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Abstract

Regime switching volatility models provide a tractable method of modelling stochas-

tic volatility. Currently the most popular method of regime switching calibration is the

Hamilton filter. We propose using the Baum-Welch algorithm, an established technique

from Engineering, to calibrate regime switching models instead. We demonstrate the

Baum-Welch algorithm and discuss the significant advantages that it provides com-

pared to the Hamilton filter. We provide computational results of calibrating the

Baum-Welch filter to S&P 500 data and validate its performance in and out of sample.

Key words: Regime switching, stochastic volatility, calibration, Hamilton filter, Baum-

Welch.

1. Introduction and Outline

Regime switching (also known as hidden Markov models (HMM)) volatility models

provide a tractable method of modelling stochastic volatility. Currently the most pop-

ular method of regime switching calibration is the Hamilton filter. However, regime

switching calibration has been tackled in engineering (particularly for speech process-

ing) for some time using the Baum-Welch algorithm (BW), where it is the most popular

and standard method of HMM calibration. A review of the Baum-Welch algorithm can

be found in [Lev05],[JR91]. The BW algorithm is increasingly being applied beyond

engineering applications (for instance in bioinformatics [BEDE04]) but has been hardly

applied to financial modelling, especially to regime switching stochastic volatility mod-

els.
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Unlike the Hamilton filter, the BW algorithm is capable of determining the entire

set of HMM parameters from a sequence of observation data. Furthermore, BW is a

complete estimation method since it also provides the required optimisation method

to determine the parameters by MLE.

The outline of the paper is as follows. Firstly, we introduce regime switching volatil-

ity models and the Hamilton filter. In the next section we introduce the Baum-Welch

method, describing the algorithm even for multivariate Gaussian mixture observations.

We then conduct a numerical experiment to verify the Baum-Welch method’s to detect

regimes for the S&P 500 index. We finally end with a conclusion.

2. Regime Switching Volatility Model and Calibration

2.1. Regime Switching Volatility

Wiener process driven stochastic volatility models capture price and volatility dy-

namics more successfully compared to previous volatility models. Specifically, such

models successfully capture the short term volatility dynamics. However, for longer

term dynamics and fundamental economic changes (e.g. “credit crunch”), no mecha-

nism existed to address the change in volatility dynamics and it has been empirically

shown that volatility is related to long term and fundamental conditions. Bekaert in

[BHL06] claims that volatility changes are caused by economic reforms, for example

on Black Wednesday the pound sterling was withdrawn from the ERM (European

Exchange Rate Mechanism), causing a sudden change in value of the pound sterling

[BR02]. Schwert [Sch89] empirically shows that volatility increases during financial

crises.

A class of models that address fundamental and long term volatility modelling is the

regime switching model (or hidden Markov model) e.g. as discusssed in [Tim00],[EvdH97].

In fact, Schwert suggests in [Sch89] that volatility changes during the Great Depres-

sion can be accounted for by a regime change such as in Hamilton’s regime switching

model [Ham89]. Regime switching is considered a tractable method of modelling price

dynamics and does not violate Fama’s “Efficient Market Hypothesis”[Fam65], which

claims that price processes must follow a Markov process. Hamilton [Ham89] was the

first to introduce regime switching models, which was applied to specifically model

fundamental economic changes.

For regime switching models, generally the return distribution rather than the con-

tinuous time process is specified. A typical example of a regime switching model is

Hardy’s model [Har01]:

log((X(t+ 1)/X(t))|i) ∼ N (ui, ϕi), i ∈ {1, .., R}, (1)
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where

• ϕi and ui are constant for the duration of the regime;

• i denotes the current regime (also called the Markov state or hidden Markov

state);

• R denotes the total number of regimes;

• a transition matrix A is specified.

For Hardy’s model the regime changes discretely in monthly time steps but stochasti-

cally, according to a Markov process.

Due to the ability of regime switching models to capture long term and fundamental

changes, regime switching models are primarily focussed on modelling the long term

behaviour, rather than the continuous time dynamics. Therefore regime switching

models switch regimes over time periods of months, rather than switching in continuous

time. Examples of regime switching models that model dynamics over shorter time

periods are Valls-Pereira et al.[VPHS04], who propose a regime switching GARCH

process, while Hamilton and Susmel [HS94] give a regime switching ARCH process.

Note that economic variables other than stock returns, such as inflation, can also be

modelled using regime switching models.

Regime switching has been developed by various researchers. For example, Kim

and Yoo [KY95] develop a multivariate regime switching model for coincident economic

indicators. Honda [Hon03] determines the optimal portfolio choice in terms of utility

for assets following GBM but with continuous time regime switching mean returns.

Alexander and Kaeck [AK08] apply regime switching to credit default swap spreads,

Durland and McCurdy [DM94] propose a model with a transition matrix that specifies

state durations.

