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THE HYPERKÄHLER GEOMETRY ASSOCIATEDTO WOLF SPACESPIOTR KOBAK AND ANDREW SWANN1. Introdu
tionOne of the glories of homogeneous geometry is Cartan's 
lassi�
ationof the 
ompa
t Riemannian symmetri
 spa
es [5, 6℄. Many manifoldsthat play a 
entral r�le in geometry are symmetri
 and it is fas
i-nating to look for patterns in the presentations G/H . One obviousfamily is provided by the sphere Sn = SO(n + 1)/ SO(n), 
omplexproje
tive spa
e CP(n) = U(n + 1)/(U(n)U(1)), quaternioni
 proje
-tive spa
e HP(n) = Sp(n+1)/(Sp(n) Sp(1)) and the Cayley proje
tiveplane F4/ Spin(9). Another 
onsists of the Hermitian symmetri
 spa
es:these are of the form G/(U(1)L) (see [4℄). However, the most surprisingis the family of quaternioni
 symmetri
 spa
es W (G) := G/(Sp(1)K),whi
h has the feature that there is pre
isely one example for ea
h 
om-pa
t simple simply-
onne
ted Lie group G. The manifolds in this lastfamily have be
ome known as Wolf spa
es following [14℄. Alekseevsky[1℄ proved that they are the only homogeneous positive quaternioni
Kähler manifolds (
f. [2℄).Wolf showed that the quaternioni
 symmetri
 spa
es may be 
on-stru
ted by 
hoosing a highest root α for gC. The 
orresponding rootve
tor Eα is a nilpotent element in gC. In [13℄ it was shown that thereis a �bration of the nilpotent adjoint orbit Omin = GC · Eα over theWolf spa
e W (G).Nilpotent orbitsO in gC have a ri
h and interesting geometry. Firstly,they are 
omplex submanifolds of gC with respe
t to the natural 
om-plex stru
ture I. Se
ondly, the 
onstru
tion of Kirillov, Kostant andSouriau endows them with a GC-invariant 
omplex symple
ti
 form ωc.It is natural to ask whether one 
an �nd a metri
 making the orbithyperKähler, i.e., 
an one �nd a Riemannian metri
 g on O, su
h thatthe real and imaginary parts of ωc are Kähler forms with respe
t to
omplex stru
tures J and K satisfying IJ = K. By identifying Owith a moduli spa
e of solutions to Nahm's equations, Kronheimer [12℄showed that there is indeed su
h a hyperKähler metri
 on O. This hy-perKähler stru
ture is invariant under the 
ompa
t group G, and has1
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2 PIOTR KOBAK AND ANDREW SWANNthe important additional property that it admits [13℄ a hyperKählerpotential ρ: a fun
tion that is simultaneously a Kähler potential withrespe
t to I, J and K. Using ρ, one 
an de�ne an a
tion of H∗ on Osu
h that the quotient is a quaternioni
 Kähler manifold. It is in thisway that one may obtain the Wolf spa
e W (G) from Omin. In 
ontrastto the semi-simple 
ase [3℄, 
urrently one does not know how manyinvariant hyperKähler metri
s a given nilpotent orbit admits.The aim of this paper is to study the hyperKähler geometry of Ominin an elementary way. We look for all hyperKähler metri
s on Ominwith a G-invariant Kähler potential and whi
h are 
ompatible withthe 
omplex symple
ti
 stru
ture. Note that we do not restri
t ourattention to metri
s with hyperKähler potentials. We derive a simpleformula for the a priori unknown 
omplex stru
ture J . The orbit Ominis parti
ularly straight-forward to study in this way, sin
e G a
ts withorbits of 
odimension one. This means that the metri
s we obtain arealready known, they are 
overed by the 
lassi�
ation [7℄, but it is inter-esting to see how these metri
s 
an be 
onstru
ted dire
tly form theirpotentials. In agreement with the 
lassi�
ation, the hyperKähler stru
-ture is found to be unique, unless g = su(2), in whi
h 
ase one obtainsa one-dimensional family of metri
s, the Egu
hi-Hanson metri
s.A
knowledgements. We are grateful for �nan
ial support from the Ep-sr
 of Great Britain and Kbn in Poland.2. DefinitionsOn the simple 
omplex Lie algebra gC, let 〈·, ·〉 be the negative ofthe Killing form and let σ be a real stru
ture giving a 
ompa
t realform g of gC. An element X of gC is said to be nilpotent if (adX)k = 0for some integer k. Let O be the orbit of a nilpotent element X underthe adjoint a
tion of GC. At X ∈ O, the ve
tor �eld generated by Ain gC is ξA = [A, X]. Using the Ja
obi identity it is easy to see thatthese ve
tor �elds satisfy [ξA, ξB] = ξ−[A,B], for A, B ∈ gC. The orbit
O is a 
omplex submanifold of the 
omplex ve
tor spa
e gC and so hasa 
omplex stru
ture I given by IξA = iξA = ξiA.On a hyperKähler manifold M with 
omplex stru
tures I, J and Kand metri
 g, we de�ne Kähler two-forms by ωI(X, Y ) = g(X, IY ), et
.,for tangent ve
tors X and Y . The 
ondition that a fun
tion ρ : M → Rbe a Kähler potential for I is

