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Symplectic quotients by a nonabelian group

and by its maximal torus

Shaun Martin∗

Introduction

This paper examines the relationship between the symplectic quotient X//G of a Hamiltonian

G-manifold X , and the associated symplectic quotient X//T , where T ⊂ G is a maximal

torus, in the case in which X//G is a compact manifold or orbifold.

The three main results are: a formula expressing the rational cohomology ring of X//G

in terms of the rational cohomology ring of X//T ; an ‘integration’ formula, which expresses

cohomology pairings on X//G in terms of cohomology pairings on X//T ; and an index

formula, which expresses the indices of elliptic operators on X//G in terms of indices on

X//T .

The results of this paper are complemented by the results in a companion paper [15], in

which different techniques are used to derive formulæ for cohomology pairings on symplectic

quotients X//T , where T is a torus, in terms of the T -fixed points of X . That paper also

gives some applications of the formulæ proved here.

In order to state the main results of this paper, we introduce some notation. The

symplectic quotient X//G is defined to be the topological quotient µ−1
G (0)/G, where µG :

X → Lie(G)∗ is a moment map for the G-action on X . A choice of maximal torus T ⊂ G

induces a natural projection Lie(G)∗ ։ Lie(T )∗, and composing with µG gives a moment

map µT : X → Lie(T )∗ for the T -action, with X//T := µ−1
T (0)/T . In most of this paper

we make some additional simplifying assumptions: we assume that both µ−1
G (0) and µ−1

T (0)

are compact manifolds, on which the respective G- and T -actions are free. It follows that

X//G and X//T are compact symplectic manifolds. In section 6 we show how to modify the

main results when various of these assumptions are dropped.

For every weight α of T there is a characteristic class e(α) ∈ H2(X//T ) naturally asso-

ciated1 to the principal T -bundle µ−1
T (0) → X//T (for a precise definition see section 2).

Theorem A (Cohomology rings). There is a natural ring isomorphism

H∗(X//G; Q) ∼= H∗(X//T ; Q)W

ann(e)
.

Here W denotes the Weyl group of G, which acts naturally on X//T ; the class e ∈ H∗(X//T )W

is defined by e :=
∏

α∈∆ e(α) for ∆ the roots of G, and ann(e) ⊳ H∗(X//T ; Q)W is the ideal

consisting of all W -invariant elements c ∈ H∗(X//T ; Q)W such that the product c`e van-

ishes.

∗Institute for Advanced Study, Princeton, NJ; smartin@ias.edu; March, 1999.
1A weight of T is a homomorphism α : T → S1. Denoting by C(α) the representation space on which

T acts via this homomorphism, we define Lα → X//T to be the associated line bundle, that is, Lα :=

µ−1
T

(0) ×T C(α), and e(α) to be the Euler class of Lα.
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There is a natural notion of a lift of a cohomology class on X//G to a class on X//T ,

compatible with the above isomorphism. The most concrete way of expressing this2 involves

the manifold Y := µ−1
G (0)/T . There is an obvious inclusion i : Y →֒ X//T and projection

π : Y → X//G, and we say ã ∈ H∗(X//T ) is a lift of a ∈ H∗(X//G) if π∗a = i∗ã.

Theorem B (Integration formula). Given a cohomology class a ∈ H∗(X//G) with lift

ã ∈ H∗(X//T ), then

∫

X//G

a =
1

|W |

∫

X//T

ã`e,

where |W | is the order of the Weyl group of G, and e is the cohomology class defined in

Theorem A.

This formula gives cohomology pairings on X//G because the lift of a class is compatible

with cup product: given classes a, b ∈ H∗(X//G) with lifts ã, b̃ ∈ H∗(X//T ), then ã`b̃ is a

lift of a`b.

The symplectic quotient X//G is a compact symplectic manifold, and it can be given an

almost complex structure J : T (X//G) → T (X//G) which is compatible with its symplectic

structure in a certain sense. Using the same prescription3 as on a Kähler manifold, we can

then define an elliptic operator

D := ∂ + ∂
∗

: C∞
(

ΛevenT 0,1
)

→ C∞
(

ΛoddT 0,1
)

.

Furthermore, if V → X//G is a complex vector bundle, then a choice of Hermitian connection

on V lets us define an elliptic operator DV : C∞
(

V ⊗ ΛevenT 0,1
)

→ C∞
(

V ⊗ ΛoddT 0,1
)

.

While the operator DV depends on the various choices involved, its index does not, and we

have

Theorem C (Index formula). Suppose V → X//G is a complex vector bundle, and Ṽ →
X//T is a lift of V . Then

indexX//G DV = indexX//T DṼ ⊗ΛevenE − indexX//T DṼ ⊗ΛoddE

Here we can take E → X//T to equal
⊕

α∈∆+ Lα for any choice ∆+ of positive roots of G,

where Lα → X//T denotes the complex line bundle naturally associated to the weight α.

This formula is simpler than one would get by applying the Atiyah-Singer index theorem

to the integration formula—its proof runs along similar lines, but brings in a result of Borel

and Hirzebruch on the Todd genus of G/T .

The layout of this paper is as follows. Section 1 contains the main topological result, giv-

ing a detailed description of the topological relationship between X//G and X//T . Section 2

uses this result, together with some cohomological facts, to prove theorem B, the integration

formula. In section 3 the integration formula is combined with Poincaré duality to prove

theorem A, and in section 4 the index formula is proved. Section 5 is a very short section

2A more natural way of expressing the fact that ã is a lift of a brings in the G-equivariant cohomology

H∗

G
(X). There are natural maps from H∗

G
(X) to both H∗(X//G) and H∗(X//T ), and ã is a lift of a if they

are both images of the same class in H∗

G
(X).

