ON [L]-HOMOTOPY GROUPS

A. V. KARASEV

ABSTRACT. The paper is devoted to investigation of some properties of [L]-homotopy groups. It is proved, in particular, that for any finite CW-complex L, satisfying double inequality $[S^n] < [L] \leq [S^{n+1}], \ \pi_n^{[L]}(S^n) = \mathbb{Z}$. Here [L] denotes extension type of complex L and $\pi_n^{[L]}(X)$ denotes n-th [L]-homotopy group of X.

1. Introduction

A new approach to dimension theory, based on notions of extension types of complexes and extension dimension leads to appearence of [L]-homotopy theory which, in turn, allows to introduce [L]-homotopy groups (see [1]). Perhaps the most natural problem related to [L]-homotopy groups is a problem of computation. It is necessary to point out that [L]-homotopy groups may differ from usual homotopy groups even for complexes.

More specifically the problem of computation can be stated as follows: describe [L]-homotopy groups of a space X in terms of usual homotopy groups of X and homotopy properties of complex L.

The first step on this way is apparently computation of n-th [L]-homotopy group of S^n for complex whose extension type lies between extension types of S^n and S^{n+1} .

In what follows we, in particular, perform this step.

2. Preliminaries

Follow [1], we introduce notions of extension types of complexes, extension dimension, [L]-homotopy, [L]-homotopy groups and other related notions.

We also state Dranishnikov's theorem, characterizing extension properties of complex [2].

All spaces are polish, all complexes are countable finitely-dominated CW complexes.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 55Q05; Secondary: 54C20. Key words and phrases. Extension dimension, [L]-homotopy.

For spaces X and L, the notation $L \in AE(X)$ means, that every map $f: A \to L$, defined on a closed subspace A of X, admits an extension \bar{f} over X.

Let L and K be complexes. We say (see [1]) that $L \leq K$ if for each space X from $L \in AE(X)$ follows $K \in AE(X)$. Equivalence classes of complexes with respect to this relation are called *extension types*. By [L] we denote extension type of L.

Definition 2.1. ([1]). The extension dimension of a space X is extension type $\operatorname{ed}(X)$ such that $\operatorname{ed}(X) = \min\{[L] : L \in \operatorname{AE}(X)\}.$

Observe, that if $[L] \leq [S^n]$ and $\operatorname{ed}(X) \leq [L]$, then $\dim X \leq n$. Now we can give the following

Definition 2.2. [1] We say that a space X is an absolute (neighbourhood) extensor modulo L (shortly X is A(N)E([L])) and write $X \in A(N)E([L])$ if $X \in A(N)E(Y)$ for each space Y with $ed(X) \leq [L]$.

Definition of [L]-homotopy and [L]-homotopy equivalence [1] are essential for our consideration:

Definition 2.3. Two maps f_0 , $f_1: X \to Y$ are said to be [L]-homotopic (notation: $f_0 \stackrel{[L]}{\simeq} f_1$) if for any map $h: Z \to X \times [0,1]$, where Z is a space with $\operatorname{ed}(Z) \leq [L]$, the composition $(f_0 \oplus f_1)h|_{h^{-1}(X \times \{0,1\})}: h^{-1}(X \times \{0,1\}) \to Y$ admits an extension $H: Z \to Y$.

Definition 2.4. A map $f: X \to Y$ is said to be [L]-homotopy equivalence if there is a map $g: Y \to X$ such that the compositions gf and fg are [L]-homotopic to id_X and id_Y respectively.

Let us observe (see [1]) that ANE([L])-spaces have the following [L]-homotopy extension property.

Proposition 2.1. Let [L] be a finitely dominated complex and X be a Polish ANE([L])-space. Suppose that A is closed in a space B with $ed(B) \leq [L]$. If maps $f, g: A \to X$ are [L]-homotopic and f admits an extension $F: B \to X$ then g also admits an extension $G: B \to X$, and it may be assumed that F is [L]-homotopic to G.

To provide an important example of [L]-homotopy equivalence we need to introduce the class of approximately [L]-soft maps.

