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Abstract

We develop an intersection theory for pseudoeffective singular her-
mitian line bundles (cf. Definition 2.4) on a smooth projective variety
and irreducible curves on the variety. And we prove the existence
of a natural rational fibration structure associated with the singular
hermitian line bundle. Also for any pseudoeffective line bundle on a
smooth projective variety, we prove the existence of a natural rational
fibration structure associated with the line bundle.

We also characterize a numerically trivial singular hermitian line
bundle on a smooth projective variety. MSC32J25
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1 Introduction

Let X be a smooth projective variety and let L be a line bundle on X. It is
fundamental to study the ring

R(X,L) := ⊕m≥0Γ(X,OX(mL))

(in more geometric language to study the Iitaka fibration associated with L)
in algebraic geometry. In most case, to show the nonvanishing ,i.e.,
Γ(X,OX(mL)) 6= 0 for some m > 0 is a central problem.

Because R(X,L) ≃ C, if L is not pseudoeffective (cf. Definition 2.4), the
problem is meaningful only when L is pseudoeffective.

If L is big, then for a sufficiently large m, the linear system | mL | gives
a birational rational embedding of X into a projective space. But if L is not
big, there are very few tools to studyR(X,L) except Shokurov’s nonvanishing
theorem [15]. Moreover even if L is big, to study R(X,L) we often need to
study the restriction of R(X,L) on the subvarieties on which the restriction
of L is not big (e.g. [18]).

When L is not big, a natural approach is to distinguish the null direction
of L. Then we may consider that L has positivity in the transverse direction.

If L has a C∞-hermitian metric h such that the cuvature form Θh is
semipositive, the null foliation

∪x∈X{v ∈ TXx | Θh(v, v̄) = 0}

defines a C∞-foliation on the open subset where the rank of the semipositive
form Θh is maximal and every leaf is a complex submanifold on the set. In
this case the null direction is given by this foliation.

But in general, a pseudoeffective line bundle on a smooth projective vari-
ety does not admit a C∞-hermitian metric with semipositive curvature, even
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if it is nef, although it admits a singular hermitian metric with positive cur-
vature current1. Hence we need to consider a singular hermitian metric on
L in order to study R(X,L).

In this paper we develop an intersection theory for singular hemitian line
bundles with positive curvature current and curves on a smooth projective
variety. The new intersection number measures the intersection of the positive
part of the singular hermitian line bundle and the curve. This intersection
theory is not cohomological.

We obtain a natural rational fibration structure in terms of this intersec-
tion theory as follows.

Theorem 1.1 (Fibration theorem) Let (L, h) be a pseudoeffective singular
hermitian line bundle (cf. Definition 2.4) on a smooth projective variety X.
Then there exists a unique (up to birational equivalence) rational fibration

f : X − · · · → Y

such that

1. f is regular over the generic point of Y ,

2. for every very general fiber F , (L, h) |F is well defined and is numeri-
cally trivial (cf. Definition 2.9,2.10),

3. dim Y is minimal among such fibrations.

We call the above fibration f : X − · · · → Y the numerically trivial

fibration associated with (L, h).

Remark 1.1 Let X,(L, h) be as above. Then for any smooth divisor D on
X, there exists a numerically trivial fibration

fD : D − · · · → W.

This is simply because the restriction of the intersection theory on D exists
(cf. Section 2.5) and the proof of the above theorem essentially does not
require the existence of the restriction of Θh to D.

1Here we note that “positive” does not mean strict positivity (cf. Definition 2.2).
This terminology may be misleading for algebraic geometers. For this reason I include a
subsection which summarize the notion of closed positive currents.
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Remark 1.2 By the proof of Theorem 1.1 below, we see that the 3-rd con-
dition in Theorem 1.1 is equivalent to :
3′. for a very general point x ∈ X and any irreducible horizontal curve (with
respect to f) C containing x, (L, h) · C > 0 holds (cf. Definition 2.9 for the
definition of (L, h) · C).

Theorem 1.1 singles out the null direction of (L, h) as fibers. But this direc-
tion is only a part of the null direction as is shown by the following example.
This example also shows that in general dimY may be strictly larger than
the numerical dimension of L.

Example 1.1 Let X be an irreducible quotient of the open unit bidisk ∆2 in
C2, i.e.,

X = ∆2/Γ,

where Γ is an irreducible cocompact torsion free lattice. Let (L, h) denotes
the hermitian line bundle whose curvature form comes from the Poincaré
metric on the first factor. Then one see that L is nef and L2 = 0 holds. In
particular L is not big. In this case the null foliation of Θh is nothing but the
projection of the fibers of the first projection and every leaf of the foliation
is Zariski dense (actually even topologically dense in usual topology) in X.
This implies that L (and hence also (L, h)) is numerically positive and the
numerically trivial fibration is the identity.

By using an AZD (cf. Definition 2.8, Theorem 2.4 and Proposition 2.1 below),
we have the following corollary.

Corollary 1.1 Let L be a pseudoeffective line bundle on a smooth projective
variety X and let h be a canonical AZD of L (cf. Section 2.3). Then there
exists a unique rational fibration (up to birational equivalence):

f : X − · · · → Y

such that

1. f is regular over the generic point of Y ,

2. for every very general fiber F , (L, h) is numerically trivial on F .

3. dim Y is minimal among such fibrations.

Also f does not depend on the choice of the canonical AZD h (see Proposition
2.1).
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We call the above fibration f : X − · · · → Y the numerically trivial

fibration associated with L.
The poof of Theorem 1.1 is done by finding a dominating family of maxi-

mal dimensional subvarieties on which the restriction of (L, h) is numerically
trivial. The heart of the proof is to prove that this family actually gives a
rational fibration by showing that the generic point of a general member of
the family does not intersect other members.

The structure of numerically trivial singular hermitian line bundles with
positive curvature current is given as follows.

Theorem 1.2 Let (L, h) be a singular hermitian line bundle on a smooth
projective variety X. Suppose that Θh is closed positive and (L, h) is numer-
ically trivial on X. Then there exist at most countably many prime divisors
{Di} and nonnegative numbers {ai} such that

Θh = 2π
∑

aiDi

holds, where we have identified each Di with a closed positive current. More
generally let Y be a subvariety of X such that the restriction h |Y is well
defined. Suppose that (L, h) is numerically trivial on Y . Then the restriction
Θh |Y is a sum of at most countably many prime divisors with nonnegative
coefficients on Y .

Remark 1.3 For a divisor D, the current associated with D is often denoted
by [D]. But this notation is confusing with the round down of D in algebraic
geometry. Hence we do not use this notation in this paper.

This paper is a byproduct of the proof of the nonvanishing theorem ([18,
Theorem 5.1]).

In this paper, I cannot refer to applications of the above theorems because
of the length. These will be published separately.

In this paper “very general” means outside of at most countably many
union of proper Zariski closed subsets and “general” means in the sense of
usual Zariski topology.

I intended the paper to be readable for algebraic geometers who are not
familiar with complex analytic background.

I would like to express hearty thanks to the referee for his careful reading
and a lot of useful comments.
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2 Intersection theory for singular hermitian

line bundles

In this section we define an intersection number for a singular hermitian line
bundle with positive curvature current on a smooth projective variety and an
irreducible curve on it. This intersection number is different from the usual
intersection number of the underlying line bundle and the curve.

2.1 Closed positive currents

In this subsection we shall review the definition and basic notions of closed
positive (p, p)-currents on a complex manifold. For the general facts about
the theory of currents, see for example [6, Chapter 3]. Let M be a complex
manifold of dimension n and let Ap,qc (M) denote the space of C∞ (p, q)-forms
with compact support. We define a topology on Ap,qc (M) such that a sequence
{ϕi}∞i=1 in Ap,qc (M) converges, if and only if there exists a compact subset
K of M such that Suppϕi ⊆ K holds for every i and {ϕi}∞i=1 converges in
Ck-topology on K for every k to a C∞ (p, q)-form ϕ∞.

Definition 2.1 Let M be a complex manifold of dimension n. The space of
(p, q)-currents Dp,q(M) on M is the dual space of An−p,n−qc (M). We define

∂ : Dp,q(M) −→ Dp+1,q(M)

and
∂̄ : Dp,q(M) −→ Dp,q+1(M)

by
∂T (ϕ) := (−1)p+q+1T (∂ϕ) (T ∈ Dp,q(M), ϕ ∈ An−p,n−q(M))

and

∂̄T (ϕ) := (−1)p+q+1T (∂̄ϕ) (T ∈ Dp,q(M), ϕ ∈ An−p,n−q(M))

We define the exterior derivative d by

d := ∂ + ∂̄.

Definition 2.2 T ∈ Dp,q(M) is said to be closed, if dT = 0 holds. A (p, p)-
current T is real in case T = T̄ in the sense that T (ϕ) = T (ϕ̄) holds for all
ϕ ∈ An−p,n−pc (M). A real (p, p)-current T on M is said to be positive, if

(
√
−1)

p(p−1)
2 T (η ∧ η̄) ≥ 0

holds for every η ∈ An−pc (M).
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The above definition of positivity of currents is somewhat misleading for alge-
braic geometers. It might be appropriate to say pseudoeffective currents

instead of positive currents.

Example 2.1 Let V be a subvariety of codimension p in M . Then V is a
closed positive (p, p)-current on M by

V (ϕ) :=
∫

Vreg

ϕ (for ϕ ∈ An−p,n−pc (M)).

Example 2.2 Let φ be a C∞-closed (p, q)-form on M . Then φ is a closed
(p, q)-current on M by

φ(ϕ) :=
∫

M
φ ∧ ϕ (for ϕ ∈ An−p,n−qc (M))

2.2 Multiplier ideal sheaves

In this subsection L will denote a holomorphic line bundle on a complex
manifold M .

Definition 2.3 A singular hermitian metric h on L is given by

h = e−ϕ · h0,

where h0 is a C∞-hermitian metric on L and ϕ ∈ L1
loc(M) is an arbitrary

function on M . We call ϕ a weight function of h.

The curvature current Θh of the singular hermitian line bundle (L, h) is
defined by

Θh := Θh0 +
√
−1∂∂̄ϕ,

where ∂∂̄ is taken in the sense of a current. The L2-sheaf L2(L, h) of the
singular hermitian line bundle (L, h) is defined by

L2(L, h) := {σ ∈ Γ(U,OM(L)) | h(σ, σ) ∈ L1
loc(U)},

where U runs over the open subsets of M . In this case there exists an ideal
sheaf I(h) such that

L2(L, h) = OM(L) ⊗ I(h)

holds. We call I(h) the multiplier ideal sheaf of (L, h). If we write h as

h = e−ϕ · h0,
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where h0 is a C∞ hermitian metric on L and ϕ ∈ L1
loc(M) is the weight

function, we see that
I(h) = L2(OM , e

−ϕ)

holds. Also we define
I∞(h) = L∞(OM , e

−ϕ)

and call it the L∞-multiplier ideal sheaf of (L, h).
Let D be an effective R-divisor on M and let

∑

i

aiDi

be the irreducible decomposition of D. Let σi be a global section of OM(Di)
with divisor Di. Let hi be a C∞-hermitian metric on OM(Di). Then

h =

∏

i h
ai

i
∏

i hi(σi, σi)ai

is a singular hermitian metric on the R-line bundle OM(D). It is clear that
h is independent of the choice of hi’s. We define the multiplier sheaf I(D)
associated with D by

I(D) := I(h) = L2(OX ,
1

∏

i hi(σi, σi)
ai

).