The theory of Markov models (MM) and Hidden Markov models (HMM) are meth-

ods of mathematically modelling time varying dynamics of certain statistical processes,

requiring a weak set of assumptions yet allow us to deduce a significant number of prop-

erties. MM and HMM model a stochastic process (or any system) as a set of states

with each state possessing a set of signals or observations. The models have been used

in diverse applications such as economics [SSS02], queuing theory [SF06], engineer-

ing [TG01] and biological modelling [MGPG06]. Following Taylor [TK84] we define a

Markov model:

Definition 1. A Markov model is a stochastic process X(t) with a countable set of
states and possesses the Markov property:

p(qt+1 = j | q1, q2, .., qt = i) = p(qt+1 = j | qt = i), (2)
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where

• qt is the Markov state (or regime) at time t of X(t);

• i and j are specific Markov states.

As time passes the process may remain or change to another state (known as state

transition). The state transition probability matrix (also known as the transition kernel

or stochastic matrix ) A, with elements aij , tells us the probability of the process

changing to state j given that we are now in state i, that is aij = p(qt+1 = j | qt = i).

Note that aij is subject to the standard probability constraints:

0 ≤ aij ≤ 1, ∀i, j, (3)
∞
∑

j=1

aij = 1, ∀i. (4)

We assume that all probabilities are stationary in time. From the definition of a MM

the following proposition follows:

Proposition 1. A Markov model is completely defined once the following parameters
are known:

• R, the total number of regimes or (hidden) states;

• state transition probability matrix A of size R×R. Each element is aij = p(qt+1 =
j|qt = i), where i refers to the matrix row number and j to the column number of
A;

• initial (t=1) state probabilities πi = p(q1 = i), ∀i.
A hidden Markov model is simply a Markov model where we assume (as a modeller)

we do not observe the Markov states. Instead of observing the Markov states (as

in standard Markov models) we detect observations or time series data where each

observation is assumed to be a function of the hidden Markov state, thus enabling

statistical inferences about the HMM. Note that in a HMM it is the states which must

be governed by a Markov process, not the observations and throughout the thesis we

will assume one observation occurs after one state transition.

Proposition 2. A hidden Markov model is fully defined when the parameter set {A,B, π}
are known:

• R, the total number of (hidden) states or regimes;

• A, the (hidden) state transition matrix of size R × R. Each element is aij =
p(qt+1 = j|qt = i);

• initial (t=1) state probabilities πi = p(q1 = i), ∀i;
• B, the observation matrix, where each entry is bj(Ot) = p(Ot|j) for observation
Ot. For bj(Ot) is typically defined to follow some continuous distribution e.g.
bj(Ot) ∼ N (uj, ϕj).
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2.2. Current Calibration Method: Hamilton Filter

In financial mathematics or economic literature the standard calibration method

for regime switching models is the Hamilton filter [Ham89], which works by maximum

likelihood estimation (MLE). MLE is a method of estimating a set of parameters of a

statistical model (Θ) given some time series or empirical observations O1, O2, ..., OT .

MLE determines Θ by firstly determining the likelihood function L(Θ), then maximis-

ing L(Θ) by varying Θ through a search or an optimisation method.

A statistical model with known parameter values can determine the probability

of an observation sequence O = O1O2...OT . MLE does the opposite; we numerically

maximise the parameter values of our model Θ such that we maximise the probability

of the observation sequence O = O1O2...OT . To achieve this the MLE method makes

two assumptions:

1. In maximising L(Θ) the local optimum is also the global optimum (although this

is generally not true in reality). The optimal values for Θ are in a search space of

the same dimensions as Θ. Hamilton in [Ham94] gives a survey of various MLE

maximisation techniques such as the Newton-Raphson method;

2. The observations O1, O2, ..., OT are statistically independent. Note that for Markov

models we assume the conditional observations

(Ot|Ot−1), (Ot−1|Ot−2), (Ot−2|Ot−3)... are independent.

For a regime switching process the general likelihood function L(Θ) is:

L(Θ) = f(O1|Θ)f(O2|Θ, O1)f(O3|Θ, O1, O2)

· · · f(OT |Θ, O1, O2, ..., OT−1),

where f(O(.)|Θ) is the probability of O(.), given model parameters Θ. Now by properties

of logarithms we have:

log(L(Θ)) = log(f(O1|Θ)) + log(f(O2|Θ, O1)) + · · · (5)

+ log(f(OT |Θ, O1, O2, ..., OT−1)). (6)

Hamilton proposes a likelihood function for regime switching models, the Hamilton fil-

ter. As an example, if we assume we have a two regime model with each regime having a

lognormal return distribution, we wish to determine parameters Θ = {u1, u2, ϕ1, ϕ2, a12, a21}.
Note that in this simple HMM a22 = 1 − a12 and a11 = 1 − a21 therefore we do not

need to estimate a22, a11 in Θ.
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To obtain f(Ot|Θ) in equation (6) for t > 1, Hamilton showed it could be calculated

by a recursive filter. We observe the relation:

f(Ot|Θ, O1, O2, ..., Ot−1) =
2
∑

qt=1

2
∑

qt−1=1

f(qt, qt−1, Ot|Θ, O1, ..., Ot−1). (7)

