
ar
X

iv
:m

at
h/

00
01

12
1v

1
 [

m
at

h.
L

O
]

 2
3

Ja
n

20
00

EXTENDER BASED RADIN FORCING

CARMI MERIMOVICH

Abstract. We define extender sequences, generalizing measure sequences of
Radin forcing.

Using the extender sequences, we show how to combine the Gitik-Magidor
forcing for adding many Prikry sequenes with Radin forcing.

We show that this forcing satisfies a Prikry like condition destroys no car-
dinals, and has a kind of properness.

Depending on the large cardinals we start with this forcing can blow the
power of a cardinal together with changing its’ cofinality to a prescirbe value.
It can even blow the power of a cardinal while keeping it regular or measurable.

1. Introduction

We give some background on previous work relating directly to the present work.
The first forcing which changed the cofinality of a cardinal without changing the
cardinal structure was Prikry forcing [6]. In this forcing a measurable cardinal, κ,
was ‘invested’ in order to get cf(κ) = ω without collapsing any cardinal. Developing
that idea, Magidor [2] used a coherent sequence of measures of length λ < κ in
order to get cf(κ) = λ without collapsing any cardinals. In [7] Radin, introducing
the notion of measure sequence, showed that it is useful to continue the coherent
sequence to λ > κ. For example, κ remains regular when λ = κ+. In general the
longer the measure sequence the more resemblance there is between κ in the generic
extension and the ground model.

As is well known, and unlike regular cardinals, blowing the power of a singular
cardinal is not an easy task. A natural approach to try was to blow the power of
a cardinal while it was regular and after that make it singular by one of the above
methods. A crucial idea of Gitik and Magidor [3] was to combine the power set
blowing and the cofinality change in one forcing. They introduced a forcing notion
which added many Prikry sequences at once and still collapsed no cardinals. The
‘investment’ they needed for this was an extender of length which is the size of power
they wanted. Building on the idea of Gitik and Magidor, Segal [8] implemented
the idea of adding many sequences to Magidor forcing. So by investing a coherent
sequence of extenders of length λ < κ she was able to get a singular cardinal of
cofinality λ together with power as large as the length of the extenders in question.
Our work also builds on the idea of Gitik and Magidor. However, we implement
the idea of adding many sequences to Radin forcing. So we introduce the notion of

Date: October 10, 1998.
1991 Mathematics Subject Classification. Primary 03E35, 03E55, 04A30.
Key words and phrases. Forcing, Radin forcing, Extender, Extender based forcing, Generelized

continuum hypothesis, Singular Cardinal hypothesis.
This work is a part of research which, hopefully, will become the author’s Ph.D. thesis. It was

done at Tel-Aviv university under the supervision of M. Gitik. The author thanks M. Gitik for
his help with this work, in other works and just in general.

1

http://arXiv.org/abs/math/0001121v1

2 CARMI MERIMOVICH

extender sequence and show that it makes sense to deal with quite long extender
sequences. As in Radin forcing, for long enough sequences we are left with κ which
is regular and even measurable. The power size will be the length of the extenders
we start with.

The structure of this work is as follows. In section 2 we define extender sequences.
In section 3 we define Radin forcing. The definition is not the usual one and is used
to introduce the idea used in section 4. In section 4 we define PĒ , the forcing
notion which is the purpose of this work. In section 5 we show the chain-conditions
satisfied by PĒ and how ‘locally’ it resembles Radin forcing. We also show here that
there are many new subsets in the generic extension. In section 6 we investigate
the structure of dense open subsets of PĒ . We show that they satisfy a strong
homogeneity property. In section 7 we prove Prikry’s condition for PĒ . The proof
is a simple corollary of the strong homogeneity of dense open subsets. In section
8 we show that PĒ satisfies a kind of properness. In section 9 we combine the
machinery developed so far in order to show that no cardinals are collapsed. In
section 10 we show how the length of the extender sequences affect the properties of
κ. Section 11 summarizes what the forcing PĒ does. In section 12 we have a result
concerning PĒ when l(Ē) = 1. We show that there is, in V , a generic filter over an
elementary submodel in an ω-iterate of V . We were not able to prove something
equivalent (or weaker) for the general case. Section 13 contains a list of missing or
unknown points to check. The last point in this list is in preparation.

Our notation is standard. We assume fluency with forcing and extenders. Some
basic properties of Radin forcing are taken for granted.

2. Extender sequences

2.1. Constructing from elementary embedding. Suppose we have an elemen-
tary embedding j:V → M ⊃ Vλ, crit(j) = κ. The value of λ is determined later,
according to the different applications we have.

Construct from j a nice extender like in [3]:

E(0) = 〈〈Eα(0) | α ∈ A〉, 〈πβ,α | β ≥ α α, β ∈ A〉〉.

We recall the properties of this extender:

1. A ⊆ |Vλ| \ κ,
2. |A| = |Vλ|,
3. A is κ+-directed,
4. κ is minimal in A and we write πα,0 instead of πα,κ,
5. ∀α, β ∈ A ν0 = πα,0(ν) = πβ,0(ν),
6. ∀α, β ∈ A πβ,0(ν) = πα,0(πβ,α(ν)),
7. ∀α, β, γ ∈ A ∃A ∈ Eγ(0) ∀ν ∈ A πγ,α(ν) = πβ,α(πγ,β(ν)).

If, for example, we need |E(0)| = κ+3 then, under GCH, we require λ = κ + 3. A
typical large set in this extender concentrates on singletons.

If j is not sufficiently closed , then E(0) /∈ M and the construction stops. We
set

∀α ∈ A Ēα = 〈α, E(0)〉.

We say that Ēα is an extender sequence of length 1. (l(Ēα) = 1)

EXTENDER BASED RADIN FORCING 3

If, on the other hand, E(0) ∈ M we can construct for each α ∈ domE(0) the
following ultrafilter

A ∈ E〈α,E(0)〉(1) ⇐⇒ 〈α, E(0)〉 ∈ j(A).

Such an A concentrates on elements of the form 〈ξ, e(0)〉 where e(0) is an extender
on ξ0 and ξ ∈ dom e(0). Note that e(0) concentrates on singletons below ξ0. If, for
example, |E(0)| = κ+3 then on a large set we have |e(0)| = (ξ0)+3.

We define π〈β,E(0)〉,〈α,E(0)〉 as

π〈β,E(0)〉,〈α,E(0)〉(〈ξ, e(0)〉) = 〈πβ,α(ξ), e(0)〉.

From this definition we get

j(π〈β,E(0)〉,〈α,E(0)〉)(〈β, E(0)〉) = 〈α, E(0)〉.

Hence we have here an extender

E(1) = 〈〈E〈α,E(0)〉(1) | α ∈ A〉, 〈π〈β,E(0)〉,〈α,E(0)〉 | β ≥ α α, β ∈ A〉〉.

Note that the difference between πβ,α and π〈β,E(0)〉,〈α,E(0)〉 is quite superficial. We
can define π〈β,E(0)〉,〈α,E(0)〉 in a uniform way for both extenders. Just project the
first element of the argument using πβ,α.

If 〈E(0), E(1)〉 /∈ M then the construction stops. In this case we set

∀α ∈ A Ēα = 〈α, E(0), E(1)〉.

We say that Ēα is an extender sequence of length 2. (l(Ēα) = 2)
If 〈E(0), E(1)〉 ∈ M then we construct the extender E(2) in the same way as we

constructed E(1) from E(0).
The above private case being worked out we continue with the general case.

Assume we have constructed

〈E(τ ′) | τ ′ < τ〉.

If 〈E(τ ′) | τ ′ < τ〉 /∈ M then the construction stops here. We set

∀α ∈ A Ēα = 〈α, E(τ ′) | τ ′ < τ〉,

and we say that Ēα is an extender sequence of length τ . (l(Ēα) = τ)
If, on the other hand, 〈E(τ ′) | τ ′ < τ〉 ∈ M then we construct

A ∈ E〈α,E(0),...,E(τ ′),...|τ ′<τ〉(τ) ⇐⇒

〈α, E(0), . . . , E(τ ′), . . . | τ ′ < τ〉 ∈ j(A).

Defining π〈β,E(0),...,E(τ ′),...|τ ′<τ〉,〈α,E(0),...,E(τ ′),...,|τ ′<τ〉 using the first coordinate as
before gives the needed projection.

We are quite casual in writing the indices of the projections and ultrafilters.
By this we mean that we sometimes write πβ,α when we should have written
π〈β,E(0),...,E(τ ′),...|τ ′<τ〉,〈α,E(0),...,E(τ ′),...,|τ ′<τ〉 and Eα(τ) when we should have writ-
ten E〈α,E(0),...,E(τ ′),...,|τ ′<τ〉(τ).

With this abuse of notation the projection we just defined satisfies

j(πβ,α)(〈β, E(0), . . . , E(τ ′), . . . | τ ′ < τ〉) =

〈α, E(0), . . . , E(τ ′), . . . | τ ′ < τ〉,

and we have the extender

E(τ) = 〈〈Eα(τ) | α ∈ A〉, 〈πβ,α | β ≥ α α, β ∈ A〉〉.

4 CARMI MERIMOVICH

We let the construction run until it stops due to the extender sequence not being
in M .

Definition 2.1. We call µ̄ an extender sequence if there is an elementary embed-
ding j:V → M such that ν̄ is an extender sequence generated as above and µ̄ = ν̄↾τ
for τ ≤ l(ν̄). κ(µ̄) is the ordinal at the beginning of the sequence. (i.e. κ(Ēα) = α).
κ0(µ̄) is (κ(µ̄))0. (i.e. κ0(Ēα) = κ).

That is, we do not have to construct the extender sequence until it is not in M .
We can stop anywhere on the way.

Definition 2.2. A sequence of extender sequences 〈µ̄1, . . . , µ̄n〉 is called 0-increasing
if κ0(µ̄1) < · · · < κ0(µ̄n).

Definition 2.3. Let 〈µ̄1, . . . , µ̄n〉 be 0-increasing. An extender sequences µ̄ is called
permitted to 〈µ̄1, . . . , µ̄n〉 if κ0(µ̄n) < κ0(µ̄).

Definition 2.4. We say A ∈ Ēα if ∀ξ < l(Ēα) A ∈ Eα(ξ).

Definition 2.5. Ē = 〈Ēα | α ∈ A〉 is an extender sequence system if there is an
elementary embedding j:V → M such that all Ēα are extender sequences generated
from j as prescribed above and ∀α, β ∈ A l(Ēα) = l(Ēβ). This common length
is called the length of the system, l(Ē). We write Ē(µ̄) for the extender sequence
system to which µ̄ belongs (i.e. Ē(Ēα) = Ē).

The generalization of the measure on the α coordinate in Gitik-Magidor forcing
[3] is Ēα.

2.2. Ēα-tree.

Definition 2.6. A tree T is an Ēα-tree if its’ elements are of the form

〈〈µ̄1, . . . , µ̄n〉, S〉

where

1. Set domT = {〈µ̄1, . . . , µ̄n〉 | 〈〈µ̄1, . . . , µ̄n〉, S〉 ∈ T }. Then the function

〈µ̄1, . . . , µ̄n〉 7→ 〈〈µ̄1, . . . , µ̄n〉, S〉

from domT to T is 1 − 1 and onto,
2. t ∈ Levn(domT) =⇒ |t| = n + 1,
3. 〈µ̄1, . . . , µ̄n〉 are 0-increasing extender sequences,
4. Lev0(domT) ∈ Ēα and for each t ∈ domT Sucdom T (t) ∈ Ēα,
5. S is a µ̄n-tree. When l(µ̄n) = 0 we set S = ∅.

Note that this clause is recursive.

Note 2.7. Later on, we abuse notation and use T instead of domT . i.e. SucT (t)
instead of Sucdom T (t).

Definition 2.8. Assume T is a Ēα-tree and t ∈ T , then:

1. Tt = {〈s, S〉 | 〈t ⌢ s, S〉 ∈ T }.
2. Tt(µ̄) is the tree, S, satisfying 〈µ̄, S〉 ∈ SucT (t).

Definition 2.9. Let T , S be Ēα-trees, where l(Ē) = 1. We say that T ≤ S if

EXTENDER BASED RADIN FORCING 5

1. Lev0(T) ⊆ Lev0(S),
2. ∀t ∈ T SucT (t) ⊆ SucS(t).

Definition 2.10. Let T , S be Ēα-trees. We say that T ≤ S if

1. Lev0(T) ⊆ Lev0(S),
2. ∀t ∈ T SucT (t) ⊆ SucS(t),
3. ∀〈µ̄〉 ∈ Lev0(T) T (µ̄) ≤ S(µ̄),
4. ∀t ∈ T ∀〈µ̄〉 ∈ Tt Tt(µ̄) ≤ St(µ̄).

Note that the last 2 conditions are recursive.

Definition 2.11. Let S be Ēα-tree and β > α. Define T = π−1
β,α(S) by

1. domT = π−1
β,α(domS),

2. T〈µ̄1,...,µ̄n−1〉
(µ̄n) = π−1

µ̄n,πβ,α(µ̄n)S〈πβ,α(µ̄1),...,πβ,α(µ̄n−1)〉
(πβ,α(µ̄n)).

Definition 2.12. Let T , S be Ēβ , Ēα-trees respectively, where β ≥ α. We say
that T ≤ S if

1. T ≤ π−1
β,α(S).

Definition 2.13. Assume we have A〈ν̄,R〉 where ν̄ is an extender sequence such
that each element in A〈ν̄,R〉 is of the form 〈µ̄, S〉 where µ̄ is an extender sequence

and S is a tree. (in this work we always have S is µ̄-tree). We define △0
〈ν̄,R〉 A〈ν̄,R〉

as

〈µ̄, S〉 ∈ △0

〈ν̄,R〉

A〈ν̄,R〉 ⇐⇒ ∀〈ν̄, R〉κ(ν̄) < κ0(µ̄) → 〈µ̄, S〈ν̄,R〉〉 ∈ A〈ν̄,R〉.

