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HYPERKÄHLER POTENTIALS INCOHOMOGENEITY TWOPIOTR KOBAK AND ANDREW SWANNAbstrat. A hyperKähler potential is a funtion ρ that is a Käh-ler potential for eah omplex struture ompatible with the hyper-Kähler struture. Nilpotent orbits in a omplex simple Lie algebraare known to arry hyperKähler metris admitting suh potentials.In this paper, we expliitly alulate the hyperKähler potentialwhen the orbit is of ohomogeneity two. In some ases, we �ndthat this struture lies in a one-parameter family of hyperKäh-ler metris with Kähler potentials, generalising the Eguhi-Hansonmetris in dimension four.1. IntrodutionHyperKähler metris are speial Rii-�at strutures that are knownto arise in many physial theories. For example, moduli spaes ofmagneti monopoles often arry suh metris. For good hoies ofboundary onditions, these moduli spaes an be identi�ed with morefamiliar mathematial objets. In this way, hyperKähler metris havebeen shown to exist on the adjoint orbits of a omplex semi-simple Liegroup GC [21, 20, 4, 19℄. In [11℄, it was shown that these examplesinlude all hyperKähler metris of ohomogeneity one.Some of the earliest examples of hyperKähler metris were foundby Calabi [8℄. His method was to take a omplex sympleti mani-fold, suh as the otangent bundle T ∗ CP(n), and �nd a potential fora Kähler struture that would ombine with the omplex sympletistruture to give a hyperKähler metri. This approah has been ap-plied to ertain semi-simple nilpotent orbits by a number of authors.Biquard & Gauduhon [5℄ gave a beautiful onstrution for a poten-tial on those semi-simple orbits that are the otangent bundle of aHermitian symmetri spae. At the other extreme, Hithin [14℄ usedspetral theory to desribe a potential for the biggest semi-simple orbitin sl(n,C) in terms of theta funtions (the speial ase of n = 2 maybe found in [22℄).1991 Mathematis Subjet Classi�ation. Primary 53C25; Seondary 17B45,57S25. 1
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2 PIOTR KOBAK AND ANDREW SWANNMuh attention has been paid to the semi-simple orbits, beause onean show that they are the only orbits to admit hyperKähler metristhat are omplete. However, the inomplete metris on nilpotent orbitsstill have muh interest. One reason, is that eah suh orbit admits ahyperKähler potential, a funtion that is a Kähler potential for eahomplex struture ompatible with the hyperKähler struture, and sothese metris on nilpotent orbits determine quaternioni Kähler metrisof positive salar urvature on a ertain quotient manifold [23, 24℄.The strutures onsidered on oadjoint orbits are invariant underthe ation of the ompat group G. For nilpotent orbits, there is anatural partial order given by inlusions of losures. When G is simple,the smallest non-trivial orbits in this order are unique and they aredistinguished by being of ohomogeneity one under the ation of G. In[12℄, it was shown that the nilpotent orbits of ohomogeneity two also�t niely in to the partial order: exept when G = SU(3), they areexatly the next-to-minimal orbits. Given that the nilpotent orbits ofohomogeneity one are understood [11℄ (see also [17℄), it is natural tolook at those of ohomogeneity two.In this paper, we onsider ohomogeneity-two nilpotent orbits and�nd all ompatible G-invariant hyperKähler metris on them that ad-mit Kähler potentials. Our approah is that of Calabi's and we obtainthe hyperKähler potentials expliitly. The hyperKähler potentials areunique, but in a few ases we �nd that they lie in a one-parameterfamily of hyperKähler metris with Kähler potential. These familiesmay be regarded as generalisations of the Eguhi-Hanson metris indimension four.Combining our results with [16℄, means that hyperKähler poten-tials are now known for all next-to-minimal orbits. One feature of theohomogeneity-two ase that makes the alulations possible, is thateah element of the orbit lies in a small rank 2 real subalgebra whih de-termines muh of the hyperKähler struture. In fat, unless G is the ex-eptional Lie group G2, that subalgebra is so(4,C) = sl(2,C)⊕sl(2,C)and the geometry is the produt of the strutures from eah fator.For some ohomogeneity-two orbits the hyperKähler potential mayalso be obtained by one of three other methods: a hyperKähler quotientonstrution, a �nite-over by a minimal orbit for another group, or alimit of a family of semi-simple orbits. The �rst two methods will bedesribed elsewhere; the �rst only sueeds if the hyperKähler quotientis su�iently simple and the seond only overs orbits on the list of�shared orbits� of Brylinski & Kostant [7℄. The third is ontained inBiquard & Gauduhon's work [5℄. However, there are orbits for whih



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 3the approah of this paper is the only one known to give the result andour approah is uniform for all orbits of ohomogeneity two.Aknowledgements. It is a pleasure to thank Brian Dupée for advieon Maple, Alastair King and Franis Burstall for many useful on-versations and Claude LeBrun for enlightenment. This researh wassupported by the epsr of Great Britain. The �rst named author isalso grateful for partial support from the KBN of Poland.2. Preliminaries2.1. HyperKähler Strutures. LetM be a manifold with endomor-phisms I, J and K of the tangent bundle TM satisfying the quaternionidentities
I2 = J2 = −1 and IJ = K = −JI.This gives TxM the struture of an H-module and so implies that thedimension of M is a multiple of 4. If g is a Riemannian metri on Mpreserved by I, J and K, in the sense that g(IX, IY ) = g(X, Y ), et.,for all tangent vetors X, Y , then we an de�ne two-forms ωI , ωJ and

ωK by
ωI(X, Y ) = g(X, IY ), et.If these three two-forms are losed, the struture (M, g, I, J,K) is saidto be hyperKähler.Hithin [13℄ showed that on a hyperKähler manifold, the almost om-plex strutures I, J and K are integrable, and thus (M, g) is a Kählermanifold in three distint ways. The restrited holonomy group Holgof (M, g) is then ontained in Sp(n). As Sp(n) is a subgroup of SU(2n),this implies that any hyperKähler metri g is Rii-�at.A funtion ρ : M → R is a Kähler potential for the omplex stru-ture I if ωI = −i∂I∂Iρ. This may be reformulated as

ωI = −i∂I∂Iρ = −id∂Iρ = − i
2
d(d− iId)ρ

= −1
2
dIdρ.