3the operator ∂ is the usual Cauchy-Riemann operator from (0, i)-forms to (0, i + 1)-forms—this is well-

defined on an almost-complex manifold, although ∂ ◦∂ does not necessarily vanish—see for example Griffiths

and Harris [7, p. 80]; the almost complex structure combines with the symplectic structure to define a natural

metric, which we use to define ∂
∗

. (The complex structure can alternatively be viewed as defining a spinc

structure, with D defined as the spinc-Dirac operator, taking even spinors to odd spinors.)
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describing some formulæ for characteristic numbers of X//G, such as the Euler characteristic

and the signature. In section 6 various generalizations of the main results are described,

including straightforward generalizations to the case when the two symplectic quotients are

compact orbifolds, to the case in which X//T may have singularities or be noncompact, and

finally, in a different direction, a generalization in which T is replaced by a subgroup of full

rank. Finally, in section 7, the results of this paper are applied to the explicit example of the

Grassmannian of k-dimensional planes in Cn, which arises as a symplectic quotient by the

group U(k). The associated symplectic quotient by the maximal torus is the k-fold product

(CP
n−1)k. One result is a presentation of the cohomology of the Grassmannian which is

different from the usual one.

Relation to other results

The results of this paper, together with the companion paper [15], have been applied by

Jeffrey and Kirwan [11] to prove certain formulæ for cohomology pairings on moduli spaces

of stable holomorphic bundles over a Riemann surface. These formulæ were first derived by

Witten [21] using physical arguments. Indeed the main motivation for the results of this

paper and its companion was to find a purely topological proof of Witten’s formulæ.

This work was carried out in 1994, in Oxford, and at the Isaac Newton Institute in Cam-

bridge. After completing this work, I was made aware of some related results of Ellingsrud

and Strømme [5]. The present paper intersects with theirs in the case that X is a complex

vector space; in that case they have a result closely related to theorem A. (Their general

setting is the ‘Geometric invariant theory’ quotient [19] of a vector space over an arbitrary

field, for which they calculate the Chow ring; their techniques are completely different from

those used here.)
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Salamon for illuminating discussions, and Lisa Jeffrey and Frances Kirwan for their interest

and encouragement while these results were being developed.

Notation

Fixed throughout this paper are the following:

X is a fixed smooth symplectic manifold (with symplectic form ω);

G ⊃ T is a connected compact Lie group and a fixed maximal torus, both acting on

X , preserving ω;

g ⊃ t are their Lie algebras;

µG : X → g∗ is a moment map for the G action on X , which we assume throughout

to be proper, and to have 0 as a regular value (our sign convention is d 〈µG, ξ〉 =

ω(V (ξ), ·), ∀ξ ∈ g, where V (ξ) ∈ Γ(TX) denotes the vector field generated by

the infinitesimal action of ξ; see the companion paper [15] for more details);

µT : X → t∗ is the corresponding moment map for the restriction of the action to T

(given by composing µG with the natural projection g∗ ։ t∗);

X//G, X//T denote the symplectic quotients µ−1
G (0)/G and µ−1

T (0)/T respectively.
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1. The main topological result

The results of this paper all follow from one topological result, which we prove in this section.

This result is stated in terms of certain complex line bundles on X//T :

Definition 1.1. Let α be a weight of T , that is, a one-dimensional representation, and

let C(α) denote the corresponding representation space. Then we define the line bundle

Lα → X//T to be the associated bundle

Lα := µ−1
T (0) ×T C(α)

��

X//T

We denote by ∆ the set of roots of G, that is, ∆ is the set of nonzero weights which

occur in the action of T on g ⊗ C; we fix a choice ∆+ ⊂ ∆ of positive roots, and denote by

∆− the corresponding negative roots.

X//G and X//T are related by a fibering and an inclusion:

µ−1
G (0)/T

�

� i //

π

��

µ−1
T (0)/T = X//T

X//G = µ−1
G (0)/G.

Note that X//G and X//T are symplectic manifolds, and hence possess compactible almost

complex structures, unique up to homotopy [17, proposition 4.1].

Proposition 1.2. 1. The vector bundle
⊕

α∈∆− Lα → X//T has a section s, which

is transverse to the zero section, and such that the zeroset of s is the submanifold

µ−1
G (0)/T ⊂ X//T . It follows that the derivative of s identifies the normal bundle

ν(µ−1
G (0)/T ) ∼=

⊕

α∈∆− Lα

∣

∣

µ−1

G
(0)/T

.

2. Letting vert(π) → µ−1
G (0)/T denote the vector bundle of tangents to the fibres of π,

we have

vert(π) ∼=
⊕

α∈∆+ Lα

∣

∣

µ−1

G
(0)/T

.

3. There is a complex orientation4of µ−1
G (0)/T such that the above isomorphisms are iso-

morphisms of complex-oriented spaces and vector bundles, with respect to the complex

orientations of X//G and X//T induced by their symplectic forms.

A complex orientation induces a real orientation in a standard manner, and for most of

this paper we will only need that the above isomorphisms are isomorphisms of real-oriented

spaces and vector bundles. We will need complex orientations for the results on indices of

elliptic operators and characteristic numbers, in sections 4 and 5.

4an almost complex structure on a manifold or a vector bundle defines a complex orientation, and

two almost complex structures which are homotopic (through almost complex structures) define the same

complex orientation. For the definition of complex orientation (which also involves stabilization) see [20].
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Proof. We prove the three statements in the proposition in order.

1. The inclusion. We have the commuting triangle of maps

X
µG //

µT

  @
@

@

@

@

@

@

@

g∗

p
����

t∗

where the projection p is induced by the inclusion T →֒ G. Define V ⊂ g∗ by V := p−1(0).

Then µ−1
T (0) = µ−1

G (V ), and the fact that 0 ∈ t∗ is a regular value for µT is equivalent to the

assertion that the subspace V is transverse to the map µG. Note that µT is a T -equivariant

map and the coadjoint action of T on g∗ preserves the subspace V . Moreover, given our

choice of positive and negative roots, we have V ∼=
⊕

α∈∆− C(α).

