
ar
X

iv
:m

at
h/

00
01

02
7v

1 
 [

m
at

h.
D

G
] 

 5
 J

an
 2

00
0

HYPERKÄHLER POTENTIALS VIAFINITE-DIMENSIONAL QUOTIENTSPIOTR KOBAK AND ANDREW SWANNAbstrat. It is known that nilpotent orbits in a omplex simpleLie algebra admit hyperKähler metris with a single funtion thatis a global potential for eah of the Kähler strutures (a hyper-Kähler potential). In an earlier paper the authors showed thatnilpotent orbits in lassial Lie algebras an be onstruted as�nite-dimensional hyperKähler quotient of a �at vetor spae. Thispaper uses that quotient onstrution to ompute hyperKähler po-tentials expliitly for orbits of elements with small Jordan bloks.It is seen that the Kähler potentials of Biquard and Gauduhon for
SL(n, C)-orbits of elements with X2 = 0, are in fat hyperKählerpotentials. 1. IntrodutionAdjoint orbits in omplex semi-simple Lie algebras are known toarry a ompatible hyperKähler metri invariant under the ompatgroup ation (see [18, 17, 16, 2℄). Nilpotent orbits are partiularly inter-esting as they admit a hyperKähler struture whih is losely related totwistor spaes and quaternion-Kähler geometries [20℄ and whih omesequipped with a hyperKähler potential. If one only asks for a Kählerpotential ompatible with the hyperKähler struture, then several ex-amples are known. Hithin [8℄ gave an expression for a global Kählerpotential for a hyperKähler struture on the regular semi-simple orbitof sl(n,C) in terms of theta funtions. Biquard and Gauduhon [3℄ de-termined a simple formula for the Kähler potential for the hyperKählermetri on semi-simple orbits of symmetri type. These orbits ome inontinuous families and by taking a limit Biquard and Gauduhon alsoobtain Kähler potentials for ertain nilpotent orbits.In [15, 13℄, Kähler and hyperKähler potentials were obtained fororbits of ohomogeneity one and two by onsidering the invariants pre-served by the ompat group ation. The ohomogeneity of a omplex1991 Mathematis Subjet Classi�ation. (2000 version) Primary 53C26; Se-ondary 53D20, 14L35.Key words and phrases. HyperKähler manifold, hyperKähler potential, hyper-Kähler quotient, lassial Lie algebras, nilpotent orbit.1
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2 PIOTR KOBAK AND ANDREW SWANNorbit O ⊂ gC is de�ned as the odimension of the generi orbits of theompat group G on O. As the ohomogeneity inreases, we move fur-ther away from homogeneous manifolds and the geometry of the orbitsbeomes more ompliated.But there are other ways of rating the level of omplexity of nilpotentorbits. In the ase when eah simple omponent of gC is lassial (i.e.,equals su(n,C), so(n,C), or sp(n,C)) it an be shown that nilpotentorbits in gC arise as hyperKähler redutions of the �at hyperKählerspaes HN (see [11℄). This gives a more expliit desription of the hy-perKähler metri and the orresponding potential, as the latter omessimply from the radial funtion r2 on H
N . The spae H

N in the on-strution arises from a diagram of unitary vetor spaes; the longer thediagram, the more ompliated the geometry of the orbit. But even or-bits that arise from the simplest diagrams (i.e., those of length 2) mayhave arbitrary high ohomogeneity, whih puts them beyond the sopeof the �low ohomogeneity approah� mentioned above. In [10℄, we su-essfully applied this tehnique to onstrut the hyperKähler potentialfor the regular nilpotent orbit in sl(3,C), whih has ohomogeneity 4.The aim of this paper is to apply the same onstrution to alulatehyperKähler potentials for nilpotent orbits with diagrams of length twoor three. This inludes lassial orbits of ohomogeneity one or two andalso all orbits obtainable as limits of semi-simple orbits of symmetritype. In partiular, we are able to prove (in the sl(n,C) ase) that theKähler potentials obtained by Biquard and Gauduhon on nilpotentorbits are in fat hyperKähler potentials. This is not apparent fromtheir work, partiularly beause we found in [13℄ that several of theseorbits admit families of invariant hyperKähler metris with Kähler po-tentials. We also determine the potential for orbits in so(n,C) whihhave length three diagrams and Jordan type (3, 22k, 1ℓ). In the simplestases there is a striking resemblane to the formulæ we have for theohomogeneity two ase, but for k > 2 matters ompliate rapidly.In the alulations we use �nite overing maps between nilpotentorbits and the Beauville bundle onstrution. It is worth pointing outthat these tehniques ombined with knowledge of the invariants of theompat group ation an be used to �nd the potential in several otherases, for example for nilpotent orbits in the exeptional Lie algebra
gC