(2.1)The funtion ρ is a hyperKähler potential if it is simultaneously a Käh-ler potential for I, J and K. HyperKähler potentials are de�ned upto an additive onstant. The existene of a hyperKähler potential im-plies strong restritions on the geometry of M [23℄: the metri g andpotential ρ satisfy ∇2ρ = g; the manifold M admits an in�nitesimalation of H∗, with Sp(1) 6 H∗ preserving g and permuting I, J and
K; the H∗-orbits are �at and totally geodesi; loally M �bres over aquaternioni Kähler orbifold of positive salar urvature.



4 PIOTR KOBAK AND ANDREW SWANNWe will be onsidering hyperKähler strutures that are invariantunder the ation of a ompat group G. It is therefore worth notingthat if we have a Kähler potential then this may be taken to be G-invariant. Indeed, if ρ is any Kähler potential, then sine the G-ationpreserves I, the expression ∂I∂Iρ is equivariant for the ation of G.However, ωI = −i∂I∂Iρ, is assumed to be G-invariant, so averaging ρover the group ation produes an invariant Kähler potential.2.2. Lie Algebras and Orbits. On the semi-simple omplex Lie al-gebra gC, let 〈·, ·〉 = 〈·, ·〉
g
be the negative of the Killing form and let

σ be a real struture giving a ompat real form g of gC.At a point X of a nilpotent orbit O, the vetor �eld generated by Ain gC is ξA = [A,X]. These vetor �elds satisfy [ξA, ξB] = ξ−[A,B], forall A,B ∈ gC.The orbit O arries a omplex struture I de�ned by
IξA = iξA = ξiA.(2.2)There is also a omplex sympleti form, known as the Kirillov-Kostant-Souriau form, on O whih we take to be given by

ωO

c (ξA, ξB)X = 〈X, [A,B]〉 = −〈ξA, B〉 .(2.3)We will be looking for hyperKähler strutures on O with I givenby (2.2) and ωJ + iωK = ωO
c . We will all these ompatible hyper-Kähler strutures on O.3. Potentials Depending on Two InvariantsConsider the following two funtions on a nilpotent orbit O:

η1(X) = 〈X, σX〉 and η2(X) = −〈[X, σX], [X, σX]〉 .Note that η2(X) = 〈Y, σY 〉 with Y = [X, σX], so is positive, and thatboth η1 and η2 are invariant under the ation of the ompat group G.Suppose ρ is a Kähler potential for I depending only on η1 and η2, i.e.,
ρ = ρ(η1, η2).(3.1)



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 5Lemma 3.1. At X ∈ O, the two-form ωI de�ned by ρ in formula (2.1)is
ωI(ξA, ξB)X = 2ρ1 Im 〈ξA, σξB〉

− 4ρ2 Im 〈ξA, [σξB, [X, σX]] + [σX, [X, σξB]]〉
+ 2ρ11 Im

(
〈ξA, σX〉 〈σξB, X〉

)

− 4ρ12 Im
(
〈ξA, [σX, [X, σX]]〉 〈σξB, X〉
+ 〈ξA, σX〉 〈σξB, [X, [σX,X]]〉

)

+ 8ρ22 Im
(
〈ξA, [σX, [X, σX]]〉 〈σξB, [X, [σX,X]]〉

)
,

(3.2)
where ρi = ∂ρ/∂ηi, et.Proof. Expanding (2.1), we have(3.3) − 2ωI = ρ1 dIdη1 + ρ2 dIdη2 + ρ11 dη1 ∧ Idη1

+ ρ12(dη2 ∧ Idη1 + dη1 ∧ Idη2) + ρ22dη2 ∧ Idη2.The exterior derivative of η1 is given by
dη1(ξA)X = 〈[A,X], σX〉 + 〈X, σ[A,X]〉 = 2 Re 〈ξA, σX〉 .Hene Idη1(ξA) = 2 Im 〈ξA, σX〉 and dIdη(ξA, ξB) = −4 Im 〈ξA, σξB〉,at X ∈ O.For η2, the initial omputation is similar and gives

dη2(ξA)X = −4 Re 〈ξA, [σX, [X, σX]]〉 .The seond derivative, however, is slightly more involved:
dIdη2(ξA, ξB)X

= ξA(Idη2(ξB)) − ξB(Idη2(ξA)) − Idη2([ξA, ξB])

= −4 Im
{
〈ξB, [σξA, [X, σX]]〉 + 〈ξB, [σX, [ξA, σX]]〉

+ 〈ξB, [σX, [X, σξA]]〉 + 〈[B, ξA], [σX, [X, σX]]〉
− 〈ξA, [σξB, [X, σX]]〉 − 〈ξA, [σX, [ξB, σX]]〉
− 〈ξA, [σX, [X, σξB]]〉 − 〈[A, ξB], [σX, [X, σX]]〉

+ 〈[[A,B], X], [σX, [X, σX]]〉
}

= −4 Im
{
− 〈[ξA, σξB], [X, σX]〉 + 〈[ξB, σξA], [X, σX]〉
+ 〈[σX, ξA], [X, σξB]〉 − 〈[X, σξA], [σX, ξB]〉

}

= 8 Im 〈ξA, [σξB, [X, σX]] + [σX, [X, σξB]]〉 .Combining these formulæ gives the laimed result.



6 PIOTR KOBAK AND ANDREW SWANNThe two-form ωI is our andidate for a Kähler form on O.Remark 3.2. The orresponding symmetri bilinear form is given by
g(ξA, ξB) = ωI(IξA, ξB) and is simply the right-hand side of equa-tion (3.2) with `Im' replaed by `Re' throughout.We will eventually require g to be positive de�nite. However for nowsimply assume that g is non-degenerate and de�ne an endomorphism Jof TXO by

g(ξA, ξB) = ReωO

c (JξA, ξB).(3.4)Lemma 3.3. The endomorphism J of TXO is given by
JξA = −2ρ1[X, σξA]

+ 4ρ2(2[X, [σX, [X, σξA]]] − [X, [X, [σX, σξA]]])

− 2ρ11 〈σξA, X〉 [X, σX]

+ 4ρ12

(
〈σξA, [X, [σX,X]]〉 [X, σX]

+ 〈σξA, X〉 [X, [σX, [X, σX]]]
)

− 8ρ22 〈σξA, [X, [σX,X]]〉 [X, [σX, [X, σX]]].