The restriction of µG to µ−1
T (0) defines a T -equivariant map s̃ : µ−1

T (0) → V , and taking

the quotient by T , then s̃ defines a section s of the associated bundle µ−1
T (0)×T V → X//T .

Since 0 ∈ g∗ is a regular value of µG it follows that 0 ∈ V is a regular value of s̃, and hence

s is transverse to the zero section.

Finally, the identification of V in terms of negative roots gives µ−1
T (0)×T V ∼=

⊕

α∈∆− Lα.

2. The fibering. We write Z := µ−1
G (0). Let πG and πT denote the projections

µ−1
G (0) =: Z

πT //

πG

%%K
K

K

K

K

K

K

K

K

K

K

Z/T

π

��

Z/G

(π was defined above the proposition).

Consider the foliation of Z given by the G-orbits: using a G-invariant metric to take

orthgonal complements, and the infinitesimal action to identify tangents to the G-orbits, we

have the G-equivariant identification

TZ ∼= (Z × g) ⊕ π∗
GT (Z/G),

where G acts on g by the adjoint action. Restricting to the action of T , we can refine this

identification using the T -equivariant decomposition g ∼= t ⊕ v

TZ ∼= (Z × t) ⊕ (Z × v) ⊕ π∗
GT (Z/G),

with v ∼=
⊕

α∈∆+ C(α). Identifying the Z × t factor as the tangents to the T -orbits, and

taking the quotient by T ,

T (Z/T ) ∼= (Z ×T v) ⊕ π∗T (Z/G).

Hence, identifying v in terms of positive roots gives vert(π) ∼= Z ×T v ∼=
⊕

α∈∆+ Lα

∣

∣

Z/T
.

3. The orientation. We begin by summarizing the arguments in the final stage of the

proof. We will first describe the symplectic form of X//T , restricted to Z/T , in terms of a

decomposition of the tangent bundle (equation (1.4) below). We then describe an almost

complex structure J̃0 on X//T which is compatible with the symplectic form on X//T , and

which has a simple description over Z/T . Finally, we show that J̃0 is homotopic, through

almost complex structures, to an almost complex structure J̃1 on X//T with respect to which

Z/T is an almost complex submanifold, and such that the almost complex structures on Z/T

and on its normal bundle agree with the complex orientations described in the statement of

the proposition.
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3(i) The identification of the symplectic form. On g⊕g∗ we define the G-invariant symplectic

form η by using the duality pairing:

η(ξ, α) := 〈ξ, α〉 , ∀ξ ∈ g, α ∈ g∗,

and demanding that η be skew-symmetric. Applying this definition fibrewise defines an

invariant symplectic form on the vector bundle Z × (g⊕ g∗) → Z, which we will also denote

by η. Then there exists a G-equivariant isomorphism of symplectic vector bundles over

Z = µ−1
G (0)

TX |Z ∼= (Z × g) ⊕ (Z × g∗) ⊕ π∗
GT (X//G) (1.3)

where the symplectic form on the left is the restriction of the symplectic form on X , and the

symplectic form on the right is the direct sum of the symplectic form on (Z × g)⊕ (Z × g∗)

given by η, and the pullback of the symplectic form on X//G.

This isomorphism is defined as follows. A choice of connection on the principal G-bundle

Z → X//G defines a ‘horizontal subbundle’ H ⊂ TZ, which is isomorphic to π∗
GT (X//G)

(the isomorphism is induced by the derivative dπG). Using the inclusion TZ →֒ TX |Z
we can consider H to be a subbundle of TX |Z , and we define Hω ⊂ TX |Z to be the

symplectic complement to H, with respect to the restriction of the symplectic form ω on

X . Standard calculations using the moment map then imply (1) the restriction of ω to H
equals the pullback of the symplectic form on X//G, (2) the subbundle Hω is a vector bundle

complement to H, containing vert(πG) ∼= (Z×g), and isomorphic to (Z×g)⊕(Z×g∗) (with

the isomorphism given by choosing an equivariant complement to vert(πG) and identifying

this complement with Z×g∗ via dµ), and (3) the restriction of ω to Hω ∼= (Z×g)⊕ (Z×g∗)

equals the symplectic form η defined above.

The same arguments, applied to T and µ−1
T (0) in place of G and Z = µ−1

G (0), give an

analogous isomorphism to that of equation (1.3) above. Combining these two isomorphisms,

in a neighbourhood of Z, and arguing as in step 2 of this proof gives an isomorphism of

symplectic vector bundles

T (X//T )|Z/T
∼= (Z ×T v) ⊕ (Z ×T v∗) ⊕ π∗T (X//G) (1.4)

such that the symplectic form on the left is the restriction of the symplectic form on X//T ,

and on the right is the direct sum of the natural symplectic form on (Z ×T v) ⊕ (Z ×T v∗)

defined analogously to η, and the pullback of the symplectic form on X//G.

3(ii) The almost complex structure J̃0.

Fix (1) an almost complex structure on X//G which is compatible with the symplectic

form, and (2) a T -invariant positive-definite inner product on v.

The inner product on v gives a duality isomorphism v
∼=−→ v∗, which is T -equivariant,

and which thus descends to an isomorphism

ϕ : Z ×T v → Z ×T v∗.

We now define J0. On the subbundle π∗T (X//G) we define J0 to equal the almost complex

structure on X//G which we fixed above. On the subbundle (Z ×T v)⊕ (Z ×T v∗) we define

J0 to equal

(

0 −ϕ

ϕ 0

)

. One easily checks that J0 is compatible with the symplectic form on

T (X//T )|Z/T , and it follows from standard results in symplectic geometry that there exists

an almost complex structure J̃0 on X//T which is compatible with the symplectic form, and

whose restriction equals J0 (see for example McDuff and Salamon [17, proposition 4.1]).
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3(iii) The homotopy.

