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Abstract

We establish a Galois correspondence for finite quantum groupoid
actions on II1 factors and show that every finite index and finite depth
subfactor is an intermediate subalgebra of a quantum groupoid crossed
product. Moreover, any such a subfactor is completely and canonically
determined by a quantum groupoid and its coideal ∗-subalgebra. This
allows to express the bimodule category of a subfactor in terms of
the representation category of a corresponding quantum groupoid and
the principal graph as the Bratteli diagram of an inclusion of certain
C∗-algebras related to it.

1 Introduction

This paper continues the research initiated in [13], where finite index II1-
subfactors of depth 2 were characterized in terms of weak C∗-Hopf algebra
crossed products (the latter objects were introduced in [3]).

In what follows, we use the term “quantum groupoid” instead of “weak
C∗-Hopf algebra” since we believe it is important to stress that this alge-
braic structure provides a natural non-commutative generalization of a usual
finite groupoid. In particular, if it is commutative as an algebra (resp. co-
commutative as a coalgebra), then it can be identified in a canonical way
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with the C∗-algebra of functions on a finite groupoid (resp. groupoid alge-
bra). Quantum groupoids also generalize finite-dimensional Kac algebras
(“finite quantum groups”) [18], [12].

According to the characterization obtained in [13], if N ⊂ M ⊂ M1 ⊂
M2 ⊂ . . . is the Jones tower constructed from a finite index depth 2 inclusion
N ⊂ M of II1 factors, then B = M ′ ∩M2 has a canonical structure of a
quantum groupoid acting outerly on M1 such that M = MB

1 and M2 =
M1>⊳B, moreover A = N ′ ∩M1 is a quantum groupoid dual to B.

In the present paper we extend the above result to show that quantum
groupoids give a uniform description of arbitrary finite index and finite depth
II1-subfactors via a Galois correspondence. We also show how to express
subfactor invariants such as bimodule categories and principal graphs in
quantum groupoid terms.

After discussing basic definitions and constructions in Preliminaries (Sec-
tion 2) we introduce and study coideal ∗-subalgebras of quantum groupoids
(Section 3), that play an important role in the sequel.

Section 4 starts with a simple observation (see Proposition 4.1 and Corol-
lary 4.2) that any finite depth subfactor N ⊂ M ([M : N ] < ∞) can be
viewed as an intermediate for some depth 2 inclusion N ⊂ M̃ . Due to the
above characterization result we have M̃ ∼= M>⊳B, which allows to describe
N ⊂ M via a Galois correspondence between intermediate von Neumann
subalgebras of N ⊂ M̃ and left coideal ∗-subalgebras of B (Theorem 4.3).
Thus, every finite depth subfactor is completely determined by a pair (B, I),
where I is a left coideal ∗-subalgebra of a quantum groupoid B, and can be
realized as N ⊂ N>⊳I, where N>⊳I is a von Neumann algebra generated by
N and I inside N>⊳B. Note that the Galois correspondence for quantum
group actions on factors was established in [4], [6].

In Section 5 we discuss an equivalence between the tensor category of
(N −N)-bimodules associated with N ⊂M and the co-representation cate-
gory of B (Theorem 5.8). Given a quantum groupoid B acting on a II1 factor
N and a pair of its left coideal ∗-subalgebras H,K, we define in the spirit of
[17] a category CH−K of relative (B,H−K) Hopf bimodules, whose objects
are both B-comodules and (H − K)-bimodules such that the B-coaction
commutes with the bimodule action and construct a functor from CH−K

to the category of (N>⊳H −N>⊳K)-bimodules preserving direct sums and
compatible with operations of taking tensor products and adjoints. In the
case when H and K are trivial, CH−K is Corep(B), the co-representation
category of B, and the above functor is an equivalence. We want to em-
phasize that a bimodule category of any finite depth subfactor N ⊂M (not
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only depth 2) is equivalent to Corep(B) for some B.
This functor also allows to express the principal graph of the inclusion

N ⊂ M in terms of B, as the Bratteli diagram of an inclusion of certain
finite-dimensional C∗-algebras related toB (Proposition 5.9, Corollary 5.10).

Finally, in Appendix we explicitly write down the structure maps of a
quantum groupoid associated with a finite depth subfactor.

Acknowledgements. The first author would like to thank E. Effros,
S. Popa, and M. Takesaki for their useful comments on the early stages of
this work. The second author is grateful to M. Enock, V. Turaev and J.-
M. Vallin for valuable discussions and to the University Paris-6, University
of Strasbourg, and Katholieke Universiteit Leuven for their kind hospitality
during his work on this paper.

2 Preliminaries

Throughout this paper we use Sweedler’s notation for a comultiplication,
writing ∆(b) = b(1) ⊗ b(2).

A weak Hopf C∗-algebra [3] or quantum groupoid B is a finite dimensional
C∗-algebra with the comultiplication ∆ : B → B ⊗ B, counit ε : B → C,
and antipode S : B → B such that (B,∆, ε) is a coalgebra and the following
axioms hold for all b, c, d ∈ B :

(1) ∆ is a (not necessarily unital) ∗-homomorphism :

∆(bc) = ∆(b)∆(c), ∆(b∗) = ∆(b)∗,

(2) The unit and counit satisfy the identities

ε(bc(1))ε(c(2)d) = ε(bcd),

(∆(1) ⊗ 1)(1 ⊗ ∆(1)) = (∆ ⊗ id)∆(1),

(3) S is an anti-algebra and anti-coalgebra map such that

m(id ⊗ S)∆(b) = (ε⊗ id)(∆(1)(b ⊗ 1)),

m(S ⊗ id)∆(b) = (id ⊗ ε)((1 ⊗ b)∆(1)),

where m denotes the multiplication.
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The right hand sides of two last formulas define target and source counital
maps :

εt(b) = (ε⊗ id)(∆(1)(b ⊗ 1)), εs(b) = (id ⊗ ε)((1 ⊗ b)∆(1)),

and play an important role in this theory.
Let us remark that the axiom (2) of the definition of a quantum groupoid

is equivalent to each of the following axioms expressed in terms of counital
maps ([12], [13]) :

(2’) bεt(c) = ε(b(1)c)b(2), b(1) ⊗ εt(b(2)) = 1(1)b⊗ 1(2),

(2”) εs(c)b = b(1)ε(cb(2)), εs(b(1)) ⊗ b(2) = 1(1) ⊗ b1(2),

These axioms are convenient for concrete computations, as they show that
the properties of the counital maps εt and εs are similar to those of a counit
in an ordinary Hopf algebra.

The dual vector space B∗ has a natural structure of a quantum groupoid
given by dualizing the structure operations of B ([3], [12]) :

〈ϕψ, b 〉 = 〈ϕ⊗ ψ, ∆(b) 〉,
〈∆(ϕ), b⊗ c 〉 = 〈ϕ, bc 〉,

〈S(ϕ), b 〉 = 〈ϕ, S(b) 〉,
〈ϕ∗, b 〉 = 〈ϕ, S(b)∗ 〉,

for all b, c ∈ B and ϕ,ψ ∈ B∗. The unit of B∗ is ε and the counit is 1.
The main difference between finite quantum groupoids and classical

finite-dimensional Hopf C∗-algebras (Kac algebras) is that the images of
the counital maps are, in general, non-trivial unital C∗-subalgebras of B,
called target and source counital subalgebras :

Bt = {b ∈ B | εt(b) = b} = {b ∈ B | ∆(b) = (b⊗ 1)∆(1) = ∆(1)(b ⊗ 1)},
Bs = {b ∈ B | εs(b) = b} = {b ∈ B | ∆(b) = (1 ⊗ b)∆(1) = ∆(1)(1 ⊗ b)}.

The counital subalgebras commute elementwise: [Bt, Bs] = 0, we also
have S ◦ εs = εt ◦ S and S(Bt) = Bs. We say that B is connected [11] if
Bt ∩ Z(B) = C (where Z(B) denotes the center of B), i.e., if the inclusion
Bt ⊂ B is connected. B is connected iff B∗

t ∩ B∗
s = C ([11], Proposition

3.11). We say that B is biconnected if both B and B∗ are connected.

The antipode of a quantum groupoid is necessarily unique, invertible,
and satisfies (S ◦ ∗)2 = id. Furthermore, there exists a canonical positive
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element H in the center of Bt such that S2 is an inner automorphism imple-
mented by G = HS(H)−1, i.e., S2(b) = GbG−1 for all b ∈ B. The element
G is group-like, i.e., ∆(G) = (G⊗G)∆(1) = ∆(1)(G ⊗G).

Quantum groupoids possess integrals in the following sense.

There exists a unique projection p ∈ B, called a Haar projection, such
that for all x ∈ B :

xp = εt(x)p, S(p) = p, εt(p) = 1.

There exists a unique positive functional φ on B, called a normalized
Haar functional (which is a trace iff B is a weak Kac algebra), such
that

(id ⊗ φ)∆ = (εt ⊗ φ)∆, φ ◦ S = S, φ ◦ εt = ε.

The next proposition establishes a useful invariance property of the Haar
functional.

Proposition 2.1 (cf. ([12], 2.3.5)) The normalized Haar functional φ of
B satisfies the following strong invariance property :

x(1)φ(yx(2)) = S(y(1))φ(y(2)x), φ(x(1)y)x(2) = φ(xy(1))S(y(2)),

for all x, y ∈ B.