(3.5)
Proof. Equation (3.4) implies g(ξA, ξB) = −Re 〈JξA, B〉, and then(3.2) gives the above formula for J , exept that the oe�ient of ρ2is

4
(
[X, [σξA, [X, σX]]] + [X, [σX, [X, σξA]]]

)
.(3.6)Using the Jaobi identity, we have

[σξA, [X, σX]] = −[X, [σX, σξA]] + [σX, [X, σξA]].Applying this to the �rst term in (3.6) gives the result.At this stage there is no guarantee that J2 = −1. It is imposing thisondition that severely restrits the possibilities for ρ.4. Small Nilpotent Orbits and Real SubalgebrasThe nilpotent orbits in gC are partially ordered by saying O1 � O2if and only if O1 ⊂ O2. When gC is simple, there is a unique non-zeroorbit Omin whih is minimal for this partial order. This orbit is of oho-mogeneity one with respet to the ation of the ompat group G, andfor eah X ∈ Omin, the subalgebra spanned by {X, σX} is isomorphito sl(2,C) and is the omplexi�ation of an su(2)-subalgebra of g. Notethat Omin is the orbit of a root vetor for the longest root.



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 7In general, the Jaobsen-Morosov Theorem says that eah nilpotentelement X lies in an sl(2,C)-subalgebra (see e.g. [9℄). However, in gen-eral this subalgebra is not σ-invariant. The following result is usuallyattributed to Borel [6℄.Proposition 4.1 (Borel). Eah nilpotent orbit O ontains an element
X suh that the linear span of {X, σX, [X, σX]} is a real subalgebraisomorphi to sl(2,C).Proof. Fix X ′ in O and take any sl(2,C) ontaining X. There are Hand Y in sl(2,C) suh that [H,X ′] = 2X ′, [X ′, Y ] = H and [H, Y ] =
−2Y . The element H is thus semi-simple in sl(2,C) and hene in gC, sowe �nd a Cartan subalgebra t of gC ontaining H and hoose a systemof positive roots ∆+ so that X lies in a sum of positive root spaes. Thepair (t,∆+) has an assoiated real struture σ′, whih maps ∆+ to ∆−and de�nes a ompat real form of gC. Now all ompat real forms of gCare onjugate, so there is a g ∈ GC suh that Adg(σ

′A) = σAdg A, forall A ∈ gC. Taking X = Adg X
′ gives an element of O of the desiredtype.Let us reall the Morse theory piture of the nilpotent variety de-sribed in [24℄ (see also [16, 21℄). Eah nilpotent orbit O admits aertain free ation of H∗/{±1}. The quotient M(O) = O/H∗ maybe desribed as a submanifold of the Grassmannian G̃r3(g) of ori-ented three-planes in the real Lie algebra g. One de�nes a funtional

ψ : G̃r3(g) → R by ψ(V ) = 〈e1, [e2, e3]〉, where {e1, e2, e3} is an orientedorthonormal basis for V . Away from zero, ψ is a non-degenerate G-equivariant Morse funtion in the sense of Bott. The points on the non-zero ritial sets orrespond to subalgebras of g isomorphi to su(2).The set of real su(2)-subalgebras assoiated to O via Proposition 4.1,oriented so that ψ is positive, forms a non-zero ritial manifold C(O).The manifold M(O) is the stable manifold attahed to C(O). Thepartial order on stable manifolds for the gradient �ow indues the par-tial order � on nilpotent orbits. In partiular, the maximum of ψ isahieved on M(Omin).We are interested in orbits of ohomogeneity two. These were om-puted in [12℄ and are the orbits listed in Table 1. We say that a nilpo-tent orbit O is next-to-minimal if O � Omin and there is no orbit O′with O � O′ � Omin. It is pleasing to note that the orbits listed inTable 1 are preisely the next-to-minimal orbits in the given algebras.The only next-to-minimal orbit that does not our is that in sl(3,C),whih is ohomogeneity four.



8 PIOTR KOBAK AND ANDREW SWANNType Orbit
An (221n−3)

B(n−1)/2, Dn/2

(31n−3)
(241n−8)

Cn (2212n−4)

Type OrbitG2 0 >−−−−−−1F4 00 >==01E6 10
0
001E7 010
0
000E8 0000
0
001Table 1. Orbits of ohomogeneity two in simple Lie algebras. Or-bits in lassial algebras are spei�ed by partitions and n is to betaken large enough so that the partition an our. The orbits inexeptional algebras are given by their weighted Dynkin diagram(see e.g. [9℄). Note that for type D2m, the partition (2414m−8)desribes two orbits; their union is one orbit under the ationof O(2m).Reall that aording to Proposition 5.1 elements of ohomogeneity-one nilpotent orbits lie in a real sl(2,C), i.e., in a σ-invariant rank oneLie algebra. It is remarkable that the elements of ohomogeneity-twoorbits lie in σ-invariant rank two Lie algebras. The following an bethought of as a ohomogeneity-two version of Borel's result.Theorem 4.2. Suppose G is a ompat simple Lie group and that O isa nilpotent orbit in gC of ohomogeneity two. Suppose X is an elementof O that does not lie in a real sl(2,C)-subalgebra.Let hC

X be the subalgebra of gC generated by X and σX. Then hC

Xis isomorphi to so(4,C), unless g = g2, in whih ase hC ∼= gC

2 . Inall ases, the embedding hC →֒ gC is a homothety with respet to theKilling forms.Proof. Consider the Morse theory piture. Firstly, in gC, the losureof O is O∪Omin ∪ {0}. In G̃r3(g) we have M(O) = M(O)∪M(Omin).For the orbits of ohomogeneity two, M(O) is a manifold of oho-mogeneity one; the usual saling by R>0, whih is also part of the
H∗/{±1}-ation, is transverse to the G-orbits on O. Suppose ℓ is aurve in M(O) joining a point of C(O) to a point of M(Omin). Thenthe fat that M(O) is the stable manifold for the gradient �ow of the
G-invariant funtional ψ, implies that the image of ℓ in M(O)/G is thewhole (one-dimensional) quotient spae.Now to parameterise O/G it is enough to �nd a two-dimensionalfamily of elements whih is invariant under saling and ontains anelement lying over C(O) and an element of Omin. When g 6= g2, we will�nd suh a family lying in a σ-invariant so(4,C)-subalgebra of gC.