Fix a choice of positive roots ∆+ ⊂ ∆. This choice of positive roots gives a T -invariant

complex structure on v, which descends to a complex structure on Z ×T v, which we denote

by iv. Similarly, the negative roots define a complex structure iv∗ on Z ×T v∗, and we have

iv∗ = ϕ ◦ (−iv∗) ◦ ϕ−1.

We now define J1. On the subbundle π∗T (X//G) we define J1 to equal the almost complex

structure on X//G which we fixed above, and hence to agree with J0. On the subbundle

(Z ×T v) ⊕ (Z ×T v∗) we define J1 to equal

(

iv 0

0 iv∗

)

.

We now show that J0 and J1 are homotopic through almost complex structures. Consider

the complex linear transformations j0 :=

(

0 −1

1 0

)

, and j1 :=

(

i 0

0 −i

)

∈ End(C ⊕ C).

Since j0 and j1 are unitary matrices having the same eigenvalues, there is a unitary matrix

g1 such that j1 = g1j0g
−1
1 . Let gt, for t ∈ [0, 1], be a path of unitary matrices with g0 equal

to the identity and g1 the matrix we have just described. Then jt := gtj0g
−1
t is a path of

complex structures on the real vector space underlying C ⊕ C.

Tensoring with v, and using the isomorphism provided by ϕ, we can thus define a path

of almost complex structures Jt from J0 to J1 (keeping the almost complex structure on the

subbundle π∗T (X//G) fixed throughout).

We can think of an almost complex structure over X//T as a section of a bundle with

fibres O(2n)/U(n), where 2n = dimX//T [17, proposition 2.46]. Thus J̃0 is such a section,

and Jt is a homotopy of sections restricted to the submanifold Z/T . By the homotopy

extension property, we can extend Jt to a homotopy J̃t of almost complex structures on

X//T .

But J̃1 has the property that Z/T is an almost complex submanifold, such that the

complex structure on Z/T and on its normal bundle agree with the complex structures on

the vector bundles in the proposition, hence completing the proof.

2. The integration formula

In this section we prove the integration formula, theorem B. We begin by recalling some

cohomological techniques needed in the proof.

Integration over the fibre

If π : Y → B is a fibre bundle with fibre F , such that Y, B and F are compact oriented

manifolds, then integration over the fibre is a map

π∗ : H∗(Y ) → H∗−dim F (B)

satisfying

(Multiplication) π∗(π
∗(b)`a) = b`π∗a, ∀a ∈ H∗(Y ), b ∈ H∗(B),

(Restriction) If i : S →֒ B is the inclusion a closed oriented submanifold, then the follow-

ing square of maps commutes

H∗(π−1(S))

π′

∗

��

H∗(Y )
i′∗

oo

π∗

��

H∗−dim F (S) H∗−dim F (B),
i∗oo

7



where π′ denotes the restriction of π to π−1(S), and i′ denotes the inclusion of π−1(S)

in Y .

(Composition)

∫

B

π∗a =

∫

Y

a, ∀a ∈ H∗(Y ).

The Euler class of a vector bundle

The second fact we need involves the Euler class of a vector bundle. Suppose V is a real

oriented vector bundle over a compact oriented manifold Y , and s is a section of V which is

transverse to the zero section. Then the zeroset of s is a submanifold S of Y , and denoting

by i : S →֒ Y the inclusion, we have

∫

S

i∗a =

∫

Y

a`e(V ), ∀a ∈ H∗(Y )

where e(V ) ∈ Hrk V (Y ) is the Euler class of V . There is a natural identification νS ∼= V |S
of the normal bundle to S with the restriction of V , and hence the orientation of V induces

an orientation on νS; we assume S, νS and Y are oriented compatibly.

If instead V is a complex vector bundle, with its natural real orientation, then the Euler

class of V (thought of as a real vector bundle) equals the top Chern class of V (thought

of as a complex vector bundle). For proofs and more detailed explanations, see Bott and

Tu [4, section 6].

Proof of the integration formula

Recall that we have maps i : µ−1
G (0)/T →֒ X//T and π : µ−1

G (0)/T → X//G as defined in

section 1, and we say that a class ã ∈ H∗(X//T ) is a lift of a ∈ H∗(X//G) if π∗(a) = i∗(ã).

Definition 2.1. Given a weight α of T , then we define e(α) to be the Euler class

e(α) := e(Lα) ∈ H∗(X//T ).

(These are the cohomology classes which appear in Theorems A and B).

We are now ready to prove theorem B (as stated in the introduction). This integration

formula is stated in terms of cohomology classes on X//G and X//T . However, such classes

often arise from equivariant cohomology classes on X via the ‘Kirwan map’. After proving

the integration formula, we will set up notation for equivariant cohomology and state a

corollary in terms of equivariant classes.

Proof of Theorem B. Define the class b ∈ H∗(X//T ) by b :=
∏

α∈∆+ e(Lα). Then i∗b =

e(vert(π)), by proposition 1.2. We can calculate the integral over the fibres π∗(i
∗b) ∈

H0(X//G) by restricting to a single fibre G/T , using the restriction property of the push-

forward. By naturality of the Euler class, e(vert(π))|G/T = e(vert(π)|G/T ) = e(T (G/T )),

and so π∗(i
∗b) =

∫

G/T
e(T (G/T )) = χ(G/T ) = |W |, using a standard identification of the

Euler characteristic of G/T [3].

8



Then
∫

X//G

a =
1

|W |

∫

µ−1

G
(0)/T

π∗a`i∗b, applying the push-pull formula,

=
1

|W |

∫

X//T

i∗i
∗(ã`b), composition of pushforwards; and ã is a lift of a,

=
1

|W |

∫

X//T

ã`b`
∏

α∈∆−

e(Lα),
properties of the Euler class, applied to the

vector bundle identified in proposition 1.2(1),

=
1

|W |

∫

X//T

ã`e, by definition of e.

3. The relationship between the cohomology rings

In this section we prove theorem A, which relates the cohomology rings of the symplectic

quotients X//G and X//T . The proof involves some standard machinery in equivariant

cohomology, and a crucial result concerning the ‘Kirwan map’, which we begin by reviewing.