3. Radin Forcing

The main aims of this section are 3.8, 3.10. As the simplest way we found to
formulate them was with Radin forcing [7, 5, 10] we took the opportunity to depart
from usual formulation in order to introduce ideas that we use in the extender based
forcing later.

The main point is that possible extensions of a condition are stored in Ēα-tree
and not in a set. The α is be fixed, so practically we deal here with a measure
sequence and not an extender sequence.

Definition 3.1. A condition in Rα is of the form

〈〈µ̄n, sn〉, Sn, . . . , 〈µ̄1, s
1〉, S1, 〈µ̄0, s

0〉, S0〉

where

1. µ̄0 = Ēα,
2. ∀i ≤ n Si is µ̄i-tree,
3. ∀i ≤ n si ∈ Vκ0(µ̄i)

is an extender sequence.

Definition 3.2. Let p, q ∈ Rα. We say that p is Prikry extension of q (p ≤∗ q or
p ≤0 q) if p, q are of the form

p = 〈〈µ̄n, sn〉, Sn, . . . , 〈µ̄1, s
1〉, S1, 〈Ēα, s0〉, S0〉,

q = 〈〈µ̄n, tn〉, T n, . . . , 〈µ̄1, t
1〉, T 1, 〈Ēα, t0〉, T 0〉,

and

6 CARMI MERIMOVICH

• ∀i ≤ n Si ≤ T i,
• ∀i ≤ n si = ti.

Definition 3.3. Let p = 〈〈µ̄n, sn〉, Sn, . . . , 〈µ̄1, s
1〉, S1, 〈µ̄0, s

0〉, S0〉 where µ̄0 =
Ēα. Let 〈ν̄〉 ∈ Si. We define (p)〈ν̄〉 to be

(p)〈ν̄〉 = 〈〈µ̄n, sn〉, Sn, . . . , 〈µ̄i+1, s
i+1〉, Si+1,

〈ν̄, si〉, Si(ν̄), 〈µ̄i, ν̄〉, S
i
〈ν̄〉,

〈µ̄i−1, s
i−1〉, Si−1, . . . , 〈µ̄0, s

0〉, S0〉.

Note the degenerate case in this definition when l(ν̄) = 0. In this case Si(ν̄) = ∅.

Definition 3.4. Let p, q ∈ Rα where

q = 〈〈µ̄n, sn〉, Sn, . . . , 〈µ̄1, s
1〉, S1, 〈µ̄0, s

0〉, S0〉.

We say that p is 1-point extension of q (p ≤1 q) if there is 〈ν̄〉 ∈ Si such that
p ≤∗ (q)〈ν̄〉.

Definition 3.5. Let p, q ∈ Rα. We say that p is n-point extension of q (p ≤n q) if
there are pn, . . . , p0 such that

p = pn ≤1 . . . ≤1 p0 = q.

Definition 3.6. Let p, q ∈ Rα. We say that p is an extension of q (p ≤ q) if there
is n such that p ≤n q.

3.8 is needed in the proof of 7.1. Very loosly speaking 3.8 means that if “some-
thing” happens on a measure one set for one of the measures, that “something” is
happening on a measure one set for all the measures.

3.8 is proved by induction and 3.7 is the first case of the induction.

Lemma 3.7. Suppose l(Ēα) = 2 and T is a tree such that Lev0(T) ∈ Eα(i) for

i < 2, and ∀〈ν̄〉 ∈ T T〈ν̄〉 is an Ēα-tree. Then there is an Ēα-tree, T ∗, satisfying

1. ∀〈ν̄〉 ∈ T ∩ T ∗ T ∗
〈ν̄〉 ≤ T〈ν̄〉, T ∗(ν̄) ≤ T (ν̄),

2. If p ≤
〈
〈Ēα, 〈〉〉, T ∗

〉
then there is 〈µ̄〉 ∈ T ∗ ∩ T such that

p ‖
(〈
〈Ēα, 〈〉〉, T ∗

〉)
〈µ̄〉

.

Proof. There are 2 cases which to deal with:

• A0 = Lev0(T) ∈ Eα(0): If A0 ∈ Eα(1) we set T ∗ = T and the proof is
finished. So suppose A0 /∈ Eα(1). We would like to build A1 ∈ Eα(1). Set

∀〈µ̄0〉 ∈ T A〈µ̄0〉,1
=

{
〈µ̄1, S〉 ∈ T〈µ̄0〉

| A0 ∩ κ0(µ̄1) ∈ µ̄1(0)κ(µ̄1)

}
.

As A0 ∈ Eα(0) and SucT (〈µ̄0〉) ∈ Eα(1) we get that A〈µ̄0〉,1
∈ Eα(1). Let

A1 = △0

〈µ̄0〉∈T

A〈µ̄0〉,1
.

We can construct now T ∗:

Lev0(T
∗) = A0 ∪ A1,

∀µ̄0 ∈ A0 T ∗
〈µ̄0〉

= T〈µ̄0〉
,

∀µ̄1 ∈ A1 T ∗
〈µ̄1〉

=
⋂

〈µ̄0,µ̄1〉∈T

T〈µ̄0,µ̄1〉
.

EXTENDER BASED RADIN FORCING 7

• A1 = Lev0(T) ∈ Eα(1): If A1 ∈ Eα(0) we set T ∗ = T and finish the proof.
So assume A1 /∈ Eα(0). We would like to build A0 ∈ Eα(0). Set

S = j(T)
(
〈α, E(0)〉

)
,

A0 = Lev0(S) \ A1.

We construct T ∗:

Lev0(T
∗) = A0 ∪ A1,

∀µ̄1 ∈ A1 T ∗
〈µ̄1〉

= T〈µ̄1〉
.

We are left with the construction of T ∗
〈µ̄0〉

for µ̄0 ∈ A0. For all µ̄ ∈ A0 set

A〈µ̄0〉,0
= SucS

(
〈µ̄0〉

)
,

A〈µ̄0〉,1
=

{
〈µ̄1, T (µ̄1)〈µ̄0〉

〉 | 〈µ̄1〉 ∈ T, 〈µ̄0〉 ∈ T (µ̄1)
}

,

SucT∗

(
〈µ̄0〉

)
= A〈µ̄0〉,0

∪ A〈µ̄0〉,1
,

∀µ̄1 ∈ A〈µ̄0〉,1
T ∗
〈µ̄0,µ̄1〉

= T〈µ̄1〉
.

We continue one more level and hope this will convince the reader we indeed
can complete T ∗. We are left with the construction of T ∗

〈µ̄0,µ̄1〉
for 〈µ̄0, µ̄1〉 ∈

A0 × A〈µ̄0〉,0
. For all 〈µ̄0, µ̄1〉 ∈ A0 × A〈µ̄0〉,0

set

A〈µ̄0,µ̄1〉,0
= SucS

(
〈µ̄0, µ̄1〉

)
,

A〈µ̄0,µ̄1〉,1
=

{
〈µ̄2, T (µ̄2)〈µ̄0,µ̄1〉

〉 | 〈µ̄2〉 ∈ T, 〈µ̄0, µ̄1〉 ∈ T (µ̄2)
}

,

SucT∗

(
〈µ̄0, µ̄1〉

)
= A〈µ̄0,µ̄1〉,0

∪ A〈µ̄0,µ̄1〉,1
,

∀µ̄2 ∈ A〈µ̄0,µ̄1〉,1
T ∗
〈µ̄0,µ̄1,µ̄2〉

= T〈µ̄2〉
.

We are left with the construction of T ∗
〈µ̄0,µ̄1,µ̄2〉

for 〈µ̄0, µ̄1, µ̄2〉 ∈ A0×A〈µ̄0〉,0
×

A〈µ̄0,µ̄1〉,0
and we hope that by now the continuation is clear.

Lemma 3.8. Let ξ0 < l(Ēα), T a tree such that Lev0(T) ∈ Eα(ξ0) and ∀〈µ̄〉 ∈ T
T〈µ̄〉 is an Ēα-tree. Then there is an Ēα-tree, T ∗, satisfying

1. ∀〈ν̄〉 ∈ T ∩ T ∗ T ∗
〈ν̄〉 ≤ T〈ν̄〉, T ∗(ν̄) ≤ T (ν̄),

2. If p ≤
〈
〈Ēα, 〈〉〉, T ∗

〉
then there is 〈µ̄〉 ∈ T ∗ ∩ T such that

p ‖
(〈
〈Ēα, 〈〉〉, T ∗

〉)
〈µ̄〉

.

Proof. Our induction hypothesis is that this lemma is true for µ̄’s with l(µ̄) < l(Ēα).
The previous lemma is the case for l(µ̄) = 2.

Let S = j(T)(Ēα↾ξ0). The tree S is an Ēα↾ξ0-tree. We extend it step by step
to a full Ēα-tree as requested.

Let

Aξ0 = Lev0(T),

A<ξ0 = Lev0(S) \ Aξ0 .

For ξ0 < ξ < l(Ēα) do the following:

Nξ = Ult(V, Eα(ξ)),

kξ([h]Eα(ξ)) = j(h)(Ēα↾ξ).

8 CARMI MERIMOVICH

V M

Nξ = Ult(V, Eα(ξ))
?

-
j

�
�

�
��3

kξ

and recall that crit(kξ) = (κ++)Nξ . As

〈α, E(0), . . . , E(τ), . . . | τ < ξ〉 = kξ([id]Eα(ξ)) ∈ ran(kξ)

there is in Nξ a preimage for it:

〈α′, E′(0), . . . , E′(τ ′) . . . | τ ′ < ξ′〉.

As Aξ0 ∈ Eα(ξ0), ξ0 < ξ we have τ ′ < ξ′ such that Aξ0 ∈ E′
α′(τ ′), (where α′ =

[κ(id)]Eα(ξ). Taking a function hξ such that [hξ]Eα(ξ) = τ ′ we get

{
µ̄ | Aξ0 ∩ κ0(µ̄) ∈ µ̄(hξ(µ̄))κ(µ̄)

}
∈ Eα(ξ).

For each µ̄0 ∈ Aξ0 we set

Aξ,〈µ̄0,T (µ̄0)〉
=

{
〈µ̄1, R〉 ∈ T〈µ̄0〉

| Aξ0 ∩ κ0(µ̄1) ∈ µ̄1(hξ(µ̄1))κ(µ̄)

}
,

A′
ξ = △0

〈µ̄0,T (µ̄0)〉

Aξ,〈µ̄0,T (µ̄0)〉.

For any tree R which appears in a pair 〈µ̄1, R〉 ∈ A′
ξ we can invoke by induction

our lemma and generate R∗ which is a µ̄1-tree. Define now Aξ as:

〈µ̄1, R
∗〉 ∈ Aξ ⇐⇒ 〈µ̄1, R〉 ∈ A′

ξ.

When we have
{
Aξ | ξ0 < ξ < l(Ēα)

}
we set

A>ξ0 =
⋃

ξ0<ξ<l(Ēα)

Aξ \ (A<ξ0 ∪ Aξ0),

Lev0(T
∗) = A<ξ0 ∪ Aξ0 ∪ A>ξ0 ,

∀〈µ̄0〉 ∈ Aξ0 T ∗
〈µ̄0〉

= T〈µ̄0〉
,

∀〈µ̄1〉 ∈ A>ξ0 T ∗
〈µ̄1〉

=
⋂

T〈µ̄0,µ̄1〉
.

We are left to define T〈µ̄0〉
for 〈µ̄0〉 ∈ A<ξ0 . For each µ̄0 ∈ A<ξ0 set:

A〈µ̄0〉,ξ0
=

{
〈µ̄1, R〈µ̄0〉

〉 | 〈µ̄1, R〉 ∈ Aξ0 , 〈µ̄0〉 ∈ R
}

,

A〈µ̄0〉,<ξ0
= SucS(〈µ̄0〉) \ A〈µ̄0〉,ξ0

.

For each µ̄1 ∈ Aξ0 we set

A〈µ̄0〉,ξ,〈µ̄1,T (µ̄1)〈µ̄0〉〉 =
{
〈µ̄2, R〉 ∈ T〈µ̄1〉

| Aξ0 ∩ κ0(µ̄2) ∈ µ̄2(hξ(µ̄2))κ(µ̄2)

}
,

A′
〈µ̄0〉,ξ

= △0

〈µ̄1,T (µ̄1)〈µ̄0〉〉

A〈µ̄0〉,ξ,〈µ̄1,T (µ̄1)〈µ̄0〉〉.

We define

〈µ̄0, R
∗〉 ∈ A〈µ̄0〉,ξ

⇐⇒ 〈µ̄0, R〉 ∈ A′
〈µ̄0〉,ξ

EXTENDER BASED RADIN FORCING 9

where R∗ is generated from R using the current lemma by induction. Now we set

A〈µ̄0〉,>ξ0
=

⋃

ξ0<ξ<l(Ēα)

A〈µ̄0〉,ξ
\ (A〈µ̄0〉,<ξ0

∪ A〈µ̄0〉,ξ0
),

SucT∗(〈µ̄0〉) = A〈µ̄0〉,<ξ0
∪ A〈µ̄0〉,ξ0

∪ A〈µ̄0〉,>ξ0
,

∀〈µ̄1〉 ∈ Aµ̄0,ξ0 T ∗
〈µ̄0,µ̄1〉

= T〈µ̄1〉
,

∀〈µ̄2〉 ∈ Aµ̄0,>ξ0 T ∗
〈µ̄0,µ̄2〉

=
⋂

T〈µ̄1,µ̄2〉
.

This leaves us with the definition of T〈µ̄0,µ̄1〉
for 〈µ̄0, µ̄1〉 ∈ A<ξ0 × A〈µ̄0〉,<ξ0

which
is done exactly as in this step.

