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Abstract

We present a nonlinear stochastic differential equation (SDE) which mimics the
probability density function (PDF) of the return and the power spectrum of the ab-
solute return in financial markets. Absolute return as a measure of market volatility
is considered in the proposed model as a long-range memory stochastic variable.
The SDE is obtained from the analogy with earlier proposed model of trading ac-
tivity in the financial markets and generalized within the nonextensive statistical
mechanics framework. The proposed stochastic model generates time series of the
return with two power law statistics, i.e., the PDF and the power spectral density,
reproducing the empirical data for the one minute trading return in the NYSE.
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1 Introduction

High frequency time series of financial data exhibit sophisticated statisti-
cal properties. What is the most striking is that many of these anomalous
properties appear to be universal. Vast amounts of historical stock price data
around the world have helped to establish a variety of so-called stylized facts
[1,2,3,4,5,6], which can be seen as statistical signatures of financial processes.
The findings as regards the PDF of the return and other financial variables are
successfully generalized within a non-extensive statistical framework [7]. The
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return has a distribution that is very well fitted by q-Gaussians, only slowly
becoming Gaussian as the time scale approaches months, years and longer
time horizons. Another interesting statistic which can be modeled within the
nonextensive framework, is the distribution of volumes, defined as the number
of shares traded.

Interesting stochastic models related to the nonextensive statistics include an
ARCH process with random noise distributed according to a q-Gaussian as well
as some state-dependent additive-multiplicative processes [8]. These models do
capture the distribution of returns, but not necessarily the empirical temporal
dynamics and correlations. Additive-multiplicative stochastic models of the
financial mean-reverting processes provide a rich spectrum of shapes for the
probability distribution function (PDF) depending on the model parameters
[9]. Such stochastic processes model the empirical PDF’s of volatility, volume
and price returns with success when the appropriate fitting parameters are
selected. Many other fits are also proposed, including exponential ones [10]
applicable for larger time scales.

Nevertheless, there is a necessity to select the most appropriate stochastic
models, able to describe volatility as well as other variables in dynamical
aspects and long-range correlation aspects.

There is empirical evidence that trading activity, trading volume, and volatility
are stochastic variables with the long-range correlation [11,12,13] and this key
aspect is not accounted for in some widely used models. The ARCH-like,
multiscale models of volatility, which assume that the volatility is governed by
the observed past price changes over different time scales, have been recently
proposed [14,15]. Trading volume and trading activity are positively correlated
with market volatility. Moreover, trading volume and volatility show the same
type of long memory behavior [16].

Recently we investigated analytically and numerically the properties of stochas-
tic multiplicative point processes [17,18], derived a formula for the power
spectrum and related the model with the general form of the multiplicative
stochastic differential equation [19,20]. The extensive empirical analysis of the
financial market data, supporting the idea that the long-range volatility cor-
relations arise from trading activity, provides valuable background for further
development of the long-ranged memory stochastic models [12,13]. The power
law behavior of the autoregressive conditional duration process [21] based on
the random multiplicative process and its special case the self-modulation pro-
cess [22], exhibiting 1/f fluctuations, supported the idea of stochastic modeling
with a power law PDF and long memory. A stochastic model of trading activ-
ity based on an SDE driven Poisson-like process has been already presented
in [23]. We further develop an approach of modulating the SDE with a closer
connection to the nonextensive statistics in order to model the dynamics of
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return in this paper.

Long memory (long-term dependence) has been defined in time domain in
terms of autocorrelation power law decay, or in frequency domains in terms of
power law growth of low frequency spectra. Despite statistical methodology
being developed for the data with the long-range dependence and the solid
mathematical foundations of the area [25], let us consider behavior of the
financial variables only in the frequency domain, analyzing the power spectral
density.

In the second Section we present the nonlinear SDE generating a signal with
a q-Gaussian PDF and power law spectral density. In the third Section we
analyze the tick by tick empirical data for trades on the NYSE for 24 shares
and adjust the parameters of the proposed equations to the empirical data. A
short discussion and conclusions are presented in the final section.