We also state a version of the integration formula in the language of equivariant cohomology.

Some key facts in equivariant cohomology

The G-equivariant cohomology of the G-manifold X , which we denote by H∗
G(X), is defined

to be the ordinary cohomology of the homotopy quotient

XG := (EG × X)/G,

where EG is a universal space for G: that is, EG is contractible and has a free G-action.

For various facts in equivariant cohomology, see [1, 6, 16]. We recall that, if K ⊂ G is a

subgroup, there is a natural restriction map rG
K : H∗

G(X) → H∗
K(X).

A map of fundamental importance in symplectic geometry is the Kirwan map, which

gives a surjective ring homomorphism from the equivariant cohomology of a symplectic

manifold onto the ordinary cohomology of its symplectic quotient. Explicitly, we define the

Kirwan map

κG : H∗
G(X) → H∗(X//G),

by taking the restriction to µ−1
G (0), and composing this with the natural isomorphism

H∗
G(µ−1

G (0))
∼=−→ H∗(X//G). This natural isomorphism is defined in rational cohomology

whenever the G-action on µ−1
G (0) is locally free, and we understand κG to only be de-

fined when this is the case. We denote the analogous map for the maximal torus T by

κT : H∗
T (X) → H∗(X//T ).

We observe that, for any equivariant class a ∈ H∗
G(X), the class κT ◦ rG

T (a) is a lift of

κG(a) (see comments in the proof of theorem A for more elucidation on this point). We can

thus restate the integration formula, theorem B, in a form which is more natural in many

applications:

Corollary 3.1 (Integration formula in terms of equivariant cohomology). For all

a ∈ H∗
G(X),

∫

X//G

κG(a) =
1

|W |

∫

X//T

κT ◦ rG
T (a)`e,

9



where

e =
∏

α∈∆

κT (eT (C(α))),

and eT denotes the T -equivariant Euler class.

The proof of theorem A

Observe that the Weyl group W of G acts on X//T : since the normalizer N(T ) of T preserves

µ−1
T (0), the action of N(T ) on µ−1

T (0) descends to an action of W = N(T )/T on the quotient

X//T .

Proof of theorem A. Consider the fibre bundle µ−1
G (0)/T

π−→ X//G. This has fibre G/T , and

the Weyl group W acts on the fibres, covering the trivial action on the base (this is the

restriction of the W -action on X//T ). By a result of Borel [2, section 27], the pullback π∗

gives an isomorphism between the rational cohomology of the base X//G and the W -invariant

cohomology of the total space µ−1
G (0)/T . This means there is a natural ring homomorphism

ϕ : H∗(X//T )W → H∗(X//G) (3.2)

given by restriction to µ−1
G (0)/T followed by the above identification, which we will now

show to be onto.

Applying the Borel-Hirzebruch result to the homotopy quotients XG and XT , one can

also recover the known fact that the restriction rG
T gives an isomorphism with the W -

invariants rG
T : H∗

G(X)
∼=−→ H∗

T (X)W . By naturality of the maps involved, we have

κG = ϕ ◦ κT ◦ rG
T : H∗

G(X) → H∗(X//G),

and since κG is onto, it follows that ϕ is onto.

To prove the theorem, we thus need to show that kerϕ = ann(e). Let a ∈ H∗(X//T )W .

Then

ϕ(a) = 0 ⇐⇒ ∀c ∈ H∗(X//T )W ,

∫

X//G

ϕ(a)`ϕ(c) = 0,
Poincaré duality on X//G;

surjectivity of ϕ,

⇐⇒ ∀c ∈ H∗(X//T )W ,

∫

X//T

a`c`e = 0, by the integration formula,

⇐⇒ ∀d ∈ H∗(X//T ),

∫

X//T

(a`e)`d = 0,
since we can average d by W

(see below),

⇐⇒ a`e = 0, by Poincaré duality on X//T .

In the second-last step, we note that W acts by symplectomorphisms on X//T , hence pre-

serves orientation and integrals, and since a and e are W -invariant, we can average d by W

to obtain a W -invariant class without changing the integral.

4. The index formula

We now prove the index formula, theorem C, by applying the Atiyah-Singer index theorem

to the main topological result. For more details on the spincc Dirac operators D and DV

(described in the introduction) see for example [14, appendix D].

10



In the proof we will use K-theory, but only in a rudimentary way, and we recall a few

facts and set up some notation. Given a compact space Y , then K(Y ) is a commutative ring,

whose elements are represented by formal sums (with integer coefficients) of complex vector

bundles over Y . Given a vector bundle V → Y , we write [V ] ∈ K(Y ) for the equivalence

class it represents. Addition and multiplication in K(Y ) are induced by the direct sum and

tensor product of vector bundles respectively, and these operations are extended to formal

sums of vector bundles by the usual laws of a commutative ring.

We will use the Chern character and the Todd class of complex vector bundles. It

is a standard fact that these characteristic classes only depend on the equivalence class

[V ] ∈ K(Y ) of a complex vector bundle V → Y , and that these characteristic classes can

be extended to every element of K(Y ) by setting

Td([V ] − [W ]) =
Td(V )

Td(W )
, ch([V ] − [W ]) = ch(V ) − ch(W ),

for all vector bundles V, W → Y (the Todd class Td(V ) is a cohomology class of mixed

degree, but it has degree-0 part equal to 1 ∈ H0(Y ), and it follows that Td(V ) has a

multiplicative inverse in the cohomology ring). Finally, if a vector bundle V is given as a

sum of line bundles V =
⊕

1≤i≤k Li then

Td(V ) =
∏

1≤i≤k

c1(Li)

1 − exp(−c1(Li))
, ch(V ) =

∑

1≤i≤k

exp(c1(Li)).