Proof. It follows from the axioms of quantum groupoid that

εt(S(c))b = ε(cb(1))b(2)

for all b, c ∈ B. Using this identity and the properties of φ one computes :

x(1)φ(yx(2)) = 1(1)x(1)φ(y1(2)x(2))

= εs(y(1))x(1)φ(y(2)x(2))

= S(y(1))(y(2)x)(1)φ((y(2)x)(2))

= S(y(1))εt((y(2)x)(1))φ((y(2)x)(2))

= S(y(1))1(2)φ(ε(1(1)(y(2)x)(1))(y(2)x)(2))

= S(y(1))1(2)φ(εt(S(1(1)))y(2)x)

= S(y(1))S(1(1))φ(1(2)y(2)x) = S(y(1))φ(y(2)x).

The second identity is similar.

5



When B is connected, there exists a unique (non-degenerate) Markov
trace ([5]) τ for the inclusion Bt ⊂ B normalized by τ(1) = dimBt. This
trace is related to the Haar functional φ by φ(x) = τ(HS(H)x) ([13], 5.7),
where H is the canonical central positive element in Bt described earlier.

Corollary 2.2 For all x, y ∈ B we have

x(1)τ(yx(2)) = S(y(1))Gτ(y(2)x),

τ(x(1)y)x(2) = τ(xy(1))G
−1S(y(2)),

where G = HS(H)−1 is the canonical element implementing S2.

Proof. From Proposition 2.1 we have

x(1)τ(HS(H)yx(2)) = S(y(1))τ(HS(H)y(2)x),

and replacing y by HS(H)y we get the first identity, the second one is
similar.

The following notions of action, crossed product, and fixed point subal-
gebra were introduced in [14]. A (left) action of a quantum groupoid B on
a von Neumann algebra M is a linear map

B ⊗M ∋ b⊗ x 7→ (b ⊲ x) ∈M

making M into a left B-module such that for all b ∈ B the map b⊗x 7→ (b⊲x)
is weakly continuous and

(1) b ⊲ xy = (b(1) ⊲ x)(b(2) ⊲ y),

(2) (b ⊲ x)∗ = S(b)∗ ⊲ x∗,

(3) b ⊲ 1 = εt(b) ⊲ 1, and b ⊲ 1 = 0 iff εt(b) = 0.

A crossed product algebra M>⊳B is constructed on the relative tensor
product M ⊗Bt B, where B is a left Bt-module via multiplication and M is
a right Bt-module via x⊳z = S(z)⊲x = x(z ⊲1). Let [x⊗ b] denote the class
of x⊗ b in M>⊳B. A ∗-algebra structure on M>⊳B is defined by

[x⊗ b][y ⊗ c] = [x(b(1) ⊲ y) ⊗ b(2)c], [x⊗ b]∗ = [(b∗(1) ⊲ x
∗) ⊗ b∗(2)]

for all x, y ∈M, b, c ∈ B. It is possible to show that this abstractly defined
∗-algebra M>⊳B is *-isomorphic to a weakly closed algebra of operators on
some Hilbert space [14], i.e., M>⊳B is a von Neumann algebra.

6



The collection MB = {x ∈ M | b ⊲ x = εt(b) ⊲ x, ∀b ∈ B} is a von
Neumann subalgebra of M , called a fixed point subalgebra. The relative
commutant M ′ ∩M>⊳B always contains a *-subalgebra isomorphic to Bs

[13]. The action of B is called minimal if Bs = M ′ ∩M>⊳B.
It was shown in [13] that finite index depth 2 subfactors of II1-factors

can be characterized in terms of quantum groupoids. Namely, if N ⊂ M is
such a subfactor ([M : N ] = λ−1) and

N ⊂M ⊂M1 ⊂M2 ⊂ · · ·

is the corresponding Jones tower, M1 = 〈M, e1〉, M2 = 〈M1, e2〉, . . . , where
e1 ∈ N ′ ∩ M1, e2 ∈ M ′ ∩ M2, · · · are the Jones projections. The depth
2 condition means that N ′ ∩M2 is the basic construction of the inclusion
N ′ ∩ M ⊂ N ′ ∩M1. Let τ be the trace on M2 normalized by τ(1) = 1.
There is a canonical non-degenerate duality form between A = N ′∩M1 and
B = M ′ ∩M2 defined by

〈 a, b 〉 = λ−2τ(ae2e1Hb),

for all a ∈ A and b ∈ B, where H is a central element in M ′∩M1 canonically
defined by the property τ(Hz) = Tr (z), where z ∈ M ′ ∩M1 and Tr is the
trace of the regular representation of M ′ ∩M1 on itself (in other words, H
is the index [19] of τ |M ′∩M1

).
Using this duality, one defines the comultiplication, the counit and the

antipode of B as follows :

〈 a1 ⊗ a2, ∆(b) 〉 = 〈 a1a2, b 〉,
ε(b) = 〈 1, b 〉 = λ−1τ(e2Hb),

S(b) = J(HbH−1)∗J,

for all a, a1, a2 ∈ A and b ∈ B, where J is the canonical modular involution
on L2(M1) and b 7→ Jb∗J is a ∗-anti-automorphism of B = M ′ ∩M2. The
above expression for S follows from the explicit formula ([13], 4.5(i)).

With these operations and involution b† = S(H)−1b∗S(H), the ∗-algebra
B becomes a biconnected quantum groupoid and A becomes its dual (see
[13] for the proof).

The counital subalgebras of B are Bs = M ′
1 ∩M2 and Bt = M ′ ∩M1,

moreover H is the canonical element of Bt. The map

⊲ : B ⊗M1 →M1 : b⊗ x 7→ λ−1EM1
(bxe2)
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defines a left action of B on M1, such that M = MB
1 is the fixed point

subalgebra for this action (here EM1
denotes the τ -preserving conditional

expectation on M1) and

θ : M1>⊳B →M2 : [x⊗ b] 7→ xS(H)1/2bS(H)−1/2

is an isomorphism of von Neumann algebras.
It is straightforward to show that the above left action of B on M1

extends to an action b ⊲ ξ of B on L2(M1) := L2(M1, τ) such that

(b ⊲ ξ, η) = (ξ, S(H)b∗S(H)−1 ⊲ η),

where b ∈ B, ξ, η ∈ L2(M1) (recall that the involution in B = M2 ∩M ′ is
different from the one in M2 - see above). This means that L2(M1) equipped
with a scalar product

(ξ, η) ˜L2(M1)
= (S(H) ⊲ ξ, η)L2(M1)

is a unitary left B-module.
One can also introduce a right action of B on L2(M1) by setting ξ ⊳ b =

S−1(b) ⊲ ξ. This makes L2(M1) a (Bt − Bt)- and (Bs −Bs)-bimodule (here
and in what follows, the term bimodule means a unitary bimodule, see, e.g.,
[10]). Since L2(M1) is also an (M1 −M1)-bimodule with respect to left and
right multiplications, the properties of the left action of B on M1 give:

b ⊲ (aξ) = (b(1) ⊲ a)(b(2) ⊲ ξ), b ⊲ (ξa) = (b(1) ⊲ ξ)(b(2) ⊲ a),

J(b ⊲ ξ) = S(b)∗ ⊲ Jξ := Jξ ⊳ b∗, (Jξ, Jη) ˜L2(M1)
= (G ⊲ η, ξ) ˜L2(M1)

,

where a ∈ M1, ξ ∈ L2(M1) and J : a 7→ a∗ is the canonical modular involu-
tion on L2(M1).

3 Coideal ∗-subalgebras

Definition 3.1 A left (resp. right) coideal of a quantum groupoid B is a
linear subspace I ⊂ B such that ∆(I) ⊂ B ⊗ I (resp. ∆(I) ⊂ I ⊗ B ). A
left (resp. right) coideal ∗-subalgebra is a unital C∗-subalgebra I ⊂ B which
is a left (resp. right) coideal.
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Note that the target counital subalgebra Bt (resp. the source counital
subalgebra Bs) is a left (resp. right) coideal ∗-subalgebra of B contained in
every left (resp. right) coideal ∗-subalgebra I ⊂ B. It is easy to check that
a linear subspace I ⊂ B is a left (resp. right) coideal iff it is invariant under
the right (resp. left) dual action of B∗ iff its annihilator I0 = {a ∈ B∗ |
〈 a, b 〉 = 0, ∀b ∈ I} ⊂ B∗ is a left (resp. right) ideal in B∗ iff S(I) is a right
(resp. left) coideal. Note that if I is a left coideal ∗-subalgebra, then u∗Iu is
a left coideal ∗-subalgebra for any unitary u ∈ Bs. In particular, there can
be infinitely many non-equal conjugated coideal ∗-subalgebras.

For any quantum groupoid B, the set ℓ(B) of left coideal ∗-subalgebras
is a lattice under the usual operations:

I1 ∧ I2 = I1 ∩ I2, I1 ∨ I2 = (I1 ∪ I2)′′

for all I1, I2 ∈ ℓ(B). The smallest element of ℓ(B) is Bt and the greatest
element is B.

Proposition 3.2 If I ⊂ B is a left coideal ∗-subalgebra of B, then Ĩ =
G−1/2S(I)G1/2 is a right coideal ∗-subalgebra of B. The map I 7→ Ĩ is an
isomorphism of lattices.

