry1 Pk -+ " po € G such that E(pes1) = Eg((),
E(pr) = Eq(¢ +1). We know that V[G] = V[G/p]. So we work in P /p. Set p' =
Pa " T ok, P = {(E6(Q),0)} T pr T - 7 po. Then Pg/p = Pglp! x Pglp".
Note that (Pg/p", <*) is kK%(Eg(¢ + 1))-closed. In particular it is £*-closed.

Let A € V[G], A C ¢ Choose A, a canonical Pg/p-name for A. Let ¢ € Pg/p".
By induction we construct {q, | 7 < £) satisfying
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L.mo<n :~> 4 <* Q79>
2. ¢ || ' TeA.
Choose g¢ <* ¢, for all 7 < &.

By density argument we can construct, B, a P[p'-name such that A = /Nl[G] =
B[G1p']. O

Corollary 9.4. No carindals < k are collapsed by Pg.

Proof. Let G C Py be generic. Assume A < k is a collapsed cardinal. Let p =
IANVIEL We have p < A, and there is A € P(u)VI¢) which codifies the order type
M. Let ¢ be the unique ordinal such that k°(Eg(¢)) < p < k°(Eg(¢ +1)). By
P-3 A € V[GI¢]. Hence A is collapsed already in V[G[(]. However, by P.3, Pgooo)
collapses no cardinals above k°(E¢(¢)). Contradiction.

So, no cardinal < k is collapsed. As k is a limit of cardinals which are not
collapsed, it is not collapsed. O

We have just shown

Theorem 9.5. No cardinals are collapsed in Ve,

10. PROPERTIES OF k IN Ve

Theorem 10.1. IfI(E) = k* then VIE E "k is reqular’.

Proof. Let A < k, fbe such that

Fp, fA—R.
Let
Do = {p |3i p I f(0) :T}.

As Dy is a dense open set we can invoke @ to get p'°, ng, S° C T?" such that
Vk <no¥(vi,... ) € 836 <UE) Sucs((V1,..., 1)) € Emepo)(£),
(U1, Uny) € 8" (p’0)<1,1)m7,,n0> € Dy.

Let us set

Ay = { (") rreiag) | 15 ) € S}

Ap is an anti-chain. By shrinking T?" as was done in the proof of EI we can make
A into a maximal anti-chain below p®. As A < k and (Pg, <*) is s-closed we can
construct a <*-decreasing sequence

pIOZ*pIIZ*.“Z*pITZ*“. <\
and n,, S'7 C TP such that
Vk < n: V{1, ... ) € 873 <UE) Sucg- ({1, k) € Emepr (),

and
A;:{(pIT)O’l ..... Un.) | <V1="'7VnT>ESIT}

is a maximal anti-chain below p'".
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Let p’ <* p'" for all 7 < \. We set S™ = ﬂ-r:li(p’),mc(p”')(SIT) and p” to be p’ with
! ™) (T*"") substituted for 7% and maybe shrunken a bit so that

mc(p’),mc(
A, = {(p7)<l,1 ,,,,, Vas) | (v1,...,vn, ) € S’T}

is a maximal anti-chain below p7.
Let p <* p™ for all 7 < X and let g be the following Pz-name

52 U {<<7-7i>7 (pT)<V1,...,unT>> | AT = (pT)<V1,...,unT> I+ rf(T) :/i\j }
T
Then
plk"f=7"
Let P* be the following forcing notion:
P*={q<rplq€ Pg}.

By (P*, <g) is sub-forcing of (Pz/p, <). Hence if G is Pg-generic then G* =
G N P* is P*-generic. ¢ is in fact a P*-name and as can be seen from its’ definition
9G] = 9|G*] € V[G*]. So in order to complete the proof it is enough to show that
I-p~ "g is bounded .

By E there is r € Rpc(p) such that P* ~ Rmc(p)/r. Now we use the following
fact about Radin forcing: When the measure sequence is of length xT, k is regular
in the generic extension. Necessarily, I-p- "¢ is bounded . |

Definition 10.2. We say that 7 < 1(E) is a repeat point of E if Pg = Py -
Note that if 7 is a repeat point then Pg,. € M.