Definition 2.5. [1] A map $f: X \to Y$ is said to be approximately [L]-soft, if for each space Z with $\operatorname{ed}(Z) \leq [L]$, for each closed subset $A \subset Z$, for an open cover $\mathcal{U} \in \operatorname{cov}(Y)$, and for any two maps $g: A \to X$ and $h: Z \to Y$ such that $fg = h|_A$ there is a map $k: Z \to X$ satisfying condition $k|_A = g$ and the composition fk is \mathcal{U} -close to h.

Proposition 2.2. [1] Let $f: X \to Y$ be a map between ANE([L])-compacta and ed(Y) \leq [L]. If f is approximately [L]-soft then f is a [L]-homotopy equivalence.

In order to define [L]-homotopy groups it is necessary to consider an n-th [L]-sphere $S^n_{[L]}$ [1], namely, an [L]-dimensional ANE([L]) - compactum admitting an approximately [L]-soft map onto S^n . It can be shown that all possible choices of an [L]-sphere $S^n_{[L]}$ are [L]-homotopy equivalent. This remark, coupled with the following proposition, allows us to consider for every finite complex L, every $n \geq 1$ and for any space X, the set $\pi_n^{[L]}(X) = [S^n_{[L]}, X]_{[L]}$ endowed with natural group structure (see [1] for details).

Theorem 2.3. [1] Let L be a finitely dominated complex and X be a finite polyhedron or a compact Hilbert cube manifold. Then there exist a [L]-universal ANE([L]) compactum $\mu_X^{[L]}$ with $\operatorname{ed}(\mu_X^{[L]}) = [L]$ and an [L]-invertible and approximately [L]-soft map $f_X^{[L]}: \mu_X^{[L]} \to X$.

The following theorem is essential for our consideration.

Theorem 2.4. Let L be simply-connected CW-complex, X be finite-dimensional compactum. Then $L \in AE(X)$ iff $c - \dim_{H_i(L)} X \leq i$ for any i.

From the proof of Theorem 2.4 one can conclude that the following theorem also holds:

Theorem 2.5. Let L be a CW-complex (not necessary simply-connected). Then for any finite-dimensional compactum X from $L \in AE(X)$ follows that $c - \dim_{H_i(L)} X \leq i$ for any i.

3. Cohomological properties of L

In this section we will investigate some cohomological properties of complexes L satisfying condition $[L] \leq S^n$ for some n. To establish these properties let us first formulate the following

Proposition 3.1. [4] Let (X, A) be a topological pair, such that $H_q(X, A)$ is finitely generated for any q. Then free submodules of $H^q(X, A)$ and $H_q(X, A)$ are isomorphic and torsion submodules of $H^q(X, A)$ and $H_{q-1}(X, A)$ are isomorphic.

Now we use Theorem 2.5 to obtain the following lemma.

Lemma 3.2. Let L be finite CW complex such that $[L] \leq [S^{n+1}]$ and n is minimal with this property. Then for any $q \leq n$ $H_q(L)$ is torsion group.

Proof. Suppose that there exists $q \leq n$ such that $H^q(L) = \mathbb{Z} \oplus G$. To get a contradiction let us show that $[L] \leq [S^q]$. Consider X such that $L \in AE(X)$. Observe, that X is finite-dimensional since $[L] \leq [S^{n+1}]$ by our assumption.

Denote $H = H_q(L)$. By Theorem 2.5 we have $c - \dim_H X \leq q$. Hence, for any closed subset $A \subseteq X$ we have $H^{q+1}(X, A; H) = \{0\}$. From the other hand, univeral coefficients formula implies that $H^{q+1}(X, A) \approx H^{q+1}(X, A) \otimes H \oplus \operatorname{Tor}(H^{q+2}(X, A), H)$.

Hence, $H^{q+1}(X, A) \otimes H = \{0\}$. Observe, however, that by our assumtion we have $H^{q+1}(X, A) \otimes H = H^{q+1} \otimes (\mathbb{Z} \oplus G) = H^{q+1}(X, A) \oplus (H^{q+1}(X, A) \otimes G)$. Therefore, $H^{q+1}(X, A) = 0$.