Proof. Clearly, Ĩ is a subalgebra. Let c ∈ Ĩ, c = G−1/2S(b)G1/2 for some
b ∈ I. Then, using the group-like propery of G, we have :

c∗ = G1/2S−1(b∗)G−1/2 = G−1/2S(b∗)G1/2 ∈ Ĩ ,

∆(c) = G−1/2S(b(2))G
1/2 ⊗G−1/2S(b(1))G

1/2 ∈ Ĩ ⊗B,

therefore Ĩ is a ∗-invariant right coideal. It is easy to see that the map I 7→ Ĩ
preserves the lattice structure.

We will show that ℓ(B) is the dual lattice of ℓ(B∗), i.e., ℓ(B) = ℓ̆(B∗).
The following proposition describes an explicit isomorphism between these
lattices.

Proposition 3.3 (cf. ([6], 4.6)) Let T ⊂ B be a selfadjoint subset and I
be the minimal right coideal ∗-subalgebra of B containing T . Then T ′∩B∗ ⊂
B∗>⊳B is a left coideal ∗-subalgebra of B∗ and T ′ ∩B∗ = I ′ ∩B∗.

If we denote this coideal subalgebra by Id, then the map δ : I 7→ Ĩd

defines a lattice anti-isomorphism between ℓ(B) and ℓ(B∗).
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Proof. Obviously, T ′∩B∗ is a ∗-subalgebra of B∗. In order to prove that
it is a left coideal, we need to show that it remains invariant under the right
dual action of B, i.e., that (x ⊳ a) belongs to T ′ for all a ∈ B, x ∈ T ′. The
latter means that [x(1) ⊗ (t ⊳ x(2))] = [x ⊗ t] for all t ∈ T . Applying a ∈ B
to the above identity on the left (i.e., using the right dual action of B on
B∗⊲<B = B∗>⊳B), we get

[(x ⊳ a)(1) ⊗ (t ⊳ (x ⊳ a)(2))] = [(x(1) ⊳ a) ⊗ (t ⊳ x(2))] = [(x ⊳ a) ⊗ t]

therefore, (x ⊳ a) ∈ T ′ ∩ B∗ for all a ∈ B. Note that I is generated, as an
algebra, by elements of the form (y ⊲ t), with t ∈ T and y ∈ B∗. We need
to show that I ′ ∩ B∗ ⊂ T ′ ∩ B∗, i.e., that any x from T ′ ∩ B∗ commutes
with (y ⊲ t). The latter follows from considering the left dual action of B∗

on B∗>⊳B :

[(y ⊲ t)(1) ⊲ x⊗ (y ⊲ t)(2)] = [(t(1) ⊲ x) ⊗ (y ⊲ t(2))] = [x⊗ (y ⊲ t)].

The opposite inclusion is obvious.
Since I ′1 ∩ I ′2 = (I1 ∨ I2)

′ for all I1, I2 ∈ ℓ(B), the map δ : I 7→ Ĩd is
a homomorphism of lattices. Its inverse is given by the composition of the
maps δ(I) 7→ δ(I)′ ∩B ⊂ B∗⊲<B and I 7→ Ĩ, since we have

δ(I)′ ∩B = (Ĩ ′ ∩B∗)′ ∩B = (Ĩ ∨ (B∗)′) ∩B = Ĩ ∨ ((B∗)′ ∩B) = Ĩ ,

for all I ∈ ℓ(B). Therefore, δ is an isomorphism.

Definition 3.4 A left coideal ∗-subalgebra I ⊂ B is said to be connected if
Z(I) ∩Bs = C.

To justify this definition, note that if I = B, then this is precisely the defi-
nition of B being connected, and if I = Bt, then this definition is equivalent
to B∗ being connected ([11], 3.10, 3.11).

Let I ⊂ B be a connected left coideal ∗-subalgebra of B, then there is a
uniquely determined positive element xI ∈ I such that ε(b) = τ(xIb), for all
b ∈ I.

Proposition 3.5 For any system {fα
rs} of matrix units in I = ΣαMnα(C)

the value of the comultiplication on xI is

∆(xI) =
∑

αrs

1

τ(fα
ss)

GS−1(fα
sr) ⊗ fα

rs =
∑

αrs

1

τ(fα
ss)

S(fα
sr)G⊗ fα

rs.

We also have S(xI) = xIG
−1.
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Proof. From Corollary 2.2 we get

b = b(1)ε(b(2)) = b(1)τ(xIb(2))

= S(H−1xI (1))τ(HxI (2)b).

If we write ∆(xI) = Σαrs g
α
sr ⊗ fα

sr with gα
sr ∈ B, then applying the above

identity to b = fβ
klH

−1 on has fβ
klH

−1 = τ(fβ
ll )S(H−1gβ

lk), therefore gβ
lk =

1

τ(fβ

ll
)
GS−1(fβ

kl). Comparing ∆(S(xI)) and ∆(xI), we get the last identity.

Definition 3.6 Let eI ∈ I be the support of the restriction of ε on I, i.e.,
eI = e, where e is the minimal projection having property ε(ebe) = ε(b) for
all b ∈ I (note that ε is faithful on eIIeI). We will call eI a distinguished
projection of I.

Note that xIeI = eIxI = xI and eI is the minimal projection with this
property, i.e., eI is the support of xI . Also, it is easy to see that I1 ⊂ I2
implies eI2 ≤ eI1.

Proposition 3.7 Let I ⊂ B be a left coideal ∗-subalgebra. Then the distin-
guished projection eI satisfies the following Haar property :

beI = εt(b)eI , for all b ∈ I.

Proof. Since ε(xy) = ε(xεt(y)) for all x, y ∈ B, we get

ε((εt(b) − b)∗(εt(b) − b)) = 0, ∀ b ∈ B,

which implies ε(eI(εt(b) − b)∗(εt(b) − b)eI)) = 0, ∀ b ∈ I.
Therefore, (εt(b) − b)eI = 0, since ε|I(eI · eI) is faithful on eIIeI .

Remark 3.8 (i) For right coideal ∗-subalgebras one can prove a similar
identity eIb = eIεs(b).

(ii) For I = B Proposition 3.7 is the Haar theorem for quantum groupoids
([12], 2.2.5), ([3], 4.5), eB is the Haar projection, and xB is a scalar
multiple of eB (since eB is minimal in B ([3], 4.6)).

(iii) For I = Bt one has xBt = H and eBt = 1.

Corollary 3.9 The map EI(y) = y(1)τ(xIy(2)), y ∈ B is the τ -preserving
conditional expectation from B to I.
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Proof. Using the relation from Proposition 2.2, the formula of Proposi-
tion 3.5, and that S(G) = G−1 we get

τ(bEI(y)) = τ(y(1)b)τ(xIy(2))

= τ(yb(1))τ(xIG
−1S(b(2)))

= τ(yb(1))τ(xIb(2)) = τ(yb(1))ε(b(2)) = τ(yb),

therefore EI is the τ -preserving conditional expectation from B to I.

Remark 3.10 From the explicit form of the isomorphism θ : M1>⊳B →M2

one can see that the map [x ⊗ b] 7→ [x ⊗ EM1
(S(H)1/2bS(H)−1/2)] from

M1>⊳B onto M1 is the image of EM1
: M2 → M1 under θ−1, and thus it

is a trace preserving projection in M1>⊳B onto M1. Note that the map
EM1

: B → Bt is uniquely defined by the relation τ(zb) = τ(zEM1
(b)) (∀z ∈

Bt, b ∈ B), and the same relation determines the τ -preserving conditional
expectation EBt from Corollary 3.9. So, these two maps coincide, and the
formula for EBt(x) = x(1)⊗τ(Hx(2)) shows that EM1

(S(H)1/2bS(H)−1/2) =
EM1

(b).
As a result, the above inverse image of EM1

: M2 → M1 is the map
[x⊗ b] 7→ [x⊗ EBt(b)]. Together with Corollary 3.9 this gives the following
expression for τM1>⊳B :

τM1>⊳B([x⊗ b]) = τM1
(x(EBt(b) ⊲ 1)) = τM1

(x(b(1) ⊲ 1))τ(Hb(2))

= τM1
(x(S(H1(1))G ⊲ 1))τ(1(2)b) = τM1

(x(H ⊲ 1)τ(b)

= τM1
(S(H) ⊲ x)τ(b) = τM1

(x)τ(Hb),

where x ∈M1, b ∈ B. Since τM1
(H ⊲ 1) = τ(H) = 1, we have

τM1>⊳B([x⊗ 1]) = τM1
(x) and τM1>⊳B([1 ⊗ b]) = τ(b).

Then one can write down the GNS inner product on M1>⊳B as

([x⊗ b], [y ⊗ c])M1>⊳B = (x, y) ˜L2(M1)
(b, c)B ,

where (·, ·)B is the GNS-scalar product on B with respect to the Markov
trace.

4 A Galois Correspondence

Let N ⊂ M be a finite depth inclusion of II1 factors with finite index
λ−1 = [M : N ] and

N ⊂M ⊂M1 ⊂M2 ⊂ · · ·
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be the corresponding Jones tower, Mi = 〈Mi−1, ei 〉, where ei ∈ M ′
i−2 ∩

Mi, i = 1, 2, . . . are Jones projections (we denote M−1 = N and M0 = M).
Let n be the depth ([5], 4.6.4) of N ⊂M , i.e.,

n = min{k ∈ Z
+ | dimZ(N ′ ∩Mk−2) = dimZ(N ′ ∩Mk)}.

The case n = 2 is completely understood in [13], where it was shown that
the symmetries of depth 2 subfactors are described by quantum groupoids
(see Preliminaries). For the case of general depth n ≥ 2 we have the following
result.