2 The stochastic model with a q-Gaussian PDF and long memory

Earlier we investigated stochastic processes with long-range memory proper-
ties. Starting from the stochastic point process model, which reproduced a vari-
ety of self-affine time series exhibiting the power spectral density S(f) ∼ 1/fβ

scaling as power β of the frequency f [18], later we introduced a Poisson-like
process driven by the stochastic differential equation. The latter served as an
appropriate model of trading activity in the financial markets [23]. In this
section we generalize an earlier proposed nonlinear SDE within the nonex-
tensive statistical mechanics framework to reproduce the long-range memory
statistics with a q-Gaussian PDF. The q-Gaussian PDF of stochastic variable
r with variance σ2

q can be written as

P (r) = Aq expq

(

− r2

(3 − q)σ2
q

)

, (1)

where Aq is a constant of normalization and q defines the power law part of
the distribution. P (r) is introduced through the variational principle applied
to the generalized entropy [8]

Sq = k
1 − ∫

[p(r)]qdr

1 − q
.

Here the q-exponential of variable x is defined as

expq(x) = (1 + (1 − q)x)
1

1−q (2)
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and we assume that the q-mean µq = 0. With some transformation of param-
eters σq and q

λ =
2

q − 1
, r0 = σq

√

3 − q

q − 1

we can rewrite the q-Gaussian in a more transparent form:

Pr0,λ(r) =
Γ(λ/2)√

πr0Γ(λ/2 − 1/2)

(

r2
0

r2
0 + r2

)
λ
2

. (3)

Looking for the appropriate form of the SDE we start from the general case
of a multiplicative equation in the Ito convention with Wiener process W :

dr = a(r)dt + b(r)dW. (4)

If the stationary distribution of SDE (4) is the q-Gaussian (3), then the coef-
ficients of SDE are related as follows [24]:

a(r) = −λ

2

r

r2
0 + r2

b(r)2 + b(r)
db(r)

dr
. (5)

From our previous experience modeling one-over-f noise and trading activity in
financial markets [17,18], building nonlinear stochastic differential equations
exhibiting power law statistics [19,20], we know that processes with power
spectrum S(f) ∼ 1/fβ can be obtained using the multiplicative term b(r) ∼ rη

or even a slightly modified form (r2
0 +r2)

η

2 . Therefore, we choose the term b(r)
as

b(r) = σ(r2
0 + r2)

η

2 (6)

and, consequently, by Eq. (5) we have the related relaxation

a(r) = σ2

(

η − λ

2

)

(r2
0 + r2)η−1r. (7)

Then one gets the stochastic differential equation

dr = σ2

(

η − λ

2

)

(r2
0 + r2)η−1rdt + σ(r2

0 + r2)
η

2 dW. (8)
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Note that in the simple case η = 1 Eq. (8) coincides with the model presented
in the article by Queiros et al. [26] with

b(r) =

√

√

√

√

θ

P (r)
2

λ

, a(r) = − θ

r2
0

(

λ

2
− 1

)

r (9)

We will investigate higher values of η in order to cache long-range memory
properties of the absolute return in the financial markets. We can scale our
variables

x =
r

r0

, ts = σ2r
2(η−1)
0 t (10)

to reduce the number of parameters and to get simplified equations. Then
SDE

dx =

(

η − λ

2

)

(1 + x2)η−1xdts + (1 + x2)
η

2 dWs (11)

describes a stochastic process with a stationary q-Gaussian distribution

Pλ(x) =
1√
π

Γ(λ/2)

Γ(λ/2 − 1/2)

(

1

1 + x2

)

λ
2

(12)

and the power spectral density of the signal S(f)

S(f)=
A

fβ
, β = 1 +

λ − 3

2(η − 1)
(13)

A =
(λ − 1)Γ(β − 1/2)

2
√

π(η − 1) sin(πβ/2)

(

2 + λ − 2η

2π

)β−1

(14)

with 0.5 < β < 2, 4 − η < λ < 1 + 2η and η > 1. Eqs. (13-14) were first
derived for the multiplicative point process in [17,18] and generalized for the
nonlinear SDE (8) in [19,20]. Although Eq. (8) coincides with Eq. (15) in ref.
[20] only for high values of the variable r >> r0, these values are responsible
for the power spectrum. Note that the frequency f in equation (13) is the
scaled frequency matching the scaled time ts (10). The scaled equations (10)-
(14) define a stochastic model with two parameters λ and η responsible for
the power law behavior of the signal PDF and power spectrum. Numerical
calculations with Eq. (11) confirm analytical formulas (12-14) (see ref. [20]).