If SuppD is a divisor with normal crossings,

I(D) = OM(−[D])

holds, where [D] :=
∑

i[ai]Di (for a real number a, [a] denotes the largest
integer smaller than or equal to a).

The following terminology is fundamental in this paper.

Definition 2.4 L is said to be pseudoeffective, if there exists a singular her-
mitian metric h on L such that the curvature current Θh is a closed positive
current.

Also a singular hermitian line bundle (L, h) is said to be pseudoeffective,
if the curvature current Θh is a closed positive current.

It is easy to see that a line bundle L on a smooth projective manifold M is
pseudoeffective, if and only if for an ample line bundle H on M , L + ǫH is
Q-effective (or big) for every positive rational number ǫ (cf. [4]).
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If {σi} are a finite number of global holomorphic sections of L, for every
positive rational number α and a C∞-function φ,

h := e−φ · hα0
(
∑

i h0(σi, σi))α

defines a singular hermitian metric on αL, where h0 is a C∞-hermitian metric
on L (note that the righthandside is independent of h0). We call such a metric
h a singular hermitian metric on αL with algebraic singularities. Singular
hermitian metrics with algebraic singularities are particulary easy to handle,
because its multiplier ideal sheaf or that of the multiple of the metric can
be controlled by taking suitable successive blowing ups such that the total
transform of the divisor

∑

i(σi) is a divisor with normal crossings.
By definition a multiplier ideal sheaf has the following property which

will be used later.

Lemma 2.1 Let (L, h) be a singular hermitian line bundle on a complex
manifold M such that Θh is bounded from below by a C∞-(1, 1)-form. Let
f : N −→M be a modification. Then (f ∗L, f ∗h) is a singular hermitian line
bundle on N and

f∗I(f ∗h) ⊆ I(h)

holds.

Proof. First we note that f∗(f
∗L) = L holds. Let x ∈ M be an arbitrary

point of M . Let U be a neighbourhood of x and let σ be a holomorphic
section of L on U such that

∫

f−1(U)
f ∗h(σ, σ) dVN <∞

holds, where dVN denote a C∞ volume form on N . Let dVM be a C∞-volume
form on M . Then if we shrink U a little bit, we may assume that there exists
a positive constant C such that

f ∗dVM ≤ C · dVN
holds on f−1(U). Hence we see that

∫

U
h(σ, σ) dVM <∞

holds. Q.E.D.

The following theorem is fundamental in the applications of multiplier ideal
sheaves.

9



Theorem 2.1 (Nadel’s vanishing theorem [11, p.561]) Let (L, h) be a sin-
gular hermitian line bundle on a compact Kähler manifold M and let ω be a
Kähler form on M . Suppose that Θh is strictly positive, i.e., there exists a
positive constant ε such that

Θh ≥ εω

holds. Then I(h) is a coherent sheaf of OM ideal and for every q ≥ 1

Hq(M,OM(KM + L) ⊗ I(h)) = 0

holds.

We note that the multiplier ideal sheaf of a singular hermitian R-line
bundle is well defined because the multiplier ideal sheaf is defined in terms of
the weight function. Sometimes it is useful to consider the following variant
of multiplier ideal sheaves.

Definition 2.5 Let hL be a singular hermitian metric on a line bundle L.
Suppose that the curvature of hL is a positive current on X. We set

Ī(hL) := lim
ε↓0

I(h1+ε
L )

and call it the closure of I(hL).

As you see later, the closure of a multiplier ideal sheaf is easier to handle
than the original multiplier ideal sheaf in some respect.

Next we shall consider the restriction of singular hermitian line bundles
to subvarieties.

Definition 2.6 Let h be a singular hermitian metric on L given by

h = e−ϕ · h0,

where h0 is a C∞-hermitian metric on L and ϕ ∈ L1
loc(M) is an uppersemi-

continuous function. Here L1
loc(M) denotes the set of locally integrable func-

tions (not the set of classes of almost everywhere equal locally integrable func-
tions on M).

For a subvariety V of M , we say that the restriction h |V is well defined,
if ϕ is not identically −∞ on V .

Let (L, h),h0,V , ϕ be as in Definition 2.6. Suppose that the curvature current
Θh is bounded from below by some C∞-(1,1)-form. Then ϕ is an almost
plurisubharmonic function, i.e. locally a sum of a plurisubharmonic function
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and a C∞-function. Let π : Ṽ −→ V be an arbitrary resolution of V . Then
π∗(ϕ |V ) is locally integrable on Ṽ , since ϕ is almost plurisubharmonic. Hence

π∗(Θh |V ) := Θπ∗h0|V +
√
−1∂∂̄π∗(ϕ |V )

is well defined.

Definition 2.7 Let ϕ be a plurisubharmonic function on a unit open polydisk
∆n with center O. We define the Lelong number of ϕ at O by

ν(ϕ,O) := lim inf
x→O

ϕ(x)

log | x | ,

where | x |= (
∑ | xi |2)1/2. Let T be a closed positive (1, 1)-current on a unit

open polydisk ∆n. Then by ∂∂̄-Poincaré lemma there exists a plurisubhar-
monic function φ on ∆n such that

T =

√
−1

π
∂∂̄φ.

We define the Lelong number ν(T,O) at O by

ν(T,O) := ν(φ,O).

It is easy to see that ν(T,O) is independent of the choice of φ and local
coordinates around O. For an analytic subset V of a complex manifold X,
we set

ν(T, V ) = inf
x∈V

ν(T, x).

Remark 2.1 More generally the Lelong number is defined for a closed pos-
itive (k, k)-current on a complex manifold.

Theorem 2.2 ([13, p.53, Main Theorem]) Let T be a closed positive (k, k)-
current on a complex manifold M . Then for every c > 0

{x ∈M | ν(T, x) ≥ c}

is a subvariety of codimension ≥ k in M .

The following lemma shows a rough relationship between the Lelong num-
ber of ν(Θh, x) at x ∈ X and the stalk of the multiplier ideal sheaf I(h)x at
x.
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Lemma 2.2 ([1, p.284, Lemma 7][2],[13, p.85, Lemma 5.3]) Let ϕ be a
plurisubharmonic function on the open unit polydisk ∆n with center O. Sup-
pose that e−ϕ is not locally integrable around O. Then we have that

ν(ϕ,O) ≥ 2

holds. And if
ν(ϕ,O) > 2n

holds, then e−ϕ is not locally integrable around O.

Let (L, h) be a pseudoeffective singular hermitian line bundle on a complex
manifold M . The closure Ī(h) of the multiplier ideal sheaf I(h) can be
analysed in terms of Lelong numbers in the following way. We note that
Ī(h) is coherent ideal sheaf on M by Theorem 2.1.

In the case of dimM = 1, we can compute Ī(h) in terms of the Lelong
number ν(Θh, x)(x ∈M). In fact in this case Ī(h) is locally free and

Ī(h) = OM(−
∑

x∈M

[ν(Θh, x)]x)

holds by Lemma 2.2, because 2 = 2 dimM .
In the case of dimM ≥ 2, let f : N −→ M be a modification such that

f ∗Ī(h) is locally free. If we take f properly, we may assume that there exists
a divisor F =

∑

i Fi with normal crossings on Y such that

KN = f ∗KM +
∑

i

aiFi

and
Ī(h) = f∗ON(−

∑

i

biFi)

hold on Y for some nonnegative integers {ai} and {bi}. Let y ∈ Fi−
∑

j 6=i Fj
and let (U, z1, . . . , zn) be a local corrdinate neighbourhood of y which is
biholomorphic to the open unit disk ∆n with center O in Cn(n = dimM)
and

U ∩ Fi = {p ∈ U | z1(p) = 0}
holds. For q ∈ ∆n−1, we set ∆(q) := {p ∈ U | (z2(p), . . . , zn(p)) = q}. Then
considering the family of the restriction {Θh |∆(q)} for very general q ∈ ∆n−1,
by Lemma 2.2, we see that

bi = [ν(f ∗Θh, Fi) − ai]

holds for every i. In this way Ī(h) is determined by the Lelong numbers

of the curvature current on some modification. This is not the case, unless
we take the closure as in the following example.
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Example 2.3 Let hP be a singular hermitian metric on the trivial line bun-
dle on the open unit polydisk ∆ with center O in C defined by

hP =
‖ · ‖2

| z |2 (log | z |)2
.

Then ν(ΘhP
, 0) = 1 holds. But I(hP ) = O∆ holds. On the other hand

Ī(hP ) = M0 holds, where M0 is the ideal sheaf of 0 ∈ ∆.

2.3 Analytic Zariski decompositions

In this subsection we shall introduce the notion of analytic Zariski decom-
positions. By using analytic Zariski decompositions, we can handle big line
bundles like nef and big line bundles.

Definition 2.8 Let M be a compact complex manifold and let L be a holo-
morphic line bundle on M . A singular hermitian metric h on L is said to be
an analytic Zariski decomposition, if the followings hold.

1. Θh is a closed positive current,

2. for every m ≥ 0, the natural inclusion

H0(M,OM(mL) ⊗ I(hm)) → H0(M,OM(mL))

is an isomorphim.

Remark 2.2 If an AZD exists on a line bundle L on a smooth projective
variety M , L is pseudoeffective by the condition 1 above.

Theorem 2.3 ([16, 17]) Let L be a big line bundle on a smooth projective
variety M . Then L has an AZD.

As for the existence for general pseudoeffective line bundles, now we have
the following theorem.

Theorem 2.4 ([5]) Let X be a smooth projective variety and let L be a
pseudoeffective line bundle on X. Then L has an AZD.

13



Proof of Theorem 2.4. Let h0 be a fixed C∞-hermitian metric on L. Let
E be the set of singular hermitian metric on L defined by

E = {h; h : lowersemicontinuous singular hermitian metric on L,

Θh is positive,
h

h0
≥ 1}.

Since L is pseudoeffective, E is nonempty. We set

hL = h0 · inf
h∈E

h

h0
,

where the infimum is taken pointwise. The supremum of a family of plurisub-
harmonic functions uniformly bounded from above is known to be again
plurisubharmonic, if we modify the supremum on a set of measure 0(i.e., if
we take the uppersemicontinuous envelope) by the following theorem of P.
Lelong.