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 9The Lie algebra so(4,C) splits as sl(2,C)+ ⊕ sl(2,C)−. It ontainsthree non-trivial nilpotent orbits: O±, the non-trivial nilpotent orbitsin the fator sl(2,C)±; and O∆ = O+ × O−. The orbits O± are o-homogeneity one and O∆ is ohomogeneity two. Our orbit O willmeet so(4,C) inO∆ andO+∪O− will be the intersetionOmin∩so(4,C).For the lassial groups, we use the Jordan normal forms for elementsof the orbits. For type An, the Jordan normal form is (221n−3) and thematries
Xs,t =

(
0 s
0 0

0 t
0 0 0)lie in the orbit unless s or t is zero. They also lie in the su(2)⊕ su(2)-subalgebra ontained in the �rst two (2 × 2) diagonal bloks. Thematrix X1,1 lies in a real sl(2,C)-subalgebra and X1,0 is in Omin. Sothis two parameter family is as required. Exatly the same tehniqueworks for Cn.For types B and D, we are looking at matries in so(n,C). It isonvenient to take so(n,C) to be the set of omplex (n×n) matries Asuh that AtB+BA = 0, where B is the matrix with 1's down the anti-diagonal and 0's elsewhere. For Jordan form (31n−3), we just take an

so(4,C)-subalgebra ontaining the Jordan blok (3). When the Jordantype is (241n−8), and the Lie algebra type is not D2n, we have the samesituation as for An, but now the bloks ome in pairs. Thus the twofamilies one onsiders are


0 s
0 0

0 t
0 0 0

0 −t
0 0

0 −s
0 0


 and 


0 0

0 s t 0
0 0 −t

0 −s
00 0 .(4.1)For D2n, the matries of Jordan type (241n−8) form a single O(n,C)-orbit but split into two orbits (241n−8)± under the ation of SO(n,C).We thus obtain (241n−8)− from (241n−8)+ by onjugating by an el-ement W of determinant −1 in O(n,C). One now onsiders threerepresentative matries, two as in (4.1) and




0 0
0 0

0 t
0 0 0

0 −t
0 0

s 0 0 0
0 −s 0 0


 , obtained with W =




0 −1
1 ...

1
−1 0


 .In all ases, the matrix lies over C(O) when s = t 6= 0 and is in Ominwhen t = 0 and s 6= 0.



10 PIOTR KOBAK AND ANDREW SWANNFor the exeptional Lie algebras we use the Beauville bundle N(O)[1℄ as a tool for omputation. This bundle is de�ned as follows. Finda real sl(2,C)-subalgebra assoiated to O and let {e, f, h} be a basisfor this subalgebra, with f = −σe, h = [e, f ] and [h, e] = 2e. Theeigenvalues of adh on gC are known to be integers (see [9℄). Let g(i)be the i-eigenspae of adh. Put
p =

⊕

i>0

g(i) and n =
⊕

i>2

g(i).Then p is a paraboli subalgebra of gC and the orresponding homo-geneous spae F = GC/P is a �ag manifold. The subalgebra n ispreserved by the adjoint ation of P and the Beauville bundle N(O) isde�ned to be the bundle over F assoiated to n, i.e.,
N(O) = GC ×P n.The important property of N(O) is that it ontains O as an open dense

GC-orbit.Now eah �ag manifold is a homogeneous manifold for the ationof the ompat group. So F = G/K for some ompat subgroup Kof G. (In fat, the Lie algebra k of K is given by kC = g(0).) TheBeauville bundle is then G ×K n and the ohomogeneity of O is theohomogeneity of the ation of K on n. Choose a Cartan subalgebrain g(0) and a root system for g(0) with all root spaes in p. Note that,by de�nition, the weighted Dynkin diagram for O gives the eigenvaluesof adh on the positive simple root spaes, from whih all the othereigenvalues are easily omputed.In the ase of ohomogeneity-two orbits not in g2, we �nd that n ∼=
R2 ⊗ V as a representation of K = SO(2)L, with V irreduible and
L ating two-point transitively on the unit sphere in V . Thus underthe ation of K, we an move any nilpotent element in O into anyomplex two-dimensional subspae (for the omplex struture induedby the ation of SO(2)). We then �nd root spaes gα and gβ ontainedin n with α and β orthogonal long roots suh that α ± β is not aroot. The σ-invariant subalgebra ontaining these root spaes is thenthe required so(4,C). For the relevant four exeptional algebras, thisinformation is given in Table 2.For G2, the isotropy group for F is K = U(1) SU(2). We have
n = g(2) + g(3) with g(2) ∼= L2 and g(3) ∼= L3S1, where L = Cand S1 = C2 are the fundamental representations of U(1) and SU(2),respetively. The orbit O in this ase is the orbit of short root vetorsand the subalgebra generated by X and σX ontains both short andlong roots, so is all of g2.



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 11Type k n α β

F4 so(2) + so(7) R2 ⊗ R7
23 >==42 01 >==22

E6 2 so(2) + so(8) R2 ⊗ R8
12

2
321 11

1
221

E7 so(2) + su(2) + so(10) R2 ⊗ R10
123

2
432 122

2
321

E8 so(2) + so(14) R2 ⊗ R14
2345

3
642 0123

2
432Table 2. The data for so(4)-subalgebras orresponding to next-to-minimal orbits in four exeptional algebras.5. Two ModelsIn this setion we ompute Kähler potentials for hyperKähler stru-tures on two partiular nilpotent orbits: one in sl(2,C) and the otherin so(4,C). These results will be used in the next setion to derive thehyperKähler potentials for ohomogeneity-two orbits. In view of Theo-rem 4.2, we onsider these ases with inner produts that are multiplesof that given by the Killing form.We start by onsidering gC = sl(2,C) with inner produt k2 〈·, ·〉sl(2),where k > 0 is onstant and 〈·, ·〉sl(2) is negative of the Killing form.This Lie algebra ontains only one non-trivial nilpotent orbit O on-sisting of the (2 × 2) matries X suh that X2 = 0 and X 6= 0. Theorbit is the minimal nilpotent orbit in sl(2,C) and is of ohomogene-ity one under the adjoint ation of SU(2). In fat two elements ofthe orbit have the same norm if and only if they are SU(2)-onjugate.Thus any SU(2)-invariant Kähler potential ρ on O is a funtion ofjust η = k2 〈X, σX〉sl(2). Write