We will need a more sophisticated version of the SDE to reproduce a stochas-
tic process with a fractured power spectrum of the absolute return observable
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in financial markets. Having in mind the statistics of the stochastic model
(11) defined by Eqs. (12)-(14) and numerical modeling with more sophisti-
cated versions of the SDE, we propose an equation combining two powers of
multiplicativity

dx =

(

η − λ

2
− (xǫη)2

)

(1 + x2)η−1

((1 + x2)
1

2 ǫ + 1)2
xdts +

(1 + x2)
η

2

(1 + x2)
1

2 ǫ + 1
dWs. (15)

Here ǫ divides area of x diffusion into two different power law regions to ensure
the spectral density of |x| with two power law exponents. A similar procedure
has been introduced in the model of trading activity [23]. The proposed new
form of the continuous stochastic differential equation enables us to reproduce
the main statistical properties of the return observed in the financial markets.
This provides an approach to the market with behavior dependent on the
level of activity and exhibiting two stages: calm and excited. Equation (15)
models the stochastic return x with two power law statistics, i.e., the PDF
and power spectral density, reproducing the empirical power law exponents of
the trading return in the financial markets. At the same time, via the term
(xǫη)2 we introduce the exponential diffusion restriction for the high values of
x as the markets in the excited stage operate on the limit of nonstationarity.
We solve Eq. (15) numerically using the method of discretization. Introducing
the variable step of integration

hk = κ2 ((x2
k + 1)

1

2 ǫ + 1)2

(x2
k + 1)η−1

,

the differential equation (15) transforms to the difference equation

xk+1 =xk + κ2

(

η − λ

2
− (xǫη)2

)

xk + κ(x2
k + 1)

1

2 εk (16)

tk+1 = tk + κ2 ((x2
k + 1)

1

2 ǫ + 1)2

(x2
k + 1)η−1

(17)

The continuous stochastic variable x does not include any time scale as the
return defined in a time window τ should. Having in mind that the return is an
additive variable and depends on the number of transactions in a similar way
to trading activity, we define the scaled return X in the time period τ as the
integral of the continuous stochastic variable X =

∫ t+τ
t x(ts)/τ dts. Note that

τ here is measured in scaled time units Eq. (10) and will coincide with a one
minute interval of empirical data. This serves as an procedure of adjustment
to the real time scale for scaled equations.
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Fig. 1. (a) The numerically calculated PDF of |X| = |
∫ t+τ
t x(t)/τ dts| from Eq. (17)

(black thin line), in comparison with the theoretical distribution 2P (x) Eq. (12)
(gray thick line), and (b) the numerically calculated power spectrum of |X|. Param-
eters η = 5/2, λ = 3.6, τ = 0.0001 and ǫ = 0.01 are selected to reproduce statistics
for the absolute return in financial markets.

It is worth recalling that integration of the signal in the time interval τ does
not change the behavior of the power spectrum for the frequencies f << 1

τ
.

This is just the case we are interested in for the long-range memory analysis of
financial variables and we can expect Eqs. (13-14) to work for the stochastic
variable X as well. We analyzed the influence of signal integration on the
PDF in previous modeling of trading activity; see ref. [17]. Integration of the
nonlinear stochastic signal increases the exponent of the power law tails in
the area of the highest values of the integrated signal. This hides fractured
behavior of the X PDF, which arises for x as a consequence of the two powers
in the multiplicative term of Eq. (15).

In Fig. 1 we demonstrate (a) the numerically calculated PDF of |X| in compar-
ison with the theoretical distribution 2P (x) Eq. (12) and (b) the numerically
calculated power spectrum of |X| with parameters appropriate for reproducing
statistics for the absolute return in financial markets.