Theorem 2.5 ([10, p.26, Theorem 5]) Let {ϕt}t∈T be a family of plurisub-
harmonic functions on a domain Ω which is uniformly bounded from above on
every compact subset of Ω. Then ψ = supt∈T ϕt has a minimum uppersemi-
continuous majorant ψ∗ which is plurisubharmonic.

Remark 2.3 In the above theorem the equality ψ = ψ∗ holds outside of a
set of measure 0(cf.[10, p.29]).

By Theorem 2.5 we see that hL is also a singular hermitian metric on L
with Θh ≥ 0. Suppose that there exists a nontrivial section σ ∈ Γ(X,OX(mL))
for some m (otherwise the second condition in Definition 3.1 is empty). We
note that

1

| σ | 2
m

gives the weihgt of a singular hermitian metric on L with curvature 2πm−1(σ),
where (σ) is the current of integration along the zero set of σ. By the con-
struction we see that there exists a positive constant c such that

h0

| σ | 2
m

≥ c · hL

holds. Hence
σ ∈ H0(X,OX(mL) ⊗ I(hmL ))

14



holds. This means that hL is an AZD of L. Q.E.D.

The following proposition implies that the multiplier ideal sheaves of hmL (m ≥
1) constructed in the proof of Theorem 2.4 are independent of the choice of
the C∞-hermitian metric h0. The proof is trivial. Hence we omit it.

Proposition 2.1 h0, h
′
0 be two C∞-hermitian metrics on a pseudoeffective

line bundle L on a smooth projective variety X. Let hL, h
′
L be the AZD’s

constructed as in the proof of Theorem 2.4 associated with h0, h
′
0 respectively.

Then

(min
x∈X

h0

h′0
(x)) · h′L ≤ hL ≤ (max

x∈X

h0

h′0
(x)) · h′L

hold. In particular
I(hmL ) = I((h′L)m)

holds for every m ≥ 1.

We call the AZD constructed as in the proof of Theorem 2.4 a canonical

AZD of L. Proposition 2.1 implies that the multiplier ideal sheaves associ-
ated with the multiples of the canonical AZD are independent of the choice
of the canonical AZD.

2.4 Intersection numbers

In this subsection we shall define the intersection number for a singular her-
mitian line bundle with positive curvature current and an irreducible curve
such that the restriction of the singular hermitian metric is well defined.

Definition 2.9 Let (L, h) be a pseudoeffective singular hermitian line bundle
on a smooth projective variety X. Let C be an irreducible curve on X such
that the natural morphism I(hm) ⊗ OC → OC is an isomorphism at the
generic point of C for every m ≥ 0.

The intersection number (L, h) · C is defined by

(L, h) · C := limm→∞m
−1 dimH0(C,OC(mL) ⊗ I(hm)/tor),

where tor denotes the torsion part of OC(mL) ⊗ I(hm).

If the natural morphism I(hm) ⊗ OC → OC is 0 at the generic point of C
for some m ≥ 1, to define (L, h) ·C, H0(C,OC(mL)⊗I(hm)/tor) cannot be
considered as a subspace of H0(C,OC(mL)). A special important case will
be treated in Section 2.5.
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Remark 2.4 Let (L, h), C be as above. Let π : C̃ −→ C be the normaliza-
tion of C. Then we see that

(L, h) · C = limm→∞m
−1 dimH0(C̃,OC̃(mπ∗L) ⊗ π∗I(hm)/tor)

holds. This is verified as follows. First it is clear that

(L, h) · C ≤ limm→∞m
−1 dimH0(C̃,OC̃(mπ∗L) ⊗ π∗I(hm)/tor)

holds. On the other hand, there exists a nonzero ideal sheaf J independent
of m ≥ 0 on C̃ such that

H0(C̃, (OC̃(mπ∗L) ⊗ π∗I(hm)/tor) ⊗ J ) ⊆ π∗H0(C,OC(mL) ⊗ I(hm)/tor)

holds. For example, we can take J to be (π∗ISing(C)
)r where ISing(C)

denotes

the ideal sheaf of the singular locus of C and r is a sufficiently large positive
integer. Because V (I) consists of a finite number of points, this implies that

(L, h) · C ≥ limm→∞m
−1 dimH0(C̃,OC̃(mπ∗L) ⊗ π∗I(hm)/tor)

holds. The above two inequalities imply the assertion.

Remark 2.5 Let (L, h), C be as in Definition 2.9. We see that

(L, h) · C = limm→∞m
−1 dimH0(C,OC(mL) ⊗ Ī(hm)/tor)

always holds.
This can be verified as follows. First we shall assume that C is smooth.

By the assumption I(hm)/tor is an ideal sheaf on C. If

degC OC(mL) ⊗ I(hm)/tor > 2g(C) − 2

holds, where g(C) denotes the genus of C, then

H1(C,OC(mL) ⊗ I(hm)/tor) = 0

holds. On the other hand if

degC OC(mL) ⊗ I(hm)/tor ≤ 2g(C) − 2

holds, then there exists a constant K independent of such m such that

dimH0(C,OC(mL) ⊗ I(hm)/tor) ≤ K
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holds.
Hence we see that

(♭) (L, h) · C = limm→∞m
−1 degC OC(mL) ⊗ I(hm)/tor

holds by the Riemann-Roch theorem. By the same reason, we see that

limm→∞m
−1 dimH0(C,OC(mL)⊗Ī(hm)/tor) = limm→∞m

−1 degC OC(mL)⊗Ī(hm)/tor

holds. On the other hand, for every ǫ > 0

limm→∞m
−1 degC OC(mL) ⊗ I(hm)/tor

≤ limm→∞m
−1 degC OC(⌈(1 + 2ǫ)m⌉L) ⊗ Ī(h(1+ǫ)m)/tor

holds, since I(h(1+2ǫ)m) ⊆ Ī(h(1+ǫ)m) holds for every m ≥ 0. And also

lim
ǫ↓0

(limm→∞m
−1 degC OC(⌈(1 + 2ǫ)m⌉L) ⊗ Ī(h(1+ǫ)m)/tor)

= lim
ǫ↓0

((limm→∞m
−1 degC OC(⌈(1+ǫ)m⌉L)⊗Ī(h(1+ǫ)m)/tor)+ǫ L·C)

= limm→∞m
−1 degC OC(mL) ⊗ Ī(hm)/tor

hold. We note that Ī(hm) ⊆ I(hm) holds for every m ≥ 0 by their definitions.
Hence we have that

limm→∞m
−1 degC OC(mL)⊗I(hm)/tor = limm→∞m

−1 degC OC(mL)⊗Ī(hm)/tor

holds. By the above argument we see that

(L, h) · C = limm→∞m
−1 dimH0(C,OC(mL) ⊗ Ī(hm)/tor)

holds.
If C is singular, by the argument as in Remark 2.4, we can easily deduce

the same conclusion by considering the normalization π : C̃ −→ C.
Since the closure of multiplier a multiplier ideal sheaf is easier to handle

as you see in this paper, it might be better to use the above formula as the
definition of the intersection number.

Let (L, h) and C be as above. Assume that h |C is well defined. Let

π : C̃ −→ C

17



be the normalization of C. We define the multiplier ideal sheaf
I(hm |C)(m ≥ 0) on C by

I(hm |C) := π∗I(π∗hm |C).

We note that I(hm |C) is not necessary a subsheaf of OC , if C is nonnormal.
And the Lelong number ν(Θh |C , x)(x ∈ C) by

ν(Θh, x) =
∑

x̃∈π−1(x)

ν(π∗Θh |C , x̃).

Proposition 2.2 Let (L, h) be a pseudoeffective singular hermitian line bun-
dle on a smooth projective variety X. Let C be an irreducible curve on X
such that h |C is well defined. Suppose that (L, h) · C = 0 holds. Then

Θh |C= 2π
∑

x∈C

ν(Θh |C , x)x

holds in the sense that

π∗(Θh |C) = 2π
∑

x̃∈C̃

ν(π∗Θh |C , x̃)x̃

holds.

Proof of Proposition 2.2. First we quote the following L2-extension the-
orem.

Theorem 2.6 ([12, p.197, Theorem]) Let Ω be a bounded pseudoconvex do-
main in Cn, ψ : Ω −→ R∪{−∞} a plurisubharmonic function and H ⊂ Cn

a complex hyperplane.
Then there exists a constant C depending only on the diameter of Ω such

that for any holomorphic function f on Ω ∩H satisfying

∫

Ω∩H
e−ψ | f |2 dVn−1 <∞,

where dVn−1 denotes the (2n−2)-dimensional Lebesgue measure, there exists
a holomorphic function F on Ω satisfying F |Ω∩H= f and

∫

Ω
e−ψ | F |2 dVn ≤ C ·

∫

Ω∩H
e−ψ | f |2 dVn−1.
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Lemma 2.3 Let S be the singular points of C with reduced structure and let
IS denote the ideal of S. Then there exists a positive integer a such that

I(hm |C) ⊗ IaS ⊂ I(hm) ⊗OC

hold for every m.

Proof of Lemma 2.3. In fact let

f : X̃ −→ X

be an embedded resolution of C and let C̃ denote the strict transform of C in
X̃. Since C̃ is locally a smooth complete intersection of smooth divisors, for
x̃ ∈ C̃, by the successive use of Theorem 2.6 every element of I(f ∗hm |C̃)x̃
can be extended to an element of I(f ∗hm)x̃. This means that

I(f ∗hm |C̃) ⊆ I(f ∗hm) |C̃
holds. By the definition of I(hm |C) we see that

I(hm |C) = f∗(I(f ∗hm |C̃))

holds. Hence we have that

(+) I(hm |C) ⊆ f∗(I(f ∗hm) |C̃)

holds.
Let f ∗(C) be the total transform of C.
First we note that if a germ of I(f ∗hm) |C̃ is identically 0 along the scheme

theoretic intersection (f ∗(C)− C̃)∩ C̃, it extends to a germ of I(f ∗hm) |f∗(C)

by setting identically 0 on the branches of f ∗(C) except C̃.
Next we note that

f∗(I(f ∗hm) ⊗Of∗(C)) ⊆ I(hm) ⊗OC

holds by Lemma 2.1.
By these facts and (+), we see that there exists a positive integer a

independent of m such that

I(hm |C) ⊗ IaS ⊆ I(hm) ⊗OC

holds. This completes the proof of Lemma 2.3. Q.E.D.
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By [13, p.111, Lemma 9.5] we see that

Θh |C −2π
∑

x∈C

ν(Θh |C, x)x

is a positive current on C. Hence

L · C −
∑

x∈C

ν(Θh |C, x)

is a nonnegative number. Let π : C̃ −→ C be the normalization of C. Then
by Lemma 2.2 and the definition of ν(Θh |C), we see that

degC̃(OC̃(mπ∗L) ⊗ I(π∗(hm |C)) ≥ (L · C −
∑

x∈C

ν(Θh |C , x))m

holds. Hence we see that

lim
m→∞

m−1 degC̃(OC̃(mπ∗L) ⊗ I(π∗(hm |C)) ≥ L · C −
∑

x∈C

ν(Θh |C , x) ≥ 0

hold. By the Riemann-Roch theorem for curves and the Kodaira vanishing
theorem, we see that if

L · C −
∑

x∈C

ν(Θh |C, x) > 0

holds, then

lim
m→∞

m−1 dimH0(C̃,OC̃(mπ∗L) ⊗ I(π∗(hm |C)) ≥ L · C −
∑

x∈C

ν(Θh |C, x)

holds.
By Lemma 2.3, this means that (L, h) · C is always nonnegative and

(L, h) · C > 0

holds, when
L · C −

∑

x∈C

ν(Θh |C, x) > 0

holds. Hence if (L, h) · C = 0 holds, then

L · C =
∑

x∈C

ν(Θh |C , x)

holds. This implies that

Θh |C= 2π
∑

x∈C

ν(Θh |C , x)x

holds. This completes the proof of Proposition 2.2. Q.E.D.
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Definition 2.10 Let (L, h) be a pseudoeffective singular hermitian line bun-
dle on a smooth projective variety X. (L, h) is said to be numerically trivial,
if for every irreducible curve C on X such that h |C is well defined,

(L, h) · C = 0

holds.