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

) and h =

(
1 0
0 −1

)
.(5.1)Then {e, f, h} is an sl(2,C) triple, with f = −σe and h = −σh. Usingthe ation of SU(2), we may assume that X = t e, for some t > 0.The tangent spae TXO = [X, sl(2,C)] is spanned by e and h. If weonsider the omplex sympleti form k2ωO

C , we may perform the samealulations as in (3.5) and get
JXe = 2t(ρ′ + ηρ′′)h and JXh = −4tρ′e,where ρ′ = dρ/dη, et. As η(X) = 4k2t2, the ondition that J2 = −1is equivalent to

2ηρ′(ρ′ + ηρ′′) = k2.(5.2)



12 PIOTR KOBAK AND ANDREW SWANNThe left-hand side is simply the derivative of (ηρ′)2 with respet to η,so
ρ′

2
= (k2η + c)/η2,(5.3)for some onstant c. In order to have the potential de�ned on the wholeorbit we need c > 0. The orresponding metri may be alulated asin Remark 3.2 and is given by

g(ξA, ξB) =
2k4

η
Re
(
ρ′
(
〈ξA, σξB〉 〈X, σX〉 − 〈ξA, σX〉 〈X, σξB〉

)

+
k2

2ηρ′
〈ξA, σX〉 〈X, σξB〉

)
,

(5.4)whih is positive de�nite provided we take the positive square rootin (5.3). Now (5.3) determines ρ up to an additive onstant, and thisis enough to �x the metri struture.Proposition 5.1. For �xed k, the nilpotent orbit in sl(2,C) has aone-parameter family of SU(2)-invariant hyperKähler metris with aKähler potential and with k2ωO

c as the omplex sympleti form. The
G-invariant Kähler potential ρ is given by

ρ′ =
1

η

√
k2η + c,(5.5)where c > 0 is a onstant and η(X) = k2 〈X, σX〉sl(2).Note that if we rewrite everything in terms of the variable t, we get

dρ

dt
(te) =

√
(2k)4 +

4c

t2
.(5.6)Proposition 5.2. The Kähler potential ρ of Proposition 5.1 is a hy-perKähler potential if and only if c = 0. In this ase, ρ = 2k

√
η and

ρ(te) = 4k2t.Proof. Let Y = (dρ)♯ be the vetor �eld dual to dρ. If ρ is a hy-perKähler potential then IY is an isometry preserving I and ρ is theorresponding moment map [23, Proposition 5.5℄. Now dρ = ρ′dη =
2k2ρ′ Re 〈·, σX〉, whereas, by Remark 3.2,

g(Y, ξA) = 2 Re(ρ′k2 〈ξA, σY 〉 + ρ′′k4 〈ξA, σX〉 〈X, σY 〉).So we have
ρ′X = ρ′Y + ρ′′k2 〈Y, σX〉X,
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λ =

ρ′

ρ′ + ηρ′′
=

2ηρ′2

k2
= 2 +

2c

k2η
,using (5.2). The vetor �eld X is generated by saling in the nilpotentorbit, so IX preserves the omplex struture I. Now

(LIY I)(Z) = [λIX, IZ] − I[λIX,Z]

= λ(LIXI)Z − ((IZ)λ)IX + (Zλ)X,so with LIXI = 0, we have LIY I = 0 only if λ is onstant. But this isexatly the requirement that c = 0.Remark 5.3. The substitution k2η+c = ( r
2
)4 in equation 5.4 shows thatthese are the Eguhi-Hanson metris (f. [10℄). See [17℄ for details.Let us now turn to the regular nilpotent orbit O∆ in so(4,C). As inthe proof of Theorem 4.2, we write so(4,C) = sl(2,C)+⊕sl(2,C)− andnote that O∆ = O+ ×O− where O± is the nilpotent orbit in sl(2,C)±.Let {e±, f±, h±} be bases for sl(2,C)± as in (5.1). Again we will usethe inner produt whih is k2 〈·, ·〉so(4).Using the ation of SO(4), we may take our representative element Xof O∆ to be X = X+ + X− = s e+ + t e− with s, t > 0. We haveone invariant for eah sl(2,C): we write η± = k2 〈X±, σX±〉sl(2), so

η+ = 4k2s2, et. Let ρ+ = ∂ρ/∂η+, et. Then we may alulate theKähler form ωI and the andidate almost omplex struture J as in �3.For the Kähler form we get
ωI(ξA, ξB) = 2k2 Im

(
ρ+

〈
ξ+
A , σξ

+
B

〉
+ ρ−

〈
ξ−A , σξ

−

B

〉

+ ρ++k
2
〈
ξ+
A , σX+

〉 〈
σξ+

B , X+

〉

+ ρ+−k
2
(〈
ξ+
A , σX+

〉 〈
σξ−B , X−

〉

+
〈
ξ−A , σX−

〉 〈
σξ+

B , X+

〉)

+ ρ−−k
2
〈
ξ−A , σX−

〉 〈
σξ−B , X−

〉)
,where ξ+

A = [A,X+], et. The endomorphism J is given by
JX(ξ+

A) = −2ρ+[X+, σξ
+
A ]

− 2k2
〈
σξ+

A , X+

〉 (
ρ++[X+, σX+] + ρ+−[X−, σX−]

)and a similar expression for ξ−A . In partiular, JXh+ = −4s ρ+e+ and
JXe+ = 2s(ρ+ + η+ρ++)h+ + 2

t2

s
η+ρ+−h−.