3 Empirical analysis and model adjustment

In this section we analyze the tick by tick trades of 24 stocks, ABT, ADM,
BMY, C, CVX, DOW, FNM, GE, GM, HD, IBM, JNJ, JPM, KO, LLY, MMM,
MO, MOT, MRK, SLE, PFE, T, WMT, XOM, traded on the NYSE for 27
months from January, 2005, recorded in the Trades and Quotes database.
We sum empirical tick by tick returns into one-minute returns to adjust the
continuous stochastic model presented. There is a problem in the use of a
straightforward procedure to determine η from empirical data. One expects
to have η ≃ 1 when the return is assumed as a simple stochastic variable [26].
From our point of view the straightforward SDE recovery procedures do not
work, as the return in real financial markets is at least double the stochas-
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Fig. 2. An example of a moving average for 60 min of empirical absolute returns per
minute (gray thick line) in comparison with the corresponding moving average of
trading activity, number of trades per minute (black thin line). Scales are adjusted.

tic process influenced by long memory stochastic trading activity and rapid
price fluctuations. On the other hand, if one assumed η = 1, then long-range
memory features of the process would be lost [20]. Earlier we investigated the
nonlinear stochastic equations with η ≥ 3/2, exhibiting the long-range mem-
ory properties [19], and proposed one as an appropriate stochastic model of
trading activity in the financial markets [23]. Detailed analysis of the empiri-
cal data from the NYSE provides evidence that long-range memory properties
of the return strongly depend on fluctuations of trading activity. In Fig. 2
we demonstrate strong correlation of the moving average of absolute returns
per minute with the moving average of trading activities (number of trades
per minute). Here for the empirical sequences of one-minute returns {rt}T

t=1

or trading activities {Nt}T
t=1 we calculate moving averages MA defined as the

centered means for a selected number of minutes n; for example, MA(rt) is

MA(rt) =
1

n

t+n/2−1
∑

j=t−n/2

rj. (18)

The best correlation can be achieved when the moving averages are calculated
in the period from 60 to 100 minutes.

There are a lot of researchers investigating the power law distribution of re-
turns and trading activity in the financial markets [27]. The q-Gaussian PDF
is a reasonable approximation to the empirical data [7]. The power law ex-
ponents for the extreme values of returns and trading activity are nearly the
same: λ ≃ 4 [23]. Furthermore, fascinating statistical similarity of two financial
variables occurs in the power spectral density exhibiting long-range memory
properties with two scaling exponents [23]. All these extraordinary sophisti-
cated statistical properties are reproducible using the SDE (15) introduced in
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the previous section.

Many non-equilibrium systems exhibit spatial or temporal fluctuations of some
parameter. There are two time scales: the scale on which the dynamics is able
to reach a stationary state, and the scale for which the fluctuating parameter
evolves. A particular case is when the time needed for the system to reach
stationarity is much smaller than the scale at which the fluctuating parameter
changes. In the long term, the non-equilibrium system is described by the
superposition of different local dynamics at different time intervals, which has
been called superstatistics [28,29].

In order to account for the double stochastic nature of return fluctuations -
a hidden slowly diffusing long-range memory process and rapid fluctuations
of the instantaneous price changes — we decompose the empirical one-minute
return series into two processes: the background fluctuations and the high am-
plitude rapid fluctuations dependent on the first one modulating. To perform
this decomposition we assume that the empirical return rt can be written as
instantaneous q-Gaussian fluctuations with a slowly diffusing parameter r0

dependent on the moving average of the return rt:

r = ξ{r0(MA(rt)), λ2}, (19)

where ξ{r0, λ2} is a q-Gaussian stochastic variable with the PDF defined by
Eq. (3) (the parameter q is q = 1+2/λ2). In Eq. (19) the parameter r0 depends
on the modulating moving average of returns, MA(rt), and the empirically
defined power law exponent λ2. From the empirical time series of the one-
minute returns rt one can draw histograms of ξ corresponding to defined values
of the moving average MA(rt). The q-Gaussian PDF is a good approximation
to these histograms and the adjusted set of r0 for selected values of MA(rt)
gives an empirical definition of the function

r0(MA(rt)) = 1 + 2.5 × |MA(rt)|. (20)

The q-Gaussians with λ2 = 5 and linear function r0(|MA(rt)|) (20) give a
good approximation of ξ fluctuations for all stocks and values of modulating
MA(rt). The long-term PDF of moving average MA(rt) can be approximated
by a q-Gaussian with r̄0 = 0.2 and λ = 3.6. All these empirically defined
parameters form the background for the stochastic model of the return in the
financial market.