Now using the relation:1

p(O,Q|Θ) = p(O|Θ, Q)p(Q|Θ), (8)

where Q = q1q2... represents some arbitrary state sequence, we make the substitution

f(qt, qt−1, Ot|Θ, O1, ..., Ot−1)

= p(qt−1|Θ, O1, ..., Ot−1) × p(qt|qt−1,Θ) × f(Ot|qt,Θ). (9)

Therefore

f(Ot|Θ, O1, O2, ..., Ot−1)

=
2
∑

qt=1

2
∑

qt−1=1

p(qt−1|Θ, O1, ..., Ot−1) × p(qt|qt−1,Θ) × f(Ot|qt,Θ), (10)

where

• p(qt|qt−1,Θ) = p(qt = j|qt−1 = i,Θ) represents the transition probability aij we

wish to estimate;

• f(Ot|qt = i,Θ) = pi(Ot) where pi(·) ∼ N (ui, ϕi) the Gaussian probability density

function for state i, whose parameters ui, ϕi we wish to estimate.

The parameters Θ = {u1, u2, ϕ1, ϕ2, a12, a21} are obtained by maximising the likelihood

function using some chosen search method.

To calculate f(Ot|Θ, O1, O2, ..., Ot−1) we require the probability

p(qt−1|Θ, O1, O2, ..., Ot−1) in equation (10) (summed over two different values of qt−1 in

the summations in equation (10)). This can be achieved through recursion, that is the

probability p(qt−1|Θ, O1, .., Ot−1) can be obtained from p(qt−2|Θ, O1, .., Ot−2):

p(qt−1|Θ, O1, O2, ..., Ot−1) =

(
∑2

i=1 f(qt−1, qt−2 = i, Ot−1|Θ, O1, ..., Ot−2)
)

f(Ot−1|Θ, O1, ..., Ot−2)
. (11)

The denominator of equation (11) is obtained from the previous period of

f(Ot|Θ, O1, O2, ..., Ot−1) (in other words f(Ot−1|Θ, O1, O2, ..., Ot−2)) so by inspecting

1Note: following discussions with Prof.Rabiner [Rab08] on the equation for p(O, Q|Θ) it was con-
cluded that the equation for p(O, Q|Θ) in Rabiner’s paper [Rab89] is incorrect.
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equation (10) we can see it is a function of p(qt−2|Θ, O1, ..., Ot−2). The numerator of

equation (11) is obtained from calculating equation (9) for the previous time period,

which is also a function of p(qt−2|Θ, O1, ..., Ot−2).

To start the recursion of equation (11) at p(q1 = i|O1,Θ) we require f(O1|Θ).

Hamilton assumes the Markov chain has been running sufficiently long enough so that

we can make the following assumption about our observations O1, O2, ..., OT . Techni-

cally, Hamilton assumes the observations O1, O2, ..., OT are all drawn from the Markov

chain’s invariant distribution. If a Markov chain has been running for a sufficiently

long time, the following property of Markov chains can be applied:

ηj = lim
t→∞

p(qt = j|q1 = i), ∀i, j = 1, 2, .., R, (12)

where

R
∑

j=1

ηj = 1, ηj > 0. (13)

The probability ηj tells us in the long run (t → ∞) the (unconditional) probability of

being in state j and this probability is independent of the initial state (at time t=1).

An important interpretation of ηj is as the fraction of time spent in state j in the long

run. Therefore the probability of state j is simply ηj and so:

f(O1|Θ) = f(q1 = 1, O1|Θ) + f(q1 = 2, O1|Θ), (14)

where f(q1 = i, O1|Θ) = ηipi(O1). (15)

We can therefore calculate p(q1 = i|O1,Θ):

p(q1 = i|O1,Θ) =
f(q1 = i, O1|Θ)

f(O1|Θ)
, (16)

=
ηipi(O1)

η1p1(O1) + η2p2(O1)
. (17)

Furthermore it can be proved for a two state HMM that:

η1 = a21/(a12 + a21),

η2 = 1 − η1.

Therefore p(q1 = i|O1,Θ) can be obtained from estimating the parameter set Θ =

{u1, u2, ϕ1, ϕ2, a12, a21}, which is obtained by a chosen search method.

The advantages of Hamilton’s filter method are firstly we do not need to specify

or determine the initial probabilities, therefore there are fewer parameters to estimate

(compared to the alternative Baum-Welch method). Therefore the MLE parameter

optimisation will be over a lower dimension search space. Secondly, the MLE equation

is simpler to understand and so easier to implement compared to other calibration

methods.
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3. Baum-Welch Algorithm

The Baum-Welch (BW) is a complete estimation method since it also provides

the required optimisation method to determine the parameters by MLE. We will now

explain the BW algorithm and to do so we must first explain the forward algorithm,

which we will do now.