We use the maps i : µ−1
G (0)/T →֒ X//T and π : µ−1

G (0)/T → X//G as defined in section 1,

and we extend the definition of the ‘lift’ of a cohomology class to both vector bundles and

K-theory in the obvious way. Thus we say a class ã ∈ K(X//T ) is a lift of a ∈ K(X//G) if

π∗a = i∗ã.

Proof of theorem C. Fix almost complex structures on X//G and X//T , compatible with

their respctive symplectic forms. Throughout this proof we will let T (X//G) and T (X//T )

denote the tangent bundles, thought of as complex vector bundles given by these almost

complex structures.

Define E :=
⊕

α∈∆+ Lα, as in the statement of theorem C. Then we have E∗ ∼=
⊕

α∈∆− Lα. The main topological result, proposition 1.2, implies that [T (X//T )]−[E⊕E∗] ∈
K(X//T ) is a lift of [T (X//G)] ∈ K(X//G). Since taking characteristic classes commutes with

pullback, it follows that

Td T (X//T )

Td(E)` Td(E∗)

is a lift of TdT (X//G).

Define the class b ∈ H∗(X//T ) by b := Td(E). Then i∗b = Td(vert(π)). Now π is

the projection of a fibre bundle, with fibres G/T , which arises as the global quotient of a

principal G bundle by the maximal torus T . A result of Borel and Hirzebruch asserts that

in this case π∗ Td(vert(π)) = 1 [3, sections 7.4 and 22.3].

Applying the Atiyah-Singer index theorem, and arguing as in the proof of the integration

11



formula,

indexX//G DV =

∫

X//G

ch(V )` Td T (X//G)

=

∫

X//T

ch(Ṽ )`
Td T (X//T )

Td(E)` Td(E∗)
`b`

∏

α∈∆−

e(α)

=

∫

X//T

ch(Ṽ )`
TdT (X//T )

Td(E∗)
`

∏

α∈∆−

e(α)

=

∫

X//T

ch(Ṽ )`Td T (X//T )`
∏

α∈∆−

(1 − exp(−e(α)))

=

∫

X//T

ch(Ṽ )`Td T (X//T )`
∏

α∈∆+

(1 − exp(e(α)))

But [ΛevenE]− [ΛoddE] =
∑rk E

i=0 (−1)i[ΛiE] =
∏

α∈∆+([C]− [Lα]) hence, applying the Chern

character, ch(ΛevenE) − ch(ΛoddE) =
∏

α∈∆+(1 − exp(e(α))).

Combining these formulæ, using additive and multiplicative properties of the Chern

character, gives

indexX//G DV =

∫

X//T

ch(Ṽ )`Td T (X//T )`
(

ch(ΛevenE) − ch(ΛoddE)
)

=

∫

X//T

(

ch(Ṽ ⊗ ΛevenE) − (ch(Ṽ ⊗ ΛoddE)
)

`Td T (X//T )

= indexX//T DṼ ⊗ΛevenE − indexX//T DṼ ⊗ΛoddE .

Note finally that the formula we have derived is stated in terms of a choice of positive roots,

but the proof does not depend on any properties of that choice, and hence the result holds

for any choice of positive roots.

5. Characteristic numbers

Using the K-theoretic arguments from section 4, it is a simple matter to derive formulæ

which express various characteristic numbers of X//G in terms of characteristic numbers of

X//T . Recall that the tangent bundles T (X//G) and T (X//T ) can be considered as complex

vector bundles in an essentially unique way, by taking almost complex structures compatible

with their symplectic forms.

In the proof of the index formula, we used the fact that [T (X//T )]− [E⊕E∗] ∈ K(X//T )

is a lift of [T (X//G)] ∈ K(X//G). It follows that

c(T (X//T ))

c(E)`c(E∗)

is a lift of the total Chern class c(T (X//G)). Hence, applying the integration formula, we

get the following formula for the Euler characteristic of X//G

χ(X//G) =
1

|W |

∫

X//T

c(T (X//T ))`
∏

α∈∆

e(α)

1 + e(α)
. (5.1)

(We are using the fact that the top Chern class equals the Euler class.)
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Similarly, taking the L-class,

signature(X//G) =
1

|W |

∫

X//T

L(T (X//T ))`
∏

α∈∆

tanh e(α). (5.2)

In general, for any ‘multiplicative characteristic class’ m (see Hirzebruch [8, section 1],

or Milnor and Stasheff [18, section 19]), we have

∫

X//G

m(T (X//G)) =
1

|W |

∫

X//T

m(T (X//T ))

m(E)`m(E∗)
`

∏

α∈∆

e(α). (5.3)

6. Generalizations

In the previous sections of this paper we have assumed that both µ−1
G (0) and µ−1

T (0) are

compact manifolds on which the respective G- and T -actions are free. In this section we

show how to remove some of these assumptions. We will keep the assumption that µG is

a proper map, having 0 as a regular value. From this it follows that µ−1
G (0) is a compact

manifold, on which the G-action is locally free, and hence that X//G is a compact symplectic

orbifold.

The case in which µT is proper and has 0 as a regular value

If µT is proper and has 0 as a regular value, then X//T is a compact symplectic orbifold.

The arguments in sections 1–3, in which we proved the integration formula and the formula

relating the cohomology rings, go through with straightforward modifications, which we now

describe.

In the main topological result, proposition 1.2, the line bundles Lα, as well as the

normal bundle and the fibering must all be replaced by their orbifold equivalents. (In

the companion paper to this one [15], appendix A summarizes the main topological and

cohomological properties of orbifolds, orbifold vector bundles, and orbifold fibre bundles,

including describing how integration over the fibre goes over to that case.)

The classes e(α) are well-defined rational cohomology classes, and theorem A extends

to this case unchanged (rational Poincaré duality holds for compact oriented orbifolds).

Theorem B must be modified to take into account the existence of global finite stabilizers,

and becomes

Theorem B′ (Integration formula). If µG and µT are proper maps, both having 0 as a

regular value, then for any class a ∈ H∗(X//G) with lift ã,

∫

X//G

a =
1

|W | ·
oT (µ−1

T (0))

oG(µ−1
G (0))

∫

X//T

ã`e,

where oG(Y ) denotes the order of the maximal subgroup of G which fixes every point in Y ,

and |W | and e are as defined in theorem B.

