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THE HYPERKÄHLER GEOMETRY ASSOCIATEDTO WOLF SPACESPIOTR KOBAK AND ANDREW SWANN1. IntrodutionOne of the glories of homogeneous geometry is Cartan's lassi�ationof the ompat Riemannian symmetri spaes [5, 6℄. Many manifoldsthat play a entral r�le in geometry are symmetri and it is fasi-nating to look for patterns in the presentations G/H . One obviousfamily is provided by the sphere Sn = SO(n + 1)/ SO(n), omplexprojetive spae CP(n) = U(n + 1)/(U(n)U(1)), quaternioni proje-tive spae HP(n) = Sp(n+1)/(Sp(n) Sp(1)) and the Cayley projetiveplane F4/ Spin(9). Another onsists of the Hermitian symmetri spaes:these are of the form G/(U(1)L) (see [4℄). However, the most surprisingis the family of quaternioni symmetri spaes W (G) := G/(Sp(1)K),whih has the feature that there is preisely one example for eah om-pat simple simply-onneted Lie group G. The manifolds in this lastfamily have beome known as Wolf spaes following [14℄. Alekseevsky[1℄ proved that they are the only homogeneous positive quaternioniKähler manifolds (f. [2℄).Wolf showed that the quaternioni symmetri spaes may be on-struted by hoosing a highest root α for gC. The orresponding rootvetor Eα is a nilpotent element in gC. In [13℄ it was shown that thereis a �bration of the nilpotent adjoint orbit Omin = GC · Eα over theWolf spae W (G).Nilpotent orbitsO in gC have a rih and interesting geometry. Firstly,they are omplex submanifolds of gC with respet to the natural om-plex struture I. Seondly, the onstrution of Kirillov, Kostant andSouriau endows them with a GC-invariant omplex sympleti form ωc.It is natural to ask whether one an �nd a metri making the orbithyperKähler, i.e., an one �nd a Riemannian metri g on O, suh thatthe real and imaginary parts of ωc are Kähler forms with respet toomplex strutures J and K satisfying IJ = K. By identifying Owith a moduli spae of solutions to Nahm's equations, Kronheimer [12℄showed that there is indeed suh a hyperKähler metri on O. This hy-perKähler struture is invariant under the ompat group G, and has1
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2 PIOTR KOBAK AND ANDREW SWANNthe important additional property that it admits [13℄ a hyperKählerpotential ρ: a funtion that is simultaneously a Kähler potential withrespet to I, J and K. Using ρ, one an de�ne an ation of H∗ on Osuh that the quotient is a quaternioni Kähler manifold. It is in thisway that one may obtain the Wolf spae W (G) from Omin. In ontrastto the semi-simple ase [3℄, urrently one does not know how manyinvariant hyperKähler metris a given nilpotent orbit admits.The aim of this paper is to study the hyperKähler geometry of Ominin an elementary way. We look for all hyperKähler metris on Ominwith a G-invariant Kähler potential and whih are ompatible withthe omplex sympleti struture. Note that we do not restrit ourattention to metris with hyperKähler potentials. We derive a simpleformula for the a priori unknown omplex struture J . The orbit Ominis partiularly straight-forward to study in this way, sine G ats withorbits of odimension one. This means that the metris we obtain arealready known, they are overed by the lassi�ation [7℄, but it is inter-esting to see how these metris an be onstruted diretly form theirpotentials. In agreement with the lassi�ation, the hyperKähler stru-ture is found to be unique, unless g = su(2), in whih ase one obtainsa one-dimensional family of metris, the Eguhi-Hanson metris.Aknowledgements. We are grateful for �nanial support from the Ep-sr of Great Britain and Kbn in Poland.2. DefinitionsOn the simple omplex Lie algebra gC, let 〈·, ·〉 be the negative ofthe Killing form and let σ be a real struture giving a ompat realform g of gC. An element X of gC is said to be nilpotent if (adX)k = 0for some integer k. Let O be the orbit of a nilpotent element X underthe adjoint ation of GC. At X ∈ O, the vetor �eld generated by Ain gC is ξA = [A, X]. Using the Jaobi identity it is easy to see thatthese vetor �elds satisfy [ξA, ξB] = ξ−[A,B], for A, B ∈ gC. The orbit
O is a omplex submanifold of the omplex vetor spae gC and so hasa omplex struture I given by IξA = iξA = ξiA.On a hyperKähler manifold M with omplex strutures I, J and Kand metri g, we de�ne Kähler two-forms by ωI(X, Y ) = g(X, IY ), et.,for tangent vetors X and Y . The ondition that a funtion ρ : M → Rbe a Kähler potential for I is

ωI = −i∂I∂Iρ = −id∂Iρ = − i
2
d(d − iId)ρ = −1

2
dIdρ. (2.1)On the orbit O, the omplex sympleti form of Kirillov, Kostant andSouriau is given by ωc(ξA, ξB)X = 〈X, [A, B]〉 = −〈ξA, B〉.