Proposition 4.1 For all k ≥ 0 the inclusion N ⊂ Mk has depth d + 1,
where d is the smallest positive integer ≥ n−1

k+1 . In particular, N ⊂ Mi has
depth 2 for all i ≥ n− 2.

Proof. Note that dimZ(N ′ ∩Mi) = dimZ(N ′ ∩Mi+2) for all i ≥ n− 2.
By [16], the tower of basic construction for N ⊂Mk is

N ⊂Mk ⊂M2k+1 ⊂M3k+2 ⊂ · · · ,

therefore, the depth of this inclusion is equal to d+1, where d is the smallest
positive integer such that d(k + 1) − 1 ≥ n− 2.

Corollary 4.2 Any finite depth subfactor N ⊂ M is an intermediate sub-
factor of some depth 2 inclusion.

Proof. Consider N ⊂M ⊂Mk, k ≥ n− 2.

The last result means that N ⊂ M can be realized as an intermediate
subfactor of a crossed product inclusion N ⊂ N>⊳B for some quantum
groupoid B :

N ⊂M ⊂ N>⊳B.

Recall that in the case of a usual C∗-Hopf algebra (i.e., Kac algebra) action
there is a Galois correspondence between intermediate von Neumann subal-
gebras of N ⊂ N>⊳B and left coideal ∗-subalgebras of B [6],[4]. Thus, it is
natural to ask about a quantum groupoid analogue of this correspondence.

Clearly, the set ℓ(M1 ⊂ M2) of intermediate von Neumann subalgebras
of M1 ⊂M2 forms a lattice under the operations

K1 ∧K2 = K1 ∩K2, K1 ∨K2 = (K1 ∪K2)
′′
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for all K1,K2 ∈ ℓ(M1 ⊂M2). The smallest element of this lattice is M1 and
the greatest element is M2.

Given a left (resp. right) action of B on a von Neumann algebra N , we
will denote (by an abuse of notation)

N>⊳I = span{[x⊗ b] | x ∈ N, b ∈ I} ⊂ N>⊳B.

The next theorem establishes a Galois correspondence between inter-
mediate von Neumann subalgebras of depth 2 inclusions of II1 factors and
coideal ∗-subalgebras of a quantum groupoid, i.e., a lattice isomorphism
between ℓ(M1 ⊂M2) and ℓ(B).

Theorem 4.3 Let N ⊂M ⊂M1 ⊂M2 ⊂ · · · be the tower constructed from
a depth 2 subfactor N ⊂ M , B = M ′ ∩M2 be the corresponding quantum
groupoid, and θ be the isomorphism between M1>⊳B and M2 ([13], 6.3).
Then the following formulas

φ : ℓ(M1 ⊂M2) → ℓ(B) : K 7→ θ−1(M ′ ∩K) ⊂ B

ψ : ℓ(B) → ℓ(M1 ⊂M2) : I 7→ θ(M1>⊳I) ⊂M2.

define isomorphisms between ℓ(M1 ⊂M2) and ℓ(B) inverse to each other.

Proof. First, we need to check that φ and ψ are indeed maps between the
specified lattices. It follows immediately from the definition of the crossed
product that M1>⊳I is a von Neumann subalgebra of M1>⊳B, therefore
θ(M1>⊳I) is a von Neumann subalgebra of M2 = θ(M1>⊳B), so ψ is a map
to ℓ(M1 ⊂ M2). To show that φ maps to ℓ(B), it is enough to show that
the annihilator (M ′ ∩K)0 ⊂ B∗ of M ′ ∩K ⊂ B is a left ideal in B∗.

For all x ∈ A, y ∈ (M ′ ∩K)0, and b ∈M ′ ∩K we have

〈xy, b 〉 = λ−2τ(xye2e1Hb) = λ−2τ(ye2e1Hbx)

= λ−3τ(ye2e1EM ′(e1Hbx)) = 〈 y, λ−1EM ′(e1Hbx) 〉,

and it remains to show that EM ′(e1Hbx) ∈ M ′ ∩ K. By ([5], 4.2.7), the
square

K ⊂ M2

∪ ∪
M ′ ∩K ⊂ M ′ ∩M2

is commuting, therefore, EM ′(K) ⊂ M ′ ∩ K. Since e1Hbx ∈ K, we have
xy ∈ (M ′ ∩K)0, i.e., (M ′ ∩K)0 is a left ideal and φ(K) = θ−1(M ′ ∩K) is
a left coideal ∗-subalgebra.
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Clearly, φ and ψ preserve ∧ and ∨, moreover φ(M1) = Bt, φ(M2) = B
and ψ(Bt) = M1, ψ(B) = M2, therefore they are morphisms of lattices.

To see that they are inverses for each other, we first observe that the
condition ψ ◦ φ = id is equivalent to M1(M

′ ∩ K) = K, and the latter
follows from applying the conditional expectation EK to M1(M

′ ∩M2) =
M1B = M2. The condition φ◦ψ = id translates into θ(I) = M ′∩θ(M1>⊳I).
If b ∈ I, x ∈M = MB

1 , then

θ(b)x = θ([1 ⊗ b][x⊗ 1]) = θ([(b(1) ⊲ x) ⊗ b(2)])

= θ([x(1(2) ⊲ 1) ⊗ ε(1(1)b(1))b(2)]) = θ([x⊗ b]) = xθ(b),

i.e., θ(I) commutes with M . Conversely, if x ∈ M ′ ∩ θ(M1>⊳I) ⊂ B, then
x = θ(y) for some y ∈ (M1>⊳I) ∩B = I, therefore x ∈ θ(I).

The following proposition describes the center of K = M1>⊳I and the
first relative commutant in terms of I.

Proposition 4.4 In the above situation,

(i) Z(K) = Z(M1>⊳I) = Z(I) ∩Bs,

(ii) M ′
1 ∩K = M ′

1 ∩M1>⊳I = I ∩Bs.

Proof. Recall that Bs = M ′
1 ∩ M2. If x ∈ Z(I) ∩ Bs ⊂ K, then x

commutes with both I and M1 and, therefore, with K = M1>⊳I, i.e., x ∈
Z(K). Conversely, if x ∈ Z(K) then x ∈ K ′ ∩ K ⊂ M ′

1 ∩M2 = Bs and
x ∈ M ′ ∩ K, so x ∈ Z(M ′ ∩ K) = Z(I) and (i) follows. To prove (ii),
note that since Bs = M ′

1 ∩ M2 ⊂ M ′
1 and I = M ′ ∩ K ⊂ K, we have

M ′
1 ∩K ⊂ (M ′

1 ∩M2) ∩ (M ′ ∩K) = Bs ∩ I ⊂M ′
1 ∩K.

Corollary 4.5 (i) K = M>⊳I is a factor iff Z(I) ∩Bs = C.

(ii) The inclusion M1 ⊂ K = M1>⊳I is irreducible iff Bs ∩ I = C.

Corollary 4.6 There is no subfactor N ⊂ M of depth n and index k
√
p,

where p is prime and k ≥ n − 1 (unless n = 2 and k = 1, in which case
M ∼= N>⊳Z/pZ).

Proof. Suppose that such a subfactorN ⊂M exists, then [Mk−1 : N ] = p
and depth(N ⊂ Mk−1) = 2 by Proposition 4.1. Therefore, (N ⊂ Mk−1) ∼=
(N ⊂ N>⊳Z/pZ) (see [13], Corollary 4.19) and Theorem 4.3 implies the

15



existence of a subgroup of Z/pZ corresponding to the intermediate subfactor
N ⊂ M . But Z/pZ does not have any non-trivial subgroups, therefore
M = Mk−1, i.e., k = 1 and n = 2.

Note that intermediate von Neumann subalgebras of M ⊂ M1 can be
characterized in terms of projections in M ′ ∩M2 having certain properties
[1]. Namely, every projection q ∈M ′ ∩M2 such that

(IS 1) qe2 = e2,

(IS 2) EM1
(q) is a scalar,

(IS 3) λ−1EM1
(qe1e2) is a multiple of a projection,

implements a conditional expectation from M1 to an intermediate subalge-
bra Q = {q}′ ∩M1. If Q is a factor, then [M1 : Q] = τ(q)−1 ([1], Theorem
3.2). This result is true for all finite index subfactors (regardless of depth).
The goal of next two propositions is to relate such projections and coideal
∗-subalgebras in the case of finite depth inclusions (which are intermediate
subfactors of depth 2 inclusions by Corollary 4.2).

Proposition 4.7 If I ⊂ B is a connected left coideal ∗-subalgebra, then
there is a constant λI > 0 such that pI = λ−1

I H−1/2xIH
−1/2 is a projection

in I.

Proof. From the formula for ∆(xI) (Proposition 3.5) we get

εs(H
−1xI) = m(S ⊗ id)∆(H−1xI) =

∑

αrs

1

τ(fα
ss)

fα
srH

−1fα
rs ∈ Z(I) ∩Bs.

Since I is connected, we conclude that εs(H
−1xI) = λI1 for some constant

λI . Using this result and Proposition 3.5 one can check by a direct computa-
tion that ∆(H−1xI)

2 = λI∆(H−1xI), from where it follows that λ−1
I H−1xI

is an idempotent and pI = λ−1
I H−1/2xIH

−1/2 is a projection.