3.1. Forward Algorithm

The forward algorithm calculates p(O|M), the probability of a fixed or observed

sequence O=O1O2...OT , given all the HMM parameters denoted by M = {A,B, π}.
We recall from the definition of HMM that the probability of each observation p(Ot)

will change depending on the state at time t (qt). Hence the most straightforward way

to calculate p(O|M) is:

p(O|M) =
∑

all Q

p(O,Q|M), (18)

=
∑

all Q

p(O|M,Q).p(Q|M), (19)

=
∑

all Q

πq1
bq1

(O1).aq1q2
bq2

(O2)....aqT−1qT
bqT

(OT ), (20)

where p(O|M,Q) = bq1
(O1).bq2

(O2).....bqT
(OT ). (21)

Here “all Q” means all possible state sequences q1q2...qT that could account for obser-

vation sequence O, b(.)(O(.)) is defined in proposition 2, p(O|M,Q) is the probability of

the observed sequence O, given it is along one single state sequence Q = q1q2...qT and

for HMM M. We must sum equation (20) over all possible Q state sequences, requiring

RT computations and so this is computationally infeasible even for small R and T.

To overcome the computational difficulty of calculating p(O|M) in equation (20)

we apply the forward algorithm, which uses recursion (dynamic programming). The

forward algorithm only requires computations of the order R2T and so is significantly

faster than calculating equation (20) for large R and T.

Let us define the forward variable κt(i):

κt(i) = p(O1O2...Ot, qt = i|M). (22)

Given the HMM M, κt(i) is the probability of the joint observation upto time t of

O1O2...Ot and the state at time t is i i.e. qt = i. If we can determine κT (i) we can

calculate p(O|M) since:

p(O|M) =

R
∑

i=1

κT (i). (23)
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Now κt+1(j) can be expressed in terms of κt(i), therefore we can calculate κt+1(j)

by recursion:

κt+1(j) =

[

R
∑

i=1

κt(i)aij

]

bj(Ot+1), 1 ≤ t ≤ T − 1. (24)

The variable κt+1(j) in equation (24) can be understood as follows: κt(j)aij is the

probability of the joint event O1....Ot is observed, the state at time t is i and state j is

reached at time t+1. If we sum this probability over all R possible states for i, we get

the probability of j at t+1 accompanied with all previous observations from O1O2...Ot

only. Thus to get κt+1(j) we must multiply by bj(Ot+1) so that we have all observations

O1...Ot+1.

Therefore the recursive algorithm is as follows:

1. Initialisation:

κ1(i) = πibi(O1), 1 ≤ i ≤ R. (25)

2. Recursion:

κt+1(j) =

[

R
∑

i=1

κt(i)aij

]

bj(Ot+1), 1 ≤ t ≤ T − 1. (26)

3. Termination: t+1=T.

4. Final Output:

p(O|M) =

R
∑

i=1

κT (i). (27)

At t=1 no sequence exists but we initialise the recursion with πi to determine κ1(i).

3.2. Baum-Welch Algorithm

Having explained the forward algorithm we can now explain the BW algorithm.

Using observation sequence O, the BW algorithm iteratively calculates the HMM pa-

rameters M = {A,B, π}. Specifically, BW estimates M = {aij , bj(·), πi}∀i, j, denoted

respectively by M = {aij, bj(·), πi}, such that it maximises the likelihood of p(O|M).

No method of analytically finding the globally optimal M exists. However it has been

theoretically proven BW is guaranteed to find the local optimum [Rab89].

Let us define ψt(i, j):

ψt(i, j) = p(qt = i, qt+1 = j | O,M). (28)
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The variable ψt(i, j) is the probability of being in state i at time t and state j at time

t+1, given the HMM parameters M and the observed observation sequence O. We can

re-express ψt(i, j) as:

ψt(i, j) = p(qt = i, qt+1 = j | O,M), (29)

=
p(qt = i, qt+1 = j, O | M)

p(O|M)
. (30)

Now we can re-express equation (30) using the forward variable

κt(i) = p(O1O2...Ot, qt = i|M) and using analogously the so called backward variable

̺t+1(i):

̺t(i) = p(Ot+1Ot+2...OT |qt = i,M), (31)

so that ̺t+1(i) = p(Ot+2Ot+3...OT |qt+1 = i,M). (32)

The backward variable ̺t(i) is the probability of the partial observed observation se-

quence from time t+1 to the end T, given M and the state at time t is i. It is calculated

in a similar recursive method to the forward variable using the backward algorithm (see

[Rab89] for more details). Hence we can rewrite ψt(i, j) as

ψt(i, j) =
κt(i)aijbj(Ot+1)̺t+1(j)

p(O|M)
. (33)