ωI = −i∂I∂Iρ = −id∂Iρ = − i
2
d(d − iId)ρ = −1

2
dIdρ. (2.1)On the orbit O, the 
omplex symple
ti
 form of Kirillov, Kostant andSouriau is given by ωc(ξA, ξB)X = 〈X, [A, B]〉 = −〈ξA, B〉.



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 3We will be looking for hyperKähler stru
tures with Kähler poten-tial ρ and su
h that ωc = ωJ + iωK . This will be done by 
omputingthe Riemann metri
 g de�ned by ρ via (2.1) and then using this to de-termine an endomorphism J of TXO via ωJ = g(·, J ·). The 
onstraintson ρ will 
ome from the two 
onditions that g is positive de�nite andthat J2 = −1.3. Highest Roots and Minimal OrbitsChoose a Cartan subalgebra h of gC. Fix a system of roots ∆ withpositive roots ∆+. We write gβ for the root spa
e of β ∈ ∆. Choosea Cartan basis {Eβ, Hβ, Fβ : β ∈ ∆+}, whi
h we may assume is 
om-patible with the real stru
ture σ, in the sense that σ(Eβ) = −Fβ and
σ(Hβ) = −Hβ. One important property of the Cartan basis is that forea
h β, SpanC {Eβ, Hβ, Fβ} is a subalgebra of gC isomorphi
 to sl(2, C).The Lie algebra sl(2, C) has Cartan basis

E = ( 0 1
0 0 ) , H = ( 1 0

0 −1 ) , F = ( 0 0
1 0 ) . (3.1)The irredu
ible representations of sl(2, C) are the symmetri
 powers

Sk = SkC2 of the fundamental representation S1 = C2. The represen-tation Sk has dimension k + 1 and E, H and F a
t as
ϕE =

(

0 1
0 2... ...

0 k
0

)

, ϕH =

( k
k−2 ...

2−k
−k

) (3.2)and ϕF =

(

0
k 0... ...

2 0
1 0

)respe
tively. In parti
ular, (ϕE)k+1 = 0 and (ϕE)k has rank one, withimage the k-eigenspa
e of ϕH .Let α ∈ ∆+ be a highest root; this is 
hara
terised by the 
ondition
[Eα, Eβ] = 0 for all β ∈ ∆+. We de�ne Omin to be the adjoint orbitof Eα under the a
tion of GC. De�ne sl(2, C)α := SpanC {Eα, Hα, Fα}.Proposition 3.1. (i) Under the a
tion of sl(2, C)α the Lie algebra gCde
omposes as

gC ∼= sl(2, C)α ⊕ kC ⊕ (V ⊗ S1),where kC is the 
entraliser of sl(2, C), V is a kC-module.(ii) The a
tion of the 
ompa
t group G on the nilpotent orbit Ominhas 
ohomogeneity one.Proof. (i) Consider the a
tion of ad Eα on gC. For β ∈ ∆+, we have
[Eα, Fβ] ∈ gα−β . If β 6= α, then we have two 
ases: (a) if α−β is not aroot then gα−β = {0} and [Eα, Fβ] = 0; (b) if α − β is a root, then the



4 PIOTR KOBAK AND ANDREW SWANN
ondition that α is a highest root implies α − β ∈ ∆+, sin
e otherwise
α − β = −γ for some γ ∈ ∆+ and then [Eα, Eγ] is non-zero, whi
h fora highest root α is impossible. We therefore have that (adEα)2 is zeroon the 
omplement of sl(2, C)α and the de
omposition follows.(ii) At Eα the tangent spa
e to Omin is

adEα
gC = SpanC {Eα, Hα} + SpanC {Eα−β : β ∈ ∆+}.The real Lie algebra g is the real span of {Eβ − Fβ , iHβ, i(Eβ + Fβ)}.Thus the tangent spa
e adEα

g to the G-orbit is
SpanR {iEα, Hα, iHα} + SpanR {Eα−β , iEα−β : β ∈ ∆+}and we see that it has 
odimension one in TEα