Proposition 4.8 Let N ⊂ M be a depth 2 inclusion, B be the quantum
groupoid constructed on M ′∩M2, and θ : M1>⊳B →M2 be the isomorphism
of II1 factors (see Preliminaries). Then for any connected left coideal ∗-
subalgebra I ⊂ B the projection qI = θ(pI) satisfies properties (IS 1)–(IS
3).
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Proof. The relation εt(xIH
−1) = λI1 follows easily from definitions,

from where
εt(H

1/2pIH
−1/2) = λIεt(xIH

−1) = 1,

hence H1/2pIH
−1/2eB = eB . Applying θ to the last equality, and observing

that e2 = θ(H−1/2eBH
−1/2), we get θ(pI)e2 = e2 which is (IS 1).

To establish the second property, note that EM1
(θ(pI)) = θ(EM1

(pI)) =
θ(EBt(pI)), so it is enough to show that EBt(pI) is a scalar. Using Proposi-
tion 3.9 (xBt = H) and Corollary 2.2 we have :

EBt(pI) = pI (1)τ(HpI (2)) = λ−1
I S(1(1))τ(1(2)xI) = λ−1

I 1.

For the third property we must verify that zI = EM1
(qIe1e2) is a multiple

of a projection. Using the duality between B∗ = N ′∩M1 and B = M ′ ∩M2

and the formula for EI from Proposition 3.9 we have, for all b ∈ B :

〈 zI , b 〉 = λ−3τ(EM1
(qIe1e2)e2e1Hb)

= τ(qIHb) = λ−1
I τ(xIG

1/2bG−1/2),

= λ−1
I τ(xIEI(G

1/2bG−1/2))

= λ−1
I τ(xI(G

1/2bG−1/2)(1))τ(xI(G
1/2bG−1/2)(2))

= λI〈 zI , b(1) 〉〈 zI , b(2) 〉 = λI〈 z2
I , b 〉,

which implies that z2
I = λ−1

I zI . Finally, in order to show that zI is selfad-
joint, we first compute S(qI), using properties of the antipode and Proposi-
tion 3.5 :

S(qI) = λ−1
I S(S(H)1/2H−1/2xIH

−1/2S(H)−1/2)

= λ−1
I S(H)−1/2H−1/2xIH

−1/2S(H)1/2 = S(H)−1qIS(H),

from where, using the definition of S we have

z∗I = EM1
(qIe1e2)

∗ = EM1
(e2e1S(H−1qIH))∗

= EM1
(e2e1qI)

∗ = EM1
(qIe1e2) = zI .

Remark 4.9 Let QI = {qI}′ ∩M1. Then [M1 : QI ] = τ(qI) = λ−1
I (cf. [1]).
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Proposition 4.10 If I is a left coideal ∗-subalgebra of B and δ(I) is a left
coideal subalgebra of B∗ constructed in Proposition 3.3, then the triple

δ(I) ⊂ B∗ ⊂ B∗>⊳I

is a basic construction.

Proof. It follows from Proposition 4.8 that qI implements the conditional
expectation from N ′ ∩ M1 = B∗ to {qI}′ ∩ (N ′ ∩ M1) = {qI}′ ∩ B∗ =
{pI}′∩B∗ = Ĩ ′∩B∗ = δ(I) (observe that Ĩ is the right coideal ∗-subalgebra of
B∗ generated by pI , cf. Propositions 3.2 and 4.7). Since B∗ and pI generate
B∗>⊳I we conclude that δ(I) ⊂ B∗ ⊂ B∗>⊳I is a basic construction.

5 Bimodule categories and principal graphs

In this section we establish an equivalence between the tensor category of
N −N bimodules of a finite index and finite depth subfactorN ⊂M and the
co-representation category of a quantum groupoid B canonically associated
with it as in Theorem 4.3. The principal graph of N ⊂M can be described
in terms of relative Hopf modules over B. Alternatively, we show that it
can also be obtained as a certain Bratteli diagram.

Our methods follow those of [8], where the special case of the invariants
associated with the group-subgroup subfactors was considered.

A left (resp., right) B-comodule V (with the structure map denoted by
v 7→ v(1) ⊗ v(2), v ∈ V ) is said to be unitary, if

(v
(1)
2 )∗(v1, v

(2)
2 ) = S(v

(1)
1 )G(v

(2)
1 , v2)

(resp., (v
(2)
1 )(v

(1)
1 , v2) = G−1S((v

(1)
1 )∗)(v1, v

(1)
2 )),

where v1, v2 ∈ V, and G is the canonical group-like element of B. The notion
of a unitary comodule in the Hopf ∗-algebra case can be found, e.g., in ([7],
1.3.2).

Given left coideal ∗-subalgebras H and K of B, we consider a category
CH−K of left relative (B,H −K) Hopf bimodules (cf. [17]), whose objects
are Hilbert spaces which are both H − K-bimodules and left unitary B-
comodules such that the bimodule action commutes with the coaction of B,
i.e., for any object V of CH−K and v ∈ V one has

(h ⊲ v ⊳ k)(1) ⊗ (h ⊲ v ⊳ k)(2) = h(1)v
(1)k(1) ⊗ (h(2) ⊲ v

(2) ⊳ k(2)),
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where v 7→ v(1) ⊗ v(2) denotes the coaction of B on v, h ∈ H, k ∈ K, and
morphisms are intertwining maps.

Similarly one can define a category of right relative (B,H − K) Hopf
bimodules.

Remark 5.1 Note that any left B-comodule V is automatically a Bt −Bt-
bimodule via z1 ·v ·z2 = ε(z1v

(1)z2)v
(2), v ∈ V, z1, z2 ∈ Bt. For any object of

CH−K , this Bt −Bt-bimodule structure is a restriction of the given H −K-
bimodule structure; it is easily seen by applying (ε ⊗ id) to both sides of
the relation of commutation between the H − K-bimodule action and the
coaction of B, and taking h, k ∈ Bt. Therefore, in the case when H = Bt

(resp. K = Bt) we can speak about right (resp. left) relative Hopf modules,
which are a special case of weak Doi-Hopf modules [2].

Let us also mention obvious relations εs(v
(1)) ⊗ v(2) = 1(1) ⊗ (v ⊳ 1(2))

and εt(v
(1)) ⊲ v(2) = v.

Proposition 5.2 If B is a group Hopf C∗-algebra and H,K are subgroups,
then there is a bijection between simple objects of CH−K and double cosets
of H\B/K.

Proof. If V is an object of CH−K , then every simple subcomodule of V is
1-dimensional. Let U = Cu (u 7→ g ⊗ u, g ∈ B) be one of these comodules,
then all other simple subcomodules of V are of the form h ⊲ U ⊳ k, where
h ∈ H, k ∈ K, and

V = ⊕h,k (h ⊲ U ⊳ k) = span{HgK}.

Vice versa, span{HgK} with natural H − K bimodule and B-comodule
structures is a simple object of CH−K .

Example 5.3 IfH,V,K are left coideal ∗-subalgebras of B, H ⊂ V,K ⊂ V ,
then V is an object of CH−K with the structure maps given by h⊲v⊳k = hvk
and ∆, where v(1) ⊗ v(2) = ∆(v), v ∈ V, h ∈ H, k ∈ K. The scalar product
is defined by the restriction on V of the Markov trace of B (this B-comodule
is unitary due to Corollary 2.2).

Similarly, right coideal ∗-subalgebras of B give examples of right relative
(B,H −K) Hopf bimodules.
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Given an object V of CH−K , the conjugate Hilbert space V is an object
of CK−H with the bimodule action

k ⊲ v ⊳ h = h∗ ⊲ v ⊳ k∗ (∀h ∈ H, k ∈ K)

(here v denotes the vector v ∈ V considered as an element of V ) and the
coaction v 7→ v(1) ⊗ v(2) = (v(1))∗ ⊗ v(2). The relation of commutation
between the actions and the coaction and the unitarity of V are straightfor-
ward.

Define V ∗, the dual object of V , to be V with the above structures. One
can directly check that V ∗∗ ∼= V for any object V . Let us remark, that
in Example 5.3 the dual object can be obtained by putting v = v∗ for all
v ∈ V .

Definition 5.4 Let L be another coideal ∗-subalgebra of B. For any objects
V ∈ CH−L and W ∈ CL−K , we define an object V ⊗L W from CH−K as
a tensor product of bimodules V and W [10] equipped with a comodule
structure

(v ⊗L w)(1) ⊗ (v ⊗L w)(2) := v(1)w(1) ⊗ (v(2) ⊗L w
(2)).

Let us verify that we have indeed an object from CH−K . First, the
above coproduct is clearly coassociative and compatible with counit (see
the properties of ε and Remark 5.1):

ε(v(1)w(1))(v(2) ⊗L w
(2)) = ε(v(1)1(1))v

(2) ⊗L ε(1(2)w
(1))w(2)

= (v ⊳ S(1(1))) ⊗L (1(2) ⊲ w) = v ⊗L w.

Second, the commutation relation between the H − K-bimodule and B-
comodule structures can be proved as follows:

(h ⊲ (v ⊗L w) ⊳ k)(1) ⊗ (h ⊲ (v ⊗L w) ⊳ k)(2) =

= ((h ⊲ v) ⊗L (w ⊳ k))(1) ⊗ ((h ⊲ v) ⊗L (w ⊳ k))(2)

= (h ⊲ v)(1)(w ⊳ k)(1) ⊗ (h ⊲ v)(2) ⊗L (w ⊳ k)(2)

= h(1)v
(1)w(1)k(1) ⊗ (h(2) ⊲ v

(2)) ⊗L (w(2) ⊳ k(2))

= h(1)(v ⊗L w)(1)k(1) ⊗ (h(2) ⊲ (v ⊗L w)(2) ⊳ k(2)).