We can also rewrite the denominator p(O|M) in terms of the forward and backward

variables, so that ψt(i, j) is entirely expressed in terms of κt(i), aij , bj(Ot+1), ̺t+1(j):

p(O|M) =

R
∑

i=1

R
∑

j=1

κt(i)aijbj(Ot+1)̺t+1(j). (34)

Now let us define Γt(i):

Γt(i) = p(qt = i|O,M), (35)

=

R
∑

j=1

ψt(i, j). (36)

Equation (36) can be understood from the definition of ψt(i, j) in equation (29); sum-

ming ψt(i, j) over all j must give p(qt = i|O,M), the probability in state i at time t,

given the observation sequence O and model M. Now if we sum Γt(i) from t=1 to T-1

it gives us Υ(i), the expected number of transitions made from state i:

Υ(i) =

T−1
∑

t=1

Γt(i). (37)

10



If we sum Γt(i) from t=1 to T it gives us ϑ(i), the expected number of times state i is

visited:

ϑ(i) =

T
∑

t=1

Γt(i). (38)

We are now in a position to estimate M . The variable aij is estimated as the

expected number of transitions from state i to state j divided by the expected number

of transitions from state i:

aij =

∑T−1
t=1 ψt(i, j)

Υ(i)
. (39)

The variable πi is estimated as the expected number of times in state i at time t=1:

πi = Γ1(i). (40)

The variable bj(s̃) is estimated as the expected number of times in state j and observing

a particular signal s̃, divided by the expected number of times in state j:

bj(s̃) =

T
∑

t=1

Γt(j)
′

ϑ(j)
, (41)

where Γt(j)
′ is Γt(j) with condition Ot = s̃.

We can now describe our BW algorithm:

1. Initialisation:

Input initial values of M (otherwise randomly initialise) and calculate p(O|M)

using the forward algorithm.

2. Estimate new values of M :

Iterate until convergence:

(a) Using current M calculate variables κt(i), ̺t+1(j) by the forward and back-

ward algorithm and then calculate ψt(i, j) as in equation (33).

(b) Using calculated ψt(i, j) in (a) determine new estimates of M using equa-

tions (36)-(41).

(c) Calculate p(O|M) with new M values using the forward algorithm.

(d) Goto step 3 if two consecutive calculations of p(O|M) are equal (or converge

within a specified range). Otherwise repeat iterations: goto (a).

3. Output M .
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The BW algorithm is started with initial estimates of M = (A,B, π). These estimates

in turn are used to calculate the right hand side of equations (39),(40) and (41) to

give the next new estimate of M = (A,B, π). We consider the new estimate Mn to be

a better estimate than the previous estimate Mp, if p(O|Mn) > p(O|Mp), with both

probabilities calculated via the forward algorithm. In other words, we prefer the M

that increases the probability of observation O occurring.

If p(O|Mn) > p(O|Mp) then the iterative calculation is repeated with Mn as the

input. Note that at the end of step two, if the algorithm re-iterates then inputting the

new M at step 2a means we will get a new set of M after executing 2b. The iteration

is stopped when p(O|Mn) = p(O|Mp) or is arbitrarily close enough and at this point

the BW algorithm finishes.

Since the BW algorithm has been proven to always converge to the local optimum,

the BW will output the local optimum. We also note that correct choice of R is

important since p(O|M) changes as M changes for a fixed O, however this disadvantage

is common to all MLE methods.

3.3. Multivariate Gaussian Mixture Baum-Welch Calibration

To account for the variety of empirical distributions possible for various assets and

capturing asymmetric properties arising from volatility (such as fat tails), we model

each regime’s distribution by a two component multivariate Gaussian mixture (GM),

which is a mixture of two multinormal distributions.

Definition 2. (Multinormal Distribution) Let X = (X1, X2..., Xn) be an n-dimensional
random vector where each dimension is a random variable. Let u=(u1, u2..., un) repre-
sent an n dimensional vector of means, Σ represent an n × n covariance matrix. We
say X follows a multinormal distribution if

X ∼ Nn(u,Σ), (42)

which may be alternatively written as





X1

X...

Xn



 ∼ Nn









u1

u...

un



 ,





ϕ11 ϕ... ϕ1n

ϕ... ϕ... ϕ...

ϕn1 ϕ... ϕnn







 . (43)

The probability of X is

p(X) =
1

2π
√

det(Σ)
exp

(

−1

2
(X − u)TΣ−1(X− u)

)

, (44)

where det(Σ) denotes the determinant of Σ.
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Definition 3. (Multivariate Gaussian Mixture) A multivariate Gaussian mixture con-
sists of a mixture of K multinormal distributions, spanning n-dimensions. It is defined
by:

X ∼ c1Nn(u1,Σ1) + ... + cKNn(uK ,ΣK), (45)

where ck are weights and

k=K
∑

k=1

ck = 1, ck ≥ 0. (46)

The term pgmm(X) denotes the probability of a multivariate Gaussian mixture variable
X and is defined as

pgmm(X) =
K
∑

k=1

ckpk(X), (47)

where pk(X) ∼ Nn(uk,Σk).