14 PIOTR KOBAK AND ANDREW SWANNThus the sl(2,C)−-omponent of J2
Xh+ is a onstant times η+η− ×

ρ+ρ+−h−. For J2
X to be −1, we need ρ+ρ+− = 0, whih implies

∂(ρ2
+)/∂ρ− = 0 and hene ρ+− = 0. Thus JX preserves the sl(2,C)-summands of so(4,C).Proposition 5.4. Any hyperKähler struture on the regular orbit

O∆ = O+ × O− of so(4,C) whih is SO(4)-invariant, admits a Käh-ler potential and has omplex-sympleti form k2ωO∆
c , is a produt ofSU(2)-invariant strutures on the fators O±, and these are given byProposition 5.1.6. Potentials for Next-to-Minimal OrbitsWe now ome to the main result of this paper. We onsider next-to-minimal orbits with ompatible G-invariant hyperKähler metris,exept for G = SU(3). We show that suh metris admitting a hyper-Kähler potential are unique, and we alulate the potential.If we assume that the potential is only Kähler, we still have unique-ness in some ases, but we get a list of exeptions: orbits whih admita one-parameter family of hyperKähler metris. These an be thoughtof as a generalisation of the Eguhi-Hanson metri (f. Remark 5.3).Theorem 6.1. Suppose G is a ompat simple Lie group and O is anilpotent orbit in gC of ohomogeneity two.(i) O admits a unique G-invariant ompatible hyperKähler metriwith hyperKähler potential. This potential is given by

ρ = 2k

√
η1 + 2

√
1
2
η2

1 − k2η2(6.1) for g 6= g2, where the onstant k is given in Table 3, and, for g2,
ρ =

√
8

√
η1 +

√
6
√
η2

1 − 4η2.(6.2)(ii) The above metri on O is in fat a unique G-invariant ompatiblehyperKähler metri with a Kähler potential unless g is one of
sp(2) ∼= so(5), su(4) ∼= so(6), so(8) or O is of Jordan type (31n−3)in so(n). In these ases, the metri lies in a one-parameter familyof hyperKähler metris with Kähler potentials.Remark 6.2. Note that the Theorem provides hyperKähler potentialsfor all next-to-minimal orbits, exept when g = su(3). However, thepotential in this remaining ase was omputed in [16℄, see also [18℄.We divide the proof of the Theorem into three parts.
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k2 1
2
(n+ 1) 1

2
(n− 2) 9

2
6 9 35

2Table 3. The onstant k2 in the potentials of Theorem 6.1.6.1. The General Case. This is when g is neither su(3) nor g2.Let X be a generi element of O. By Theorem 4.2, X lies in theregular orbit O∆ of a real so(4,C)-subalgebra.For ρ(η1, η2) to be a hyperKähler potential for O it is neessary that
ρ is a Kähler potential for an invariant hyperKähler struture on O∆.To see this, �rst note that equation (2.1) is invariant by pull-bakunder the inlusion map O∆ →֒ O. Now equation (3.5) shows that
JξA remains in the subalgebra generated by A, X and σX. Thus if
A ∈ so(4,C), so is JA and thus O∆ is a hyperKähler submanifold of O.As in �5, write so(4,C) = sl(2,C)+ ⊕ sl(2,C)−, O∆ = O+ ×O− and
X = X+ +X− = se+ + te−. Our two invariants on O are given by

η1(X) = 〈X, σX〉
g

= −〈se+ + te−, sf+ + tf−〉g
= −(s2 + t2)k2 〈e, f〉

su(2) = 4k2(s2 + t2),and a similar omputation gives
η2(X) = 8k2(s4 + t4),where k2 is the onstant suh that 〈·, ·〉g |so(4,C) = k2 〈·, ·〉so(4). Now

dρ = ρ1dη1 + ρ2dη2

= 8k2
(
s(ρ1 + 4s2ρ2)ds+ t(ρ1 + 4t2ρ2)dt

)
,so ρs := ∂ρ/∂s = 8k2s(ρ1 + 4s2ρ2), et., and solving for ρ1 and ρ2 weget

ρ1 = − t3ρs − s3ρt

8k2st(s2 − t2)
, ρ2 =

tρs − sρt

32k2st(s2 − t2)
.Note that, by Proposition 5.4 and (5.6), ρs

2 = 16k4 + c+/s
2 and ρt

2 =
16k4 + c−/t

2, for some onstants c±.The elements X+ and X− lie in the losure of O∆ and hene of O;so X± lie in the minimal nilpotent orbit of gC. We dedue that M+ :=
G/N(SU(2)+) is a Wolf spae and hene, sine SU(2)+ orresponds toa highest root [25℄,

gC = sl(2,C)+ + k+ + S1
+ ⊗E+,(6.3)where k+ ommutes with sl(2,C), E+ is a non-trivial representationof k+ and S1

+
∼= C2 is the fundamental representation of sl(2,C)+. On



16 PIOTR KOBAK AND ANDREW SWANNthe other hand, we have a similar deomposition of gC orrespondingto sl(2,C)−. As sl(2,C)+ and sl(2,C)− ommute with eah other, wededue that sl(2,C)− ⊂ k+ and that E+ ⊃ S1
−. So as an so(4,C)-module, gC always ontains a opy of S1

+ ⊗ S1
−.On the orthogonal omplement to so(4,C), we have, from (3.5),

JXξA = −2ρ1[X, σξA]

+ 4ρ2 (2[X, [σX, [X, σξA]]] − [X, [X, [σX, σξA]]]) .
(6.4)First suppose that E+ ontains a trivial sl(2,C)−-module Cr; take
r maximal. The real struture σ preserves the module S1

+ ⊗ Cr andats on S1
+
∼= H as j, so Cr has a quaternioni struture j and is even-dimensional. Choose a basis for S1

+ so that ad e+ ats as ( 0 1
0 0 ). Thenany tangent vetor ξA ∈ S1

+ ⊗ Cr has the form ( 1
0 ) ⊗ v and we have

JXξA = −2s(ρ1 + 4s2ρ2) ( 1
0 ) ⊗ jv = − 1

4k2ρs ( 1
0 ) ⊗ jv.Thus J2 = −1 on S1

+ ⊗ Cr if and only if ρs
2 = 16k4. This implies thatthe onstant c+ is zero if E+ has an trivial sl(2,C)−-submodule.The existene of an trivial sl(2,C)−-submodule in E+ is not guaran-teed. However, we do always have an S1

−-summand, so we now onsiderthe ase when ξA lies in an so(4)-module S1
+ ⊗ S1

−. This is Killing or-thogonal to so(4,C). We hoose bases so that adX ats as
s ( 0 1

0 0 ) ⊗ Id +t Id⊗ ( 0 1
0 0 )and σ = j ⊗ j for j the standard quaternioni struture on S1 ∼= H.The image of adX is two-dimensional and spanned by

ξ1 := ( 1
0 ) ⊗ ( 1

0 ) and ξ2 := s ( 1
0 ) ⊗ ( 0

1 ) + t ( 0
1 ) ⊗ ( 1

0 ) .These satisfy
[X, ξ1] = 0, [σX, ξ1] = σξ2,

[X, ξ2] = 2stξ1 and [σX, ξ2] = −(s2 + t2)σξ1.So, equation (6.4) gives
Jξ1 = −2(ρ1 + 4ρ2(s

2 + t2))ξ2,

Jξ1 = 2(ρ1(s
2 + t2) + 4ρ2(s

4 + t4))ξ1.Substituting for ρ1 and ρ2 in terms of ρs and ρt, gives
J2ξ1 = − t2ρt

2 − s2ρs
2

16k4(t2 − s2)
ξ1.So J2 = −1 on S1

+ ⊗ S1
−
if and only if t2ρt

2 − s2ρs
2 = 16k4(t2 − s2).But ρs

2 = 16k4 + c+/s
2, et., so c+ = c−.