Finally, let us show that V ⊗LW is unitary. To this end, recall the following
expression of the scalar product in this bimodule [10]:

(v1 ⊗L w1, v2 ⊗L w2)V ⊗LW = (v1 ⊳ 〈w1, w2 〉L, v2)V =

= (〈 v1, v2 〉L ⊲ w1, w2)W = τ(〈 v1, v2 〉L〈w1, w2 〉L),
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where v1, v2 ∈ V,w1, w2 ∈W and the elements 〈 v1, v2 〉L, 〈w1, w2 〉L ∈ L ( L-
valued scalar products on V and W respectively) are defined in a unique
way by the relations

(v1 ⊳ l, v2)V = τ(l〈 v1, v2 〉L), (l ⊲ w1, w2)W = τ(l〈w1, w2 〉L) (∀l ∈ L).

Then the needed relation follows from

((v2 ⊗L w2)
(1))∗(v1 ⊗L w1, (v2 ⊗L w2)

(2))V ⊗LW =

= (w
(1)
2 )∗(v

(1)
2 )∗(v1 ⊗L w1, v

(2)
2 ⊗L w

(2)
2 )V ⊗LW

= (w
(1)
2 )∗(v

(1)
2 )∗(v1 ⊳ 〈w1, w

(2)
2 〉L, v(2)

2 )V

= (w
(1)
2 )∗S(〈w1, w

(2)
2 〉(1)L )S(v

(1)
1 )G(v

(2)
1 ⊳ 〈w1, w

(2)
2 〉(2)L , v2)V

= (w
(1)
2 )∗S(〈w1, w

(2)
2 〉(1)L )τ(〈w1, w

(2)
2 〉(2)L 〈 v(2)

1 , v2 〉L)S(v
(1)
1 )G

= (w
(1)
2 )∗(〈 v(2)

1 , v2 〉(1)L )∗G−1τ(〈w1, w
(2)
2 〉L〈 v(2)

1 , v2 〉(2)L )S(v
(1)
1 )G

= (w
(1)
2 )∗(〈 v(2)

1 , v2 〉(1)L )∗G−1(〈 v(2)
1 , v2 〉L ⊲ w1, w2)

(2)
W S(v

(1)
1 )G

= S(w
(1)
1 )(〈 v(2)

1 , v2 〉L ⊲ w(2)
1 , w2)WS(v

(1)
1 )G

= S(w
(1)
1 )S(v

(1)
1 )G(v

(2)
1 ⊗L w

(2)
1 , v2 ⊗L w2)V ⊗LW

= S((v1 ⊗L w1)
(1))G((v1 ⊗L w1)

(2), v2 ⊗L w2)V ⊗LW ,

where we used the unitarity of V and W and Corollary 2.2.

Lemma 5.5 (cf. [8]) The operation of tensor product is
(i) associative, i.e., V ⊗L (W ⊗P U) ∼= (V ⊗L W ) ⊗P U ,
(ii) compatible with duality, i.e., (V ⊗L W )∗ ∼= W ∗ ⊗L V

∗,
(iii) distributive, i.e., (V ⊕ V ′) ⊗L W = (V ⊗L W ) ⊕ (V ′ ⊗L W ).

Proof. Easy excercise left to the reader.

The tensor product of morphisms T ∈ Hom(V, V ′) and S ∈ Hom(W,W ′)
is defined as usual :

(T ⊗L S)(v ⊗L w) = T (v) ⊗L S(w).

From now on let us suppose that B is biconnected and acts outerly on the
left on a II1 factor N and that the extension of this action on L2(N) satisfies
the relations mentioned in the end of Preliminaries.

Given an object V of CH−K , we construct an N>⊳H −N>⊳K-bimodule
V̂ as follows. We put

V̂ = span{∆(1) ⊲ (ξ ⊗ v) | ξ ⊗ v ∈ L2(N) ⊗ V }
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and denote [ξ ⊗ v] = ∆(1) ⊲ (ξ ⊗ v). It is straightforward to show that V̂ is
characterized by the property [ξ⊗(z⊲v)] = [(ξ⊳z)⊗v] = [ξ(z⊲1)⊗v] ∀z ∈ Bt,
i.e., that V̂ = L2(N) ⊗Bt V.

Let us consider V̂ as a Hilbert space with the scalar product

([ξ ⊗ v], [η ⊗ w])
V̂

= (ξ, η) ˜L2(N)
(v,w)V .

and define the actions of N,H,K on V̂ by

a[ξ ⊗ v] = [aξ ⊗ v], [ξ ⊗ v]a = [ξ(v(1) ⊲ a) ⊗ v(2)],

h[ξ ⊗ v] = [(h(1) ⊲ ξ) ⊗ (h(2) ⊲ v)], [ξ ⊗ v]k = [ξ ⊗ (v ⊳ k)],

for all a ∈ N, h ∈ H, k ∈ K. One can check that these actions are well-
defined and that

ha[ξ ⊗ v] = (h(1) ⊲ a)h(2)[ξ ⊗ v], [ξ ⊗ v]ka = [ξ ⊗ v](k(1) ⊲ a)k(2),

(ha[ξ ⊗ v])ka′ = ha([ξ ⊗ v]ka′), a′ ∈ N,

i.e., that the above formulas define the structure of an (N>⊳H) − (N>⊳K)
bimodule on V̂ in the algebraic sense. Let us show that this bimodule is
unitary. We only need to check that

([ξ ⊗ v]a, [η ⊗ w])
V̂

= ([ξ ⊗ v], [η ⊗ w]a∗)
V̂

(all other relations of unitarity are trivial). The following computation uses
the above definitions, the properties of the action of B on L2(N) and the
unitarity of V :

([ξ ⊗ v]a, [η ⊗ v])
V̂

= ([ξ(v(1) ⊲ a) ⊗ v(2)], [η ⊗ v])
V̂

= (ξ(v(1) ⊲ a), η) ˜L2(N)
(v(2), w)V

= (ξ(S(H)v(1) ⊲ a)), η)L2(N)(v
(2), w)V

= (ξ, η(HS−1((v(1))∗) ⊲ a∗))L2(N)(v
(2), w)V

= (ξ, η(GS−1((v(1))∗) ⊲ a∗)) ˜L2(N)
(v(2), w)V

= (ξ, η(w(1) ⊲ a∗)) ˜L2(N)
(v,w(2))V

= ([ξ ⊗ v], [η ⊗ w]a∗)
V̂
.

For any morphism T ∈ Hom(V,W ), define a morphism T̂ ∈ Hom(V̂ , Ŵ ) by

T̂ ([ξ ⊗ v]) = [ξ ⊗ T (v)].
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Example 5.6 For V ∈ CH−K from Example 5.3, we have V̂ = N>⊳V as
N>⊳H −N>⊳K-bimodules. Indeed, the algebraic operations and the scalar
products are the same (see the definitions above and Remark 3.10).

Theorem 5.7 The above assignments V 7→ V̂ and T 7→ T̂ define a functor
from CH−K to the category of N>⊳H −N>⊳K bimodules. This functor pre-
serves direct sums and is compatible with operations of taking tensor products
and adjoints in the sense that if W is an object of CK−L, then

̂V ⊗K W ∼= V̂ ⊗N>⊳K Ŵ , and V̂ ∗ ∼= (V̂ )∗.

Proof. 1. Directly from definitions we have ̂V ⊕W = V̂ ⊕ Ŵ for any
objects V and W of CH−L.
2. In order to show that ̂V ⊗L W ∼= V̂ ⊗N>⊳L Ŵ , let us define a map

α : ̂V ⊗L W → V̂ ⊗N>⊳L Ŵ : [ξ ⊗ (v ⊗L w)] 7→ [ξ ⊗ v] ⊗N>⊳L [1 ⊗ w],

for all ξ ∈ L2(M), v ∈ V, w ∈W .
(a) α is well-defined, since, for all ξ ∈ L2(N), z ∈ Bt, v ∈ V,w ∈W
α([(ξ · z) ⊗ (v ⊗L w)]) = [ξ ⊗ ε(zv(1))v(2)] ⊗N>⊳L [1 ⊗ w]

= [ξ ⊗ ε(zv(1)1(1))(v
(2) · 1(2))] ⊗N>⊳L [1 ⊗ w]

= [ξ ⊗ ε(zv(1)1(1))v
(2)] ⊗N>⊳L [(1(2) · 1) ⊗ w]

= [ξ ⊗ ε(zv(1)1(1))v
(2)] ⊗N>⊳L [1 ⊗ ε(1(2)w

(1))w(2)]

= [ξ ⊗ ε(zv(1)w(1))v(2)] ⊗N>⊳L [1 ⊗ w(2)]

= α([ξ ⊗ ε(zv(1)w(1))(v(2) ⊗L w
(2))])

= α([ξ ⊗ z · (v ⊗L w)]).