If we model a stochastic process X by a Gaussian mixture for each regime then for

a given regime j we have:

X ∼ cj1Nn(uj1,Σj1) + ...+ cjKNn(ujK ,ΣjK). (48)

The probability of X for a given regime j, pgmm(X)j, is:

pgmm(X)j =

k=K
∑

k=1

cjkpjk(X). (49)

where

• pjk(X) ∼ Nn(ujk,Σjk);

• cjk are weights for each regime j and

k=K
∑

k=1

cjk = 1, ∀j. (50)

Note that the dimensions of multivariate distribution n are independent of the number

of mixture components K.

For an n-asset portfolio X(t) = (X1(t), X2(t), ..., Xn(t)), where Xi(t) represents

the stock price of asset i, with each asset following a Gaussian mixture, the portfolio

returns would be modelled by:

dX/X ∼ cj1Nn(uj1,Σj1) + cj2Nn(uj2,Σj2). (51)
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For practial calibration purposes we set the multivariate observation vector Ot to

annual log returns:

Ot = log(X(t+ ∆t)/X(t)), (52)

where ∆t=1 year.

Combining GM with HMM gives us a GM-HMM (Gaussian mixture HMM) model

and the BW algorithm can be adapted to it: Gaussian mixture BW (GM-BW). For

Ot our observation (vector) at time t we model bj(O) by GM:

bj(O) = pgmm(O)j . (53)

The BW algorithm for calculating A, πi remains the same; for B we have a GM. We

would like to obtain the GM mixture coeffficents cjk, mean vectors u jk and covari-

ance matrices Σjk whose estimates are cjk, u jk and Σjk respectively. These can be

incorporated within the BW algorithm as detailed by Rabiner [Rab89]:

u jk =

∑T

t=1 Γt(j, k).Ot
∑T

t=1 Γt(j, k)
, (54)

Σjk =

∑T

t=1 Γt(j, k).(Ot − u jk)(Ot − u jk)
T

∑T

t=1 Γt(j, k)
, (55)

cjk =

∑T

t=1 Γt(j, k)
∑T

t=1

∑K

k=1 Γt(j, k)
, (56)

where Γt(j, k) =

[

κt(j)̺t(j)
∑N

j=1 κt(j)̺t(j)

]

[

cjkpjk(Ot)

pgmm(Ot)j

]

. (57)

Here Γt(j, k) is the probability at time t of being in state j with the k mixture component

accounting for Ot. Using the same logic as in section 3 (for non mixture distributions)

we can understand equations (54)-(56), for example cjk is the expected number of times

the HMM k-th component is in state j divided by the expected number of times in state

j.

It is worth noting that a well known problem in maximum likelihood estimation of

GM is that observations with low variances give extremely high likelihoods, in which

case the likelihood function does not converge [MT07]. To overcome this problem

in the univariate case Messina and Toscani [MT07] implement Ridolfi’s and Idier’s

[RI02] penalised maximum likelihood function, which limits the likelihood value of

observations. This is beneficial in [MT07] because the observation time scales are of

the order of days and therefore the variance of samples may approach zero. For our

applications we calibrate the GM-HMM to annual return data, therefore the samples

are unlikely to approach variances anywhere near zero.
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3.4. Advantages of Baum-Welch Calibration

The BW algorithm has significant advantages over the Hamilton filter. Firstly, the

Hamilton filter requires observation data to be taken from the invariant distribution in

order to estimate the parameters (see equation (12)). To obtain observations from the

invariant distribution implies the number of state transitions approaches a large limit,

so is not suited to Markov chains that have run for a short time. Furthermore, the

time to reach the invariant distribution increases with the number of regimes R and

the number of Gaussian mixtures K.

Psaradakis and Sola [PS98] investigated the finite sample properties of the Hamilton

filter for financial data. They concluded that samples of at least 400 observations are

required for a simple two state regime switching model where each state’s observation

is modelled by a normal distribution.

Secondly, the Hamilton filter has no method of estimating the initial state probabil-

ities whereas the BW is able to take account of and estimate initial state probabilities.

This has a number of important consequences:

1. BW does not require observations from the invariant distribution and so can be

calibrated to data of any observation length.

2. the Hamilton filter cannot fully define the entire HMM model since the initial

state probabilities are one of the key HMM parameters in the definition (see

HMM definition in section 2).

3. we cannot determine the probability of observation sequences p(O|M), since we

require the initial state probabilities. This can be understood from the forward

algorithm.

4. we cannot determine the most likely state sequence that accounts for a given ob-

servation sequence and HMM, which can be obtained by the Viterbi algorithm.