2.5 Restriction of the intersection theory to divisors

In the previous subsection we define an intersection number of a singular
hermitian line bundle with positive curvature and an irreducible curve on
which the restriction of the singular hermitian metric is well defined. In
this subsection we shall consider the case that the restriction of the singular
hermitian metric is not well defined.

Let (L, h) be a pseudoeffective singular hermitian line bundle on a smooth
projective variety X.

Let D be a smooth divisor on X. We set

vm(D) = multDSpec(OX/I(hm))

and
ĨD(hm) = OD(vm(D)D) ⊗ I(hm).

Then ĨD(hm) is an ideal sheaf on D (it is torsion free, since D is smooth).
Let x ∈ D be an arbitrary point of D and let (U, z1, . . . , zn)(n := dimX)

be a local coordinate neighbourhood of x which is biholomorphic to the unit
open polydisk ∆n with center O in Cn and

U ∩D = {p ∈ U | z1(p) = 0}

holds. For q ∈ ∆n−1, we set ∆(q) := {p ∈ U | (z2(p), . . . , zn(p)) = q}. Then
considering the family of the restriction {Θh |∆(q)} for very general q ∈ ∆n−1,
by Lemma 2.2, we see that

m · ν(Θh, D) − 1 ≤ vm(D) ≤ m · ν(Θh, D)

holds.
We define the ideal sheaves m

√

ĨD(hm) on D by

m

√

ĨD(hm)x := ∪I(
1

m
(σ))x(x ∈ D),
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where σ runs all the germs of ĨD(hm)x. And we set

ID(h) := ∩m≥1
m

√

ĨD(hm)

and call it the multipler ideal of h on D. Also we set

ĪD(h) := lim
ε↓0

ID(h1+ε).

See Theorem 2.8 below for the reason why we define ID(h) in this way.
Let C be an irreducible curve in D such that the natural morphism

ĨD(hm) ⊗OC → OC

is an isomorphism at the generic point of C for every m ≥ 0. In this case we
can define the intersection number (L, h) · C by

(L, h) · C := limm→∞m
−1 dimH0(C,OC(mL− vm(D)D) ⊗ ĨD(hm)/tor).

Then as the formla (♭) in Remark 2.5, we see that

(♯) (L, h)·C = (L−ν(Θh, D)D)·C+limm→∞m
−1 degC ĨD(hm)⊗OC

holds.
We may define the Lelong number νD(Θh, x)(x ∈ D) by

νD(Θh, x) := limm→∞m
−1multxSpec(OD/ĨD(hm)).

Then we see that the set

SD := {x ∈ D | ν(Θh |D, x) > 0}

consists of a countable union of subvarieties on D. This follows from the
approximation theorem [4, p.380, Proposition 3.7].

2.6 Another definition of the intersection numbers

Let (L, h) be a pseudoeffective singular hermitian line bundle on a smooth
projective variety X. And let C be an irreducible curve on X such that
the restriction h |C is well defined. Another candidate for the intersection
number of (L, h) and C is :

(L, h) ∗ C := L · C −
∑

x∈C

ν(Θh |C , x).

But we have the following theorem.
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Theorem 2.7 With the above notations

(L, h) · C = (L, h) ∗ C

holds.

Proof of Theorem 2.7. To prove Theorem 2.7, by taking an embedded
resolution of C, we may assume that C is smooth, since the intersection
number (L, h) · C is defined by using the asymptotics of the dimension of
sections and ν(Θh |C , x)(x ∈ C) is defined in terms of the normalization of
C.

In fact let ̟ : Y −→ X be an embedded resolution of C and let C̃ be the
strict transform of C. Since by the definition of multiplier ideal sheaves

OX(KX) ⊗ I(hm) = ̟∗(OY (KY ) ⊗ I(̟∗hm))

holds for every m ≥ 0, we have that

̟∗I(hm) ⊗OY (̟∗KX −KY ) ⊆ I(̟∗hm)

holds for every m ≥ 0. Then by Remark 2.4, we have that

(L, h) · C ≤ limm→∞m
−1 dimH0(C̃,OC̃(m̟∗L) ⊗ I(̟∗hm)/tor)

holds. Suppose that

(̟∗L,̟∗h) · C̃ = (̟∗L,̟∗h) ∗ C̃

holds. Then by the above inequality, we have that

(L, h) · C ≤ (̟∗L,̟∗h) ∗ C̃

holds. Since by definition

(L, h) ∗ C = (̟∗L,̟∗h) ∗ C̃

holds, we have that
(L, h) · C ≤ (L, h) ∗ C

holds. On the other hand by Lemma 2.3 and Lemma 2.2 (see also the ex-
planataion right after Lemma 2.2), we see that the opposite inequality :

(L, h) · C ≥ (L, h) ∗ C
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holds. Hence we conclude that

(L, h) · C = (L, h) ∗ C

holds.
Hereafter we shall assume that C is smooth. First we note that for every

ample line bundle H on X and a C∞-hermitian metric hH on H with strictly
positive curvature

(L⊗H, h · hH) · C = H · C + (L, h) · C

holds by the formula (♯) and

(L⊗H, h · hH) ∗ C = H · C + (L, h) ∗ C

hold. Hence we may assume that h is strictly positive.
Since we already have the inequality :

(L, h) · C ≥ (L, h) ∗ C

as above, we only have to show the opposite inequality

(L, h) · C ≤ (L, h) ∗ C

holds.
First we shall consider the case that h has algebraic singularities. In this

case by taking a suitable modification

f : X̃ → X

we see that there exists an effective Q-divisor D with normal crossings on X̃
such that

I(f ∗hm) = OX̃(⌈−mD⌉)
holds for every m ≥ 0, where ⌈ ⌉ denotes the round up. Let C̃ denote the
strict transform of C. We may assume that C̃ is smooth. By this

degC(I(hm) |C) = −[mD] · C̃ + (KX̃ − f ∗KX) · C̃

holds. On the other hand

degC I(hm |C) = − degC̃ [mD |C̃ ]
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holds. Then since

lim
m→∞

1

m
[mD] · C̃ = lim

m→∞

1

m
degC [mD |C̃ ]

holds, we have that

lim
m→∞

1

m
degC(I(hm) |C) = lim

m→∞

1

m
degC I(hm |C)

holds. The lefthandside is equal to

L · C − (L, h) · C

by the argument in Remark 2.5 (especially by the formula (♭)) and the
righthandside is equal to

L · C − (L, h) ∗ C

by Lemma 2.2. Hence if h has algebraic singularities,

(L, h) ∗ C = (L, h) · C

holds.
On the other hand by (a slight generalization of) the approximation theo-

rem of [4, p.380, Proposition 3.7], there exists a sequence of singular hermitian
metrics {hj}∞j=1 satisfying the following 6-conditions :

1. Θhj
is positive for every j,

2. limj→∞ hj = h holds in the sense of the convergence of the weight
functions as currents on M and C,

3. hj has algebraic singularities,

4. I(hjm) ⊆ I(hjmj ), holds for every m ≥ 0 and j ≥ 1,

5. limj→∞ Ī(hmj ) = Ī(hm) holds for every m,

6. limj→∞ Ī(hmj |C) = Ī(hm |C) holds for every m.

The third condition looks a little bit different from [4, Proposition 3.7]. But
it is essentially the same by Lemma 2.2 and the construction of {hj} below.
The 4-th condition cannot be deduced directly by the approximation theorem
of [4, p.380, Proposition 3.7].
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Let us briefly show how to construct {hj}. The following argument is a
slight modification of that in [4]. First we shall consider the local approx-
imation of a plurisubharmonic function by a sequence of plurisubharmonic
functions with algebraic singularities.

Let ϕ be a plurisubharmonic function on ∆n. Let C = {p ∈ ∆n | z2(p) =
· · · zn(p) = 0}. Suppose that ϕ is not identically −∞ on C. That is to say
we are considering the case that h = e−ϕ and C is a smooth curve in ∆n.
Let m be a positive integer. Let H(jϕ)C be the Hilbert space defined by

H(jϕ)C := {f ∈ O(∆n) |
∫

∆n
| f |2 e−jϕdλ <∞ and

∫

C
| f |2 e−jϕdλC <∞}

with the inner product

(f, g) :=
1

2

∫

∆n
f · ḡ · e−jϕdλ+

1

2

∫

C
f · ḡ · e−jϕdλC

where dλ and dλC is the usual Lebesgue measure on ∆n and C respectively.
Let {σℓ} be an orthonormal basis of H(jϕ)C and let

ϕj :=
1

2j
log

∑

| σℓ |2 .

Let ψ is the plurisubharmonic function on ∆n defined by

ψ = (n− 1) log(
n

∑

i=2

| zi |2).

Proposition 2.3 There exist positive constants K1, K2 > 0 independent of
m such that

1.

ϕ(z) − K1

j
≤ ϕj(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1

j
log(

K2

rn
)

holds for every z ∈ C and r < d(z, ∂∆n) and

ϕ(z) +
1

2j
ψ(z) − K1

j
≤ ϕj(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1

j
log(

K2

rn
)

holds for every z ∈ ∆n − C and r < d(z, ∂∆n),

2. ν(ϕ, z) − n/j ≤ ν(ϕj, z) ≤ ν(ϕ, z) holds for every z ∈ ∆n.
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Proof of Proposition 2.3. We note that

ϕj(z) = sup
f∈B(1)

1

j
log | f(z) |

holds, where B(1) is the unit ball of H(jϕ)C . For r < dist(z, ∂∆n) and
f ∈ B(1), the mean value inequality applied to the plurisubharmonic function
| f |2 implies

| f(z) |2 ≤ 1

πnr2n/n!