3.10 is needed in the proof of 6.1. Loosly speaking it says that if “something”
happens on all extensions which are taken from domT , then that “something”
happens on all extensions from T .

3.10 is proved by induction where 3.9 is the first case.

Lemma 3.9. Assume l(Ēα) = 2 and let T be Ēα-tree. Then there is T ∗ ≤ T such

that if

p ≤
〈
〈Ēα, 〈〉〉, T ∗

〉

then there is 〈ν̄1, . . . , ν̄n〉 ∈ T such that

p ≤∗
(〈
〈Ēα, 〈〉〉, T

〉)
〈ν̄1,...,ν̄n〉

.

Proof. As is usual in this section the proof is done level by level. Let us set T 1 = T
and it is trivially true that if

p ≤1
〈
〈Ēα, 〈〉〉, T 1

〉

then there is 〈ν̄1〉 ∈ T 1 = T such that

p ≤∗
(〈
〈Ēα, 〈〉〉, T 1

〉)
〈ν̄1〉

.

We continue to the second level. Let us set

A〈ν̄1,S1〉 = SucT 1(〈ν̄1〉),

A〈〉 = △0

〈ν̄1,S1〉

A〈ν̄1,S1〉

B〈〉 =
{
〈ν̄2〉 | l(ν̄2) = 0 or Lev0(T

1) ∩ κ0(ν̄2) ∈ ν̄2

}
,

Lev0(T
(0)) = A〈〉 ∩ B〈〉,

T
(0)
〈ν̄2〉

=
⋂

〈ν̄1〉∈T (0)(ν̄2)

T 1
〈ν̄1,ν̄2〉

,

T 2 = T 1 ∩ T (0).

Let us assume that

p ≤2
〈
〈Ēα, 〈〉〉, T 2

〉
.

There are 2 cases to consider here:

1. p ≤2
(〈
〈Ēα, 〈〉〉, T 2

〉)
〈ν̄1,ν̄2〉

where 〈ν̄1, ν̄2〉 ∈ T 2: At once we have 〈ν̄1, ν̄2〉 ∈

T 1 ≤ T .
2. p ≤2

(〈
〈Ēα, 〈〉〉, T 2

〉)
〈ν̄2,ν̄1〉

where 〈ν̄2〉 ∈ T 2, 〈ν̄1〉 ∈ T 2(ν̄2): By construction

∀〈µ̄〉 ∈ T 2(ν̄2) 〈ν̄2〉 ∈ T 1
〈µ̄〉. As 〈ν̄1〉 ∈ T 2(ν̄2) we get 〈ν̄1, ν̄2〉 ∈ T 1 ≤ T .

10 CARMI MERIMOVICH

We show how to continue to the third level. Let us set

A〈ν̄1,S1,ν̄2,S2〉 = SucT 2(〈ν̄1, ν̄2〉),

A〈ν̄1,S1〉 = △0

〈ν̄2,S2〉

A〈ν̄1,S1,ν̄2,S2〉,

B〈ν̄1,S1〉 =
{
〈ν̄3〉 | l(ν̄3) = 0 or SucT 2(〈ν̄1, S

1〉) ∩ κ0(ν̄3) ∈ ν̄3

}
,

Lev0(T
(0)) = Lev0(T

2),

SucT (0)(〈ν̄1〉) = A〈ν̄1,S1〉 ∩ B〈ν̄1,S1〉,

T
(0)
〈ν̄1,ν̄3〉

=
⋂

〈ν̄2〉∈T
(0)

〈ν̄1〉
(ν̄3)

T 2
〈ν̄1,ν̄2,ν̄3〉

,

A〈〉 = △0

〈ν̄1,S1〉

A〈ν̄1,S1〉,

B〈〉 =
{
〈ν̄3〉 | l(ν̄3) = 0 or Lev0(T

2) ∩ κ0(ν̄3) ∈ ν̄3

}
,

Lev0(T
(1)) = A〈〉 ∩ B〈〉,

SucT (1)(〈ν̄3〉) =
⋂

〈ν̄1,ν̄2〉∈T (0)(ν̄3)

T 2
〈ν̄1,ν̄2,ν̄3〉

,

T 3 = T 2 ∩ T (0) ∩ T (1).

Let us assume that

p ≤3
〈
〈Ēα, 〈〉〉, T 3

〉
.

There are 3 cases to consider here:

1. p ≤∗
(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄1,ν̄2,ν̄3〉

where 〈ν̄1, ν̄2, ν̄3〉 ∈ T 3: At once we get

〈ν̄1, ν̄2, ν̄3〉 ∈ T .
2. p ≤∗

(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄1,ν̄3,ν̄2〉

where 〈ν̄1, ν̄3〉 ∈ T 3, 〈ν̄2〉 ∈ T 3
〈ν̄1〉

(ν̄3): In this

case ∀〈µ̄〉 ∈ T 3
〈ν̄1〉

(ν̄3) 〈ν̄3〉 ∈ T 3
〈ν̄1,µ̄〉. As 〈ν̄2〉 ∈ T 3

〈ν̄1〉
(ν̄3) we get 〈ν̄3〉 ∈

T〈ν̄1,ν̄2〉.

3. p ≤∗
(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄3,ν̄1,ν̄2〉

where 〈ν̄3〉 ∈ T 3, 〈ν̄1, ν̄2〉 ∈ T 3(ν̄3): ∀〈µ̄1, µ̄2〉 ∈

T 3(ν̄3) 〈ν̄3〉 ∈ T 3
〈µ̄1,µ̄2〉

hence 〈ν̄3〉 ∈ T〈ν̄1,ν̄2〉.

In this way we continue to all levels.

Lemma 3.10. Let T be Ēα tree. Then there is T ∗ ≤ T such that if

p ≤
〈
〈Ēα, 〈〉〉, T ∗

〉

then there is 〈ν̄1, . . . , ν̄n〉 ∈ T such that

p ≤∗
(〈
〈Ēα, 〈〉〉, T

〉)
〈ν̄1,...,ν̄n〉

.

Proof. The proof is by induction on l(Ēα). The first case was done in 3.9. The
proof is almost the same. We just make sure to invoke the induction hypothesis
while repeating the construction.

Construction of T 1 and T 2 is exactly like in 3.9. We show the construction at
the 3rd level.

EXTENDER BASED RADIN FORCING 11

Let us set

A〈ν̄1,S1,ν̄2,S2〉 = SucT 2(〈ν̄1, ν̄2〉),

A〈ν̄1,S1〉 = △0

〈ν̄2,S2〉

A〈ν̄1,S1,ν̄2,S2〉,

B〈ν̄1,S1〉 =
{
〈ν̄3〉 | l(ν̄3) = 0 or SucT 2(〈ν̄1, S

1〉) ∩ κ0(ν̄3) ∈ ν̄3

}
,

Lev0(T
(0)) = Lev0(T

2),

SucT (0)(〈ν̄1〉) = A〈ν̄1,S1〉 ∩ B〈ν̄1,S1〉,

T
(0)
〈ν̄1,ν̄3〉

=
⋂

〈ν̄2〉∈T
(0)

〈ν̄1〉
(ν̄3)

T 2
〈ν̄1,ν̄2,ν̄3〉

,

A′
〈〉 = △0

〈ν̄1,S1〉

A〈ν̄1,S1〉,

A〈〉 =
{
〈ν̄3, S

3〉 | 〈ν̄3, S
3′〉 ∈ A′

〈〉 S is generated from S3′ by induction
}

,

B〈〉 =
{
〈ν̄3〉 | l(ν̄3) = 0 or Lev0(T

2) ∩ κ0(ν̄3) ∈ ν̄3

}
,

Lev0(T
(1)) = A〈〉 ∩ B〈〉,

SucT (1)(〈ν̄3〉) =
⋂

〈ν̄1,ν̄2〉∈T (0)(ν̄3)

T 2
〈ν̄1,ν̄2,ν̄3〉

,

T 3 = T 2 ∩ T (0) ∩ T (1).

Let us assume that

p2
⌢ p1

⌢ p0 = p ≤3
〈
〈Ēα, 〈〉〉, T 3

〉
.

There are 3 cases to consider here:

1. p ≤∗
(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄1,ν̄2,ν̄3〉

where 〈ν̄1, ν̄2, ν̄3〉 ∈ T 3: At once we get

〈ν̄1, ν̄2, ν̄3〉 ∈ T .
2. p ≤∗

(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄1,ν̄3,ν̄2〉

where 〈ν̄1, ν̄3〉 ∈ T 3, 〈ν̄2〉 ∈ T 3
〈ν̄1〉

(ν̄3): In this

case ∀〈µ̄〉 ∈ T 3
〈ν̄1〉

(ν̄3) 〈ν̄3〉 ∈ T 3
〈ν̄1,µ̄〉. As 〈ν̄2〉 ∈ T 3

〈ν̄1〉
(ν̄3) we get 〈ν̄3〉 ∈

T〈ν̄1,ν̄2〉.

3. p ≤2
(〈
〈Ēα, 〈〉〉, T 3

〉)
〈ν̄3〉

where 〈ν̄3〉 ∈ T 3 and p2
⌢ p1 ≤2

(〈
〈ν̄3, 〈〉〉, T 3(ν̄3)

〉

By induction there is 〈ν̄1, ν̄2〉 ∈ T (ν̄3) such that

p2
⌢ p1 ≤∗

(〈
〈ν̄3, 〈〉〉, T

2(ν̄3)
〉)

〈ν̄1,ν̄2〉
.

By construction ∀〈µ̄1, µ̄2〉 ∈ T 2(ν̄3) 〈ν̄3〉 ∈ T 2
〈µ̄1,µ̄2〉

hence 〈ν̄3〉 ∈ T〈ν̄1,ν̄2〉.

In this way we continue to all levels.

4. PĒ-Forcing

Definition 4.1. A condition in P ∗
Ē

is of the form
{
〈γ̄, pγ̄〉 | γ̄ ∈ g

}
∪ {T }

where

1. g ⊆ Ē, |g| ≤ κ,
2. min Ē ∈ g and g has a maximal element,
3. pγ̄ ∈ Vκ is an extender sequence. We allow pγ̄ = ∅,

12 CARMI MERIMOVICH

4. p0 = (pmax g)0.
This condition is not really needed here. It is needed in a later forcing based
on this one,

5. T is a max g-tree such that for all t ∈ T pmax g ⌢ t is 0-increasing,
6. For all γ̄ ∈ g, pmax g is not permitted to pγ̄ ,
7. ∀〈ν̄〉 ∈ T |{γ̄ ∈ g | ν̄ is permitted to pγ̄}| ≤ κ0(ν̄),

8. ∀〈ν̄〉 ∈ T if ν̄ is permitted to pβ̄, pγ̄ then πmax g,β̄(ν̄) 6= πmax g,γ̄(ν̄).

We write mc(p), pmc, T p, Ē(p), supp p for max g, pmax g, T , Ē, g respectively.

µ̄0 µ̄1 µ̄2 µ̄3 µ̄4 T

Support Ēκ Ēα1 Ēα2 Ēα3 Ēα4 = mc

Figure 1. An Example of Condition in P ∗
Ē

Definition 4.2. Let p, q ∈ P ∗
Ē

. We say that p is a Prikry extension of q (p ≤∗ q or

p ≤0 q) if

1. supp p ⊇ supp q,
2. ∀γ ∈ supp q pγ = qγ ,
3. T p ≤ T q.

We include in this definition the degenerate case l(Ē) = 0. There is neither
extender nor tree in this case. By p ≤∗ p we mean p = q.

µ̄0 ν̄0 µ̄1 ν̄1 µ̄2 µ̄3 µ̄4 ν̄2 π−1
β2,α4

T

Support Ēκ Ēβ0 Ēα1
Ēβ1 Ēα2 Ēα3 Ēα4

Ēβ2 = mc

Figure 2. An Example of Direct Extension

Definition 4.3. A condition in PĒ is of the form

pn
⌢ · · ·⌢ p0

where

• p0 ∈ P ∗
Ē

,
• p1 ∈ P ∗

µ̄1
,

•
...,

• pn ∈ P ∗
µ̄n

,

where Ē, µ̄1, . . . , µ̄n are extender sequence systems satisfying

κ0(µ̄n) < · · · < κ0(µ̄1) < κ0(Ē).

EXTENDER BASED RADIN FORCING 13

τ0 τ1 τ2 τ3 τ4 R µ̄5 µ̄6 µ̄7 µ̄8 µ̄9 S ν̄0 ν̄1 ν̄5 ν̄6 ν̄4 T

µ̄0 µ̄1 µ̄2 µ̄3 µ̄4 = mc ν̄0 ν̄1 ν̄2 ν̄3 ν̄4 = mc Ēκ Ēα1Ēα2Ēα3̄Eα4 = mc

Figure 3. An Example of a Condition in PĒ

Definition 4.4. Let p, q ∈ PĒ . We say that p is a Prikry extension of q (p ≤∗ q or
p ≤0 q) if p, q are of the form

p = pn
⌢ · · ·⌢ p0,

q = qn
⌢ · · ·⌢ q0,

and

• p0, q0 ∈ P ∗
Ē

, p0 ≤∗ q0,
• p1, q1 ∈ P ∗

µ̄1
, p1 ≤∗ q1,

•
...,

• pn, qn ∈ P ∗
µ̄n

, pn ≤∗ qn.

Definition 4.5. Let p ∈ P ∗
Ē

and 〈ν̄〉 ∈ T p. We =define (p)〈ν̄〉 to be p′1
⌢ p′0 where

1. supp p′1 =
{
πmc(p),γ̄(ν̄) | γ̄ ∈ supp p, κ0(pγ̄) < κ0(ν̄)

}
,

2. p
′πmc(p),γ̄ (ν̄)
1 = pγ̄ ,

3. T p′
1 = T p(ν̄),

4. supp p′0 = supp p,

5. ∀γ̄ ∈ supp p′0 p′γ̄0 =

{
πmc(p),γ̄(ν̄) κ0(pγ̄) < κ0(ν̄)

pγ̄ otherwise
,

6. T p′
0 = T p

〈ν̄〉.