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 3We will be looking for hyperKähler strutures with Kähler poten-tial ρ and suh that ωc = ωJ + iωK . This will be done by omputingthe Riemann metri g de�ned by ρ via (2.1) and then using this to de-termine an endomorphism J of TXO via ωJ = g(·, J ·). The onstraintson ρ will ome from the two onditions that g is positive de�nite andthat J2 = −1.3. Highest Roots and Minimal OrbitsChoose a Cartan subalgebra h of gC. Fix a system of roots ∆ withpositive roots ∆+. We write gβ for the root spae of β ∈ ∆. Choosea Cartan basis {Eβ, Hβ, Fβ : β ∈ ∆+}, whih we may assume is om-patible with the real struture σ, in the sense that σ(Eβ) = −Fβ and
σ(Hβ) = −Hβ. One important property of the Cartan basis is that foreah β, SpanC {Eβ, Hβ, Fβ} is a subalgebra of gC isomorphi to sl(2, C).The Lie algebra sl(2, C) has Cartan basis

E = ( 0 1
0 0 ) , H = ( 1 0

0 −1 ) , F = ( 0 0
1 0 ) . (3.1)The irreduible representations of sl(2, C) are the symmetri powers

Sk = SkC2 of the fundamental representation S1 = C2. The represen-tation Sk has dimension k + 1 and E, H and F at as
ϕE =

(

0 1
0 2... ...

0 k
0

)

, ϕH =

( k
k−2 ...

2−k
−k

) (3.2)and ϕF =

(

0
k 0... ...

2 0
1 0

)respetively. In partiular, (ϕE)k+1 = 0 and (ϕE)k has rank one, withimage the k-eigenspae of ϕH .Let α ∈ ∆+ be a highest root; this is haraterised by the ondition
[Eα, Eβ] = 0 for all β ∈ ∆+. We de�ne Omin to be the adjoint orbitof Eα under the ation of GC. De�ne sl(2, C)α := SpanC {Eα, Hα, Fα}.Proposition 3.1. (i) Under the ation of sl(2, C)α the Lie algebra gCdeomposes as

gC ∼= sl(2, C)α ⊕ kC ⊕ (V ⊗ S1),where kC is the entraliser of sl(2, C), V is a kC-module.(ii) The ation of the ompat group G on the nilpotent orbit Ominhas ohomogeneity one.Proof. (i) Consider the ation of ad Eα on gC. For β ∈ ∆+, we have
[Eα, Fβ] ∈ gα−β . If β 6= α, then we have two ases: (a) if α−β is not aroot then gα−β = {0} and [Eα, Fβ] = 0; (b) if α − β is a root, then the



4 PIOTR KOBAK AND ANDREW SWANNondition that α is a highest root implies α − β ∈ ∆+, sine otherwise
α − β = −γ for some γ ∈ ∆+ and then [Eα, Eγ] is non-zero, whih fora highest root α is impossible. We therefore have that (adEα)2 is zeroon the omplement of sl(2, C)α and the deomposition follows.(ii) At Eα the tangent spae to Omin is

adEα
gC = SpanC {Eα, Hα} + SpanC {Eα−β : β ∈ ∆+}.The real Lie algebra g is the real span of {Eβ − Fβ , iHβ, i(Eβ + Fβ)}.Thus the tangent spae adEα

g to the G-orbit is
SpanR {iEα, Hα, iHα} + SpanR {Eα−β , iEα−β : β ∈ ∆+}and we see that it has odimension one in TEα