∫

|ζ−z|<r
| f(ζ) |2 dλ(ζ)

≤ 1

πnr2n/n!
exp(2j sup

|ζ−z|<r
ϕ(ζ))

∫

∆n
| f |2 e−2jϕdλ

holds. If we take the supremum over all f ∈ B(1) we have

ϕj(z) ≤ sup
|ζ−z|<r

ϕ(ζ) +
1

2j
log

1

πnr2n/n!

holds.
Conversely, the L2-extension theorem (Theorem 2.6) applied twice to the

zero dimensional subvariety {z} ⊂ C ⊂ ∆n shows that for any a ∈ C there
is a holomorphic function f on ∆n such that f(z) = a and

∫

∆n
| f |2 e−jϕdλ+

∫

C
| f |2 e−jϕdλC ≤ 2K1 | a |2 e−2jϕ(z),

where K1 only depends on n. We fix a such that the righthandside is 1. This
gives the other inequality

ϕj(z) ≥
1

j
log | a |= ϕ(z) − logK1

2j
.

If z ∈ ∆n − C, there is a holomorphic function f on ∆n such that f(z) = a
and ∫

∆n
| f |2 e−jϕ−ψdλ ≤ K1 | a |2 e−2jϕ(z)−ψ(z)

holds. In particular f |C≡ 0 holds in this case. This implies the inequality

ϕj(z) ≥ ϕ(z) +
1

2j
ψ(z) − logK1

2j
.

Hence we see that
ν(ϕj , z) ≤ ν(ϕ, z)
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holds for every z ∈ ∆n. In the opposite direction we find

sup
|x−z|<r

ϕj(x) ≤ sup
|ζ−z|<2r

ϕ(ζ) +
1

j
log

K2

rn

holds, where K2 is a positive constant independent of j. Thus we obtain

ν(ϕj , x) ≥ ν(ϕ, x) − n

j
.

Q.E.D.

To construct {hj} we need to globalize the above argument,i.e. we need
to glue local approximations. But this is completely parallel to the argument
in [4, pp. 377-380]. Hence we omit it. We note that the glueing process in [4,
pp. 377-380, see especially p.377, Lemma 3.5] does not change singularities
of the sequence of approximations (up to quasi-isometry) on X (hence in
particular on C).

By the construction we have the following lemma.

Lemma 2.4

I(hjm) ⊆ I(hjmj )

holds for every j and m ≥ 0.

Proof of Lemma 2.4. By the construction of hj we see that

I(hj) ⊆ I∞(hjj)

holds (for the definition of I∞ see Section 2.2). By the subadditivity theorem
([3]), we see that

I(hjm) ⊆ I(hj)m ⊆ I∞(hjj)
m ⊆ I∞(hjmj ) ⊆ I(hjmj )

hold for every m ≥ 0. Q.E.D.

By Lemma 2.4 the sequence {hj} satisfies the 4-th condition above. The 3-
rd and 5-th conditions are satisfied by the convergences of the Lelong numbers

lim
j→∞

ν(Θhj
) = ν(Θh)
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and
lim
j→∞

ν(Θhj
|C) = ν(Θh |C)

which follow from Proposition 2.3. Since the first and the second conditions
are cleary satisfied, {hj} is a desired sequence of singular hermitian metrics
on L.

We note that for every m ≥ 0, OC(mL) ⊗ I(hm) is torsion free, since it
is a subsheaf of a locally free sheaf on a smooth variety C. Since dimC = 1,
this means that for every m ≥ 0 OC(mL) ⊗ I(hm) is invertible on C. Since
for every 0 ≤ k < j

degC OC((jm+ k)L) ⊗ I(hjm+k) ≤ degC OC(jmL) ⊗ I(hjm) + k(L · C)

holds, by Lemma 2.4 we see that for every 0 ≤ k < j

degC OC((jm+ k)L) ⊗ I(hjm+k) ≤ degC OC(jmL) ⊗ I(hjmj ) + k(L · C)

hold. Then by the Riemann-Roch theorem and the Kodaira vanishing theo-
rem imply that

(L, hj) · C ≥ (L, h) · C
holds. In particular we see that

limj→∞(L, hj) · C ≥ (L, h) · C

holds.
On the other hand since hj has algebraic singularities,

(L, hj) · C = (L, hj) ∗ C

holds. This implies that

limj→∞(L, hj) · C = limj→∞(L, hj) ∗ C = (L, h) ∗ C

hold. The last equality comes from the 2-nd condition. Combining the above
inequalities, we have that

(L, h) · C ≤ (L, h) ∗ C

holds. Since we already have the opposite inequality, we see that

(L, h) · C = (L, h) ∗ C

holds. This completes the proof of Theorem 2.7. Q.E.D.
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Corollary 2.1 Let (L, h) be a pseudoeffective singular hermitian line bundle
on a smooth projective variety X. Let Y be a subvariety such that the re-
striction h |Y is well defined. Then for every irreducible curve C on Y such
that h |C is well defined,

(L, h) · C = (L, h) |Y ·C

holds. In other words, the intersection theory is compactible with restric-
tions. In particular (L, h) |Y is numerically trivial, if and only if (L, h) is
numerically trivial on Y .

By the additivity of Lelong numbers we have the following corollary.

Corollary 2.2 Let (L, h), (L′, h′) be singular hermitian line bundles on a
smooth projective variety X such that the curvature currents Θh,Θh′ are pos-
itive. Then for an irreducible curve C such that h |C and h′ |C are both well
defined,

(L⊗ L′, h · h′) · C = (L, h) · C + (L′, h′) · C
holds.

Theorem 2.8 Let (L, h) be a singular hermitian line bundle on a smooth
projective variety X. Suppose that Θh is bounded from below by some negative
multiple of a C∞-Kähler form on X. Let D be a smooth divisor on X. If
h |D is well defined, then

ĪD(h) = Ī(h |D)

holds.

Proof of Theorem 2.8. Since the statement is local, we may assume that
X is the unit open polydisk ∆n = {(z1, . . . , zn) ∈ Cn; | zi |< 1, 1 ≤ i ≤ n},
D is the divisor (zn) and L is a trivial bundle with singular hermitian metric
e−ϕ, where ϕ is a plurisubharmonic function on ∆n.

The proof of Theorem 2.8 is parallel to that of Theorem 2.7 , if we replace
the curve C by the divisor D.

First we shall consider the case that h has algebraic singularities. Let

f : Y −→ X

be a modification such that there exits an effective Q-divisor F with normal
crossings on Y such that

I(f ∗hm) = OY (−[mF ])
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holds for every m ≥ 0. Let E be the strict transform of D in Y . By the
assumption the support of F does not contain E. We may and do assume
that E + F is a divisor with normal crossings. Then we have that

IE(f ∗hm) = OE(−[mF ])

holds for every m ≥ 0. And

(⋆) ĨD(hm) = OX(−KX) ⊗ f∗(OY (KY ) ⊗OY (−[mF ])) ⊗OD

holds. Let

F =
ℓ

∑

i=1

aiFi

be the irreducible decomposition of F . Let us fix an arbitrary point x on X.
For every 1 ≤ i ≤ ℓ and m ≥ 1, we define the number bi(m) by

bi(m) := inf
σ

multFi
f ∗(σ),

where σ runs all the nonzero element of ĨD(hm)x.
Let H(mϕ) be the Hilbert space defined by

H(mϕ) := {φ ∈ O(∆n) |
∫

∆n
| φ |2 e−mϕdλ <∞},

with the inner product

(φ, φ′) :=
∫

∆n
φ · φ̄′ e−mϕdλ,

where dλ is the usual Lebesgue measure on ∆n. Let {σℓ} be an orthonormal
basis of H(mϕ) and let

ϕm :=
1

2m
log

∑

ℓ

| σℓ |2 .

Clearly
bi(m) = m · ν(f ∗ϕm, Fi)

holds. We define the nonnegative numbers {ri} by

KY = f ∗KX +
∑

i

riFi + other components.

To estimate bi(m) we shall prove the following lemma.
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Lemma 2.5 1. ν(f ∗ϕm, Fi) ≤ ai holds,

2.

ν(f ∗ϕm, Fi) ≥ ai −
n+ ri
m

holds for every m ≥ 1.

Proof of Lemma 2.5. The first assertion follows from the parallel argument
as in the proof of Proposition 2.3. In fact the L2-extension theorem (Theorem
2.6) applied to the zero dimensional subvariety {z} ⊂ ∆n shows that for any
a ∈ C there is a holomorphic function f on ∆n such that f(z) = a and

∫

∆n
| f |2 e−jϕdλ ≤ 2K1 | a |2 e−2jϕ(z),

where K1 only depends on n. This gives the inequality :

ϕm ≥ 1

m
log | a |= ϕ− logK1

2m
.

This implies the first assertion.
Let us prove the second assertion. Let y ∈ Y be a general point on Fi

and let (U,w1, . . . , wn) be a local coordinate around y such that U is biholo-
morphic to the unit open polydisk in Cn by the coordinate (w1, . . . , wn). We
set

J =
f ∗dz1 ∧ · · · ∧ dzn
dw1 ∧ · · · ∧ dwn

.

Then J is a holomorphic function on U . Let φ ∈ H(mϕ) be an arbitrary
element.

Then my mean value inequality

| f ∗φ(w) · J(w) |2 ≤ 1

πnr2n/n!

∫

|ζ−w|<r
| f ∗φ |2| J |2 dλ(ζ)

≤ 1

πnr2n/n!
exp(2m sup

|ζ−w|<r
f ∗ϕ(ζ))

∫

∆n
| f ∗φ(ξ) · J |2 f ∗e−2mϕdλ(ξ)

≤ 1

πnr2n/n!
exp(2m sup

|ζ−w|<r
f ∗ϕ(ζ))

∫

∆n
| φ(z) |2 e−2mϕdλ(z)

hold, where dλ denotes the usual Lebesgue measure on the unit open poly-
disk.

We note that

ϕm(z) = sup
f∈B(1)

1

m
log | f(z) |
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holds, where B(1) is the unit ball of H(mϕ). If we take the supremum over
all φ in B(1) in H(mϕ), we have that

ϕm(w) ≤ sup
|ζ−w|<r

ϕ(ζ) +
1

2m
log

1

πn | J(w) |2 ·r2n/n!

holds. Hence we have that

ν(f ∗ϕm, y) ≥ ν(f ∗ϕ, y) − n+ ri
m

= ai −
n + ri
m

hold. This completes the proof of Lemma 2.5. Q.E.D.