Omin, the 
omplementbeing REα. As G is 
ompa
t, this implies G a
ts with 
ohomogeneityone.As in [8℄, it is possible to use this result to show that Omin is theminimal with respe
t to the partial order on nilpotent orbits given byin
lusions of 
losures. This explains the name Omin, but will not beneeded in the subsequent dis
ussion.4. Kähler Potentials in Cohomogeneity OneLet ρ : Omin → R be a smooth fun
tion invariant under the a
tion ofthe 
ompa
t group G. The group G a
ts with 
ohomogeneity one, andthe fun
tion η(X) = ‖X‖2 = 〈X, σX〉 is G-invariant and distinguishesorbits of G. We may therefore assume that ρ is just a fun
tion of η,i.e., ρ = ρ(η).We wish to 
onsider ρ as a Kähler potential for the 
omplex mani-fold (Omin, I). The 
orresponding Kähler form is given by (2.1):
ωI = −1

2
d(ρ′Idη) = −1

2
ρ′dIdη − 1

2
ρ′′dη ∧ Idη, (4.1)where ρ′ = dρ/dη, et
.Lemma 4.1. The Kähler form de�ned by ρ(η) is

ωI(ξA, ξB) = 2 Im (ρ′ 〈ξA, σξB〉 + ρ′′ 〈ξA, σX〉 〈σξB, X〉) . (4.2)Proof. The exterior derivative of η is
dη(ξA)X = 〈[A, X], σX〉 + 〈X, σ[A, X]〉 = 2 Re 〈ξA, σX〉 (4.3)so Idη(ξA)X = 2 Im 〈ξA, σX〉 and hen
e

(dη ∧ Idη)(ξA, ξB) = −4 Im (〈ξA, σX〉 〈σξB, X〉) .



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 5Using the Ja
obi identity we �nd that the exterior derivative of Idη isgiven by
dIdη(ξA, ξB)X = ξA(Idη(ξB)) − ξB(Idη(ξA)) − Idη([ξA, ξB])

= 2 Im 〈ξB, σξA〉 + 2 Im 〈[B, [A, X]], σX〉
− 2 Im 〈ξA, σξB〉 − 2 Im 〈[A, [B, X]], σX〉
+ 2 Im 〈[[A, B], X], σX〉

= −4 Im 〈ξA, σξB〉Putting these expressions into (4.1) gives the result.Using the relation g(ξA, ξB) = ωI(IξA, ξB), we 
an now obtain theindu
ed metri
 on Omin. In general, this metri
 will be inde�nite; thesignature may be determined by 
onsidering SpanR {X, σX} and itsorthogonal 
omplement with respe
t to the Killing form.Proposition 4.2. The pseudo-Kähler metri
 de�ned by ρ(η) is
g(ξA, ξB) = 2 Re (ρ′ 〈ξA, σξB〉 + ρ′′ 〈ξA, σX〉 〈σξB, X〉) . (4.4)This is positive de�nite if and only if ρ′ > max{0,−ηρ′′}.5. HyperKähler Metri
sGiven a fun
tion ρ(η) on Omin we have obtained a metri
 g. Letus assume that g is non-degenerate. Using the de�nition of ωc and itssplitting into real imaginary parts, we get endomorphisms J and Kof TXOmin via

g(ξA, ξB) = ωJ(JξA, ξB) = −Re 〈JξA, B〉 ,et
. This implies that
JXξA = −2ρ′ [X, σξA] − 2ρ′′ 〈σξA, X〉 [X, σX] . (5.1)and K = IJ . Note that (5.1) implies JI = −K.Suppose J2 = −1 and that g is positive de�nite. Then we have I,

J and K satisfying the quaternion identities, and with ωI , ωJ and ωK
losed two-forms. By a result of Hit
hin [10℄, this implies that I, Jand K are integrable and that g is a hyperKähler metri
.Proposition 5.1. The nilpotent orbit of sl(2, C) has a one-parameterfamily of hyperKähler metri
s with SU(2)-invariant Kähler potentialand 
ompatible with the Kostant-Kirillov-Souriau 
omplex symple
ti
form ωc.



6 PIOTR KOBAK AND ANDREW SWANNProof. The algebra sl(2, C) has only one nilpotent orbit O = Ominand this has real dimension 4. Using the a
tion of SU(2) we mayassume that X = tE, where t > 0 and E is given by (3.1). Then
TXO is spanned by H and E. We have JXH = −4ρ′t E and JXE =
2t(ρ′+ηρ′′)H , whi
h implies J2 = − Id if and only if 8t2(ρ′2+ηρ′ρ′′) = 1.Now η(E) = 4, so we get the following ordinary di�erential equationfor ρ:

2(ηρ′2 + η2ρ′ρ′′) = 1.The left-hand side of this equation is (η2ρ′2)′, so ρ′ =
√

η + c/η, forsome real 
onstant c. For this to be de�ned for all positive η, we need
c > 0. Now ρ′′ = −(η + 2c)/(2η2√η + c), so the metri
 is

g(ξA, ξB) =
1

η2
√

η + c
Re
(

2η(η + c) 〈ξA, σξB〉

− (η + 2c) 〈ξA, σX〉 〈σξB, X〉
)