(b) α preserves the bimodule structure. Indeed, for all h ∈ H, k ∈ K,a, a′ ∈
N we have :

α(ah[ξ ⊗ (v ⊗L w)]) = α([a(h(1) ⊲ ξ) ⊗ ((h(2) ⊲ v) ⊗L w)])

= [a(h(1) ⊲ ξ) ⊗ (h(2) ⊲ v)] ⊗N>⊳L [1 ⊗ w]

= ah[ξ ⊗ v] ⊗N>⊳L [1 ⊗ w]

= ahα([ξ ⊗ (v ⊗L w)]),

α([ξ ⊗ (v ⊗L w)]a′k) = α([ξ(v(1)w(1) · a′) ⊗ (v(2) ⊗L (w(2) ⊳ k))])

= [ξ(v(1)w(1) · a′) ⊗ v(2)] ⊗N>⊳L [1 ⊗ (w(2) ⊳ k)]

= [ξ ⊗ v] ⊗N>⊳L [(w(1) · a′) ⊗ (w(2) ⊳ k)]

= [ξ ⊗ v] ⊗N>⊳L ([1 ⊗ w]a′k)

= α([ξ ⊗ (v ⊗L w)])a′k.
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(c) Observe that the map

β : V̂ ⊗N>⊳L Ŵ → ̂V ⊗L W : [ξ⊗v]⊗N>⊳L [η⊗w] 7→ [ξ(v(1) ·η)⊗ (v(2) ⊗Lw)],

where ξ, η ∈ L2(N), v ∈ V,w ∈W , is the inverse of α.
(d) α is an isometry of Hilbert spaces. Indeed, by the above definitions,

||[ξ ⊗ (v ⊗L w)]||2 ̂V ⊗LW
= (S(H) ⊲ ξ, ξ)L2(N)(v ⊳ 〈w,w 〉L, v)V ,

where the L-valued scalar product 〈w,w 〉L on W is defined in a unique way
by the relation (l ⊲ w,w)W = τ(l〈w,w 〉L) (∀l ∈ L).

On the other hand, the definition of the tensor product of bimodules
(see, for example, [10]) gives:

||[ξ⊗ v]⊗N>⊳L [1⊗w]||2
V̂ ⊗N>⊳LŴ

= ([ξ⊗ v] ⊳ 〈 [1⊗w], [1⊗w] 〉N>⊳L, [ξ⊗ v])V̂ ,

where the element 〈 [1 ⊗ w], [1 ⊗ w] 〉N>⊳L is defined in a unique way by

([n⊗ l] ⊲ [1 ⊗ w], [1 ⊗ w])Ŵ = τN>⊳L([n ⊗ l]〈 [1 ⊗ w], [1 ⊗ w] 〉N>⊳L).

Since the left-hand side of this equality can be rewritten as:

([n(l(1) ⊲ 1) ⊗ (l(2) ⊲ w)], [1 ⊗ w])Ŵ =

= ([n⊗ (εt(l(1))l(2)) ⊲ w)], [1 ⊗w])Ŵ τN (S(H) ⊲ n)(l ⊲ w,w)W ,

we can see that 〈 [1 ⊗ w], [1 ⊗ w] 〉N>⊳L = [1 ⊗ 〈w,w 〉L]. Together with the
formula for the scalar product on V̂ this gives

||[ξ ⊗ (v ⊗L w)]||2 ̂V ⊗LW
= ||[ξ ⊗ v] ⊗N>⊳L [1 ⊗ w]||2

V̂ ⊗N>⊳LŴ
.

3. In order to show that V̂ ∗ ∼= (V̂ )∗, let us define a map

γ : V̂ ∗ → (V̂ )∗ : [ξ ⊗ v] 7→ [(v(1) ⊲ Jξ) ⊗ v(2)].

(a) γ is well-defined, since, for all ξ ∈ L2(N), z ∈ Bt, v ∈ V

γ([(S(z) ⊲ ξ) ⊗ v]) = [(v(1) ⊲ J(S(z) ⊲ ξ)) ⊗ v(2)] =

= [(v(1)z∗ ⊲ ξ) ⊗ v(2)] = γ([ξ ⊗ (z ⊲ v)]).

(b) It is straightforward to show that γ preserves the bimodule structure
and that the map

[ξ ⊗ v] 7→ [((v(1))∗ ⊲ Jξ) ⊗ v(2)]
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from (V̂ )∗ to V̂ ∗ is the inverse of γ.
(c) γ is an isometry of Hilbert spaces. Indeed, using the above definitions,
the relation (Jξ, Jη) ˜L2(M1)

= (G ⊲ η, ξ) ˜L2(M1)
and the unitarity of V ∗, we

have:

||γ([ξ ⊗ v])||2
(V̂ )∗

= ||[(v(1) ⊲ Jξ) ⊗ v(2)]||2
(V̂ )∗

= ||v(1) ⊲ Jξ||2˜L2(N)
||v(2)||2V ∗

= ||G1/2S−1(v(1)) ⊲ ξ||2˜L2(N)
||v(2)||2V ∗

= (ξ, (v(1))(2)S−1((v(1))(1)) ⊲ ξ) ˜L2(N)
(v, v(2))V ∗

= (ξ, S(εt(v
(1))) ⊲ ξ) ˜L2(N)

(v, v(2))V ∗

= ||ξ|| ˜L2(N)
(v, εt(v

(1)) ⊲ v(2))V ∗ = ||[ξ ⊗ v]||2
V̂ ∗
.

According to Remark 5.1, CBt−Bt is nothing but the category of B-
comodules, Corep(B). The next theorem shows that this category is equiv-
alent to BimodN−N (N ⊂ M), the category of N − N bimodules of a sub-
factor N ⊂ M . Recall that the latter is the tensor category generated by
simple subobjects of N (Mn)N , n ≥ 1.

Theorem 5.8 Let N ⊂M be a finite depth subfactor ([M : N ] <∞), k be
a number such thatN ⊂Mk has depth ≤ 2, and let B be a canonical quantum
groupoid such that (N ⊂ Mk) ∼= (N ⊂ N>⊳B). Then BimodN−N (N ⊂ M)
and Rep(B∗) are equivalent as tensor categories.

Proof. First, we observe that

BimodN−N (N ⊂M) = BimodN−N (N ⊂Ml)

for any l ≥ 0. Indeed, since both categories are semisimple, it is enough
to check that they have the same set of simple objects. Clearly, all ob-
jects of BimodN−N (N ⊂ Ml) are objects of BimodN−N (N ⊂ M). Con-
versely, since irreducible N − N subbimodules of NL

2(Mi)N are contained
in the decomposition of NL

2(Mi+1)N for all i ≥ 0, we see that objects of
BimodN−N (N ⊂M) belong to BimodN−N (N ⊂Ml).

Hence, by Proposition 4.1, the problem can be reduced to the case
when N ⊂ M has depth 2 (M = N>⊳B), i.e., it will suffice to prove that
BimodN−N (N ⊂ N>⊳B) is equivalent to Corep(B). The previous theorem

25



gives a functor from Corep(B) = Rep(B∗) to BimodN−N (N ⊂ N>⊳B). To
prove that this functor is, in fact, an equivalence, we need to check that it
yields a bijection between classes of simple objects of these categories.

Observe that B itself is an object of Corep(B) via ∆ : B → B ⊗ B
and B̂ = NL

2(M)N . Since the inclusion N ⊂ M has depth 2, the simple
objects of BimodN−N (N ⊂ M) are precisely irreducible subbimodules of

NL
2(M)N . We have B̂ = NL

2(M)N = ⊕i N (piL
2(M))N , where {pi} is a

family of mutually orthogonal minimal projections in N ′∩M1 so that every
bimodule piL

2(M) is irreducible. On the other hand, B is cosemisimple,
hence B = ⊕i Vi, where each Vi is an irreducible subcomodule. Note that
N ′ ∩ M1 = B∗ =

∑
piB

∗ and every piB is a simple submodule of B (=
simple subcomodule of B∗). Thus, we see that there is a bijection between
simple objects of Corep(B) and BimodN−N (N ⊂M), so that the categories
are equivalent.

The principal and dual principal graphs of a subfactor N ⊂ M are
defined as follows [10], [5], [8]. LetX = NL

2(M)M and consider the following
sequence of N −N and N −M bimodules :

NL
2(N)N , X, X ⊗M X∗, X ⊗M X∗ ⊗N X, . . .

obtained by right tensoring with X∗ and X. The vertex set of the principal
graph is indexed by the classes of simple bimodules appearing as summands
in the the above sequence. We connect vertices corresponding to bimodules

NYN and NZM by l edges if NYN is contained in the decomposition of NZN ,
the restriction of NZM , with multiplicity l.

The dual principal graph can be constructed in a similar way from the
following M −M and M −N bimodules :

ML
2(M)M , X∗, X∗ ⊗N X, X∗ ⊗N X ⊗M X∗, . . . .

We apply Theorem 5.7 to express the principal and dual graphs of a
finite depth subfactor N ⊂M in terms of the quantum groupoid associated
with it.

Let B and K be a quantum groupoid and its left coideal ∗-subalgebra
such that B acts on N and (N ⊂ M) ∼= (N ⊂ N>⊳K). Then K̂ =

NL
2(M)M , where we view K as a relative (B,K) Hopf module as in Exam-

ple 5.3
By Theorem 5.7 we can identify irreducible N−N (resp. N−M) bimod-

ules with simple B-comodules (resp. relative right (B,K) Hopf modules).
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Consider a bipartite graph with vertex set given by the union of (classes
of) simple B-comodules and simple relative right (B,K) Hopf modules and
the number of edges between the vertices U and V representing B-comodule
and relative right (B,K) Hopf module respectively being equal to the mul-
tiplicity of U in the decomposition of V (when the latter is viewed as a
B-comodule) :

simple B-comodules

· · · | · · · | · · ·
simple relative right (B,K) Hopf modules

The principal graph of N ⊂ M is the connected part of the above graph
containing the trivial B-comodule.