We note that for every positive number ǫ and positive integer m,

I(h1+2ǫ |D) ⊆ m

√

ĨD(h(1+ǫ)m)

holds by the formula (⋆) and the definition of m

√

ĨD(hm). Hence we have that

I(h1+2ǫ |D) ⊆ ID(h1+ǫ)

holds. By the definition of the closure of multiplier ideal sheaves, letting ǫ
tend to 0, we have that

Ī(h |D) ⊆ ĪD(h)

holds.
On the other hand by Lemma 2.5 we have that

lim
m→∞

1

m
bi(m) = lim

m→∞
ν(f ∗ϕm, Fi) = ai

hold. By the definitions of bi(m) and m

√

Ĩ(hm), we see that the opposite
inclusion :

Ī(h |D) ⊇ ĪD(h)

holds. Hence
ĪD(h) = Ī(h |D)

holds.
If h is not of algebraic sigularities, by approximating h by a sequence of

singular hermitian metrics with algebraic singularities as in Section 2.6, we
completes the proof of Theorem 2.8. Q.E.D.
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3 Characterization of numerically trivial sin-

gular hermitian line bundles

In this section we prove Theorem 1.2. Let (L, h) be a singular hermitian line
bundle on a smooth projective variety X with positive curvature current.
Suppose that (L, h) is numerically trivial on X. Let us define the closed
positive current T on X by

T :=
1

2π
Θh −

∑

D

ν(Θh, D)D

where D runs all the prime divisors on X.
Let us define the subset S of X by

S := {x ∈ X | ν(T, x) > 0}.

Then S consists of at most countable union of subvarieties of codimension
greater than or equal to 2 by a theorem of Siu ([13]). Let n be the dimension
of X. Let H be a very ample divisor and let C be a very general complete
intersection curve of (n−1)-members of | H |. If we take H sufficiently ample
and take C very general we may assume that

C ∩ S = ∅

holds and C intersects every prime divisor D with ν(Θh, D) > 0 (such prime
divisors are at most coutably many) at Dreg transversally. Let ω be a Kähler
form which represents c1(H). Let σ ∈ Γ(X,OX(H)) be a very general
nonzero element such that D = (σ) is smooth and T |D is well defined.
Then by Stokes’ theorem,

T (ωn−1) =
∫

D
T ∧ ωn−2

holds. Hence inductively we have that

T (ωn−1) =
∫

C
T = L · C −

∑

D

ν(Θh, D)D · C

hold. On the other hand, by the choice of C and Lemma 2.2 we see that

I(hm |C) ⊇ OC(−[m
∑

D

ν(Θh, D)D])
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holds for every m ≥ 0 (since C is smooth, the both sides are torsion free).
Hence if

L · C −
∑

D

ν(Θh, D)D · C > 0

holds, then

(L, h) · C ≥ L · C −
∑

D

ν(Θh, D)D · C

= limm→∞
1

m
degC OC(mL) ⊗OC(−[m ·

∑

ν(Θh, D)D])

= L · C −
∑

D

ν(Θh, D)D · C > 0

hold by the Riemann-Roch theorem and the Kodaira vanishing theorem.
This is the contradiction. Hence we see that

T (ωn−1) =
∫

C
T = L · C −

∑

D

ν(Θh, D)D · C = 0

hold. Since T is closed positive, this implies that T ≡ 0. Hence we conclude
that

Θh = 2π
∑

D

ν(Θh, D)D

holds. This completes the proof of Theorem 1.2. Q.E.D.

By the proof of Theorem 1.2, we obtain the following.

Theorem 3.1 Let (L, h) be a pseudoeffective singular hermitian line bundle
on a smooth projective variety X. Then (L, h) is numerically trivial if and
only if for every irreducible curve C such that the restriction h |C is well
defined

Θh |C= 2π
∑

x∈C

ν(Θh |C , x)x

holds.

By using the intersection theory on smooth divisors (cf. Section 2.5), we
have the following corollary.

Corollary 3.1 Let X be a smooth projective variety and let (L, h) be a pseu-
doeffective singular hermitian line bundle on X. Let D be a smooth divisor
on X. Suppose that (L, h) is numerically trivial on D. Then

SD := {x ∈ D | νD(Θh, x) > 0}
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is a sum of countably many prime divisors on D. And for every m ≥ 0,

ĪD(hm) = I(m ·
∑

E

νD(Θh, E)E)

holds, where E runs all prime divisors on D.

Here we do not need assume that the restriction h |D is well defined.

Proof of Corollary 3.1. The proof is essentially same as that of Theorem
1.2.

Let X,D,(L, h) be as above. Let {Fi}i∈I be the set of divisorial compo-
nents of SD. Let C be a very general complete intersection curve of a suffi-
ciently ample linear system | H | on D which does not intersects SD−∪i∈IFi
and meets every Fi(i ∈ I) transversally. We set

ai := νD(Θh.Fi).

By the definition of the intersection number

(L, h) · C = (L− ν(Θh, D)D) · C + limm→∞m
−1 degC ĨD(hm) ⊗OC = 0

hold. Hence if we take C very general, we see that

(L− ν(Θh.D)D) · C =
∑

i∈I

ai(Fi · C)

holds by the definition of νD.
Suppose that SD −∪i∈IFi is nonempty. Let {Ct}t∈∆ be a family of com-

plete intersection curve of (dimD − 1)-members of | H | such that

1. C0 is not contained in SD,

2. C0 ∩ (SD − ∪i∈IFi) 6= ∅, a very general member of {Ct} does not
intersects SD − ∪i∈IFi and meets every Fi transversally.

Then by the uppersemicontinuity of Lelong numbers νD in countable Zariski
topology (the uppersemicontinuity is ovbious by the definition of νD (cf.
Section 2.5)), we see that

(L, h) · C0 < 0

holds. This is the contradiction, since (L, h) · C0 ≥ 0 holds by the definition
of the intersection number. Hence we have that SD =

∑

i∈I Fi holds. This
completes the proof of the first assertion.
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Let us prove the second assertion. Let us fix an irreducible component Fi
of SD. Let U be a Stein open subset on D and let σ ∈ Ĩ(hℓ)(U) be a very
general element. Let ǫ be any small positive number. Then by the definition
of νD(Θh), we see that for every sufficiently large ℓ

(⋆⋆) (1 − ǫ)νD(Θh, Fi) ≤
1

ℓ
multFi

(σ) ≤ νD(Θh, Fi)

hold. Then by the definition of ID(hm) and Lemma 2.2, we see that

ĪD(hm) ⊆ I(m ·
∑

i∈I

νD(Θh, Fi)Fi)

holds.
Let C be a very general smooth complete intersection of (dimD − 1)-

members of | H |. Then as above

((L− ν(Θh, D)D) |D −
∑

i∈I

aiFi) · C = 0

holds.
We claim that L− ν(Θh, D)D− ∑

i∈I aiFi is pseudoeffective in the sense
that c1((L − ν(Θh, D)D) |D −∑

i∈I aiFi) is on the closure of effective cone
of D. Let G be an ample line bundle on X such that OX(G+mL) ⊗ I(hm)
is globally generated on X for every m ≥ 0. This is possible by [14, p.664,
Proposition 1]. By the formula (⋆⋆), this implies that for any sufficiently
small ǫ > 0 and every finite subset I0 of I

(L− ν(Θh, D)D) |D −
∑

i∈I0

aiFi

is pseudoeffective. Hence this we see that (L− ν(Θh, D)D) |D −∑

i∈I aiFi is
pseudoeffective.

Since
((L− ν(Θh, D)D) |D −

∑

i∈I

aiFi) ·HdimD−1 = 0

holds, this implies that L− ν(Θh, D)D) |D −∑

i∈I aiFi is numerically trivial.
Let f : D̃ −→ D be any composition of successive blowing ups with

smooth center, then by the same argument as above, we see that

f ∗(L− ν(Θh, D)D) |D −
∑

Ẽ

νD̃(f ∗Θh, Ẽ)Ẽ
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is numerically trivial, where Ẽ runs all the prime divisors on D̃. We note
that by the definitions of νD and νD̃, we see that

∑

Ẽ

νD̃(f ∗Θh, Ẽ)Ẽ − f ∗(
∑

i∈I

aiFi)

is effective, i.e. a sum of prime divisors with nonnegative coefficients. Since
f ∗((L− ν(Θh, D)D) |D −∑

i∈I aiFi) is numerically trivial on D̃, we see that

∑

Ẽ

νD̃(f ∗Θh, Ẽ)Ẽ = f ∗(
∑

i∈I

aiFi).

Let m be any positive integer and fm : Dm −→ D be a modification such that
f ∗
mĪ(hm) is locally free. Then by the definition of ĪD(hm), it is determined

by the Lelong numbers νDm
on prime divisors on Dm. Applying the above

argument by taking D̃ to be Dm, we see that

ĪD(hm) = I(m ·
∑

i∈I

aiFi)

holds. This completes the proof of Corollary 3.1. Q.E.D.

Remark 3.1 By the above proof Corollary 3.1 still holds for a subvariety V
on D, if there exists a curve on V such that (L, h) ·C is well defined (cf. [18,
Remark 3.1]).

4 Numerical triviality and the growth of H0

In this section we shall relate the numerical triviality of singular hermitian
line bundles with positive curvature current and the growth of dimension of
global sections.

Definition 4.1 Let (L, h) be a singular hermitian line bundle on a smooth
projective variety X. Let H be an ample line bundle on X. We define the
number µh(X,H +mL) by

µh(X,H+mL) := (dimX)!·limℓ→∞ℓ
−dimX dimH0(X,OX(ℓ(H+mL))⊗I(hmℓ))

For a subvariety Y in X such that (L, h) |Y is well defined, we define

µh(Y,H+mL) := (dimY )!·limℓ→∞ℓ
−dimY dimH0(Y,OY (ℓ(H+mL))⊗I(hmℓ)/tor),

where tor denotes the torsion part of OY (H +mL) ⊗ I(hm).
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We note that µh(Y,H +mL) is different from µh(Y,H +mL |Y ) in general.
By Corollary 2.1, we note that if (L, h) is numerically trivial on Y if and only
if (L, h) |Y is numerically trivial.

Lemma 4.1 Suppose that (L, h) is pseudoeffective and is not numerically
trivial on X. Then

limm→∞m
−1µh(X,H +mL) > 0

holds for every ample line bundle H on X.

Proof of Lemma 4.1. Let n be the dimension of X. We prove this lemma
by induction on n. If n = 1, then for every ℓ ≥ 0

OX(ℓL) ⊗ I(hℓ) ⊇ OX(ℓL−
∑

x∈X

[ℓ · ν(Θh, x)])

holds by Lemma 2.2. Hence by Theorem 1.2, we see that

lim
ℓ→∞

degX OX(ℓL) ⊗ I(hℓ) = +∞.