Definition 4.6. Let p, q ∈ PĒ . We say that p is a 1-point extension of q (p ≤1 q)
if p, q are of the form

p = pn+1
⌢ pn

⌢ · · ·⌢ p0,

q = qn
⌢ · · ·⌢ q0,

and there is 0 ≤ k ≤ n such that

• pi, qi ∈ P ∗
µ̄i

, pi ≤∗ qi for i = 0, . . . , k − 1,
• pi+1, qi ∈ P ∗

µ̄i
, pi+1 ≤∗ qi for i = k + 1, . . . , n,

• There is 〈ν̄〉 ∈ T qk such that pk+1
⌢ pk ≤∗ (qk)〈ν̄〉.

µ̄0 µ̄1 µ̄3 µ̄4 T (ν̄) ν̄0 πα4,α1(ν̄) µ̄2 πα4,α3(ν̄) ν̄ T〈ν̄〉

ν̄0 πα4,α1(ν̄) πα4,α3(ν̄) ν̄ Ēκ Ēα1 Ēα2 Ēα3 Ēα4

Figure 4. An Example of 1-point extension

14 CARMI MERIMOVICH

Definition 4.7. Let p, q ∈ PĒ . We say that p is an n-point extension of q (p ≤n q)
if there are pn, . . . , p0 such that

p = pn ≤1 · · · ≤1 p0 = q.

Definition 4.8. Let p, q ∈ PĒ . We say that p is an extension of q (p ≤ q) if there
is n such that p ≤n q.

Later on by PĒ we mean 〈PĒ ,≤〉.

Note 4.9. When l(Ē) = 1 the forcing PĒ is the Gitik-Magidor forcing from section
1 of [3]. When l(Ē) < κ the forcing PĒ is similar to the forcing defined in [8].

In several places we want to prevent enlargment of the support of a condition.
This makes all the conditions which are stronger than some condition but with the
same support resemble Radin forcing. The following definition catches the meaning
of not enlarging the support. The ‘resemblence’ we look for is 5.3.

Definition 4.10. Let p, q ∈ PĒ . We say that p ≤∗
R q if

1. p ≤∗ q,
2. supp p = supp q.

Definition 4.11. Let p, q ∈ PĒ . We say that p ≤1
R q if

1. p ≤1 q,
2. In the definition of ≤1 we can substitute ≤∗ by ≤∗

R.

Definition 4.12. Let p, q ∈ PĒ . We say that p ≤n
R q if there are pn, . . . , p0 such

that

p = pn ≤1
R · · · ≤1

R p0 = q.

Definition 4.13. Let p, q ∈ PĒ . We say that p ≤R q if there is n such that p ≤n
R q.

Note 4.14. The above definitions imply that if q ≤ p then there is r such that
q ≤∗ r ≤R p.

Definition 4.15. Let ǭ be an extender sequence such that κ0(ǭ) < κ0(Ē).

PĒ/Pǭ = {p | q ∈ Pǭ, q
⌢ p ∈ PĒ} .

5. Basic Properties of PĒ

Claim 5.1. PĒ satisfies κ++-c.c.

Proof. The usual ∆-lemma argument on the support will do.

Claim 5.2. Let p ∈ PĒ, P ∗ = {q ≤R p | p ∈ PĒ}. Then

1. 〈P ∗,≤R〉 satisfies κ+-c.c.,

2. 〈P ∗,≤R〉 is sub-forcing of 〈PĒ/p,≤〉.

EXTENDER BASED RADIN FORCING 15

Proof. Showing κ+-c.c. is trivial.
Showing that P ∗ is sub-forcing of PĒ/p amounts to showing that any maximal

anti-chain of P ∗ is also a maximal anti-chain of PĒ/p.
Let A be a maximal anti-chain of P ∗. Let q ∈ PĒ/p. As q ≤ p, there is

r′ ∈ P ∗ such that q ≤∗ r′ ≤R p. Assume that r′ = r′n
⌢ · · ·⌢ r′0. Then also

q = qn
⌢ · · ·⌢ q0. Let ri be r′i with T r′

i substituted by T r′
i ∩ πmc(qi),mc(r′

i)
(T qi) and

r = rn
⌢ · · ·⌢ r0. As r ∈ P ∗ and A is a maximal anti-chain there is a ∈ A such

that a ‖ r. Take s ≤R a, r. Considering how we constructed r from r′ we must
have t ≤∗ s such that t ≤ q. Hence q ‖ a. So we get that A is a maximal anti-chain
of PĒ/p.

Claim 5.3. Let p ∈ PĒ, P ∗ = {q ≤R p | p ∈ PĒ}. Then there is r ∈ Rmc(p) such

that P ∗ ≃ Rmc(p)/r

Proof. For simplicity assume that p = p0. Then we set r = 〈〈mc(p0), p
mc
0 〉, T p〉.

We give the isomorphism: The image of q ∈ P ∗ is s ∈ 〈Rmc(p)/r,≤〉 such that

1. q ≤∗ s,
2. T si = T qi where s = sn

⌢ · · ·⌢ s0, q = qn
⌢ · · ·⌢ q0.

Let G be PĒ-generic.

Definition 5.4. ĒG is the enumeration of
{
Ē(pk) | pn

⌢ · · ·⌢ p0 ∈ G
}

ordered in-

creasingly by κ0(Ē(pk)).

Definition 5.5. Let ζ < otp(ĒG). Then

1. G↾ζ =
{
pn

⌢ · · ·⌢ pk | pn
⌢ · · ·⌢ pk

⌢ · · ·⌢ p0 ∈ G, Ē(pk) = ĒG(ζ)
}
,

2. G \ ζ =
{
pk−1

⌢ · · ·⌢ p0 | pn
⌢ · · ·⌢ pk

⌢ · · ·⌢ p0 ∈ G, Ē(pk) = ĒG(ζ)
}
.

Definition 5.6.

M ᾱ
G =

{⋃ {
M µ̄

G | p ∈ G, µ̄ = pᾱ
}
∪ {ᾱ} ∃p ∈ G ᾱ ∈ supp p

{ᾱ} otherwise

Cᾱ
G =

{
κ(µ̄) | µ̄ ∈ M ᾱ

G

}

Proposition 5.7. 1. CĒκ

G \ {κ} is a club in κ,

2. CĒα

G \ {α} is unbounded in κ,

3. ᾱ 6= β̄ =⇒ Cᾱ
G 6= Cᾱ

G.

Proof. The first two claims are immediate as these are sequences which are gener-
ated by Radin forcing.

The last is by density and noticing that when pᾱ, pβ̄ are permitted for ν̄ we
required πmc(p),ᾱ(ν̄) 6= πmc(p),β̄(ν̄).

6. Homogeneity in Dense Open Subsets

Our aim in this section is to prove the following

16 CARMI MERIMOVICH

Theorem 6.1. Let D ⊆ PĒ be dense open and p = pk
⌢ · · ·⌢ p0 ∈ PĒ. Then there

is p∗ ≤∗ p such that

∃Sk ∃nk∀〈ν̄k,1, . . . , ν̄k,nk
〉 ∈ Sk . . . ∃S0 ∃n0∀〈ν̄0,1, . . . , ν̄0,n0〉 ∈ S0

(p∗k)〈ν̄k,1,...,ν̄k,nk
〉

⌢ · · ·⌢(p∗0)〈ν̄0,1,...,ν̄0,n0 〉
∈ D

where

1. Si ⊆ T p∗
i ↾[Vκ]ni ,

2. ∀l < ni ∀〈ν̄1, . . . , ν̄l〉 ∈ Si ∃ξ SucSi(〈ν̄1, . . . , ν̄l〉) ∈ Emc(p∗
i)(ξ).

The proof is done by a series of lemmas.

Definition 6.2. Let p ∈ P ∗
Ē

. Let s be a function such that dom s ⊆ Ē. and for all

ᾱ, β̄ ∈ dom s, ᾱ 6= β̄

1. s(ᾱ) is an extender sequence,
2. l(s(ᾱ)) = l(s(β̄)),
3. κ0(s(ᾱ)) = κ0(s(β̄)),
4. s(ᾱ) 6= s(β̄).

We define (p)〈s〉 to be p′1
⌢ p′0 where

1. supp p′1 =
{
s(ᾱ) | ᾱ ∈ supp p ∩ dom s, κ0(pᾱ) < κ0(s(ᾱ))

}
,

2. ∀ᾱ ∈ supp p′1 p
′s(ᾱ)
1 = pᾱ,

3. If s(mc(p)) ∈ T p then T p′
1 = T p(s(mc(p))). Otherwise we leave T p′

1 undefined,
4. supp p′0 = supp p,

5. ∀ᾱ ∈ supp p′0 p′ᾱ0 =

{
s(ᾱ) ᾱ ∈ dom s and κ0(pᾱ) < κ0(s(ᾱ))

pᾱ otherwise
,

6. If s(mc(p)) ∈ T p then T p′
0 = T p

〈s(mc(p))〉. Otherwise we leave T p′
0 undefined.

Definition 6.3. Let p ∈ P ∗
Ē

. Let s be a function with dom s = 1, . . . , n such that
for all i s(i) satisfies definition 6.2. Then we define (p)〈s〉 as pn where pn is defined
by induction as follows:

p0 = p,

pi+1 = pi
i

⌢ · · ·⌢ pi
1

⌢(pi
0)〈s(i+1)〉.

We note the following: If 〈ν̄1, . . . , ν̄n〉 ∈ T p and we set for all 1 ≤ i ≤ n

s(i) =
{
〈ᾱ, πmc(p),ᾱ(ν̄i)〉 | ᾱ ∈ supp p

}

then

(p)〈ν̄1,...,ν̄n〉 = (p)〈s〉.

We use this operation also in cases where p is not strictly a condition. That is if
p ∪ {T } ∈ PĒ we also use (p)〈s〉. In this case we ignore the trees in the definition.

This definition is used in the proof of the homogeneity for the following reason:
Beforehand we do not know what a legitimate extension is. By checking with all
the possible µ’s we check on all legitimate conditions which might be extensions.

Claim 6.4. Let D be dense open in PĒ/Pǭ, p = p0 ∈ PĒ/Pǭ, 0 < n < ω. Then

there is p∗ ≤∗ p such that one and only one of the following is true:

1. There is S ⊆ T p∗

↾[Vκ]n such that

(1.1) ∀k < n ∃ξ < l(Ē) SucS(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ),

EXTENDER BASED RADIN FORCING 17

(1.2) ∀〈ν̄1, . . . , ν̄n〉 ∈ S (p∗)〈ν̄1,...,ν̄n〉 ∈ D.

2. ∀〈ν̄1, . . . , ν̄n〉 ∈ T p∗

∀q ≤∗ (p∗)〈ν̄1,...,ν̄n〉 q /∈ D.

Proof. We give the proof for n = 1. Adapting the proof for higher n’s require that
whenever we enumerate singletons we should enumerate n-tuples and when we use
j we should use jn.

We start an induction on ξ in which we build

〈ᾱξ, uξ | ξ < κ〉.

We start by setting

u0 = p0 \ {T
p0} ,

ᾱ0 = mc(p0),

T 0 = T p0↾π−1
ᾱ0,0

{
ν̄ | κ0(ν̄) is inaccessible

}
,

and taking an increasing enumeration
{
κ0(ν̄) | 〈ν̄〉 ∈ T 0

}
= 〈τξ | ξ < κ〉.

Assume that we have constructed

〈ᾱξ, uξ | ξ < ξ0〉.

We have 2 cases: ξ0 is limit: Choose ᾱξ0 > ᾱξ for all ξ < ξ0 and set

uξ0 =
⋃

ξ<ξ0

uξ ∪
{
〈ᾱξ0 , t〉

}
where κ0(t) = τξ0 .

ξ0 = ξ + 1 : For each ν̄ such that κ0(ν̄) = τξ we set

S(ν̄) =
(∏

ᾱ∈suppuξ

κ((uξ)ᾱ)<τξ

{
µ̄ | κ0(µ̄) = κ0(ν̄)

})
× {〈ν̄〉} .

Let

S =
⋃

κ0(ν̄)=τξ

S(ν̄)

and set enumeration of S

S = 〈sξ0,ρ | ρ < τξ0 〉.

There are fewer than τξ0 elements in S. We use τξ0 as this is the maximum size S
can have which is not ‘killing’ the induction.

We do induction on ρ which builds

〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ

0 , uξ0,ρ
1 , T ξ0,ρ

1 | ρ < τξ0〉

from which we build 〈ᾱξ0 , uξ0〉. Set

ᾱξ0,0 = ᾱξ,

uξ0,0
0 = uξ

0.

Assume we have constructed 〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ

0 | ρ < ρ0〉.
We have 2 cases:

18 CARMI MERIMOVICH

ρ0 is limit: Set

∀ρ < ρ0 ᾱξ0,ρ0 > ᾱξ0,ρ,

uξ0,ρ0 =
⋃

ρ<ρ0

uξ0,ρ ∪
{
〈ᾱξ0,ρ0 , t〉

}
where κ0(t) = τξ.

We set T ξ0,ρ0

0 , T ξ0,ρ0

1 to anything we like. We do not use them later.
ρ0 = ρ + 1: Let 〈ν̄〉 = sξ0,ρ(2). set

u′′ = u′′
1

⌢ u′′
0 = (uξ0,ρ

0)〈sξ0,ρ〉,

T ′′
0 = π−1

ᾱξ,ᾱ0(T
0
〈ν̄〉),

T ′′
1 = π−1

mc(u′′
1),ν̄(T 0(ν̄)).