Omin, the omplementbeing REα. As G is ompat, this implies G ats with ohomogeneityone.As in [8℄, it is possible to use this result to show that Omin is theminimal with respet to the partial order on nilpotent orbits given byinlusions of losures. This explains the name Omin, but will not beneeded in the subsequent disussion.4. Kähler Potentials in Cohomogeneity OneLet ρ : Omin → R be a smooth funtion invariant under the ation ofthe ompat group G. The group G ats with ohomogeneity one, andthe funtion η(X) = ‖X‖2 = 〈X, σX〉 is G-invariant and distinguishesorbits of G. We may therefore assume that ρ is just a funtion of η,i.e., ρ = ρ(η).We wish to onsider ρ as a Kähler potential for the omplex mani-fold (Omin, I). The orresponding Kähler form is given by (2.1):
ωI = −1

2
d(ρ′Idη) = −1

2
ρ′dIdη − 1

2
ρ′′dη ∧ Idη, (4.1)where ρ′ = dρ/dη, et.Lemma 4.1. The Kähler form de�ned by ρ(η) is

ωI(ξA, ξB) = 2 Im (ρ′ 〈ξA, σξB〉 + ρ′′ 〈ξA, σX〉 〈σξB, X〉) . (4.2)Proof. The exterior derivative of η is
dη(ξA)X = 〈[A, X], σX〉 + 〈X, σ[A, X]〉 = 2 Re 〈ξA, σX〉 (4.3)so Idη(ξA)X = 2 Im 〈ξA, σX〉 and hene

(dη ∧ Idη)(ξA, ξB) = −4 Im (〈ξA, σX〉 〈σξB, X〉) .



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 5Using the Jaobi identity we �nd that the exterior derivative of Idη isgiven by
dIdη(ξA, ξB)X = ξA(Idη(ξB)) − ξB(Idη(ξA)) − Idη([ξA, ξB])

= 2 Im 〈ξB, σξA〉 + 2 Im 〈[B, [A, X]], σX〉
− 2 Im 〈ξA, σξB〉 − 2 Im 〈[A, [B, X]], σX〉
+ 2 Im 〈[[A, B], X], σX〉

= −4 Im 〈ξA, σξB〉Putting these expressions into (4.1) gives the result.Using the relation g(ξA, ξB) = ωI(IξA, ξB), we an now obtain theindued metri on Omin. In general, this metri will be inde�nite; thesignature may be determined by onsidering SpanR {X, σX} and itsorthogonal omplement with respet to the Killing form.Proposition 4.2. The pseudo-Kähler metri de�ned by ρ(η) is
g(ξA, ξB) = 2 Re (ρ′ 〈ξA, σξB〉 + ρ′′ 〈ξA, σX〉 〈σξB, X〉) . (4.4)This is positive de�nite if and only if ρ′ > max{0,−ηρ′′}.5. HyperKähler MetrisGiven a funtion ρ(η) on Omin we have obtained a metri g. Letus assume that g is non-degenerate. Using the de�nition of ωc and itssplitting into real imaginary parts, we get endomorphisms J and Kof TXOmin via

g(ξA, ξB) = ωJ(JξA, ξB) = −Re 〈JξA, B〉 ,et. This implies that
JXξA = −2ρ′ [X, σξA] − 2ρ′′ 〈σξA, X〉 [X, σX] . (5.1)and K = IJ . Note that (5.1) implies JI = −K.Suppose J2 = −1 and that g is positive de�nite. Then we have I,

J and K satisfying the quaternion identities, and with ωI , ωJ and ωKlosed two-forms. By a result of Hithin [10℄, this implies that I, Jand K are integrable and that g is a hyperKähler metri.Proposition 5.1. The nilpotent orbit of sl(2, C) has a one-parameterfamily of hyperKähler metris with SU(2)-invariant Kähler potentialand ompatible with the Kostant-Kirillov-Souriau omplex sympletiform ωc.



6 PIOTR KOBAK AND ANDREW SWANNProof. The algebra sl(2, C) has only one nilpotent orbit O = Ominand this has real dimension 4. Using the ation of SU(2) we mayassume that X = tE, where t > 0 and E is given by (3.1). Then
TXO is spanned by H and E. We have JXH = −4ρ′t E and JXE =
2t(ρ′+ηρ′′)H , whih implies J2 = − Id if and only if 8t2(ρ′2+ηρ′ρ′′) = 1.Now η(E) = 4, so we get the following ordinary di�erential equationfor ρ:

2(ηρ′2 + η2ρ′ρ′′) = 1.The left-hand side of this equation is (η2ρ′2)′, so ρ′ =
√

η + c/η, forsome real onstant c. For this to be de�ned for all positive η, we need
c > 0. Now ρ′′ = −(η + 2c)/(2η2√η + c), so the metri is

g(ξA, ξB) =
1

η2
√

η + c
Re
(

2η(η + c) 〈ξA, σξB〉

− (η + 2c) 〈ξA, σX〉 〈σξB, X〉
)