The case in which µT is proper, but does not have 0 as a regular value

The integration formula, theorem B′, can be generalized to the case in which 0 is not a

regular value for µT in two different ways. One way involves perturbing the value at which

we take the symplectic quotient by T , which we now describe. We will then describe the

other alternative, which makes use of compactly-supported cohomology: that alternative

can also handle the case in which µT is not compact.
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A tubular neighbourhood of µ−1
G (0)/T is an orbifold, since we have assumed that 0 is a

regular value for µG. By assumption 0 is not a regular value for µT , but by transversality

there exist regular values arbitrarily close to 0. Let ǫ ∈ t∗ be a regular value, and consider

the family of symplectic quotients X//T (p) := µ−1
T (p)/T , as p moves between 0 and ǫ. If

ǫ is sufficiently close to 0, then we can find diffeomorphisms between a neighbourhood of

µ−1
G (0)/T and open sets in the quotients X//T (p). To do this, we note that the (orbifold)

vector bundle
⊕

α∈∆− Lα → X//T (0) with section s, defined in proposition 1.2, is natu-

rally defined over all quotients X//T (p). For ǫ sufficiently small, the section s will remain

transverse to the zero-section, and hence the zeros of s on the symplectic quotients X//T (p)

will be diffeomorphic to one another, along with tubular neighbourhoods of these zerosets.

Thus, for ǫ sufficiently small, we have an injection i′ : µ−1
G (0)/T →֒ X//T (ǫ), and the main

topological result, proposition 1.2 applies with the map i′ in place of the map i. A sufficient

condition on ǫ is that there exist path joining ǫ and 0, consisting entirely of regular values

(except of course for 0). Note also that the notion of a ‘lift’ of a cohomology class from

X//G to X//T (ǫ) is well-defined in this case.

Theorem B′′ (Integration formula). Suppose µG and µT are proper maps, and 0 is a

regular value for µG. Then for any regular value ǫ ∈ t∗ sufficiently close to 0 ∈ t∗, and any

class a ∈ H∗(X//G), with lift ã ∈ H∗(X//T (ǫ)),

∫

X//G

a =
1

|W | ·
oT (µ−1

T (0))

oG(µ−1
G (0))

∫

X//T (ǫ)

ã`e,

where oG(Y ) denotes the order of the maximal subgroup of G which fixes every point in Y ,

and |W | and e are as defined in theorem B.

The case in which µT is not proper

If µT is not proper but 0 ∈ t∗ is a regular value, then X//T is a noncompact orbifold, with

(orbifold) line bundles Lα, and with µ−1
G (0)/T as a compact suborbifold.

The section s of the bundle
⊕

α∈∆− Lα → X//T has compactly-supported zeroset, and

hence the pair (
⊕

α∈∆− Lα, s) possesses a relative Euler class5

e− := e(
⊕

α∈∆− Lα, s) ∈ H∗
c (X//T ),

lying in the cohomology with compact support of X//T . Setting e+ := e(
⊕

α∈∆+ Lα) (the

regular Euler class), then the product e := e+
`e− lies in H∗

c (X//T ), hence for any class

ã ∈ H∗(X//T ), the product a`e has compact support and thus has a well-defined integral

over X//T .

With this interpretation of the class e, the integration formula of theorem B′ holds as

stated. Moreover, if 0 is not a regular value of µT , we can remove the non-orbifold points

and apply the above reasoning.

5Let E → Y be an oriented vector bundle over a noncompact manifold Y , and let s be a section whose

zeroset is compact. The bundle E possesses a Thom class Φ, and we define the relative Euler class by

e(E, s) := s∗Φ ∈ H∗

c (Y ). This cohomology class is an invariant of the homotopy class of s, through

homotopies for which the zeroset remains compact at all times. Given a section in this homotopy class

which is transverse to the zero section of E, then e(E, s) represents the Poincaré dual of the compact

submanifold given by the zeroset (Poincaré duality on a noncompact manifold is an isomorphism between

homology and compactly-supported cohomology, see for example [4, propositions 6.24 and 6.25]). These

statements go over to orbifolds, with rational cohomology.
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Replacing T by a full-rank subgroup

Suppose H ⊂ G is a connected closed subgroup which contains a maximal torus T . Many

of the results of this paper generalize in a straightforward way to give relationships between

X//G and X//H .

Denoting by h the Lie algebra of H , then moment map µH for the H-action is defined

analogously to µT , by composing µG with the natural projection g∗ ։ h∗. We assume for

simplicity that µH is proper and has 0 as a regular value, and that the G-action is free on

µ−1
G (0), and the H-action is free on µ−1

H (0) (there are obvious generalizations when these

conditions are not met, as described above).

Under the adjoint action of H , the Lie algebra g decomposes into subrepresentations

g ∼= h ⊕ e.

This decomposition is compatible with the T -action, and t ⊂ h, hence a choice of positive

roots for T gives a complex structure to the H-representation e. We denote by E → X//H

the associated vector bundle µ−1
H (0) ×H e → X//H .

With these definitions, the main topological result generalizes in the obvious way, with

the bundle
⊕

α∈∆+ Lα replaced by E , and
⊕

α∈∆− Lα replaced by the dual bundle E∗. Thus,

with the obvious definition of a lift of a cohomology class or vector bundle, we have

Theorem BH (Integration formula). Given a cohomology class a ∈ H∗(X//G) with lift

ã ∈ H∗(X//H), then

∫

X//G

a =
|W (H)|
|W (G)|

∫

X//H

ã`e(E ⊕ E∗),

where W (H) and W (G) are the Weyl groups of H and G respectively.