Similarly, the dual principal graph can be obtained from the following
diagram

simple relative (B,K −K) Hopf bimodules

· · · | · · · | · · ·
simple relative left (B,K) Hopf modules

as the connected component containing the relative Hopf (B,K − K) bi-
module K (it corresponds to the bimodule ML

2(M)M .
Using the antiisomorphism K 7→ δ(K) between the lattices of left coideal

subalgebras of B and B∗ from Proposition 3.3, it is possible to express the
principal graph of N ⊂ N>⊳K as a certain Bratteli diagram.

Proposition 5.9 If K is a coideal ∗-subalgebra of B then the principal
graph of the subfactor N ⊂ N>⊳K is given by the connected component
of the Bratteli diagram of the inclusion δ(K) ⊂ B∗ containing the trivial
representation of B∗.

Proof. First, let us show that there is a bijective correspondence between
right relative (B,K) Hopf modules and (B∗>⊳K)-modules. Indeed, every
right (B,K) Hopf module V carries a right action of K. If we define a right
action of B∗ by

v ⊳ x = 〈 v(1), x 〉v(2), v ∈ V, x ∈ B∗,

then we have

(v ⊳ k) ⊳ x = 〈 v(1)k(1), x 〉(v(2) ⊳ k(2))

= 〈 v(1), (k(1) ⊲ x) 〉(v(2) ⊳ k(2))

= (v ⊳ (k(1) ⊲ x)) ⊳ k(2),
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for all x ∈ B∗ and k ∈ K which shows that kx and (k(1) ⊲ x)k(2) act on V
exactly in the same way, therefore V is a right (B∗>⊳K)-module.

Conversely, given an action of (B∗>⊳K) on V , we automatically have a
B-comodule structure such that

〈 v(1)k(1), x 〉(v(2) ⊲ k(2)) = 〈 v(1), x(1) 〉〈 k(1), x(2) 〉(v(2) ⊳ k(2))

= (v ⊳ (k(1) ⊲ x)) ⊳ k(2) = (v ⊳ k) ⊳ x

= 〈x, (v ⊳ k)(1) 〉(v ⊳ k)(2),

which shows that v(1)k(1) ⊗ (v(2) ⊳ k(2)) = (v ⊳ k)(1) ⊗ (v ⊳ k)(2), i.e., that V
is a right relative (B,K)-module.

Thus, we see that the principal graph is given by the connected com-
ponent the Bratteli diagram of the inclusion B∗ ⊂ B∗>⊳K containing the
trivial representation of B∗. Recall that B∗>⊳K is the basic construction
for the inclusion δ(K) ⊂ B∗, therefore the Bratteli diagrams of the above
two inclusions are the same.

Corollary 5.10 If N ⊂ N>⊳B is a depth 2 inclusion corresponding to the
quantum groupoid B, then its principal graph is given by the Bratteli diagram
of the inclusion B∗

t ⊂ B∗.

Proof. In this case K = B and inclusion B∗
t ⊂ B∗ is connected, so that

δ(K) = B∗
t (note that B∗ is biconnected).

Let us mention two properties of the set Xn of finite index values of
subfactors with depth ≤ n.

Remark 5.11 (a) We can use Corollary 5.10 to give a short proof of the
fact that for any given n the set Xn is a discrete subset of {4 cos2 π

n | n ≥
3} ∪ [4,+∞) [9].

It follows from Corollary 4.2 that the index of any depth ≤ n subfactor
is the n-th root of the index of a depth ≤ 2 subfactor, therefore we have
Xn = { n

√
x | x ∈ X2}, therefore it suffices to prove that X2 is discrete.

Let B be a biconnected quantum groupoid and Λ be the inclusion matrix
of Bt ⊂ B. We will show that all the entries of ΛΛt are strictly positive.
Indeed, let π1, . . . πN (resp. ρ1, . . . ρM ) be all the classes of irreducible repre-
sentations of Bt (resp. B), and assume that ρ1 is the trivial representation
of B on Bt (i.e., ρ1(b)z = εt(bz) for all b ∈ B, z ∈ Bt ([3], 2.4, [12], 2.2).
Then Λij, the ij-th entry of Λ, is equal to the multiplicity of πi in ρj |Bt .
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Since ρ1|Bt is faithful, we have Λi1 > 0 for all i = 1 . . .M , therefore

(ΛΛt)ik = Σj ΛijΛkj ≥ Λi1Λk1 > 0.

Thus, it follows from Corollary 5.10 that every element of X2 is the norm
of a matrix with strictly positive entries. But for any given m the number
of such matrices with norm ≤ m is clearly finite, hence X2 ∩ (0, m] is finite
for every m, i.e., X2 is discrete.

(b) Xn is also a multiplicative subsemigroup of R+. Indeed, if N ⊂ M
and P ⊂ Q are two subfactors of depth ≤ n then (N ⊗ P ) ⊂ (M ⊗Q) has
depth ≤ n and [(M ⊗Q) : (N ⊗ P )] = [M : N ][Q : P ].

Appendix : The structure of a quantum groupoid

associated with a finite depth subfactor

We will write down explicit formulas that define a quantum groupoid canon-
ically associated with a finite depth subfactor N ⊂ M ([M : N ] = λ−1). It
follows from Proposition 4.1 that the subfactor N ⊂Mk is of depth 2 for k
large enough. According to [16], the Jones tower for the latter inclusion is

N ⊂Mk ⊂M2k+1 ⊂M3k+2 ⊂ · · ·

Therefore, there is a non-degenerate duality between algebras A = N ′ ∩
M2k+1 and B = M ′

k ∩M3k+2 making them quantum groupoids dual to each
other [13]. The corresponding bilinear form (cf. Preliminaries) is given by

〈 a, b 〉 = λ−2(k+1)τ(af2f1Hb), a ∈ A, b ∈ B,

where H = Index τ |M ′
k
∩M2k+1

and

f1 = λk(k+1)/2(ek+1ek . . . e1)(ek+2 . . . e2) . . . (e2k+1 . . . ek+1),

f2 = λk(k+1)/2(e2k+2e2k+1 . . . ek+2)(e2k+3 . . . ek+3) . . . (e3k+2 . . . e2k+2),

are the Jones projections of the k-step basic construction [16] such that f1

(resp. f2) implements the conditional expectation from Mk (resp. M2k+1) to
N (resp. Mk).

The target and source counital subalgebras of B are Bt = M ′
k ∩M2k+1

and Bs = M ′
2k+1∩M3k+2. Note that B is generated by Bs, Bt, and e2k+2 as

an algebra. Indeed, M ′
k ∩M3k+2 = 〈M ′

k ∩M2k+1, e2k+2, . . . e3k+2 〉 because
of the finite depth condition.
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The antipode of B is given by

S(b) = j(HbH−1), b ∈ B,

where j(b) = J2k+2b
∗J2k+2 is a canonical ∗-anti-isomorphism of B = M ′

k ∩
M3k+2 (here J2k+2 is the modular involution on L2(M2k+1)).

It is convenient to describe the comultiplication in terms of separabil-
ity elements. By definition, a separability element ([15], 10.2) of a finite-
dimensional C∗-algebra D is a projection PD ∈ Dop⊗D uniquely determined
by the properties

(x1 ⊗ 1)PD(x2 ⊗ 1) = (x2 ⊗ 1)PD(x1 ⊗ 1), and m(PD) = 1,

for all x1, x2 ∈ D, where m denotes the multiplication of D.
Let I = M ′

k ∩M2k+2, then we have

∆(yz) = (z ⊗ y) · (S ⊗ id)PBt , y ∈ Bs, z ∈ Bt,

∆(e2k+2) = (S ⊗ id)PI .

Indeed, the first formula holds true in every weak Hopf algebra (see, e.g.,
[12]). To establish the second formula for all a, c ∈ A we compute (using

the notation PI = P
(1)
I ⊗ P

(2)
I ) :

〈 a, H−1S(P
(1)
I ) 〉〈 c, P (2)

I 〉 =

= λ−4(k+1) τ(af2f1S(P
(1)
I H)) τ(cf2f1P

(2)
I )

= λ−4(k+1) τ(HP
(1)
I f1f2a) τ(cf2f1P

(2)
I )

= λ−4(k+1)+1 τ(λ−1HP
(1)
I EM ′

k
∩M2k+2

(f1f2a)) τ(cf2f1P
(2)
I )

= λ−4(k+1)+1 τ(cf2f1EM ′
k
∩M2k+2

(f1f2a))

= λ−3(k+1)+1 τ(cf2f1EM2k+2
(f1EM ′

k
(f1f2a)))

= λ−2(k+1) τ(cf2f1e2k+2a) = 〈 ac, e2k+2 〉,

where we used that Index τ |M ′
k
∩M2k+2

= λ−1H and that EM2k+2
(f2) =

λke2k+2. Thus, ∆(H−1e2k+2) = (H−1 ⊗ 1) · (S ⊗ id)PI and, therefore,
∆(e2k+2) = (S ⊗ id)PI .

Finally, the counit is given by

ε(b) = λ−(k+1)τ(f2Hb), b ∈ B.
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Note that I = M ′
k ∩M2k+2 is a left coideal ∗-subalgebra in B and that

(N ⊂M) ∼= (M2k+1 ⊂M2k+2) ∼= (Mk ⊂Mk>⊳I).

An example of a quantum groupoid of dimension 13, associated to the
subfactor with index 4 cos2 π

5 , was considered in ([13], 7.3). One can also
describe the quantum groupoids corresponding to the whole sequence of
subfactors with principal graphs An [9].
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