This implies Lemma 4.1.
Let π : X̃ −→ P1 be a Lefschetz pencil associated with a very ample

linear system say | H | on X. If we take the pencil very general, we may
assume that I(hℓ) is an ideal sheaf on all fibers of π for every ℓ. Let

b : X̃ −→ X

be the modification associated with the pencil and let E be the exceptional
locus of b. We note that on the Hilbert scheme of curves inX, the intersection
number (L, h)·C is lower semicontinuous in countable Zariski topology by the
upper semicontinuity of the Lelong number (or by the L2-extension theorem
(Theorem 2.6)), where C moves in the Hilbert scheme. Then by the inductive
assumption for a general fiber F of π we see that

limm→∞m
−1µh(F, b

∗(H +mL)) > 0

holds. Let us consider the direct image

Em,ℓ := π∗OX̃(ℓb∗(H +mL) ⊗ I(b∗(hmℓ))).

By Grothendiek’s theorem, we see that

Em,ℓ ≃ ⊕r
i=1OP1(ai)
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for some ai = ai(m, ℓ) and r = r(m, ℓ). By the inductive assumption we see
that

limm→∞m
−1(limℓ→∞ℓ

−(n−1)r(m, ℓ)) > 0

holds. We note that ℓ0b
∗H − E is ample for some large positive integer ℓ0.

Hence we see that
OX̃(ℓ0b

∗H −E)

admits a C∞-hermitian metric h0 with strictly positive curvature.Let h1 be
a C∞-hermitian metric on O

P
1(1). Then there exists a positive rational

number c such that
1

ℓ0
Θh0 − c · π∗Θh1

is a Kähler form on X̃. By Nadel’s vanishing theorem (Theorem 2.1),

H1(X̃,OX̃(ℓ(b∗(H +mL) − 1

ℓ0
E)) ⊗ I(b∗(hmℓ)) ⊗ π∗OP1(−cℓ)) = 0

holds for every sufficiently large ℓ such that ℓ/ℓ0 and cℓ are integers. Also by
Nadel’s vanishing theorem, we see that

R1π∗OX̃(ℓ(b∗(H +mL) − 1

ℓ0
E)) ⊗ I(b∗(hmℓ))

is the 0-sheaf on P1 for every sufficiently large ℓ divisible by ℓ0. Hence we see
that Em,ℓ ⊗ O

P
1(−cℓ + 1) is globally generated on P1 for every sufficiently

large ℓ such that ℓ/ℓ0 and cℓ are integers. This implies that

limℓ→∞ℓ
−1 min

i
ai ≥ c

holds for every i. Hence

limℓ→∞ℓ
−n dimH0(X̃,OX̃(ℓb∗(H +mL)) ⊗ I(b∗(hmℓ))) ≥

c · limℓ→∞ℓ
−(n−1)r(m, ℓ)

holds. By this we see that

limm→∞m
−1(limℓ→∞ℓ

−n dimH0(X̃,OX̃(ℓb∗(H +mL)) ⊗ I(b∗(hmℓ))) > 0

holds. Since
b∗I(b∗hmℓ) ⊆ I((hmℓ))

holds by Lemma 2.1, we see that

limm→∞m
−1µh(X,H +mL) > 0
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holds. Here we have assumed that H to be sufficiently very ample. To prove
the general case of Lemma 4.1, we argue as follows. Let H be any ample line
bundle on X. Then thanks to Nadel’s vanishing theorem

µh(X, a(H +mL)) = an · µh(X,H +mL)

holds for every positive integer a. Now it is clear that Lemma 4.1 holds for
any ample line bundle H . This completes the proof of Lemma 4.1. Q.E.D.

Theorem 4.1 Let (L, h) be a pseudoeffective singular hermitian line bundle
on a smooth projective variety X. Then (L, h) is numerically trivial if and
only if

limm→∞µh(X,H +mL) <∞
holds for every ample line bundle H on X.

Proof of Theorem 4.1. By Lemma 4.1, (L, h) is numerically trivial, if

limm→∞µh(X,H +mL) <∞

holds for every ample line bundle H on X.
Let us prove the converse. Suppose that

limm→∞µh(X,H +mL) = ∞

holds for some ample line bundle H on X. Let x be a very general point of
X such that

I(hm)x = OX,x

holds for every m ≥ 0.

Lemma 4.2 For every postive integer N there exists a positive integer m0

such that for every sufficienly large ℓ there exists a section

σℓ ∈ H0(X,OX(ℓ(H +m0L)) ⊗ I(hm0ℓ) ⊗MNℓ
x ) − {0}.

Proof of Lemma 4.2.

limm→∞µh(X,H +mL) = ∞

holds by the assumption. Hence there exists a positive integer m0 such that

µh(X,H +m0L) > NdimX + 1
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holds. Then

dimH0(X,OX(ℓ(H +m0L)) ⊗ I(hm0ℓ)) ≥ NdimX + 1

(dimX)!
ℓdimX + o(ℓdimX)

holds. We consider the exact sequence

0 → H0(X,OX(ℓ(H+m0L))⊗I(hm0ℓ)⊗MNℓ
x ) → H0(X,OX(ℓ(H+m0L))⊗I(hm0ℓ))

→ H0(X,OX(ℓ(H +m0L)) ⊗ I(hm0ℓ) ⊗OX/MNℓ
x ).

Since
I(hm)x = OX,x

holds for every m ≥ 0, we see that

dimH0(X,OX(ℓ(H+m0L))⊗I(hm0ℓ)⊗OX/MNℓ
x ) =

NdimX

(dimX)!
ℓdimX+o(ℓdimX)

holds. Combining the above facts, we see that

H0(X,OX(ℓ(H +m0L)) ⊗ I(hm0ℓ) ⊗MNℓ
x ) 6= 0

holds for every sufficiently large ℓ. This completes the proof of Lemma 4.2.
Q.E.D.

Let us continue the proof of Theorem 4.1. Let H0 be a sufficiently ample
line bundle. Let C be a very general complete intersection of (dimX − 1)-
members of | H0 | such that x ∈ C. We may assume that h |C is well defined
and

σℓ |C 6 ≡0

holds for every sufficiently large ℓ. This implies by a degree argument that

limm→∞µh(C,H +mL) ≥ N

holds. Since N is arbitrary, we may take m0 so that

µh(C,H +m0L) ≥ 3H · C
holds. Then for every sufficiently large ℓ

dimH0(C,OC(ℓ(H +m0L) − ℓH)) ⊗ I(hm)) ≥ (H · C) · ℓ
holds. Hence

(L, h) · C > 0

holds. This completes the proof of Theorem 4.1. Q.E.D.
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Theorem 4.2 Let f : Y −→ X be a surjective morphism between smooth
projective varieties. Let (L, h) be a pseudoeffective singular hermitian line
bundle on X. Then (L, h) is numerically trivial on X if and only if f ∗(L, h)
is numerically trivial on Y .

Proof of Theorem 4.2. If (L, h) is numerically trivial on X, then by The-
orem 1.2, Θh is a sum of at most countably many prime divisors with non-
negative coefficients. Hence f ∗Θh is at most countably many prime divisors
with nonnegative coefficients. Hence by Theorem 3.1, f ∗(L, h) is numerically
trivial on Y .

Suppose that (L, h) is not numerically trivial onX. LetH be a sufficiently
very ample line bundle on Y and let C be a very general complete intersection
curve of dimY − 1 members of | H |. We may assume that

1. C is smooth,

2. f(C) is a smooth curve,

3. f |C : C −→ f(C) is unramified on {y ∈ C | ν(f ∗Θh |C , y) > 0},

4. (L, h) · f(C) > 0 holds.

Then we have that

1

2π

∫

C
f ∗Θh−

∑

y∈C

ν(f ∗Θh, y) = deg(f |C)·( 1

2π

∫

f(C)
Θh−

∑

x∈f(C)

ν(Θh |C , x)) > 0

holds. Hence f ∗(L, h) is not numerically trivial on Y . This completes the
proof of Theorem 4.2. Q.E.D.

By Theorem 4.2, we may define the numerical triviality of pseudoeffective
singular hermitian line bundles on singular varieties.

Definition 4.2 Let X be a singular variety and let

π : X̃ −→ X

be a resolution of singularities. Let L be a line bundle on X. A hermitian
metric h on L |Xreg

is said to be a singular hermitian metric on X, if π∗h is
a singular hermitian metric with curvature current bounded from below by a
C∞-from on X̃.

(L, h) is said to be pseudoeffective, if π∗(L, h) is pseudoeffective.
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Suppose that X is proper and X̃ is smooth projective . A singular hermi-
tian line bundle (L, h) is said to be numerically trivial, if π∗(L, h) is numer-
ically trivial.

The above definition is independent of the choice of the resolution π, by the
L1-property of almost plurisubharmonic functions and Theorem 4.2.

5 The fibration theorem

In this section we shall prove Theorem 1.1.

5.1 Key lemma

The following lemma is the key for the proof of Theorem 1.1.

Lemma 5.1 Let f : M −→ B be an algebraic fiber space and let (L, h) be a
pseudoeffective singular hermitian line bundle on M . Suppose that for every
very general fiber F , (L, h) is numerically trivial on F and there exists a
subvariety W of M such that

1. h |W is well defined,

2. (L, h) is numerically trivial on W .

3. f(W ) = B.

Then (L, h) is numerically trivial on M .

Proof of Lemma 5.1. Taking a suitable modification of M , by Theorem
1.2 and Theorem 4.2 we may assume that W is a smooth divisor.

Suppose that (L, h) is not numerically trivial on M . Then there exists
an ample line bundle H on M such that

limm→∞µh(M,mL+H) = ∞
holds. We may assume that H is very ample on M .

By the assumption we see that

I(hm)x = OM,x

for a very general point x ∈ W and every m ≥ 0. Let x0 be a very general
point of W such that

I(hm)x0 = OM,x0

holds for every m ≥ 0. The proof of the following lemma is identical to that
of Lemma 4.2. Hence we omit it.
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Lemma 5.2 For any positive integer N there exists a positive integer m0

such that
H0(M,OM(ℓ(m0L+H)) ⊗ I(hℓm0) ⊗MNℓ

x0
) 6= 0

holds for every sufficiently large ℓ.

Let us continue the proof of Lemma 5.1. Let N be a sufficiently large pos-
itive integer and let m0 be the integer as in Lemma 5.2. For every sufficiently
large ℓ, we take an element

σℓ ∈ H0(M,OM(ℓ(m0L+H)) ⊗ I(hℓm0) ⊗MNℓ
x0

) − {0}.

Let R be the family of smooth curves which are complete intersection of
dimW − 1 members of | H |W on W . Let d0 be a large positive integer such
that

HdimF−1 · F · (H − d0W ) < 0

holds for every general fiber F of f . Since (L, h) is numerically trivial on W ,
we have the following lemma.

Lemma 5.3 There exists a positive constant A0 independent of m0 such that
for every member R of R such that the restriction h |R is well defined,

(∗) dimH0(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) ≤ A0 · ℓ+ o(ℓ)

holds for every 0 ≤ s ≤ d0ℓ.