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 17We onlude that if E+ ontains a trivial sl(2,C)−-summand, then
c+ = c− = 0. This gives ρs = 4k2 and ρt = 4k2, so ρ(s, t) = 4k2(s+ t).Rewriting this in terms of η1 and η2 gives the potential in the Theorem.If E+ does not have a trivial summand, we get a one-parameter familyof potentials and hyperKähler metris with c+ = c−.It remains to determine the onstant k and when E+ ontains a triv-ial SU(2)−-module. The deomposition (6.3) gives the ation of ad e+and hene the Killing inner produt 〈e+, σe+〉g is 4 + dimC E+, sine
〈e+, σe+〉su(2)+

= 4. So k2 = (4 + dimCE+)/4. Moreover, S1
+ ⊗ E+ =

TM+⊗C, so dimC E+ is half the real dimension of the Wolf spae M+,whih may be found in, e.g., Besse [3, p. 409℄, or read-o� from thedisussion below. This leads to Table 3.Finally, we determine the deompositions of E+ under the ationof sl(2,C)−.If G = SU(n), then k+
∼= u(n−2), and E+ = Cn−2 is the fundamentalrepresentation twisted by a representation of the entral u(1). Now

sl(2,C)− orresponds to a highest root vetor in k+, so E+ = S1
−+Cn−4as a sl(2,C)−-module. So for n = 4, we have a one-parameter familyof potentials c+ = c−, and for n > 4, the potential is unique.For G = Sp(n), k+

∼= sp(n − 1,C) and E+
∼= C2n−2 ∼= Hn−1 isthe fundamental representation. Under the highest root sl(2,C), thisrepresentation splits as S1

− + C2n−4, so for n > 1, we have a uniquepotential.In the ase G = SO(n), there are two orbit types to onsider. Theentraliser k+ = sl(2,C) + so(n − 4,C) and there are two hoies for
sl(2,C)−, one in eah summand of k+. When sl(2,C)− = sl(2,C), weget E+

∼= S1
−
⊗Rn−4, and there is a one-parameter family of potentials.On the other hand, if sl(2,C)− lies in the summand so(n− 4,C), then

E+
∼= C2 ⊗ (S1

−
+ Rn−8). For n > 8, this gives a unique potential, butfor n = 8, we again get a family.We now ome to the four exeptional ases. Firstly, if G = F4, then

k+
∼= sp(3,C) and if E = H3 is the fundamental representation, then

E+
∼= Λ3

0E = Λ3E − E, is a 14-dimensional irreduible representation.For a highest root sl(2,C)− in sp(3,C), we have E ∼= S1
− + C4 andhene E+

∼= 5S1
−

+ C4. So E+ has a trivial summand and hene thepotential is unique.For G = E6, k+
∼= sl(6,C) and E+

∼= Λ3,0C6. Under a highest root
sl(2,C)−, we have Λ1,0C6 ∼= S1

−
+ C4 and hene E+ = 4S1

−
+ C8, givinga unique potential.When G = E7, k+

∼= so(12,C) and E+
∼= ∆12

+ , the positive spinrepresentation. For a highest root sl(2,C)−, the normaliser in so(12,C)is sl(2,C)− + sl(2,C) + so(8,C) and the fundamental representation



18 PIOTR KOBAK AND ANDREW SWANNof SO(12) deomposes as C12 ∼= S1
−
⊗ S1 + V , where V ∼= C8 is thefundamental representation of so(8,C). The spin representation splitsas ∆12

+
∼= S1

− ⊗ ∆8
+ + S1 ⊗ ∆8

−, and so E+
∼= 8S1

− + C16 has a trivialsummand.Finally, for G = E8, k+
∼= eC

7 and E+
∼= 100

0
000. A highest root

sl(2,C)− in eC

7 has entraliser so(12,C) and E+
∼= 12S1

−
+ C32, where

C32 ∼= ∆12
+ . So again we get a unique potential.6.2. The Exeptional Case G2. The Dynkin diagram for the next-to-minimal orbit O in G2 is 0 >−−−−−−1. This says that there is a basis {α, β}for the simple positive roots, with α short and β long, suh that adhats on gα and gβ with eigenvalues 1 and 0 respetively. We thus have

g(2) = gβ+2α and g(3) = gβ+3α⊕g2β+3α. From the disussion in �4, theisotropy group SU(2)U(1) of the Beauville bundle ats transitively onthe unit sphere in g(3), so using the ation of the ompat group G2,we an move a typial element of O to X ∈ gβ+2α ⊕ g2β+3α. We maythus write X = sEβ+2α + tE2β+3α, with s, t > 0, where Ei are suh thatfor Fi := −σEi and Hi = [Ei, Fi] we have [Hi, Ei] = 2Ei.At X, our two invariants are
η1(X) = 8(s2 + 3t2) and η2(X) = 16(s4 + 6s2t2 + 3t4).As in the previous setion, we ompute J2 on partiular tangent vetorsusing (3.5) and then rewrite the equations in terms of s and t. Thisis quite hard work to do by hand, and so we used Maple to do thefollowing omputations. The ode for this is desribed in [15℄.On gα+β, one �nds that J2 = −1 only if

1

64s
ρs(sρs + tρt) = 1,(6.5)where ρs is ∂ρ/∂s, et. Now X = [X,Hβ − Hα] = [X, 3H2β+3α −

5Hβ+2α], so X is tangent to the orbit O. The ondition J2X = −X,gives the following three equations
s(2sρs + tρt)ρss + t(tρt + 3sρs)ρst + t2ρsρtt