We propose to model the long-range memory modulating stochastic return
MA(rt) by X = r̄0

∫ t+τ
t x(t)/τ dt, where x is a continuous stochastic variable

defined by Eq. (15). The remaining parameters ǫ and τ can be adjusted to the
empirical data and have values ǫ = 0.01 and τ = 0.0001/σ2 = 60 s. In Fig. 3 we
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Fig. 3. Comparison of empirical and model (15)-(20) statistics of one-minute returns
traded on the NYSE, (a) the empirical (black thin line) and model (gray thick line)
PDF of normalized returns and (b) the empirical power spectrum of normalized
returns (black thin line) averaged over 24 stocks and the model power spectrum
(gray thick line) averaged over 24 realizations. All parameters are as follows: λ2 = 5;
r̄0 = 0.2; τ = 0.0001/σ2 = 60s; λ = 3.6; ǫ = 0.01 and η = 5/2.

provide a comparison of the empirical PDF, averaged over 24 stocks of NYSE,
of one-minute returns normalized to the standard deviation and the power
spectrum with the corresponding statistics of the proposed double stochas-
tic model. This serves as an evidence of possibility of modeling the financial
variables using nonlinear stochastic equations with elements of nonextensive
statistics. Noticeable difference in theoretical and empirical PDFs for small
values of X are related with the prevailing prices of trades expressed in inte-
ger values of cents. Obviously we do not account for this discreteness in our
continuous description. In the empirical power spectrum one-day resonance —
the largest spike with higher harmonics — is present. This seasonality — an
intraday activity pattern of the signal — is not included in the model either
and this leads to the explicable difference from observed power spectrum.

4 Discussion and conclusions

In the previous work [23] we provided evidence that long-range memory fluc-
tuations of trading activity in the financial markets may be considered as the
background stochastic process responsible for the fractal properties of other
financial variables. This background stochastic process can be reproduced us-
ing a nonlinear SDE (15) with multiplicative noise composed of two powers of
a stochastic variable. The two powers in the SDE reveal different behaviors of
the market in the periods of different trading activity. In this paper we gen-
eralized the form of the background SDE within the nonextensive statistical
mechanics framework to reproduce fascinating statistical properties of the fi-
nancial variables with a q-Gaussian PDF and fractured behavior of the power
spectrum.
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In the prevailing relatively calm periods, with x < 1/ǫ and multiplicativity
specified by η = 5/2, markets behave as stationary stochastic processes with
a q-Gaussian PDF, q ∼ 1 + 2/5 = 1.4. In the periods of excited behavior,
when x > 1/ǫ, the PDF approaches a nonstationary regime, λ ∼ 2. This leads
to the excess values of financial variables, which have to be restricted by the
additional limits in the SDE, term (xǫη)2 giving the exponential restriction
of diffusion at the excess value x ∼ 1/ǫη. These rare escapes of a continuous
stochastic variable smoothed by an integration procedure do not very con-
siderably contribute to the main PDF of a financial variable. However, these
escapes condition the behavior of the power spectrum, reducing the exponent
β of the power law distribution S(f) ∼ 1/fβ in the region of higher frequen-
cies. In the case of the return, the background stochastic process defined by
Eq. (15) is hidden by the secondary high amplitude q-Gaussian stochastic
process ξ{r0, λ2}. Though the background fluctuations are considerably lower
than the secondary ones, this drives the whole process through the empirically
defined Eqs. (19) and (20).

The generalized new form of the continuous stochastic differential, equation
(15), enables us to reproduce the main statistical properties of the return,
observed in the financial markets. All parameters introduced are recoverable
from the empirical data and are responsible for the specific statistical features
of real markets. The model does capture the distribution of the return, the
empirical temporal dynamics and correlations evaluated through the power
spectral density of absolute return. The model definition with two powers of
multiplicative noise enables us to reproduce the power spectral density with
two different scaling exponents, as observed in the empirical data. Stochas-
tic modeling of the financial variables with the nonlinear SDE is consistent
with the nonextensive statistical mechanics and provides new opportunities to
capture empirical statistics in detail.