Proof of Lemma 5.3. We note that I(hm0ℓ) |R is torsion free, hence locally
free (note that dimR = 1), since R is smooth and I(hm0ℓ) |R is a subsheaf
of OR. Then since (L, h) |W is numerically trivial, by Corollary 2.1, by the
formula (♭) in Remark 2.5 there exists a positive constant A0 independent of
m0 such that

degR(OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) ≤ A0 · ℓ+ o(ℓ)

holds for every ℓ ≥ 0 and 0 ≤ s ≤ d0ℓ.
First let us consider the case that W ·R ≤ 0 holds. Since H is ample, we

have that
H1(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) = 0

holds for every sufficiently large ℓ and 0 ≤ s ≤ d0ℓ. By the Riemann-Roch
theorem we have that

dimH0(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) ≤ A0 · ℓ+ o(ℓ)
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holds for every 0 ≤ s ≤ d0ℓ.
Next let us consider the case that W · R > 0 holds. Then there exists

a positive integer a0 such that for every s ≥ a0, H
0(R,OR(sW )) 6= 0 holds.

This implies that

(1) dimH0(R,OR(ℓ(H+m0L)−sW )⊗I(hm0ℓ)) ≤ dimH0(R,OR(ℓ(H+m0L))⊗I(hm0ℓ))

holds for every s ≥ a0. Hence as before we see that there exists a positive
constant A0 such that

dimH0(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) ≤ A0 · ℓ+ o(ℓ)

holds for every s ≥ a0. On the other hand since H is ample, for every
sufficiently large ℓ and every 0 ≤ s ≤ a0, we see that

H1(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) = 0

holds. Hence we see that by the Riemann-Roch theorem

(2) dimH0(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) =

= 1 − g(R) + degROR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)

≤ 1 − g(R) + degROR(ℓ(H +m0L)) ⊗ I(hm0ℓ)

hold for every sufficiently large ℓ and every 0 ≤ s ≤ a0, where g(R) denotes
the genus of R. Combining the inequalities (1) and (2) above, we see that
there exists a positive constant A0 such that

dimH0(R,OR(ℓ(H +m0L) − sW ) ⊗ I(hm0ℓ)) ≤ A0 · ℓ+ o(ℓ)

holds for every sufficiently large ℓ and 0 ≤ s ≤ d0ℓ, also in this case. Q.E.D.

Take N > A0 and the corresponding m0 in Lemma 5.2. We see that using
the case s = 0 of (∗), for every member R of R containing x0, by a degree
argument

σℓ |R≡ 0

holds for every sufficiently large ℓ. Since the members of R containing x0

dominates W , we see that
σℓ |W≡ 0
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holds for every sufficiently large ℓ. Next we consider the vanishing order of
σℓ along the divisor W . Repeating the same arugument we see that

σℓ ∈ H0(M,OM(ℓ(H +m0L) − d0ℓW ) ⊗ I(hm0ℓ))

holds. Let F be a very general fiber of f such that (L, h) |F well defined and
is numerically trivial.

Let SF denote the family of smooth curves complete intersection of dimF−
1 members of the very ample linear system | H |F on F . We note that F is
dominated by a family SF of smooth curves passing through W ∩ F and

HdimF−1 · F · (H − d0W ) < 0

holds. Since σℓ |F has the vanishing order at least d0ℓ along W ∩F and (L, h)
is numerically trivial on F , for every sufficiently large ℓ, σℓ is identically 0
along any members of SF . In fact for every [S] ∈ SF and every sufficiently
large ℓ

degS OS(ℓ(H +m0L) − d0ℓW ) ⊗ I(hm0ℓ)

is negative, since

limm→∞
1

m
degS OS(mL) ⊗ I(hm) = (L, h) · S = 0

hold (cf. the formula (♭) in Remark 2.5). Hence

σℓ |F≡ 0

holds for every sufficiently large ℓ. Moving smooth fibers F , SF forms a
dominating family of curves S on M . We may take such ℓ independent of
a very general F , since there exists a nonempty Zariski open subset Sℓ of S
such that for every [S] ∈ Sℓ, I(hm0ℓ) ⊗OS is an ideal sheaf on S and

degS OS(ℓ(H +m0L) − d0ℓW ) ⊗ I(hm0ℓ)

is independent of [S] ∈ Sℓ. This implies that

σℓ ≡ 0

holds on M for every sufficiently large ℓ. This is the contradiction. This
completes the proof of Lemma 5.1. Q.E.D.
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5.2 Proof of Theorem 1.1

Let x be an arbitrary point on X. We set

N (x) := {V | a subvariety of X such that x ∈ V and (L, h) is

numerically trivial on V }.
Let ν(x) denote the maximal dimension of the member of N (x) and we set

ν := inf
x∈X

ν(x).

Then for very general x ∈ X, we see that ν = ν(x) holds. We note that on
the Hilbert scheme of curves in X, the intersection number (L, h) ·C is lower
semicontinuous in countable Zariski topology by the upper-semicontinuity of
the Lelong number (or by the L2-extension theorem (Theorem 2.6)), where
C moves in the Hilbert scheme. Hence for every irreducible component of
the Hilbert scheme of X, the set of members on which the restriction of
(L, h) is well defined and numerically trivial is locally closed in countable
Zariski topology. Since the Hilbert scheme of X has only countably many
components, this implies that there exists an irreducible subvariety N 0 in
the Hilbert scheme of X whose members dominate X and for a very general
point x, there exists a member V of N 0 such that

1. x ∈ V ,

2. dim V = ν,

3. (L, h) is numerically trivial on V .

Let
ϕ : V −→ N 0

be the universal family and let

p : V −→ X

be the natural morphism.

Lemma 5.4 Let V be a very general member of N0. Then there exists a
Zariski open subset V0 ⊂ V such that V is the unique member of N0 which
intersects V0.
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Proof of Lemma 5.4. Supppose the contrary. Let V be a very general
member of N0. Let η denote the generic point of V . We define the closed
subset V1 of X by

V1 = the closure of p(ϕ−1(ϕ(p−1(η)))).

By the assumption we see that dimV1 > dim V holds (if there are only
finitely many members of N0 which intersect V , for a suitable choice of V0

the assertion is cleary satisfied). We note that V1 may be reducible. Let S1

be the closed subset of the closure of ϕ−1(ϕ(p−1(η))) defined by

S1 := the closure of p−1(η).

We note that p∗(L, h) is numerically trivial on S1 by Theorem 4.2, since
(L, h) is numerically trivial on V and p(S1) = V holds. By Lemma 5.1, we
see that p∗(L, h) is numerically trivial on

V (1) := the closure of ϕ−1(ϕ(p−1(η)),

since p∗(L, h) is numerically trivial on S1 and every very general fiber of
ϕ : V −→ N 0 by the definition of N0. Here we have used the fact that
the numerical triviality is invariant under modifications, hence we may use
the notion of numerical triviality on singular varieties by Theorem 4.2 (cf.
Definition 4.2). Again by Theorem 4.2, we see that (L, h) is numerically
trivial on V1. Since dim V1 > dimV holds, this contradicts the definition of
ν. This completes the proof of Lemma 5.4. Q.E.D.

Let us continue the proof of Theorem 1.1. Let N ′ be another subvariety of
the Hilbert scheme of X whose members dominate X and for a very general
point x of X there exists a member V ′ of N ′ such that

1. x ∈ V ′,

2. dim V ′ = ν,

3. (L, h) is numerically trivial on V ′.

Let
ϕ′ : V ′ −→ N ′

be the universal family and let

p′ : V ′ −→ X
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be the natural morphism. Then we set

V ′
1 := p′((ϕ′)−1(ϕ′((p′)−1(V ))))

for a very general member V of N 0. Repeating the same argument as above
we see that (L, h) is numerically trivial on V ′

1 . Hence by the definition of ν,
we see that N ′ = N 0 holds.

Hence by Lemma 5.4, we see that for a very general point x ∈ X, there
exists a unique member V of N (x) such that

1. [V ] ∈ N 0,

2. (L, h) is numerically trivial on V ,

3. dim V = ν.

Hence there exists a complement U0 of at most countably many union of
proper Zariski closed subsets in X such that for every x ∈ U0,

f(x) = [V ] ∈ N 0, x ∈ V

is a well defined morphism. Hence f defines a rational fibration

f : X − · · · → Y

by setting
Y := N 0.

If we replace the second condition on V ′,i.e. dimV ′ = ν by dimV ′ > 0, by
repeating the same argument, we see that V ′ is contained in a member of
N 0. This implies the 3-rd assertion of Theorem 1.1. Lemma 5.1 implies the
first assertion of Theorem 1.1.

By the construction this is the desired fibration. This completes the proof
of Theorem 1.1. Q.E.D.

6 An algebraic counterpart of the fibration

theorem

An algebraic counterpart of Theorem 1.1 would be the following theorem.
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Theorem 6.1 Let X be a normal projective variety and let L be a nef line
bundle on X. Then there exists a unique (up to birational equivalence) ra-
tional fibration

f : X − · · · → Y

such that

1. f is regular over the generic point of Y ,

2. L is numerically trivial on every fibers of f ,

3. dim Y is minimal among such fibrations.

The proof of the above theorem is essentially same as the proof of Theorem
1.1 and is much easier. Hence we omit it.

We should note that the fibrations given by Corollary 1.1 and Theorem
6.1 may not be same in general. I do not know how to generalize Theorem
6.1 to the case that L is pseudoeffective.
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[7] L. Hörmander, An Introduction to Complex Analysis in Several Vari-
ables 3-rd ed.,North-Holland(1990).

51

http://arXiv.org/abs/math/0002035


[8] Y. Kawamata, The Zariski decomposition of logcanonical divisors, Col-
lection of Alg. geom. Bowdowin 1985, Proc. of Sym. Pure Math. 46 Part
1, (1987), 425-433.

[9] Y. Kawamata, Pluricanonical systmes on minimal algebraic varieties,
Invent. Math. 79 (1985), 567-588.

[10] P. Lelong, Fonctions Plurisousharmoniques et Formes Differentielles
Positives, Gordon and Breach (1968).

[11] A.M. Nadel, Multiplier ideal sheaves and existence of Kähler-Einstein
metrics of positive scalar curvature, Ann. of Math. 132 (1990),549-596.

[12] T. Ohsawa and K. Takegoshi, L2-extension of holomorphic functions,
Math. Z. 195 (1987),197-204.

[13] Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the
extension of closed positive currents, Invent. Math. 27 (1974), 53-156.

[14] Y.-T. Siu, Invariance of plurigenera, Invent. Math. 134 (1998), 661-673.

[15] V.V. Shokurov, The nonvanishing theorem, Izv. Nauk USSR 26 (1986),
510-519.

[16] H. Tsuji, Analytic Zariski decomposition, Proc. of Japan Acad. 61(1992)
161-163.

[17] H. Tsuji, Existence and Applications of Analytic Zariski Decomposi-
tions, Analysis and Geometry in Several Complex Variables (Komatsu
and Kuranishi ed.), Trends in Math. 253-271, Birkhäuser (1999).
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