If there are

q′1 ≤∗ u′′
1 ∪ {T ′′

1 } ,

q′0 ≤∗ u′′
0 ∪ {T ′′

0 } ,

such that

q′1
⌢ q′0 ∈ D

then set

ᾱξ0,ρ0 = mc(q′0),

uξ0,ρ0

0 = uξ0,ρ ∪ (q′0 \ (u′′
0 ∪

{
T q′

0

}
)),

T ξ0,ρ0

0 = T q′
0 ,

uξ0,ρ0

1 = q′1 \ (u′′
1 ∪

{
T q′

1

}
),

T ξ0,ρ0

1 = T q′
1 ,

otherwise set

ᾱξ0,ρ0 = ᾱξ0,ρ,

uξ0,ρ0

0 = uξ0,ρ,

T ξ0,ρ0

0 = T ′′
0 ,

uξ0,ρ0

1 = ∅,

T ξ0,ρ0

1 = T ′′
1 .

When the induction on ρ terminates we have 〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ

0 , uξ0,ρ
1 , T ξ0,ρ

1 | ρ <
τξ0〉. We continue with the induction on ξ. We set

∀ρ < τξ0 ᾱξ0 > ᾱξ0,ρ,

uξ0

0 =
⋃

ρ<τξ0

uξ0,ρ
0 ∪

{
〈ᾱξ0 , t〉

}
where maxκ0(t) = τξ.

When the induction on ξ terminates we have 〈ᾱξ, uξ
0 | ξ < κ〉. Let

∀ξ < κ ᾱ∗′ > ᾱξ,

p∗′0 =
⋃

ξ<κ

uξ
0 ∪ {〈ᾱ∗′, t〉} where maxκ0(t) = max p0

0.

EXTENDER BASED RADIN FORCING 19

We set

Lev0(T
p∗′
0) = π−1

ᾱ∗′,ᾱ0 Lev0(T
0).

Let us consider 〈ν̄〉 ∈ Lev0(T
p∗′
0). There is ξ such that κ0(ν̄) = τξ. We set

s(1) = {〈ᾱ, πᾱ∗′,ᾱ(ν̄)〉 | ᾱ ∈ supp p∗0} ,

s(2) =
{
〈πᾱ∗′,ᾱ0(ν̄)〉

}
.

Let ξ0 = ξ + 1. By our construction there is ρ such that

(uξ0,ρ0

0)〈s〉 = (uξ0,ρ0

0)〈sξ0,ρ〉

where ρ0 = ρ + 1. We set

T
p∗′
0

〈ν̄〉 = π−1
ᾱ∗′,ᾱξ0,ρ0

(T ξ0,ρ0) ∩ π−1
ᾱ∗′,ᾱ0(T

0
〈πᾱ∗,ᾱ0(ν̄)〉),

T p∗′
0 (ν̄) = π−1

ν̄,mc(u
ξ0,ρ0
1)

T ξ0,ρ0

1 ,

p′1(ν̄) = uξ0,ρ0

1 .

Let us show that p∗′0 approximates the p∗ we look for. So let 〈ν̄〉 ∈ T p∗′
0 and

assume

q′1 ≤∗ p′1(ν̄) ∪ ((p∗′0)〈ν̄〉)1,(6.4.1a)

q′0 ≤∗ ((p∗′0)〈ν̄〉)0,(6.4.1b)

q′1
⌢ q′0 ∈ D.(6.4.1c)

Let ξ be such that κ0(ν̄) = τξ. Set s as

s(1) = {〈ᾱ, πᾱ∗′,ᾱ(ν̄)〉 | ᾱ ∈ supp p∗0} ,

s(2) =
{
〈πᾱ∗′,ᾱ0(ν̄)〉

}
,

where ξ0 = ξ + 1, ρ0 = ρ + 1. By our construction there is ρ such that

(uξ0,ρ0)〈sξ0,ρ〉 = (uξ0,ρ0)〈s〉.

Let us set

r =
(
(uξ0,ρ0

〈sξ0,ρ〉
)1 ∪

{
T ξ0,ρ0

1

})
⌢

(
(uξ0,ρ0

〈sξ0,ρ〉
)0 ∪

{
T ξ0,ρ0

0

})
.

By construction we have
(
p′1(ν̄) ∪ ((p∗′0)〈ν̄〉)1

)
⌢((p∗′0)〈ν̄〉)0 ≤∗ r.

So what we have is

D ∋ q′1
⌢ q′0 ≤∗ r.

This is a positive answer to the question in the induction, hence

r ∈ D,

which gives us, by openness of D, that
(
p′1(ν̄) ∪ ((p∗′0)〈ν̄〉)1

)
⌢((p∗′0)〈ν̄〉)0 ∈ D.(6.4.2)

Having proved this approximation property of p∗′0 , let us consider the set

B =
{
〈ν̄〉 ∈ T p∗′

0 | ∃q ≤∗
(
p′1(ν̄) ∪ ((p∗′0)〈ν̄〉)1

)
⌢((p∗′0)〈ν̄〉)0 q ∈ D

}
.

Let ᾱ∗′ = mc(p∗′0). There are 2 cases here:

20 CARMI MERIMOVICH

1. ∃ζ < l(Ē) B ∈ Eᾱ∗′(ζ).
Let us set

pζ
1 = j(p′1)(Ēᾱ∗′↾ζ),

β̄
ζ′

= mc(pζ
1),

Aζ =
{
〈ν̄〉 |

(
(pζ

1)〈ν̄〉
)
1

= p′1(πβ̄
ζ′

,ᾱ∗′(ν̄))
}

.

Clearly

Aζ ∈ E
β̄

ζ′(ζ).

Let β̄
ζ

be the larger of β̄
ζ′

, ᾱ∗′. Set

T ζ = (π
β̄

ζ
,ᾱ∗′)

−1(T p∗′
0),

pζ = pζ
1 ∪ p∗′0 ∪

{
T ζ

}
.

The nice property of pζ is that when 〈ν̄〉 ∈ T ζ↾(π
β̄

ζ
,β̄

ζ′)−1(Aζ) we get that

(pζ)〈ν̄〉 ≤
∗

(
p′1(πβ̄

ζ
,β̄

′(ν̄)) ∪ ((p∗′0)〈π
β̄ζ ,ᾱ∗′(ν̄)〉)1

)
⌢((p∗′0)〈π

β̄ζ ,ᾱ∗′(ν̄)〉)0.

We set

p∗ = pζ ,

A = Lev0(T
ζ) ∩ (π

β̄
ζ
,β̄

ζ′)−1Aζ ,

and show that the claim is satisfied: Assume that

〈ν̄〉 ∈ A,

q′1 ≤∗ ((p∗)〈ν̄〉)1,

q′0 ≤∗ ((p∗)〈ν̄〉)0,

q′1
⌢ q′0 ∈ D.

Note that

((p∗)〈ν̄〉)1 ≤∗ p′1(πβ̄
ζ
,ᾱ∗′) ∪ ((p∗′0)〈π

β̄ζ ,ᾱ∗′(ν̄)〉)1,

((p∗)〈ν̄〉)0 ≤∗ ((p∗′0)〈π
β̄ζ ,ᾱ∗′(ν̄)〉)0.

Hence, we know that

q′1 ≤∗ p′1(πβ̄
ζ
,ᾱ∗′(ν̄)) ∪ ((p∗′0)〈π

β̄ζ ,ᾱ∗′(ν̄)〉)1,

q′0 ≤∗ ((p∗′0)〈π
β̄ζ ,ᾱ∗′(ν̄)〉)0,

q′1
⌢ q′0 ∈ D.

This is the assumption (6.4.1). So from (6.4.2) we know that
(
p′1(πβ̄

ζ
,ᾱ∗′(ν̄)) ∪ ((p∗′0)〈π

β̄ζ ,ᾱ∗′(ν̄)〉)1
)

⌢((p∗′0)〈π
β̄ζ ,ᾱ∗′(ν̄)〉)0 ∈ D

hence by openness of D

(p∗)〈ν̄〉 ∈ D,

EXTENDER BASED RADIN FORCING 21

2. ∀ζ < l(Ē) B /∈ Eᾱ∗′(ζ) which is the same as saying that
{
〈ν̄〉 ∈ T p∗′

0 | ∀q ≤∗
(
p′1(ν̄) ∪ ((p∗′0)〈ν̄〉)1

)
⌢((p∗′0)〈ν̄〉)0 q /∈ D

}
∈ Ēᾱ∗′ .

In fact from the construction we can see that{
〈ν̄〉 ∈ T p∗′

0 | p′1(ν̄) = ∅
}
∈ Ēᾱ∗′ .

So we really have

A =
{
〈ν̄〉 ∈ T p∗′

0 | ∀q ≤∗ (p∗′0)〈ν̄〉 q /∈ D
}
∈ Ēᾱ∗′

and the completion is quite easy now, we set

T p∗

= T p∗′

↾A,

p∗ = p∗′0 ∪
{
T p∗

}
.

Claim 6.5. Let D be dense open in PĒ/Pǭ, p = p0 ∈ PĒ/Pǭ. Then there is p∗ ≤∗ p
such that one and only one of the following is true:

1. There are n < ω, S ⊆ T p∗

↾[Vκ]n such that

(1.1) ∀k < n ∃ξ < l(Ē) SucS(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ),
(1.2) ∀〈ν̄1, . . . , ν̄n〉 ∈ S (p∗)〈ν̄1,...,ν̄n〉 ∈ D,

2. ∀n < ω ∀〈ν̄1, . . . , ν̄n〉 ∈ T p∗

∀q ≤∗ (p∗)〈ν̄1,...,ν̄n〉 q /∈ D.

Proof. Let p0 = p.
Generate pn+1 ≤∗ pn by invoking 6.4 for n + 1 levels.
Take ∀n < ω p∗ ≤ pn.

Claim 6.6. Let D be dense open in PĒ/Pǭ, p = p0 ∈ PĒ/Pǭ. Then there are

n < ω, p∗ ≤∗ p, S ⊆ T p∗

↾[Vκ]n such that

1. ∀k < n ∃ξ < l(Ē) SucS(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ),
2. ∀〈ν̄1, . . . , ν̄n〉 ∈ S (p∗)〈ν̄1,...,ν̄n〉 ∈ D.

Proof. Towards a contradiction, let us assume that the conclusion is false. That
means that for all p∗ ≤∗ p, for all n < ω, for all S ⊆ T p∗

↾[Vκ]n such that

∀k < n ∀〈ν̄1, . . . , ν̄k〉 ∈ S ∃ξ < l(Ē) SucS(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ)

we have

∃〈ν̄1, . . . , ν̄n〉 ∈ S (p∗)〈ν̄1,...,ν̄n〉 /∈ D.

We construct a ≤∗-decreasing sequence as follows: We set p0 = p. We construct
pn+1 from pn using 6.4 for n + 1 levels. Due to our assumption we get

∀〈ν̄1, . . . , ν̄n〉 ∈ T pn

∀q ≤∗ (pn)〈ν̄1,...,ν̄n〉 q /∈ D.

We choose p∗′ such that ∀n < ω p∗′ ≤∗ pn we get

∀n < ω ∀〈ν̄1, . . . , ν̄n〉 ∈ T p∗′
0 ∀q ≤∗ (p∗′)〈ν̄1,...,ν̄n〉 q /∈ D.

Construct tree T from T p∗′

using 3.10. Let us call p∗ the condition p∗′ with T
substituted for T p∗′

. Now if we have

q ≤ p∗

22 CARMI MERIMOVICH

then there is 〈ν̄1, . . . , ν̄n〉 ∈ T p∗′

such that

q ≤∗ (p∗′)〈ν̄1,...,ν̄n〉.

Hence

q /∈ D.

However, D is dense. Contradiction.

Claim 6.7. Let D be dense open in PĒ, p = p1
⌢ p0 ∈ PĒ. Then there is p∗ ≤∗ p

such that

∃S1 ∃n1∀〈ν̄1,1, . . . , ν̄1,n1〉 ∈ S1 . . . ∃S0 ∃n0∀〈ν̄0,1, . . . , ν̄0,n0〉 ∈ S0

(p∗1)〈ν̄1,1,...,ν̄1,n1〉
⌢ · · ·⌢(p∗0)〈ν̄0,1,...,ν̄0,n0 〉

∈ D

where

1. Si ⊆ T p∗
i ↾[Vκ]ni ,

2. ∀l < ni ∀〈ν̄1, . . . , ν̄l〉 ∈ Si ∃ξ SucSi(〈ν̄1, . . . , ν̄l〉) ∈ Emc(p∗
i)(ξ).

Proof. Let ǭ be such that p1 ∈ Pǭ. We prove that there are n < ω, p∗0 ≤∗ p0,
q1 ≤ p1, S ⊆ T p∗

↾[Vκ]n such that

1. ∀k < n ∃ξ < l(Ē) SucS(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ),
2. ∀〈ν̄1, . . . , ν̄n〉 ∈ S q1

⌢(p∗)〈ν̄1,...,ν̄n〉 ∈ D.

Set

E = {r ∈ PĒ | ∃q1 q1
⌢ r ∈ D, q1 ≤ p1} .

This E is dense open in PĒ/Pǭ: Let r ∈ PĒ/Pǭ. Then p1
⌢ r ∈ PĒ . By density of

D, there is q1
⌢ s ∈ D such that q1 ≤ p1, s ≤ r. By the definition of E, s ∈ E.

Hence E is dense. Openness of E is immediate from openness of D.
By 6.6 there are p∗0 ≤∗ p0, S′, n < ω such that

1. ∀k < n ∃ξ < l(Ē) SucS′(〈ν̄1, . . . , ν̄k〉) ∈ Emc(p∗)(ξ),
2. ∀〈ν̄1, . . . , ν̄n〉 ∈ S′ (p∗0)〈ν̄1,...,ν̄n〉 ∈ E.