+2(tρt + sρs)ρs = 128s,
(6.6a)

9sρsρss + (9tρs + sρt)ρst + tρtρtt + 9ρ2
s + ρ2

t = 576(6.6b)
3st(9tρs + sρt)ρss − st(sρt − 3tρs)ρtt

+(3t(s2 + 9t2)ρs + s(3t2 − s2)ρt)ρst = (sρt − 9tρs)(sρt + 3tρs)

(6.6)by onsidering the omponents in gβ+2α, g2β+3α and g2β+α. Considering
9sρs times (6.6a) minus s(2ρss+tρt) times (6.6b) gives a new equationnot involving ρss. In a similar way, we may eliminate ρss form the pair



HYPERKÄHLER POTENTIALS IN COHOMOGENEITY TWO 19of equations (6.6a) and (6.6). Eliminating ρst from these two newequations not involving ρss, we get the following equation whih doesnot involve ρtt:
s3t(2sρs + tρt)(sρt − 9tρs)

2 = 0.Thus either (i) ρt = −2
s

t
ρs, or (ii) ρt = 9

t

s
ρs.(6.7)In ase (i), substituting into (6.5) one gets ρ2

s = −64, whih has no(real) solutions. In ase (ii), we have
ρs = ε

8s√
s2 + 9t2

, ρt = ε
72t√
s2 + 9t2

,where ε ∈ {±1}. Integrating we �nd that
ρ = ε8

√
s2 + 9t2.(6.8)To get a positive-de�nite metri, take ε = +1. Rewriting (6.8) in termsof η1 and η2 gives the laimed result. One may hek diretly that theresulting J satis�es J2 = −1 on the whole tangent spae.6.3. Uniqueness of HyperKähler Potentials. The only statementleft to verify in the proof of Theorem 6.1, is that equations (6.1)and (6.2) give the unique ompatible hyperKähler potentials on theorbits. In the ases, when the Kähler potential is unique there is noth-ing to prove, beause the general theory [23℄ gives the existene of suha potential. We may therefore assume we are in the general ase andthat our generi element X lies in a real so(4,C)-subalgebra. Now O∆is a hyperKähler submanifold of O, and so by (2.1), ρ is a hyperKählerpotential for O only if it restrits to a hyperKähler potential for O∆.However, the hyperKähler struture on O∆ is the produt of two hy-perKähler strutures on sl(2,C)-orbits and on eah of these fators thehyperKähler potential is unique by Proposition 5.2. Thus there is onlyone hyperKähler potential ompatible with the struture of O.Remark 6.3. The hyperKähler metris onstruted in Theorem 6.1 havean extra U(1)-symmetry given by X 7→ eiθX whih preserves the om-plex struture I but moves J . In the ase of sl(2,C), the metris are ofBianhi type IX and it is known, e.g., from [2℄, that there are triaxialhyperKähler metris that do not have U(2)-symmetry. Thus onen-trating on metris admitting a Kähler potential is a genuine restrition.



20 PIOTR KOBAK AND ANDREW SWANNRemark 6.4. The one-parameter families in Theorem 6.1 our exatlywhen E+
∼= Cs ⊗ S1

−. Considering the weights of the ation of a semi-simple element in the diagonal sl(2,C)-subalgebra of so(4,C) on gC,we see that this exatly the ase when g(1) = 0. This says that theBeauville bundle oïnides with the otangent bundle T ∗F , rather thanbeing a proper subbundle. In the ase of the one-parameter families
F = G̃r2(R

n) and for c 6= 0, the Kähler potentials extend to givenon-singular metris on T ∗F , generalising the Eguhi-Hanson metrison T ∗ CP(1). As F is Hermitian symmetri, this is one of the asesonsidered by Biquard & Gauduhon [5℄.Referenes[1℄ A. Beauville, Fano ontat manifolds and nilpotent orbits, Comment. Math.Helv. 73 (1998), 566�583.[2℄ V. A. Belinskii, G. W. Gibbons, D. N. Page, and C. N. Pope, AsymptotiallyEulidean Bianhi IX metris in quantum gravity, Phys. Lett. B 76 (1978),433�435.[3℄ A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Gren-zgebiete, 3. Folge, vol. 10, Springer, Berlin, Heidelberg and New York, 1987.[4℄ O. Biquard, Sur les équations de Nahm et la struture de Poisson des algèbresde Lie semi-simples omplexes, Math. Ann. 304 (1996), 253�276.[5℄ O. Biquard and P. Gauduhon, The hyperKähler metri of oadjoint orbits ofsymmetri type of a omplex semi-simple Lie group, preprint, 1996.[6℄ A. Borel, On proper ations and maximal ompat subgroups of loally ompatgroups, preprint.[7℄ R. Brylinski and B. Kostant, Nilpotent orbits, normality and Hamiltoniangroup ations, Bull. Amer. Math. So. 26 (1992), 269�275.[8℄ E. Calabi, Métriques kähleriennes et �brés holomorphes., Ann. Si. E. Norm.Super. 12 (1978), 269�294.[9℄ R. W. Carter, Finite groups of Lie type: onjugay lasses and omplex har-aters, John Wiley & Sons, 1985.[10℄ A. S. Daner, HyperKähler manifolds, preprint, to appear in Essays on EinsteinManifolds, M. Wang and C. LeBrun, eds., 1998.[11℄ A. S. Daner and A. F. Swann, HyperKähler metris of ohomogeneity one,J. Geom. and Phys. 21 (1997), 218�230.[12℄ , Quaternioni Kähler manifolds of ohomogeneity one, preprint math.DG/9808097, Bath 98/16, Internat. J. Math. (to appear), 1998.[13℄ N. J. Hithin, Monopoles, minimal surfaes and algebrai urves, Les pressesde l'Université de Montréal, Montréal, 1987.[14℄ , Integrable systems in Riemannian geometry, preprint, 1997.[15℄ P. Z. Kobak and A. F. Swann, Computations in G2 using Maple, in preparation,see http://www.imada.sdu.dk/~swann/g2/index.html.[16℄ , Quaternioni geometry of a nilpotent variety, Math. Ann. 297 (1993),747�764.[17℄ , The hyperKähler geometry assoiated to Wolf spaes, in preparation,1998.
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