,

(5.2)whih is positive de�nite.This hyperKähler metri is of ourse well-known. We put it in stan-dard form as follows. Using (4.3), we �nd (∂/∂η) = E/(8t) at X = tE.An SU(2)-invariant basis of TXO is now given by {∂/∂η, ξs1
, ξs2

, ξs3
},where

s1 = 1
2
( 0 1
−1 0 ) , s2 = 1

2
( 0 i

i 0 ) , s3 = 1
2
( i 0

0 −i ) .This basis is orthogonal with respet to (5.2) and in terms of the dualbasis of one-forms is {dη, σ1, σ2, σ3}, g is
1

4η2ρ′
dη2 + ηρ′

(

σ2
1 + σ2

2

)

+
1

ρ′
σ2

3.Substituting η = (r/2)4 − c, we get
g = W−1dr2 +

r2

4
(σ2

1 + σ2
2 + Wσ2

3),with W = 1 − 16c/r4, whih are the Eguhi-Hanson metris [9℄.Theorem 5.2. For gC 6= sl(2, C), the minimal nilpotent orbit Ominadmits a unique hyperKähler metri with G-invariant Kähler potentialompatible with the omplex sympleti form ωc.Proof. Let α be a highest root. Using the ation of G, we may assumethat X = tEα, for some t > 0. On ξA ∈ sl(2, C)α, the ondition
J2 = − Id gives 8t2(ρ′2 + ηρ′ρ′′) = 1, as in Proposition 5.1. Putting



THE HYPERKÄHLER GEOMETRY ASSOCIATED TO WOLF SPACES 7
λ2 = η(Eα), we have t2 = η(X)/λ2 and hene ρ′ =

√

λ2η + c/2η. Nowfor ξA Killing-orthogonal to sl(2, C), we have
JξA = −2ρ′[X, σξA] = −2tρ′[Eα, σξA]and hene

J2ξA = −(4ηρ′2/λ2) adEα
adFα

ξA = −
(

1 +
c

λ2η

)

adEα
adFα

ξA.As η is not onstant, the ondition J2 = − Id implies c = 0 and wehave a unique hyperKähler metri.The proof enables us to write down J expliitly for Omin in gC 6=
sl(2, C):

JXξA = − λ

2η3/2
(2η[X, σξA] − 〈σξA, X〉 [X, σX]) .The number λ2 is a onstant depending only on the Lie algebra gC,with values 2n (sl(n, C), sp(n − 1, C), so(n + 2, C)), 8 (G2), 18 (F4),

24 (E6), 36 (E7), 70 (E8).Remark 5.3. Theorem 5.2 only assumes that ρ is a Kähler potential.However, the uniqueness result implies that this potential is in fathyperKähler (f. [13℄). This orresponds to Proposition 5.1, where ρ isa hyperKähler potential only when c = 0.Finally, let us observe that the form of the potential determines thenilpotent orbit.Proposition 5.4. If a nilpotent orbit O has a Kähler potential ρ thatis only a funtion of η = ‖X‖2 and whih de�nes a hyperKähler stru-ture ompatible with ωc, then O is a minimal nilpotent orbit.Proof. Choose X ∈ O, suh that SpanC {X, σX, [X, σX]} is a subalge-bra isomorphi to sl(2, C); this is always possible by a result of Borel(f. [11℄). Let X = tE, for t > 0, and write gC = sl(2, C) ⊕ m. Theproofs of Proposition 5.1 and Theorem 5.2 imply that ρ′ = λη−1/2/2and J2ξA = − adE adF ξA on m. Let Sk, k > 0, be an irreduible
sl(2, C)-summand of m. Then adE and adF at via the matries ϕEand ϕF of (3.2), so adE adF ats as a diagonal matrix with entries k,
2(k− 1), 3(k− 2), . . . , (k− 1)2, k and 0. As ξA is in the image of adE,in order to have J2ξA = −ξA, we need all the non-zero eigenvaluesof adE adF to be 1. This fores k = 1.Let g(i) be the i-eigenspae of adH on gC. Then p =

⊕

i>0 g(i) isa paraboli subalgebra, so we may hoose a Cartan subalgebra of gClying in p and a root system suh that the positive root spaes are also
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