This means that ∀〈ν̄1, . . . , ν̄n〉 ∈ S′ there is q1(ν̄1, . . . , ν̄n) ≤ p1 such that

∀〈ν̄1, . . . , ν̄n〉 ∈ S′ q1(ν̄1, . . . , ν̄n) ⌢(p∗0)〈ν̄1,...,ν̄n〉 ∈ D.

As |Pǭ| < κ, q1(ν̄1, . . . , ν̄n) is in fact almost always constant. Hence, by shrinking
S′ to S and letting q1 be this constant value, we get

∀〈ν̄1, . . . , ν̄n〉 ∈ S q1
⌢(p∗0)〈ν̄1,...,ν̄n〉 ∈ D.

With this, we finished the first part of the proof. We use this claim for all conditions
in Pǭ.

Let Pǭ =
{
pζ
1 | ζ < λ

}
where λ < κ.

We construct by induction a ≤∗-decreasing sequence 〈pζ
0 | ζ < λ〉. Set

p0
0 = p0.

Assume we have constructed 〈pζ
0 | ζ < ζ0〉.

ζ0 is limit: Choose pζ0

0 ≤∗ pζ
0 for all ζ < ζ0.

ζ0 = ζ + 1: Use the first part of the proof on pζ
1

⌢ pζ
0 to construct pζ0

0 .

When the induction terminates we have 〈pζ
0 | ζ < λ〉. Choose

∀ζ < λ p∗0 ≤∗ pζ
0.

EXTENDER BASED RADIN FORCING 23

Let

Dǭ =
{
q1 ∈ Pǭ | ∃n ∃S ∀〈ν̄1, . . . , ν̄n〉 ∈ S q1

⌢(p∗0)〈ν̄1,...,ν̄n〉 ∈ D
}

.

Dǭ is dense open: Let q1 ∈ Pǭ. Then there is ζ such that q1 = pζ
1. By the induction

we have that there are n, S, r1 ≤ q1 such that

∀〈ν̄1, . . . , ν̄n〉 ∈ S r1
⌢(pζ0

0)〈ν̄1,...,ν̄n〉 ∈ D.

By openness of D we get

∀〈ν̄1, . . . , ν̄n〉 ∈ S r1
⌢(p∗0)〈ν̄1,...,ν̄n〉 ∈ D.

Hence

r1 ∈ Dǭ.

As Dǭ is dense open we can use 6.6. Hence there are p∗1 ≤ p1, S1, n1 such that

∀〈ν̄1, . . . , ν̄n1〉 ∈ S1 (p∗1)〈ν̄1,...,ν̄n1〉
∈ Dǭ.

This means that

∀〈ν̄1,1, . . . , ν̄1,n1〉 ∈ S1 ∃S ∃n ∀〈ν̄0,1, . . . , ν̄0,n〉 ∈ S

(p∗1)〈ν̄1,1,...,ν̄1,n1 〉
⌢(p∗0)〈ν̄0,1,...,ν̄0,n〉 ∈ D,

which is what we need to prove.

Finally, we add the last touch.

Proof of 6.1. The proof is done by induction on k. The case k = 1 is 6.7. We
assume, then, that the theorem is proved for k and prove it for k + 1.

Then p = pk+1
⌢ pk

⌢ · · · p0. Let ǭ be such that pk+1 ∈ Pǭ. We just repeat the
proof of 6.7 with Pǭ and use the induction hypothese to conclude the proof.

7. Prikry’s condition

Theorem 7.1. Let p ∈ PĒ and σ a formula in the forcing language. Then there

is p∗ ≤ p such that p∗ ‖ σ.

Proof. The set {q ∈ PĒ | q ‖ σ} is dense open. Assuming p = pk
⌢ · · ·⌢ p0 and

using 6.1 we get that there is q ≤∗ p such that

∃Sk ∃nk∀〈ν̄k,1, . . . , ν̄k,nk
〉 ∈ Sk . . .∃S0 ∃n0∀〈ν̄0,1, . . . , ν̄0,n0〉 ∈ S0

(p∗k)〈ν̄k,1,...,ν̄k,nk
〉

⌢ · · ·⌢(p∗0)〈ν̄0,1,...,ν̄0,n0 〉
‖ σ.

Recall that we really should write

Sk−1(ν̄k,1, . . . , ν̄k,nk
),

Sk−2(ν̄k,1, . . . , ν̄k,nk
, ν̄k−1,1, . . . , ν̄k−1,nk

),

...

In order to avoid (too much) clutter, we use the following convention in the proof.
When we write

~ν ∈
∏

1≤l≤k

Sl

24 CARMI MERIMOVICH

we mean that

〈ν̄k,1, . . . , ν̄k,nk
〉 ∈ Sk,

...

〈ν̄1,1, . . . , ν̄1,n1〉 ∈ S1,

and r(~ν) is

(qk)〈ν̄k,1,...,ν̄k,nk
〉

⌢ · · ·⌢(q1)〈ν̄1,1,...,ν̄1,n1〉
.

We start by naming q0 as qn0
0 and T q0 as T 0,n0 . For 〈ν̄1, . . . , ν̄n0−1〉 ∈ S0 set

A0 =
{
〈ν̄n0〉 ∈ SucT 0,n0 (〈ν̄1, . . . , ν̄n−1〉) | r(~ν) ⌢(qn0

0)〈ν̄1,...,ν̄n0〉

 σ

}
,

A1 =
{
〈ν̄n0〉 ∈ SucT 0,n0 (〈ν̄1, . . . , ν̄n0−1〉) | r(~ν) ⌢(qn0

0)〈ν̄1,...,ν̄n0〉

 ¬σ

}
.

Note that

SucS0(〈ν̄1, . . . , ν̄n0−1〉) ⊆ A0 ∪ A1,

A0 ∩ A1 = ∅

Hence, there is ξ < l(Ē) such that one and only one of the following is true:

1. A0 ∈ Emc(q
n0
0)(ξ),

2. A1 ∈ Emc(q
n0
0)(ξ).

In either case, using 3.8, we can shrink T 0,n0

〈ν̄1,...,ν̄n0−1〉
and get a condition q′0 such

that r(~ν) ⌢ q′〈ν̄1,...,ν̄n0−1〉
‖ σ.

So we shrink now T 0,n0

〈ν̄1,...,ν̄n0−1〉
for all 〈ν̄1, . . . , ν̄n0−1〉 ∈ S0 and we call this tree

T 0,n0−1. The name of the condition qn0
0 with T 0,n0−1 substituted for T 0,n0 is qn0−1

0 .

qn0−1
0 satisfies

∀〈ν̄1, . . . , ν̄n0−1〉 ∈ S0 r(~ν) ⌢(qn0−1
0)〈ν̄1,...,ν̄n0−1〉 ‖ σ.

We are now in the same position as we were when setting qn0
0 . So by repeating the

above arguments we get

p0 ≥∗ q0 = qn0
0 ≥∗ qn0−1

0 ≥∗ · · · ≥∗ q1
0 ≥∗ q0

0

such that for each l = n0, n0 − 1, . . . , 1, 0

∀〈ν̄1, . . . , ν̄l〉 ∈ S0 r(~ν) ⌢(ql
0)〈ν̄1,...,ν̄l〉 ‖ σ.

Specifically we get

r(~ν) ⌢(q0
0) ‖ σ.

Of course q0
0 depends on ~ν. Note that we got from qn0

0 to q0
0 only by shrinking the

trees. So, we repeat this process for all ~ν calling the resulting condition q0
0(~ν). So

we have

∀~ν ∈
∏

1≤l≤k

Sl r(~ν) ⌢ q0
0(~ν) ‖ σ.

By setting

T p∗
0 =

⋂

~ν

T q0
0(~ν)

EXTENDER BASED RADIN FORCING 25

and letting p∗0 be q0 with T p∗
0 substituted for T q0 we get

∀~ν ∈
∏

1≤l≤k

Sl r(~ν) ⌢ p∗0 ‖ σ.

We are in the same position as in the beginning of the proof. So we can generate
in the same way p∗1 from p1 and so on until we have

p∗k
⌢ · · ·⌢ p∗0 ‖ σ.

8. Properness

The notions 〈N, P 〉-generic and properness are due to Shelah [9].

Definition 8.1. Let N ≺ Hχ such that

1. |N | = κ,
2. N ⊇ Vκ,
3. N ⊇ N<κ,
4. P ∈ N .

Then p ∈ P is called 〈N, P 〉-generic if

p
 p∀D ∈ N̂ D is dense open in P̂ =⇒ D ∩ G̃ ∩ N̂ 6= ∅q.

Definition 8.2. A forcing notion P is called proper if for all N ≺ Hχ such that

1. |N | = κ,
2. N ⊇ Vκ,
3. N ⊇ N<κ,
4. P ∈ N ,

and for all q ∈ P ∩ N there is p ≤ q which is 〈N, P 〉-generic.

Claim 8.3. Let p ∈ PĒ, N ≺ Hχ such that

1. |N | = κ,

2. N ⊇ Vκ,

3. N ⊇ N<κ,

4. PĒ ∈ N ,

5. p ∈ PĒ ∩ N .

Then there is p∗ ≤∗ p such that p∗ is 〈N, PĒ〉-generic

Proof. Let p = pk(p)
⌢ · · ·⌢ p1

⌢ p0.
Let 〈Dξ | ξ < κ〉 be an enumeration of all dense open subsets of PĒ which are in

N . Note that for ξ0 < κ we have that 〈Dξ | ξ < ξ0〉 ∈ N .
We start now an induction on ξ in which we build

〈ᾱξ, uξ | ξ < κ〉.

The construction is done ensuring that 〈ᾱξ, uξ | ξ < ξ0〉 ∈ N for all ξ0 < κ. We
start by setting

u0 = p0 \ {T
p0} ,

ᾱ0 = mc(p0),

T 0 = T p0↾π−1
ᾱ0,0

{
ν̄ | κ0(ν̄) is inaccessible

}
,

26 CARMI MERIMOVICH

and taking an increasing enumeration in N
{
κ0(ν̄) | 〈ν̄〉 ∈ T 0

}
= 〈τξ | ξ < κ〉.

Assume then that we have

〈ᾱξ, uξ | ξ < ξ0〉.

The constructions splits now according to wether ξ0 is limit or successor. In both
cases the work is done inside N .
ξ0 is limit: Choose ᾱξ0 > ᾱξ for all ξ < ξ0 and set

uξ0 =
⋃

ξ<ξ0

uξ ∪
{
〈ᾱξ0 , t〉

}
where κ0(t) = τξ0 .

ξ0 = ξ + 1 : For each ν̄1, . . . , ν̄n such that κ0(ν̄1) < · · · < κ0(ν̄n) = τξ we set

S(ν̄1, . . . , ν̄n) =
(∏

ᾱ∈suppuξ

{
µ̄1 | κ0(µ̄1) = κ0(ν̄1)

})
×

(∏

ᾱ∈suppuξ

{
µ̄2 | κ0(µ̄2) = κ0(ν̄2)

})
×

...
(∏

ᾱ∈suppuξ

{
µ̄n | κ0(µ̄n) = κ0(ν̄n)

})
×

{〈ν̄1, . . . , ν̄n〉} .

Let

S =
⋃

κ0(ν̄1)<···<κ0(ν̄n)=τξ

S(ν̄1, . . . , ν̄n)

and set enumeration of S

S = 〈sξ0,ρ | ρ < τξ0 〉.

We do induction on ρ which builds

〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ

0 | ρ < τξ0〉,

from which we build 〈ᾱξ0 , uξ0〉. Set

ᾱξ0,0 = ᾱξ,

uξ0,0
0 = uξ

0.

Assume we have constructed 〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ

0 | ρ < ρ0〉.
ρ0 is limit: Set

∀ρ < ρ0 ᾱξ0,ρ0 > ᾱξ0,ρ,

uξ0,ρ0 =
⋃

ρ<ρ0

uξ0,ρ ∪
{
〈ᾱξ0,ρ0 , t〉

}
where κ0(t) = τξ0 .

We set T ξ0,ρ0 to anything we like as we do not use it later.

EXTENDER BASED RADIN FORCING 27

ρ0 = ρ + 1: Let sξ0,ρ(n(s) + 1) = 〈ν̄1, . . . , ν̄n〉.

u′′ = (uξ0,ρ
0)〈sξ0,ρ〉,

T ′′
0 = π−1

ᾱξ,ᾱ0(T
0
〈ν̄1,...,ν̄n〉),

T ′′
1 = π−1

mc(u′′
1),ν̄n

(T 0
〈ν̄1,...,ν̄n−1〉

(ν̄n)),

...

T ′′
n−1 = π−1

mc(u′′
n−1),ν̄2

(T 0
〈ν̄1〉

(ν̄2)),

T ′′
n = π−1

mc(u′′
n),ν̄1

(T 0(ν̄1)).

Take enumeration

{Dσ | σ < τξ} ×{
q | q ≤ pk(p)

⌢ · · ·⌢ p1
⌢ u′′

n(s) ∪ {T ′′
n }

⌢ · · ·⌢ u′′
1 ∪ {T ′′

1 }
}

=

〈〈Eξ0,ρ0,ζ, qξ0,ρ0,ζ〉 | ζ < τξ0〉.

We start induction on ζ. Set

ᾱξ0,ρ0,0 = ᾱξ0,ρ,

uξ0,ρ0,0
0 = uξ0,ρ.

Assume we have constructed 〈ᾱξ0,ρ0,ζ , uξ0,ρ0,ζ
0 , T ξ0,ρ0,ζ

0 | ζ < ζ0〉.
ζ0 is limit:

∀ζ < ζ0 ᾱξ0,ρ0,ζ0 > ᾱξ0,ρ0,ζ ,

uξ0,ρ0,ζ0

0 =
⋃

ζ<ζ0

uξ0,ρ0,ζ
0 ∪

{
〈ᾱξ0,ρ0,ζ0 , t〉

}
where κ0(t) = τξ0 .