,

(5.2)whi
h is positive de�nite.This hyperKähler metri
 is of 
ourse well-known. We put it in stan-dard form as follows. Using (4.3), we �nd (∂/∂η) = E/(8t) at X = tE.An SU(2)-invariant basis of TXO is now given by {∂/∂η, ξs1
, ξs2

, ξs3
},where

s1 = 1
2
( 0 1
−1 0 ) , s2 = 1

2
( 0 i

i 0 ) , s3 = 1
2
( i 0

0 −i ) .This basis is orthogonal with respe
t to (5.2) and in terms of the dualbasis of one-forms is {dη, σ1, σ2, σ3}, g is
1

4η2ρ′
dη2 + ηρ′

(

σ2
1 + σ2

2

)

+
1

ρ′
σ2

3.Substituting η = (r/2)4 − c, we get
g = W−1dr2 +

r2

4
(σ2

1 + σ2
2 + Wσ2

3),with W = 1 − 16c/r4, whi
h are the Egu
hi-Hanson metri
s [9℄.Theorem 5.2. For gC 6= sl(2, C), the minimal nilpotent orbit Ominadmits a unique hyperKähler metri
 with G-invariant Kähler potential
ompatible with the 
omplex symple
ti
 form ωc.Proof. Let α be a highest root. Using the a
tion of G, we may assumethat X = tEα, for some t > 0. On ξA ∈ sl(2, C)α, the 
ondition
J2 = − Id gives 8t2(ρ′2 + ηρ′ρ′′) = 1, as in Proposition 5.1. Putting



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 7
λ2 = η(Eα), we have t2 = η(X)/λ2 and hen
e ρ′ =

√

λ2η + c/2η. Nowfor ξA Killing-orthogonal to sl(2, C), we have
JξA = −2ρ′[X, σξA] = −2tρ′[Eα, σξA]and hen
e

J2ξA = −(4ηρ′2/λ2) adEα
adFα

ξA = −
(

1 +
c

λ2η

)

adEα
adFα

ξA.As η is not 
onstant, the 
ondition J2 = − Id implies c = 0 and wehave a unique hyperKähler metri
.The proof enables us to write down J expli
itly for Omin in gC 6=
sl(2, C):

JXξA = − λ

2η3/2
(2η[X, σξA] − 〈σξA, X〉 [X, σX]) .The number λ2 is a 
onstant depending only on the Lie algebra gC,with values 2n (sl(n, C), sp(n − 1, C), so(n + 2, C)), 8 (G2), 18 (F4),

24 (E6), 36 (E7), 70 (E8).Remark 5.3. Theorem 5.2 only assumes that ρ is a Kähler potential.However, the uniqueness result implies that this potential is in fa
thyperKähler (
f. [13℄). This 
orresponds to Proposition 5.1, where ρ isa hyperKähler potential only when c = 0.Finally, let us observe that the form of the potential determines thenilpotent orbit.Proposition 5.4. If a nilpotent orbit O has a Kähler potential ρ thatis only a fun
tion of η = ‖X‖2 and whi
h de�nes a hyperKähler stru
-ture 
ompatible with ωc, then O is a minimal nilpotent orbit.Proof. Choose X ∈ O, su
h that SpanC {X, σX, [X, σX]} is a subalge-bra isomorphi
 to sl(2, C); this is always possible by a result of Borel(
f. [11℄). Let X = tE, for t > 0, and write gC = sl(2, C) ⊕ m. Theproofs of Proposition 5.1 and Theorem 5.2 imply that ρ′ = λη−1/2/2and J2ξA = − adE adF ξA on m. Let Sk, k > 0, be an irredu
ible
sl(2, C)-summand of m. Then adE and adF a
t via the matri
es ϕEand ϕF of (3.2), so adE adF a
ts as a diagonal matrix with entries k,
2(k− 1), 3(k− 2), . . . , (k− 1)2, k and 0. As ξA is in the image of adE,in order to have J2ξA = −ξA, we need all the non-zero eigenvaluesof adE adF to be 1. This for
es k = 1.Let g(i) be the i-eigenspa
e of adH on gC. Then p =

⊕

i>0 g(i) isa paraboli
 subalgebra, so we may 
hoose a Cartan subalgebra of gClying in p and a root system su
h that the positive root spa
es are also



8 PIOTR KOBAK AND ANDREW SWANNin p. The dis
ussion above shows that adE is zero on all these positiveroot spa
es, and so E is a highest root ve
tor. Therefore O = Omin.Referen
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