Theorem 10.3. If E has a repeat point, j" {AE | € < )\} € M where {/ng | € < /\}

is an enumeration of all canonical Pg-names of subsets of k, then VFE E Tk is
measurable.

Proof. We use the usual method under these circumstances. Let 7 be a repeat point
of £ and G be Pg-generic over V. For the duration of this proof let us define:

o If p=py € P then
piT = {<Ea 7,p") | Ea € Suppp} u{rr}.
e Ifp=p, " -7 p1 " po then
plIT=pn " -7 p17 polT.
Let us set
Gl ={plT [p€ G}.

We note that
1A < j(x),
2. M E"j(Pg)/Pgis j(k) — closed,
3. G|1 is Py .-generic over M.
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So, we can construct a <*-decreasing sequence in M[G|7], (p® | € < A), such that
P T e ()
We define an ultrafilter, U, in V' by
AG)l €U = pe1 b ke j(A) .
O

The assumptions we used in this theorem are very strong. We believe that a repeat
point is enough in order to get measurability.

11. WHAT HAVE WE PROVED?

We can sum everything as follows:

We can control independently two properties of k in a generic extension. The
first is the size of 2% which is controlled by |E|. The second is how ‘big’ we want
to be which is controlled by 1(E).

12. GENERIC BY ITERATION

Recall that if R is Radin forcing generated from j:V — M then there is 7 and
G € V such that G is jo - (R)-generic over M.

Our original aim was to find some form of this claim for our forcing. We have a
partial result in this direction. Namely, when 1(E) = 1 we have a generic filter in
V over an elementary submodel in M,,.

In this section we assume that 1(E) = 1.

Let us take an iteration of j = jo 1

((My, | n<w), nm | n<m<w)).

Choose x large enough so that everything interesting is in H, (i.e. Pz € Hy) and
set

Xn = Jo, n(X)

Definition 12.1 (when 1(E) = 1). We call (N, p) a k-pair if
My E"N < HM™
E F|N| = Iikj,
M,E"ND an‘f’fj,
MpE"N D N<#',
p € PN g1 (),
. If D € N, D is dense open in P* then there are n, S < T? such that

V<V17 R Vn> S (p)(u1,...,1/n> € jk,kJrl (D)

2 e

Claim 12.2. Let N € My, k < w and q € ji k+1(N)NPETY such that My, satisifes:

M
1N<@*

|N|_Hk7
3 N D VM

K 7
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4. N D N<rr,

5. PYeN.
Then there is p € ji r+1(N) N P such that

L p<*yq,

2. (N,p) is a k-pair.
Proof. Let <D’g | € < ki) be an enumeration, in My, of all the dense open subsets
of P* which are in N. Set Ni11 = jir+1(N). As we have

(jrks1(DE) | € < ki) © Niy,
(rps1(DE) | € < Kk) € Mypa,

r <’ik+1—|
Migi1 B Ngp1 2 N

we get that

<jk,k+1(D§) | € < ki) € Ngt1.
Starting with ¢ we construct in Ni4q a <*-decreasing sequence (pg | £ < ki) using
. Note that we have no problem at the limit stages as Ni41 F r(P’”l,g*

) is fik+1-closed1. Choose now p € Pkl Nj41 such that V§ < kp p <¥ pe. We
get that (N, p) is a k-pair. O

Definition 12.3. We call <]\7 ,p) a P¥-generic approximation sequence if
(N, p) = (N, pFT) | o < | < w)
such that for all kg <k < w
1. My E rNk < H%kj,
. Mk ': r|]\7k| = Iikj,
M E N, D VM,
M, = rNk B N<'/"kj,
Pk € Ny,
. Ny, p**1) is a k-pair,
. jk1,k2(Nk1) = Nkz?
PP < Grghr2(p

® NS U

1) me(pr1))-

Definition 12.4. Let <J\7 ,7) be a P“-generic approximating sequence. Then
GUN. ™) = {p € P*| 3k jrw(r*) <" p}.