We set T ξ0,ρ0,ζ to whatever we want as no use of it is made later.
ζ0 = ζ + 1: We set

u′′ = (uξ0,ρ0,ζ
0)sξ0,ρ ,

T ′′
0 = π−1

ᾱξ0,ρ0,ζ ,ᾱ0T
0
〈ν̄1,...,ν̄n〉.

If there is

u′
0 ≤∗ u′′

0 ∪ {T ′′
0 }

such that

qξ0,ρ0,ζ ∪ u′
0 ∈ Eξ0,ρ0,ζ

then set

ᾱξ0,ρ0,ζ0 = mc(u′
0),

uξ0,ρ0,ζ0

0 = uξ0,ρ0,ζ
0 ∪ (u′

0 \ (u′′
0 ∪

{
T u′

0

}
)),

T ξ0,ρ0,ζ0 = T u′
0 ,

28 CARMI MERIMOVICH

otherwise set

ᾱξ0,ρ0,ζ0 = ᾱξ0,ρ0,ζ ,

uξ0,ρ0,ζ0

0 = uξ0,ρ0,ζ
0 ,

T ξ0,ρ0,ζ0

0 = T ′′
0 .

When the induction on ζ terminates we have 〈ᾱξ0,ρ0,ζ , uξ0,ρ0,ζ
0 , T ξ0,ρ0,ζ | ζ < τξ0 〉

We continue with the induction on ρ. We set

∀ζ < τξ0 ᾱξ0,ρ0 > ᾱξ0,ρ0,ζ ,

uξ0,ρ0

0 =
⋃

ζ<τξ0

uξ0,ρ0,ζ
0 ∪

{
〈ᾱξ0,ρ0 , t〉

}
where κ0(t) = τξ0 .

When the induction on ρ terminates we have 〈ᾱξ0,ρ, uξ0,ρ
0 , T ξ0,ρ | ρ < τξ0〉. We

continue with the induction on ξ. We set

∀ρ < τξ0 ᾱξ0 > ᾱξ0,ρ,

uξ0

0 =
⋃

ρ<τξ0

uξ0,ρ
0 ∪

{
〈ᾱξ0 , t〉

}
where κ0(t) = τξ0 .

When the induction on ξ terminates we have 〈ᾱξ, uξ
0 | ξ < κ〉. We note that this

sequence is not in N . Let

∀ξ < κ ᾱ∗ > ᾱξ,

p∗0 =
⋃

ξ<κ

uξ
0 ∪ {〈ᾱ∗, t〉} where κ0(t) = max p0

0.

We construct a series of trees, Rn, and T p∗
0 is

⋂
n<ω Rn.

Lev0(R
0) = π−1

ᾱ∗,ᾱ0 Lev0(T
0).

Let us consider 〈ν̄1〉 ∈ Lev0(R
0). There is ξ such that κ0(ν̄1) = τξ. We set

s(0) = {〈ᾱ, πᾱ∗,ᾱ(ν̄1)〉 | ᾱ ∈ supp p∗0} ,

s(1) =
{
〈πᾱ∗,ᾱ0(ν̄1)〉

}
.

Let ξ0 = ξ + 1. By our construction there is ρ such that

(uξ0,ρ0

0)〈s〉 = (uξ0,ρ0

0)〈sξ0,ρ〉,

where ρ0 = ρ + 1. We set

R1
〈ν̄1〉

= π−1
ᾱ∗,ᾱξ0,ρ0

(T ξ0,ρ0) ∩ π−1
ᾱ∗,ᾱ0(T

0
〈πᾱ∗,ᾱ0(ν̄1)〉

).

Assume that we have constructed Rn. We set the first n levels of Rn+1 to be the
same as the first n levels of Rn and we complete the tree as follows. Let us consider
〈ν̄1, . . . , ν̄n〉 ∈ Rn. There is ξ such that κ0(ν̄n) = τξ. We set s as folows

∀1 ≤ k ≤ n s(k) = {〈ᾱ, πᾱ∗,ᾱ(ν̄k)〉 | ᾱ ∈ supp p∗0} ,

s(n + 1) =
{
〈πᾱ∗,ᾱ0(ν̄1), . . . , πᾱ∗,ᾱ0(ν̄n)〉

}
.

Let ξ0 = ξ + 1. By our construction there is ρ such that

(uξ0,ρ0

0)〈s〉 = (uξ0,ρ0

0)〈sξ0,ρ〉,

EXTENDER BASED RADIN FORCING 29

where ρ0 = ρ + 1. We set

Rn+1
〈ν̄1,...,ν̄n〉 = π−1

ᾱ∗,ᾱξ0,ρ0
(T ξ0,ρ0) ∩ π−1

ᾱ∗,ᾱ0(T
0
〈πᾱ∗,ᾱ0 (ν̄1),...,πᾱ∗,ᾱ0 (ν̄n)〉).

After ω stages we set

T p∗
0 =

⋂

n<ω

Rn.

We finish the construction by setting

p∗ = pk(p)
⌢ · · ·⌢ p1

⌢ p∗0.

We show that p∗ is as required.
Let G be PĒ-generic such that p∗ ∈ PĒ . Let D ∈ N be dense open in PĒ . We

want to show that D ∩ G ∩ N 6= ∅.
Choose q ⌢ r0 ∈ D ∩ G such that

r0 ≤∗ p′′0 ,

q ≤ pk(p)
⌢ · · ·⌢ p1

⌢ p′′n
⌢ · · ·⌢ p′′1 ,

where

〈ν̄1, . . . , ν̄n〉 ∈ domT p∗
0 ,

κ0(ν̄n) = τξ,

D ∈ 〈Dζ | ζ < τξ〉,

p′′ = (p∗0)〈ν̄1,...,ν̄n〉.

We set s to be

∀1 ≤ k ≤ n s(k) = {〈ᾱ, πᾱ∗,ᾱ(ν̄k)〉 | ᾱ ∈ supp p∗0} ,

s(n + 1) =
{
〈πᾱ∗,ᾱ0(ν̄1), . . . , πᾱ∗,ᾱ0(ν̄n)〉

}
.

We get that

(p∗0)〈ν̄1,...,ν̄n〉 = (p∗0)〈s〉.

We let ξ0 = ξ +1. Recall the enumeration of S in the construction. There is ρ such
that

(p∗0 \ {〈mc(p∗0), (p
∗
0)

mc〉})〈s〉 ∪ {〈mc(p∗0), (p
∗
0)

mc〉} = (p∗0)〈sξ0,ρ〉.

We let ρ0 = ρ + 1. Considering the construction of T p∗
0 , we see that

T
p∗
0

〈ν̄1,...,ν̄n〉 ≤ T ξ0,ρ0

hence

(p∗0)〈s〉 ≤
∗ (uξ0,ρ0

0)〈sξ0,ρ0 〉.

We note that

∀1 ≤ k ≤ n p′′k = ((p∗0)〈s〉)k.

Recalling that q was chosen so that

q ≤ pk(p)
⌢ · · ·⌢ p1

⌢ p′′n
⌢ · · ·⌢ p′′1

we conclude that there is ζ such that q = qξ0,ρ0,ζ and D = Eξ0,ρ0,ζ . That is

Eξ0,ρ0,ζ ∋ qξ0,ρ0,ζ ⌢ r0 ≤∗ qξ0,ρ0,ζ ⌢((uξ0,ρ0,ζ)〈sξ0,ρ〉)0.

30 CARMI MERIMOVICH

Note that this is an answer to the question we asked in the construction. Hence,
due to elementarity of N , there was such a condition in N . Hence

qξ0,ρ0,ζ ⌢((uξ0,ρ0,ζ)〈sξ0,ρ〉)0 ∈ D ∩ N.

The last point to note is that

qξ0,ρ0,ζ ⌢((uξ0,ρ0,ζ)〈sξ0,ρ〉)0 ≥∗ .qξ0,ρ0,ζ ⌢ p′′0 ≥∗ q ⌢ r0 ∈ G

Hence

qξ0,ρ0,ζ ⌢((uξ0,ρ0,ζ)〈sξ0,ρ〉)0 ∈ G.

Corollary 8.4. PĒ is proper.

9. Cardinals in V PĒ

Lemma 9.1. κ+ remains a cardinal in V PĒ .

Proof. The proof really has no connection to the specific structure of PĒ . It is an
exercise in properness.

Let

p
 pf̃ :κ̂ → κ̂+q.

Choose χ large enough so that Hχ contains everything we are interested in. Take
N ≺ Hχ such that

1. p, PĒ , f̃ ∈ N ,
2. |N | = κ,
3. N ⊇ Vκ,
4. N ⊇ N<κ.

By 8.4 there is q ≤ p which is 〈N, PĒ〉-generic. Let us set

λ = N ∩ κ+,

where λ is an ordinal < κ+.
Let G be PĒ-generic with q ∈ G. The 〈N, PĒ〉-genericity ensures us that for all

ξ < κ f̃(ξ)N [G] ∈ N and f̃(ξ)N [G] = f̃(ξ)Hχ[G]. Hence ran f̃V [G] ⊆ λ. That is

q
 pf̃ is bounded in κ+q.

Lemma 9.2. No cardinals > κ are collapsed by PĒ .

Proof. κ+ is not collapsed by 9.1. No cardinals ≥ κ++ are collapsed as PĒ satisfies
κ++-c.c.

Lemma 9.3. Let ξ < κ and ζ the ordinal such that κ0(ĒG(ζ)) ≤ ξ <
κ0(ĒG(ζ + 1)). Then P(ξ) ∩ V [G] = P(ξ) ∩ V [G↾ζ].

Proof. Take p = pn
⌢ · · ·⌢ pk+1

⌢ pk
⌢ · · ·⌢ p0 ∈ G such that Ē(pk+1) = ĒG(ζ),

Ē(pk) = ĒG(ζ + 1). We know that V [G] = V [G/p]. So we work in PĒ/p. Set pl =
pn

⌢ · · ·⌢ pk+1, ph =
{
〈ĒG(ζ), ∅〉

}
⌢ pk

⌢ · · ·⌢ p0. Then PĒ/p = PĒ↾pl × PĒ↾ph.

Note that 〈PĒ/ph,≤∗〉 is κ0(ĒG(ζ + 1))-closed. In particular it is ξ+-closed.

Let A ∈ V [G], A ⊆ ξ. Choose Ã, a canonical PĒ/p-name for A. Let q ∈ PĒ/ph.
By induction we construct 〈qτ | τ < ξ〉 satisfying

EXTENDER BASED RADIN FORCING 31

1. τ0 < τ1 =⇒ qτ1 ≤∗ qτ0 ,

2. qτ ‖ pτ̂ ∈ Ãq.

Choose qξ ≤∗ qτ for all τ < ξ.

By density argument we can construct, B̃, a P ↾pl-name such that A = Ã[G] =

B̃[G↾pl].

Corollary 9.4. No carindals ≤ κ are collapsed by PĒ .

Proof. Let G ⊆ PĒ be generic. Assume λ < κ is a collapsed cardinal. Let µ =
|λ|V [G]. We have µ < λ, and there is A ∈ P(µ)V [G] which codifies the order type
λ. Let ζ be the unique ordinal such that κ0(ĒG(ζ)) ≤ µ < κ0(ĒG(ζ + 1)). By
9.3 A ∈ V [G↾ζ]. Hence λ is collapsed already in V [G↾ζ]. However, by 9.2, PĒG(ζ)

collapses no cardinals above κ0(ĒG(ζ)). Contradiction.
So, no cardinal < κ is collapsed. As κ is a limit of cardinals which are not

collapsed, it is not collapsed.

We have just shown

Theorem 9.5. No cardinals are collapsed in V PĒ .

10. Properties of κ in V PĒ

Theorem 10.1. If l(Ē) = κ+ then V PĒ � pκ is regularq.

Proof. Let λ < κ, f̃ be such that

PĒ

pf̃ :λ̂ → κ̂q.

Let

D0 =
{

p | ∃i p
 pf̃(0) = îq
}

.

As D0 is a dense open set we can invoke 6.1 to get p′0, n0, S0 ⊂ T p′0

such that

∀k < n0 ∀〈ν1, . . . , νk〉 ∈ S′0 ∃ξ < l(Ē) SucS(〈ν1, . . . , νk〉) ∈ Emc(p′0)(ξ),

∀〈ν1, . . . , νn0〉 ∈ S′0 (p′0)〈ν1,...,νn0〉
∈ D0.

Let us set

A′
0 =

{
(p′0)〈ν1,...,νn0〉

| 〈ν1, . . . , νn0〉 ∈ S′0
}

.

A0 is an anti-chain. By shrinking T p′0

as was done in the proof of 7.1 we can make
A0 into a maximal anti-chain below p′0. As λ < κ and 〈P ∗

Ē
,≤∗〉 is κ-closed we can

construct a ≤∗-decreasing sequence

p′0 ≥∗ p′1 ≥∗ · · · ≥∗ p′τ ≥∗ · · · τ < λ.

and nτ , S′τ ⊆ T p′τ

such that

∀k < nτ ∀〈ν1, . . . , νk〉 ∈ S′τ ∃ξ < l(Ē) SucS′τ (〈ν1, . . . , νk〉) ∈ Emc(p′τ)(ξ),

∀〈ν1, . . . , νnτ
〉 ∈ S′τ ∃i (p′τ)〈ν1,...,νnτ 〉
 pf̃(τ̂) = îq,

and

A′
τ =

{
(p′τ)〈ν1,...,νnτ 〉 | 〈ν1, . . . , νnτ

〉 ∈ S′τ
}

is a maximal anti-chain below p′τ .