From the last fact we conclude that $c - \dim X \leq q$ and therefore since X is finite-dimensional, $\dim X \leq q$ which iplies $S^q \in AE(X)$. \square

From this lemma and Proposition 3.1 we obtain

Corollary 3.3. In the same assumptions $H^q(L)$ is torsion group for any $q \leq n$.

The following fact is essential for construction of compacts with some specific properties which we are going to construct further.

Lemma 3.4. Let L be as in previous lemma. For any m there exists $p \ge m$ such that $H^q(L; \mathbb{Z}_p) = \{0\}$ for any $q \le n$.

Proof. From Corollary 3.3 we can conclude that $H^q(L) = \bigoplus_{i=1}^{l_k} \mathbb{Z}_{m_{q_i}}$ for

any
$$q \leq n$$
. Additionally, let $\operatorname{Tor} H^{n+1}(L) = \bigoplus_{i=1}^{l_{n+1}} \mathbb{Z}_{m_{(n+1)i}}$

For any m consider $p \geq m$ such that (p, m_{ki}) for every $k = 1 \dots n + 1$ and $i = 1 \dots l_k$. Universal coefficients formula implies that $H^q(L; \mathbb{Z}_p) = \{0\}$ for every $k \leq n$.

Finally let us proof the following

Lemma 3.5. Let X be a metrizable compactum, A be a closed subset of X. Consider a map $f: A \to S^n$. If there exists extension $\bar{f}: X \to S^n$ then for any k we have $\delta_{X,A}^*(f^*(\zeta)) = 0$ in group $H^{n+1}(X,A;\mathbb{Z}_k)$, where ζ is generator in $H^n(S^n,\mathbb{Z}_k)$.

Proof. Let \bar{f} be an extension of f. Commutativity of the following diagram implies assertion of lemma:

$$H^{n}(A; \mathbb{Z}_{k}) \xrightarrow{\delta_{X,A}^{*}} H^{n+1}(X, A; \mathbb{Z}_{k})$$

$$\uparrow_{\bar{f}^{*}=f^{*}} \qquad \uparrow_{\bar{f}^{*}}$$

$$H^{n}(S^{n}; \mathbb{Z}_{k}) \xrightarrow{\delta_{S^{n},S^{n}}^{*}} H^{n+1}(S^{n}, S^{n}; \mathbb{Z}_{k}) = \{0\}$$

4. Some properties of [L]-homotopy groups

In this section we will investigate some properties of [L]-homotopy groups.

From this point and up to the end of the text we consider finite complex L such that $[S^n] < [L] \le [S^{n+1}]$ for some fixed n.

Remark 4.1. Let us observe that for such complexes $S_{[L]}^n$ is [L]-homotopic equivalent to S^n (see Proposition 2.2). Therefore for any X $\pi_n^{[L]}(X)$ is isomorphic to $G = \pi_n(S^n)/N([L])$ where N([L]) denotes the relation of [L]-homotopic equivalence between elements of $\pi_n(S^n)$.

From this observation one can easely obtain the following fact.

Proposition 4.1. For $\pi_n^{[L]}(S^n)$ there are three variants: $\pi_n^{[L]}(S^n) = \mathbb{Z}$, $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ for some integer m or this group is trivial.

Let us characterize the hypothetical equality $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ in terms of extensions of maps.

Proposition 4.2. If $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ then for any X such that $\operatorname{ed}(X) \leq [L]$, for any closed subset A of X and for any map $f: A \to S^n$, there exists extension $\bar{h}: X \to S^m$ of composition $h = z_m f$, where $z_m: S^n \to S^n$ is a map having degree m.

Proof. Suppose, that $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$. Then from Remark 4.1 and since $[z_m] = m[\mathrm{id}_{S^n}] = [*]$ (where [f] denotes homotopic class of f) we conclude that $z_m : S^n \to S^n$ is [L]-homotopic to constant map. Let us show that $h = z_m f : A \to S^n$ is also [L]-homotopic to constant map. This fact will prove our statement. Indeed, by our assumption $\mathrm{ed}(X) \leq [L]$ and $S^n \in ANE$ and therefore we can apply Proposition 2.1.