Claim 12.5. Let kg < w, ¢ € P* N Ny, and assume for all ko < k < w
1. Pk ¢ N,
- Jkk+1(Ni) = N1,
My E r]\/vzC < H%kj,
. Mk E F|Nk| = Kkj,
My E r]\/vzC D) an\f’cj,
6. My F r]\/vzC D N;Kkj.
Then there is a P“-generic approximating sequence
(N, p) = (N, pFT) | o < | < w)

such that pFotl <* g, 1 11(q).



EXTENDER BASED RADIN FORCING 35

Proof. We construct the p**1 by induction. We set pko = g.

Assume that we have constructed (p¥ | ko < k' < k). We set ¢"t! =
ek (D7) (me(pryy - Invoke to get pF*tl <* ¢F*+1 such that (Ny,p**!) is a k-
pair.

When the induction terminates we have ((Nj,p"*1) | ko < k < w) as required.

O

Claim 12.6. Let kg < w and assume
1. Mko E rNkO < Hi\igoj,
My, B [Nio| = Ky

M
My, E"Nigg 2 Vi,

Mko = r‘Z\fko 2 N;Kk017
Pko ¢ N, ,
6. g € Pko N N, -
Then there is a P“-generic approximating sequence
(N, D) = (N, p"1) | ko < | < w)
such that pFo™t <* jio ko 41(q).

Proof. We set Ni, = ji, k(Ng,) for all kg < k < w and then we invoke . O

Of e oo

Theorem 12.7. Assume
M, E"N < HMT,
M, E"|IN|=k,
M, E"N D VM,
M,E"N D N<ke,
P¥Y e N,
6. g€ PNN.
Then there is, in 'V, a filter G C P* such that
1. ¢ € G,
2. VD € N D is dense open in P¥ = GNDNN #0.

AN

Proof. We find, (ﬁ,ﬁ), a PY-generic approximating sequence. G((N,ﬁ}) is the
required filter.
Find ko and Ny,, qko such that

P* ¢ Ny,
jko,w(ng) = N7
Jrow (@) = q.

Invoke to get from N¥o, gFo a generic approximating sequence <]\7 D).
Let D € N be dense open in P“.
Find k > ko and D* such that ji, ,,(D¥) = D. As usual we set D**! = j; 1., (DF).
By construction there is n such that
k41
Y(vi,...,vp) €TP ("),

which means that

vy € DI AN,

Tyees

: k1 k+1
Jrt 1kt 1400 (0" (e 41) it (me(pi+1))y € DY Nig1 g,
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Hence
(12.7.1) G410 (0" e 1), i1 pn(me(pei1y)y € DON.

As <J\7 ,D) is a P¥-generic approximation sequence it satisfies

k+14+n * - k+1
D < Tkt 1kt 14n (P ) (me(ph 1),k 1 ek 1 (me(phF1))

Hence

Jkt+1+n,w (pk+1+n) <

. k

Gt () me(ph 1), (e 1),
giving us that
(12.7.2) Jkt1w (karl)<mC(pk+1),~~~7jk+1,k+n(mc(:0"“))> € G(<N’ﬁ>)’
so G((N,p)) " DN N # 0 by [2.7.1 and [[2.7.3.

13. CONCLUDING REMARKS

1. We believe a repeat point is enough in order to get measurability of k. We
use a much stronger assumption in our proof.

2. A definition of repeat point that depends only on the extender sequence and
is equivalent to the one we gave (which mentions Pg) will probably be useful.

3. Tt is not completly clear what 1(E) should be in order to make sure that F
has a repeat point.

4. A finer analysis in the case of measurability and stronger properties is needed.
For example, extending the elementary embedding to the generic extension,
and not just constructing a normal ultrafilter.

5. We do not know how to get a generic by iteration when 1(E) > 1.

6. Making this forcing more ‘precise’ by adding ‘gentle’ collapses so we get a
prescribed behaviour on all cardinals below x in the generic extension is in
preparation.
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