The Viterbi algorithm tells us the most likely state sequence for a given observa-

tion sequence and HMM parameters M (see Forney [FJ73] for more information).

5. without the initial state probabilities, we cannot simulate state sequences since

the initial state radically alters the state sequence and its influence on the state

sequence increases as the sequence size decreases. Consequently we cannot vali-

date a model’s feasibility by simulation.

Note that BW estimates initial state probabilities independently of the transition prob-

abilities, whereas in the Hamilton filter ηi is a function of estimated transition proba-

bilities. Hence BW is able to independently estimate more HMM parameters than the

Hamilton filter.
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Thirdly, to our knowledge the Hamilton filter cannot be applied to multivariate dis-

tributions, nor more complicated univariate distributions than Gaussians. Particularly

for financial applications, we use multivariate data to model portfolios and multivariate

stochastic volatility is becoming an increasingly important research area (see Bauwens

et al. [BLR06] for a survey on multivariate GARCH). Hamilton has proposed a calibra-

tion method for univariate mixture distributions, the Quasi-Bayesian MLE approach

[Ham91], yet this requires some prior knowledge regarding the reliability of observa-

tions. The GM-BW calibrates a multivariate Gaussian mixture to multivariate data,

thereby capable of modelling most empirically observed distributions.

Fourthly, the GM-BW can calibrate time varying correlations. It is known that

correlations amongst random variables tend to be unstable with time; for example

Buckley et al. [BSS07] give evidence of covariances varying with time and model them

as regime dependent. The GM-BW algorithm gives the covariance matrix for each

regime and each regime is postulated to be linked to an economic state. Therefore, we

can model and extract information on changing correlations with changing economic

conditions. For instance, some stocks are considered to be strongly correlated with the

economic cycle (known as cyclical stocks) e.g. British Airways, whereas other stocks

are considered independent of the economy (known as defensive stocks) e.g. Tesco.

Finally, the BW algorithm is a complete HMM estimation method whereas the

Hamilton filter is not. Hamilton’s method provides no method or guidance as to the

optimisation algorithm to apply for finding the parameters from the non-linear filter,

yet the solutions can be significantly influenced by the non-convex optimisation method

applied. The BW algorithm includes an estimation method for the full HMM and a

numerical optimisation scheme. Additionally, the BW method is guaranteed to find

the local optimum.

4. Numerical Experiment: Baum-Welch GM-HMM Calibration Results

In this section we calibrate a 2-state regime switching model with 2 Gaussian com-

ponents to S&P 500 data from 1976-1996. We fitted the model:

dX/X ∼ cj1N1(uj1, ϕj1) + cj2N1(uj2, ϕj2), j ∈ {1, 2}. (58)

We set our observation to annual log returns:

Ot = log(X(t+ ∆t)/X(t)), (59)

where ∆t=1 year and X(t) is the stock price.
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4.1. Procedure

Due to GM-BW’s wide usage in engineering it has already been implemented by

numerous authors. We chose K. Murphy’s Matlab implementation [Mur08] because

it is considered one of the most standard and cited GM-BW programs. It also offers

many useful features that are unavailable on other implementations e.g. the Viterbi

algorithm for obtaining state sequences.

The GM-BW algorithm finds the best GM-HMM parameters that maximise the

likelihood of the observations, however, this involves searching a nonconvex search space

and BW only finds the local optimum. Theoretically, the globally optimal parameters

can be determined by initialising the GM-BW algorithm over every possible starting

point, then the globally optimal parameters are those that give the highest likelihood.

However, the GM-BW algorithm finds the locally optimal M = (A,B, π) (where B is

parameterised by cjk, ϕjk and ujk), so that the calibration problem has a nonconvex

solution search space over thirteen dimensions.

Due to the high dimensionality of the parameter estimation problem for either

the univariate or multivariate case, determining the optimal parameters by initialising

through different starting points is impractical. Instead we concentrated our effort on

finding good initial parameter estimates for M. This was to significantly increase the

probability of finding the best GM-BW solutions, particularly as initialisation strongly

influences the GM-BW optimisation [LDLK04].

π Initialisation

To initialise π, we assign a probability of 0.5 to state one if the first observed return is

positive, with the probability increasing in value the more positive it is.

Ā Initialisation

Given the HMM structure was chosen due to its ability to capture long term and

fundamental properties, we can initialise A based on the long term and fundamental

properties we expect it to possess:

Ā =

(

0.6 0.4

0.7 0.3

)

. (60)

Each state represents an economic regime so A can be interpreted as follows. The

economy in the long term follows an upward drift, so we would expect it is more likely

the HMM remains in state one rather than goto state two, given it is already in state

one -hence we assign probability 0.6. Similarly, if the HMM is in state two we would

17



expect it is far more likely to return to state one than state two to capture the cyclical

behaviour and in the long term the economy follows an upward trend, hence we assign

probabilities 0.7 and 0.3.