Acknowledgements

We would like to express our appreciation to B. Kaulakys for his valuable
advice and remarks. The authors acknowledge the support by the Agency
for International Science and Technology Development Programs in Lithuania
and EU COST Action MP0801 Physics of Competition and Conflicts.

References

[1] R.N. Mantegna H.E. Stanley, Nature 376 (1995) 46-49.

11



[2] R. Engle, Econometrica 66 (1998) 1127-1162.

[3] V. Plerou, P. Gopikrishnan, L.A. Amaral, M. Meyer, H.E. Stanley, Phys. Rev.
E 60 (1999) 6519-6529.

[4] R. Engle, Econometrica 68 (2000) 1-22.

[5] P.Ch. Ivanov, A. Yuen, B. Podobnik, Y. Lee, Phys. Rev. E 69 (2004) 056107.

[6] J.B. Bouchaud, M. Potters, Theory of Financial Risks and Derivative Pricing,
Cambridge University Press, Cambridge, 2004.

[7] Cf.M. Gell-Mann, C. Tsallis, Nonextensive Entropy - Interdisciplinary

Applications, Oxford University Press, NY, 2004.

[8] S.M. Duarte Queiros, C. Anteneodo, C. Tsallis, Power-law distributions in

economics: a nonextensive statistical approach, in: Proc. Of SPIE 5848 (2005)
151. physics/0503024.

[9] C. Anteneodo, R. Riera, Phys. Rev. E 72 (2005) 026106.

[10] B. Podobnik, D. Horvatic, A. Petersen H.E. Stanley, Europhysics Letters 85
(2009) 50003.

[11] R.F. Engle, A.J. Paton, Quant. Finance 1 (2001) 237.

[12] V. Plerou, P. Gopikrishnan, X. Gabaix et al, Quant. Finance 1 (2001) 262.

[13] X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423 (2003) 267.

[14] L. Borland, On a multi-timescale statistical feedback model for volatility

fluctuations, 2004 arXiv:cond-mat/0412526.

[15] S.M. Duarte Queiros, EPL, 80 (2007) 30005.

[16] I.N. Lobato, C. Velasco, J. Bus. Econom. Statist. 18 (2000) 410-427.

[17] V. Gontis, B. Kaulakys, Physica A 343 (2004) 505-514.

[18] B. Kaulakys, V. Gontis, M. Alaburda, Phys. Rev. E 71 (2005) 051105.

[19] B. Kaulakys, J. Ruseckas, V. Gontis, M. Alaburda, Physica A 365 (2006) 217.

[20] B. Kaulakys, M. Alaburda, J. Stat. Mech. (2009) P02051.

[21] A-H. Sato, Phys. Rev. E 69 2004 047101.

[22] M. Takayasu, H. Takayasu, Physica A 324 (2003) 101.

[23] V. Gontis, B. Kaulakys, J. Ruseckas, Physica A 387 (2008) 3891-3896.

[24] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and

Natural Sciences, Springer-Verlag, Berlin, 1985.

[25] J. Beran, Statistics for long-Memory Processes, Chapman & Hall, New York,
1994.

12

http://arxiv.org/abs/physics/0503024
http://arxiv.org/abs/cond-mat/0412526


[26] S.M. Duarte Queiros, L.G. Moyano, J. de Souza, C. Tsallis, Eur. Phys. J. B 55
(2007) 161-167.

[27] M.M. Dacorogna, R. Gencay, U.A. Muller, R.B. Olsen, O.V. Pictet, An

Introduction to High-Frequency Finance, Academic Press, San Diego, 2001.

[28] C. Beck and E. G. Cohen, Physica A 322 (2003) 267.

[29] S. Abe, C. Beck, and E. G. D. Cohen, Phys.Rev.E 76 (2007) 031102.

13


	Introduction
	The stochastic model with a q-Gaussian PDF and long memory
	Empirical analysis and model adjustment
	Discussion and conclusions
	References