Consider Z such that $\operatorname{ed}(Z) \leq [L]$ and a map $H: Z \to A \times I$, where I = [0,1]. Pick a point $s \in S^n$. Let $f_0 = z_m f$, $f_1 \equiv s$ – constant map considered as $f_i: A \times \{i\} \to S^n$, i = 0, 1.

Define $F: A \times I \to S^n \times I$ as follows: F(a,t) = (f(a),t) for each $a \in A$ and $t \in I$. Let $f'_0 \equiv z_m$ and $f'_1 \equiv s$ considered as $f'_i: S^n \times \{i\} \to S^n$, i = 0, 1.

Consider a composition $G = FH : Z \to S^n \times I$. By our assumption f'_0 is [L]-homotopic to f'_1 . Therefore a map $g : G^{-1}(S^n \times \{0\} \bigcup S^n \times \{1\}) \to S^n$, defined as $g|_{G^{-1}(S^n \times \{i\})} = f'_i G$ for i = 0, 1, can be extended over Z. From the other hand we have $G^{-1}(S^n \times \{i\}) \equiv H^{-1}(A \times \{i\})$ and $g|_{G^{-1}(S^n \times \{i\})} = f'_i fH = f_i$ for i = 0, 1. This remark completes the proof.

Now consider a special case of complex having a form $S^n < L = K_s \vee K \leq S^{n+1}$, where K_s is a complex obtained by attaching to S^n a (n+1)-dimensional cell using a map of degree s.

Proposition 4.3. Let $[\alpha] \in \pi_n(X)$ be an element of order s. Then α is [L]-homotopy to constant map.

Proof. Observe that simillar to proof of Proposition 4.2 it is enough to show that for every Z with $\operatorname{ed}(Z) \leq [L]$, for every closed subspace A of Z and for any map $f: Z \to S^n$ a composition $\alpha f: A \to X$ can be extended over Z.

Let $g: S^n \to K_s^{(n)}$ be an embedding (by $M^{(n)}$ we denote *n*-dimensional skeleton of complex M) and $r: L \to K_s$ be a retraction.

Since $\operatorname{ed}(Z) \leq [L]$, a composition gf has an extension $F: Z \to L$. Let F' = rF and α' be a map α considered as a map $\alpha': K_s^{(n)} \to X$. Observe that $\alpha'F'$ is a necessary extension of αf .

5. Computation of $\pi_n^{[L]}(S^n)$

In this section we will prove that $\pi_n^{[L]}(S^n) = \mathbb{Z}$.

Suppose the oppsite, i.e. $\pi_n^{[L]}(S^n) = \mathbb{Z}_m$ (we use Proposition 4.1; the same arguments can be used to prove that $\pi_n^{[L]}(S^n)$ is non-trivial).

To get a contradiction we need to obtain a compact with special extension properties. We will use a construction of [3]

Let us recall the following definition.

Definition 5.1. [3] Inverse sequence $S = \{X_i, p_i^{i+1} : i \in \omega\}$ consisting of metrizable compacta is said to be L-resolvable if for any $i, A \subseteq X_i$ -closed subspace of X_i and any map $f : A \to L$ there exists $k \leq i$ such that composition $fp_i^k : (p_i^k)^{-1}A \to L$ can be extended over X_k .

The following lemma (see [3]) expresses an important property of [L]-resolvable inverse sequences.