Theorem CH (Index formula). Suppose V → X//G is a complex vector bundle, and

Ṽ → X//H is a lift of V . Then

indexX//G DV = indexX//H DṼ ⊗ΛevenE − indexX//T DṼ ⊗ΛoddE

Theorem A generalizes in a special case. Suppose W (H) is a normal subgroup of W (G).

Then the quotient group W (G)/W (H) can be thought of as the relative Weyl group for H

in G, and X//H carries an action of this relative Weyl group. In this case we have

Theorem AH (Cohomology rings). There is a natural ring isomorphism

H∗(X//G; Q) ∼= H∗(X//H ; Q)W

ann
(

e(E ⊕ E∗)
) ,

where W := W (G)/W (H) is the relative Weyl group.
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7. Example: The complex Grassmannian

This section contains a worked example: the complex Grassmannian of k-planes in Cn,

which we denote G(k, n). We first describe the results of applying theorems A and B, and

we then describe the derivation of these results in more detail.

The Grassmannian can be described as the symplectic quotient of the set of complex

matrices with n rows and k columns by the unitary group

G(k, n) ∼= Hom(Ck, Cn)//U(k),

where g ∈ U(k) acts on a matrix A ∈ Hom(Ck, Cn) by A ◦ g−1.

The associated symplectic quotient by the maximal torus T ⊂ U(k) turns out to be the k-

fold product (CP
n−1)k. Its cohomology ring is generated by degree-2 elements {u1, . . . , uk},

where ui is the positive generator of the cohomology ring of the i-th copy of CP
n−1. The

Weyl group of U(k) is the symmetric group on k elements Sk, which acts by permuting the

factors in (CP
n−1)k. The roots α of U(k) can be enumerated by pairs of positive integers

(i, j) with 1 ≤ i, j ≤ k and i 6= j, and the cohomology class corresponding to the root (i, j)

is the class e(α) = uj − ui. Hence, theorem A states

Proposition 7.1. The cohomology ring of the Grassmannian G(k, n) is given by

H∗(G(k, n); Q) ∼= Q[u1, . . . , uk]Sk

〈un
1 , . . . , un

k〉 :
∏

i6=j(ui − uj)
,

where the expression I : e in the denominator denotes the ideal quotient of the ideal I by

the element e, that is, the ideal consisting of all elements b such that b · e ∈ I.

The Grassmannian possesses a tautological vector bundle V → G(k, n) of rank k, and

the cohomology ring is generated by the Chern classes of the dual bundle V ∗. In the

above description, ci(V
∗) is represented by the i-th symmetric polynomial in the uj . The

above description of the cohomology ring is quite different from the usual description (which

involves the Segre classes of V ), and I have been able to find neither a general algebraic

proof of the equivalence of the two descriptions, nor any reference to the above description

in the literature.

Theorem B gives

Proposition 7.2.

∫

G(k,n)

c1(V
∗)m1

` . . . `ck(V ∗)mk =
1

k!
coeffun−1

1
...un−1

k

(

σm1

1 . . . σmk

k ·
∏

i6=j

(ui − uj)

)

where σi is the i-th elementary symmetric polynomial of the uj, and coeffm(p) denotes the

coefficient of the monomial m in the polynomial p.

The construction of G(k, n)

The symplectic structure on Hom(Ck, Cn) is the standard one for a complex vector space

with coordinates, namely, if aij = xij +
√
−1yij , for 1 ≤ i ≤ n, 1 ≤ j ≤ k, then

ω :=
∑

i,j

dxij ∧ dyij .
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The moment map takes values in the dual of the Lie algebra of U(k), which can be identified

with the space of Hermitian k × k matrices. It is a straightforward calculation using the

definition of the moment map to show that a moment map is given by

µU(k)(A) = A∗A − 1l,

where A∗ := A
tr

(precisely, given a skew-Hermitian matrix ξ ∈ Lie(U(k)), then the pairing
〈

µU(k)(A), ξ
〉

is given by i
2Tr

(

(A∗A − 1l)ξ∗
)

).

The k column vectors of the matrix A ∈ Hom(Ck, Cn) define vectors v1, . . . , vk ∈ Cn,

and the (i, j)-entry of A∗A is the Hermitian inner product (vj , vi). Hence µ−1
U(k)(0) consists

of the unitary k-frames in Cn, and taking the quotient by U(k) gives the Grassmannian

G(k, n).

The maximal torus T ⊂ U(k) of diagonal matrices has associated moment map given

by the diagonal entries of the matrix A∗A − 1l, and so a k-tuple (v1, . . . , vk) lies in µ−1
T (0)

precisely when each vi has length 1. The torus T equals the product (S1)k, the factors

of which rotate the vectors independently, hence identifying the quotient Hom(Ck, Cn)//T

with (CP
n−1)k. To calculate the classes e(α), consider the conjugation action of the di-

agonal matrices on the skew-symmetric matrices whose diagonal entries vanish (this is the

complement of t in Lie(U(k)). The matrix with diagonal entries (λ1, . . . , λk) acts by on the

(i, j)-entry by λiλ
−1
j ; the complex line bundle constructed with this weight has Euler class

uj − ui.

We now describe the tautological bundle E → G(k, n) in terms of the symplectic quotient

construction, so that we can identify the Chern classes of its dual on the T -symplectic

quotient (CPn−1)k. A point of G(k, n) is a U(k)-orbit of nondegenerate homomorphisms

A : Ck → Cn, and the corresponding fibre of E is im(A) ⊂ Cn. Two points A and Ag−1

in the same U(k)-orbit give different identifications of Ck with the subspace im(A), and,

taking this into account gives

E ∼= µ−1(0) ×U(k) Ck
(def.),

where Ck
(def.) denotes the defining representation of U(k). Thus E∗ is constructed from

the dual of the defining representation, and when we restrict this dual representation to the

maximal torus, it decomposes into k one-dimensional representations, which have associated

line bundles on the (CP
n−1)k with Euler classes u1, . . . , uk. The identification of the Chern

classes as elementary symmetric polynomials then follows.
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