32 CARMI MERIMOVICH

Let p′ ≤∗ p′τ for all τ < λ. We set Sτ = π−1
mc(p′),mc(p′τ)(S

′τ) and pτ to be p′ with

π−1
mc(p′),mc(p′τ)(T

p′τ

) substituted for T p′

and maybe shrunken a bit so that

Aτ =
{
(pτ)〈ν1,...,νnτ 〉 | 〈ν1, . . . , νnτ

〉 ∈ Sτ
}

is a maximal anti-chain below pτ .
Let p ≤∗ pτ for all τ < λ and let g̃ be the following PĒ-name

g̃ =
⋃

τ<λ

{
〈〈̂τ, i〉, (pτ)〈ν1,...,νnτ 〉〉 | Aτ ∋ (pτ)〈ν1,...,νnτ 〉
 pf̃(τ) = îq

}
.

Then

p
 pf̃ = g̃q.

Let P ∗ be the following forcing notion:

P ∗ = {q ≤R p | q ∈ PĒ} .

By 5.2 〈P ∗,≤R〉 is sub-forcing of 〈PĒ/p,≤〉. Hence if G is PĒ-generic then G∗ =
G∩P ∗ is P ∗-generic. g̃ is in fact a P ∗-name and as can be seen from its’ definition
g̃[G] = g̃[G∗] ∈ V [G∗]. So in order to complete the proof it is enough to show that

P∗

pg̃ is boundedq.
By 5.3 there is r ∈ Rmc(p) such that P ∗ ≃ Rmc(p)/r. Now we use the following

fact about Radin forcing: When the measure sequence is of length κ+, κ is regular
in the generic extension. Necessarily,
P∗

pg̃ is boundedq.

Definition 10.2. We say that τ < l(Ē) is a repeat point of Ē if PĒ = PĒ↾τ .

Note that if τ is a repeat point then PĒ↾τ ∈ M .

Theorem 10.3. If Ē has a repeat point, j′′
{
Ãξ | ξ < λ

}
∈ M where

{
Ãξ | ξ < λ

}

is an enumeration of all canonical PĒ-names of subsets of κ, then V PĒ � pκ is

measurableq.

Proof. We use the usual method under these circumstances. Let τ be a repeat point
of Ē and G be PĒ-generic over V . For the duration of this proof let us define:

• If p = p0 ∈ P ∗
Ē

then

p↾τ =
{
〈Ēα↾τ, pĒα〉 | Ēα ∈ supp p

}
∪ {T p} .

• If p = pn
⌢ · · ·⌢ p1

⌢ p0 then

p↾τ = pn
⌢ · · ·⌢ p1

⌢ p0↾τ.

Let us set

G↾τ = {p↾τ | p ∈ G} .

We note that

1. λ < j(κ),
2. M � pj(P ∗

Ē
)/PĒ is j(k) − closedq,

3. G↾τ is PĒ↾τ -generic over M .

EXTENDER BASED RADIN FORCING 33

So, we can construct a ≤∗-decreasing sequence in M [G↾τ], 〈pξ | ξ < λ〉, such that

pξ+1 ‖ pκ ∈ j(Ãξ)
q.

We define an ultrafilter, U , in V by

Ãξ[G] ∈ U ⇐⇒ pξ+1
 pκ ∈ j(Ãξ)
q.

The assumptions we used in this theorem are very strong. We believe that a repeat
point is enough in order to get measurability.

11. What have we proved?

We can sum everything as follows:
We can control independently two properties of κ in a generic extension. The

first is the size of 2κ which is controlled by |Ē|. The second is how ‘big’ we want κ
to be which is controlled by l(Ē).

12. Generic by Iteration

Recall that if R is Radin forcing generated from j:V → M then there is τ and
G ∈ V such that G is j0,τ (R)-generic over Mτ .

Our original aim was to find some form of this claim for our forcing. We have a
partial result in this direction. Namely, when l(Ē) = 1 we have a generic filter in
V over an elementary submodel in Mω.

In this section we assume that l(Ē) = 1.
Let us take an iteration of j = j0,1

〈〈Mn | n < ω〉, 〈jn,m | n ≤ m < ω〉〉.

Choose χ large enough so that everything interesting is in Hχ (i.e. PĒ ∈ Hχ) and
set

κn = j0,n(κ),

Ē
n

= j0,n(Ē),

Pn = j0,n(PĒ)(= PĒ
n),

χn = j0,n(χ).

Definition 12.1 (when l(Ē) = 1). We call 〈N, p〉 a k-pair if

1. Mk � pN ≺ HMk
χk

q,

2. Mk � p|N | = κk
q,

3. Mk � pN ⊇ V Mk
κk

q,

4. Mk � pN ⊇ N<κk q,
5. p ∈ P k+1 ∩ jk,k+1(N),
6. If D ∈ N , D is dense open in P k then there are n, S ≤ T p such that

∀〈ν1, . . . , νn〉 ∈ S (p)〈ν1,...,νn〉 ∈ jk,k+1(D).

Claim 12.2. Let N ∈ Mk, k < ω and q ∈ jk,k+1(N)∩P k+1 such that Mk satisifes:

1. N ≺ HMk
χk

,

2. |N | = κk,

3. N ⊇ V Mk
κk

,

34 CARMI MERIMOVICH

4. N ⊇ N<κk ,

5. P k ∈ N .

Then there is p ∈ jk,k+1(N) ∩ P k+1 such that

1. p ≤∗ q,
2. 〈N, p〉 is a k-pair.

Proof. Let 〈Dk
ξ | ξ < κk〉 be an enumeration, in Mk, of all the dense open subsets

of P k which are in N . Set Nk+1 = jk,k+1(N). As we have

〈jk,k+1(D
k
ξ) | ξ < κk〉 ⊆ Nk+1,

〈jk,k+1(D
k
ξ) | ξ < κk〉 ∈ Mk+1,

Mk+1 � pNk+1 ⊇ N
<κk+1

k+1
q,

we get that

〈jk,k+1(D
k
ξ) | ξ < κk〉 ∈ Nk+1.

Starting with q we construct in Nk+1 a ≤∗-decreasing sequence 〈pξ | ξ < κk〉 using
6.1. Note that we have no problem at the limit stages as Nk+1 � p〈P k+1,≤∗

〉 is κk+1-closedq. Choose now p ∈ P k+1 ∩ Nk+1 such that ∀ξ < κk p ≤∗ pξ. We
get that 〈N, p〉 is a k-pair.

Definition 12.3. We call 〈 ~N, ~p〉 a Pω-generic approximation sequence if

〈 ~N, ~p〉 = 〈〈Nk, pk+1〉 | k0 ≤ k < ω〉

such that for all k0 ≤ k < ω

1. Mk � pNk ≺ HMk
χk

q,

2. Mk � p|Nk| = κk
q,

3. Mk � pNk ⊇ V Mk
κk

q,

4. Mk � pNk ⊇ N<κk q,
5. P k ∈ Nk,
6. 〈Nk, pk+1〉 is a k-pair,
7. jk1,k2(Nk1) = Nk2 ,
8. pk+2 ≤∗ (jk+1,k+2(p

k+1))〈mc(pk+1)〉.

Definition 12.4. Let 〈 ~N,~r〉 be a Pω-generic approximating sequence. Then

G(〈 ~N,~r〉) =
{
p ∈ Pω | ∃k jk,ω(rk) ≤∗ p

}
.

Claim 12.5. Let k0 < ω, q ∈ P k0 ∩ Nk0 and assume for all k0 ≤ k < ω

1. P k ∈ Nk,

2. jk,k+1(Nk) = Nk+1,

3. Mk � pNk ≺ HMk
χk

q,

4. Mk � p|Nk| = κk
q,

5. Mk � pNk ⊇ V Mk
κk

q,

6. Mk � pNk ⊇ N<κk

k
q.

Then there is a Pω-generic approximating sequence

〈 ~N, ~p〉 = 〈〈Nk, pk+1〉 | k0 ≤ k < ω〉

such that pk0+1 ≤∗ jk0,k0+1(q).

EXTENDER BASED RADIN FORCING 35

Proof. We construct the pk+1 by induction. We set pk0 = q.
Assume that we have constructed 〈pk′

| k0 ≤ k′ ≤ k〉. We set qk+1 =
jk,k+1(p

k)〈mc(pk)〉. Invoke 12.2 to get pk+1 ≤∗ qk+1 such that 〈Nk, pk+1〉 is a k-
pair.

When the induction terminates we have 〈〈Nk, pk+1〉 | k0 ≤ k < ω〉 as required.

Claim 12.6. Let k0 < ω and assume

1. Mk0 � pNk0 ≺ H
Mk0
χk0

q,

2. Mk0 � p|Nk0 | = κk0
q,

3. Mk0 � pNk0 ⊇ V
Mk0
κk0

q,

4. Mk0 � pNk0 ⊇ N
<κk0

k0

q,

5. P k0 ∈ Nk0 ,

6. q ∈ P k0 ∩ Nk0 .

Then there is a Pω-generic approximating sequence

〈 ~N, ~p〉 = 〈〈Nk, pk+1〉 | k0 ≤ k < ω〉

such that pk0+1 ≤∗ jk0,k0+1(q).

Proof. We set Nk = jk0,k(Nk0) for all k0 < k < ω and then we invoke 12.5.

Theorem 12.7. Assume

1. Mω � pN ≺ HMω
χω

q,

2. Mω � p|N | = κω
q,

3. Mω � pN ⊇ V Mω
κω

q,

4. Mω � pN ⊇ N<κω q,

5. Pω ∈ N ,

6. q ∈ Pω ∩ N .

Then there is, in V , a filter G ⊆ Pω such that

1. q ∈ G,

2. ∀D ∈ N D is dense open in Pω =⇒ G ∩ D ∩ N 6= ∅.

Proof. We find, 〈 ~N, ~p〉, a Pω-generic approximating sequence. G(〈 ~N, ~p〉) is the
required filter.

Find k0 and Nk0 , qk0 such that

P k0 ∈ Nk0 ,

jk0,ω(Nk0) = N,

jk0,ω(qk0) = q.

Invoke 12.6 to get from Nk0 , qk0 a generic approximating sequence 〈 ~N, ~p〉.
Let D ∈ N be dense open in Pω.
Find k ≥ k0 and Dk such that jk,ω(Dk) = D. As usual we set Dk+l = jk,k+l(D

k).
By construction there is n such that

∀〈ν1, . . . , νn〉 ∈ T pk+1

(pk+1)〈ν1,...,νn〉 ∈ Dk+1 ∩ Nk+1,

which means that

jk+1,k+1+n(pk+1)〈mc(pk+1),...,jk+1,k+n(mc(pk+1))〉 ∈ Dk+1+n ∩ Nk+1+n.

36 CARMI MERIMOVICH

Hence

jk+1,ω(pk+1)〈mc(pk+1),...,jk+1,k+n(mc(pk+1))〉 ∈ D ∩ N.(12.7.1)

As 〈 ~N, ~p〉 is a Pω-generic approximation sequence it satisfies

pk+1+n ≤∗ jk+1,k+1+n(pk+1)〈mc(pk+1),...,jk+1,k+1+n(mc(pk+1))〉.

Hence

jk+1+n,ω(pk+1+n) ≤∗

jk+1,ω(pk+1)〈mc(pk+1),...,jk+1,k+n(mc(pk+1))〉,

giving us that

jk+1,ω(pk+1)〈mc(pk+1),...,jk+1,k+n(mc(pk+1))〉 ∈ G(〈 ~N, ~p〉),(12.7.2)

so G(〈 ~N, ~p〉) ∩ D ∩ N 6= ∅ by 12.7.1 and 12.7.2.

13. Concluding Remarks

1. We believe a repeat point is enough in order to get measurability of κ. We
use a much stronger assumption in our proof.

2. A definition of repeat point that depends only on the extender sequence and
is equivalent to the one we gave (which mentions PĒ) will probably be useful.

3. It is not completly clear what l(Ē) should be in order to make sure that Ē
has a repeat point.

4. A finer analysis in the case of measurability and stronger properties is needed.
For example, extending the elementary embedding to the generic extension,
and not just constructing a normal ultrafilter.

5. We do not know how to get a generic by iteration when l(Ē) > 1.
6. Making this forcing more ‘precise’ by adding ‘gentle’ collapses so we get a

prescribed behaviour on all cardinals below κ in the generic extension is in
preparation.

References

[1] J. Cummings, A Model In Which GCH Holds At Successors But Fails At Limits, Transactions
of the American Mathematical Society 329(1992), Number 1, 1–39

[2] M. Magidor, Changing Cofinality Of Cardinals, Fundamenta Mathematicae 99 (1978), 61–71
[3] M. Gitik and M. Magidor, The Singular Cardinal Hypothese Revisited, in Set Theory of the

Continuum, H. Judah, W. Just, H. Woodin, (Eds.), Springer-Verlarg (1992), 243–278
[4] M. Gitik, Changing Cofinalities And The Non-Stationary Ideal, Israel Journal of Mathematics

56 (1986), 280–314
[5] W. Mitchell, How Weak is a Closed Unbounded Ultrafilter?, in Logic Colloquium ’80, D. van

Dalen, D. Lascar, J. Smiley, (Eds.), North-Holland Publishing Company (1982), 209–230
[6] K. Prikry, Changing measurables into accessibles, Diss. Math. 68 (1970), 5–52
[7] L. B. Radin, Adding Closed Cofinal Sequences To Large Cardinals, Annals of Mathematical

Logic 22(1982), 243–261
[8] M. Segal, On Powers Of Singular Cardinals With Cofinality > ω, Master’s Thesis, The

Hebrew University of Jerusalem (1995)
[9] S. Shela, Proper Forcing, Lecture Notes in Mathematics, Vol. 940, Springer, Berlin, 1982

[10] H. Woodin and J. Cummings, Chapters from an unpublished book on Radin forcing

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, ISRAEL

E-mail address: carmi m@cet.ac.il