Lemma 5.1. Suppose that L is a countable complex and that X is a compactum such that $X = \lim S$ where $S = (X_i, \lambda_i), q_i^{i+1}$ is a L-resolvable inverse system of compact polyhedra X_i with triangulations λ_i such that $\operatorname{mesh}\{\lambda_i\} \to 0$. Then $L \in \operatorname{AE}(X)$

Let us recall that in [3] inverse sequence $S = \{(X_i, \tau_i), p_i^{i+1}\}$ was constructed such that X_i is compact polyhedron with fixed triangulation $\tau_i, X_0 = S^{n+1}, \text{ mesh } \tau_i \to 0, S \text{ is } [L]\text{-resolvable and for any } x \in X_i \text{ we have } (p_i^{i+1})^{-1}x \simeq L \text{ or } *.$

It is easy to see that using the same construction one can obtain inverse sequence $S = \{(X_i, \tau_i), p_i^{i+1}\}$ having the same properties with exeption of $X_0 = D^{n+1}$ where D^{n+1} is n+1-dimensional disk.

Let $X = \lim S$. Observe, that $\operatorname{ed}(X) \leq [L]$. Let $p_0 : X \to D^{n+1}$ be a limit projection.

Pick $p \geq m+1$ which Lemma 3.4 provides us with. By Vietoris-Begle theorem (see [4]) and our choice of p, for every i and every $X_i' \subseteq X_i$ a homomorphism $(p_i^{i+1})^* : H^k(X_i'; \mathbb{Z}_p) \to H^k((p_i^{i+1})^{-1}X_i'; \mathbb{Z}_p)$ is isomorphism for $k \leq n$ and monomorphism for k = n+1.

Therefore for each $D' \subseteq X_0 = D^{n+1}$ homomorphism $p_0^* : H^k(D'; \mathbb{Z}_p) \to H^k((p_0)^{-1}D'; \mathbb{Z}_p)$ is isomorphism for $k \leq n$ and monomorphism for k = n + 1. In particular, $H^n(X; \mathbb{Z}_p) = \{0\}$ since $X_0 = D^{n+1}$ has trivial cohomology groups.

Let $A = (p_0)^{-1} S^n$ and $\zeta \in H^n(S^n; \mathbb{Z}_p) \approx \mathbb{Z}_p$ be a generator.

Since $p_0^*: H^n(S^n; \mathbb{Z}_p) \to H^n(A; \mathbb{Z}_p)$ is isomorphism, $p_0^*(\zeta)$ is generator in $H^n(A, \mathbb{Z}_p) \approx \mathbb{Z}_p$. In particular, $p_0^*(\zeta)$ is element of order p.

From exact sequence of pair (X, A)

$$\ldots \to H^n(X; \mathbb{Z}_p) = \{0\} \xrightarrow{i_{X,A}} H^n(A; \mathbb{Z}_p) \xrightarrow{\delta_{X,A}^*} H^{n+1}(X, A; \mathbb{Z}_p) \to \ldots$$

we conclude that $\delta_{X,A}^*$ is monomorphism and hence $\delta_{X,A}^*(p_0^*(\zeta)) \in H^{n+1}(X,A;\mathbb{Z}_p)$ is element of order p.

Consider now a composition $h = z_m p_0$. By our assumption this map can be extended over X (see Proposition 4.2). This fact coupled with Lemma 3.5 implies that $\delta_{X,A}^*(h^*(\zeta)) = 0$ in $H^{n+1}(X, A; \mathbb{Z}_p)$. But $\delta_{X,A}^*(h^*(\zeta)) = m\delta_{X,A}^*(p_0^*(\zeta))$. We arrive to a contradiction which shows that

Theorem 5.2. Let L be a complex such that $[S^n] < [L] \leq [S^{n+1}]$. Then $\pi_n^{[L]}(S^n) \approx \mathbb{Z}$.

The author is greatfull to A. C. Chigogidze for usefull discussions.

REFERENCES

- [1] A. Chigogidze, *Infinite dimensional topology and shape theory*, to appear in: "Handbook of Geometric Topology" edited by R. Daverman and R. B. Sher, North Holland, Amsterdam, 1999.
- [2] A. N. Dranishnikov, Extension of mappings into CW-complexes, Math. USSR Sbornik 74 (1993), 47-56.

- [3] A. N. Dranishnikov and D. Repovš, Cohomological dimension with respect to perfect groups, Topology Appl. 74 (1996), 123-140.
- [4] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SASKATCHEWAN, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada *E-mail address*: karasev@math.usask.ca