GM Initialisation (B)

The GM distribution fitting strongly affects the GM-BW algorithm optimisation, hence

it must be satisfactorily initialised for GM-BW to provide acceptable results. However

it is well known that GM distribution fitting in general (without any regime switching)

is a non-trivial problem:

• there are a large set of parameters to estimate.

• there exists the issue of uniqueness, that is for a given non-parametric distribution

there does not always exist a unique set of GM parameter values.

• the flexibility of GM distributions to model virtually any unimodal or bimodal

distribution means that it incorporates rather than rejects any noise in the data

into the distribution. Therefore GM fitting is highly sensitive to noise.

• parameter estimation is further complicated with regime switching and the fact

we cannot identify with certainty the (hidden) state associated with each obser-

vation.

Rather than randomly initialise the GM parameters (as is done in Murphy’s program)

we approximately divided data into each regime by classifying positive returns as be-

longing to state one, otherwise they belong to state two. We then fit a GM for each

“regime’s” data using a GM fitting program used by Lund University (stixbox).

4.2. Results and Discussion

We present the results of the Baum-Welch GM-HMM calibration to S&P 500 data

from 1976-1996:
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Table 1: Initial State Probabilities (πi)

State (i) Probability
1 1 × 10−6

2 1 − 1 × 10−6

A =

(

0.78 0.22

0.82 0.18

)

Table 2: Mixture Means ujk (%/year)

Gaussian Component (k) State (j)
1 2

N1 13.0 -4.8
N2 28.0 1.4

Overall 14.8 -4.7

Table 3: Mixture Standard Deviations
√

ϕjk (%/year)

Gaussian Component (k) State (j)
1 2

N1 4.5 5.6
N2 28.0 110.0

Overall 11.6 13.3
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Table 4: Weighting Matrix (cjk)

Gaussian Component (k) State (j)
1 2

N1 0.88 0.99
N2 0.12 0.01

From table 2 we can infer that the BW algorithm has attributed state two as the

down state since its overall mean is negative, unlike state one. Using the Markowitz’s

variance measure of risk [Mar52] it is encouraging that we can conclude that the risk

level in state two is higher than in state one (see table 3), since a declining economy

(state two) is a riskier economic state. Additionally, an increase in variance (and

therefore volatility) with lower returns is consistent with the leverage effect. The

initial state probabilities π strongly suggest the HMM starts in state two and this is

consistent with the data as the first year’s return (see table 5) is relatively low (1.2%).

The transition matrix Ā is similar to the transition matrix theoretically postulated

(for an economy); thus it is consistent with our theoretical expectations. The matrix

Ā tells us that given the model is in state one it is likely to stay in that state most

of the time, only transitioning to state two for 22% of the time. Additionally, in state

two the model is most likely to return to state one (probability 0.78), thus captures

the cyclical nature of the economy.

To validate the quality of the GM-HMM calibration in terms of state sequence

generation, we ran the Viterbi algorithm. Note that calibration under the Hamilton

filter does not provide or enable state sequence estimation. The Viterbi algorithm gave

the following state sequence result for in sample data 1976-96 in table 5:
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Table 5: In Sample Regime Sequence Results

Year Regime Empirical Annual Return (%)
1976 2 1.2
1977 2 -13.4
1978 1 11.3
1979 1 13.4
1980 1 12.6
1981 2 -7.3
1982 1 18.8
1983 1 11.7
1984 1 9.5
1985 1 16.5
1986 1 25.8
1987 2 -6.5
1988 1 14.6
1989 1 10.1
1990 1 4.4
1991 1 17.3
1992 1 7.1
1993 1 9.3
1994 2 -2.4
1995 1 30.2
1996 1 21.2

The regime sequence concurs with the empirical observations; negative or low re-

turns were categorised into state two, whereas other returns were classed as state one.

The results also illustrate the behaviour of the transition matrix A; generally remain-

ing in state one (up state) whilst occasionally entering state two, in which case it

quickly reverts back to state one. Hence the GM-HMM is able to capture the key

characteristics of the economy, namely an upward trend and cyclicity.

The Viterbi algorithm was also applied to out of sample data from 1997-2007. Again

the GM-HMM was able to satisfactorily classify the years for each state, as shown in

table 6:
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Table 6: Out of Sample Regime Sequence Results

Year Regime Empirical Annual Return (%)
1997 1 22.1
1998 1 26.6
1999 1 8.6
2000 2 -2.1
2001 2 -18.9
2002 1 -27.8
2003 1 27.9
2004 1 4.3
2005 1 8.0
2006 1 11.6
2007 2 -2.6

5. Conclusions

This paper has shown the advantages of Baum-Welch calibration over the standard

Hamilton filter method. Not only does the Baum-Welch method offer a complete

calibration procedure but also is able to estimate the full set of HMM parameters,

unlike the Hamilton filter. We have also validated the usage of the Baum-Welch method

through numerical experiments on S&P 500 data in and out of sample.
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