2 (see [14℄).Expliit knowledge of hyperKähler potentials is of interest in thestudy of real nilpotent orbits, f. [5℄, and we expet to pursue this infuture work.The paper is organised as follows. Setion 2 realls the hyperKäh-ler quotient onstrution of lassial nilpotent orbits and gives some



HYPERKÄHLER POTENTIALS 3general results on hyperKähler potentials. In setion 3 we derive for-mulæ for the potential for orbits with diagrams of length 2 and then,in setion 4, apply the result to the low ohomogeneity ase. Finally,in setion 5 we work out the potential for the simplest orbits withdiagrams of length 3.Aknowledgements. We are grateful for �nanial support from the Ep-sr of Great Britain and Kbn in Poland.2. Bakground and General ResultsWe begin by reviewing the general theory of the relationship betweenhyperKähler quotients, hyperKähler potentials and nilpotent orbits.A Riemannian manifold (N, g) with omplex strutures I, J and Ksatisfying the quaternion identities IJ = K = −JI, et., is hyperKählerif g is Hermitian with respet to eah of the omplex strutures andthe two-forms ωI(X, Y ) := g(X, IY ), ωJ and ωK are losed. Suh amanifold is thus sympleti in three di�erent ways. If one distinguishesthe omplex struture I, then N beomes a Kähler manifold with aholomorphi sympleti two-form ωc := ωJ + iωK .An interesting general problem is to �nd hyperKähler struturesompatible with a given omplex struture I and a holomorphi sym-pleti form ωc. One natural soure of suh manifolds is adjoint orbits
O of a omplex semi-simple Lie group GC. Suh an orbit inherits aomplex struture I as a submanifold of the omplex vetor spae gC.The omplex sympleti form on O is given at X ∈ O by

ωO
c ([A,X], [B,X]) = 〈X, [A,B]〉 ,where 〈·, ·〉 is the negative of the Killing form on gC. If G is a ompatreal form of GC, then O admits a G-invariant hyperKähler strutureompatible with I and ωO

c [18, 17, 16, 2℄.The Marsden-Weinstein quotient onstrution was adapted to hyper-Kähler manifolds in [9℄. Suppose a Lie group H ats on a hyperKählermanifold N preserving g, I, J and K. Suppose also that there existsympleti moment maps µI , µJ and µK from N to h∗ for the ationof H with respet to the sympleti forms ωI , ωJ and ωK . For I, thismeans that for eah V ∈ h, the funtion µV
I := 〈µI , V 〉 satis�es

dµV
I = ξV y ωI , (2.1)where ξV is the vetor �eld generated by the ation of V . We thende�ne a hyperKähler moment map by

µ : N → h∗ ⊗ Im H, µ = µIi+ µJj + µKk.



4 PIOTR KOBAK AND ANDREW SWANNThe hyperKähler quotient of N by H is de�ned to be
N///H := µ−1(0)/H.If H ats freely on N , then N///H is a hyperKähler manifold of dimen-sion dimN − 4 dimH . Even if the ation of H is not free, there is anatural way to writeN///H as a union of hyperKähler manifolds [6℄. Wewill often distinguish the omplex struture I and write µ = (µC, µR),where µC = µJ + iµK and µR = µI . The map µC is then a omplexsympleti moment map for the (in�nitesimal) ation of HC on N .For nilpotent orbits in the lassial Lie algebras, a G-invariant hyper-Kähler metri may be onstruted by �nite-dimensional hyperKählerquotients [11℄. The only other orbits for whih suh a onstrutionis known are the semi-simple orbits in sl(n,C) [19℄ together with �-nite quotients of a ouple of orbits in exeptional algebras [12℄. Let usbrie�y reall the onstrution for nilpotent orbits.2.1. Nilpotent Orbits for Speial Linear Groups. Given a nilpo-tent element A ∈ sl(n,C) suh that Ak−1 6= 0 and Ak = 0 one de�nesthe assoiated image �ag to be {0} = V0 ⇄ V1 ⇄ V2 ⇄ · · · ⇄ Vk = C

n,where Vi = ImAk−i. We onsider the omplex vetor spae
W =

k−1
⊕

i=0

(

Hom(Vi, Vi+1) ⊕ Hom(Vi+1, Vi)
) (2.2)and represent elements (. . . , αi, βi, . . . ) of W by diagrams

{0} = V0

α0

⇄
β0

V1

α1

⇄
β1

V2

α2

⇄
β2

· · ·
αk−1

⇄
βk−1

Vk = C
n.Taking Cn to be equipped with a Hermitian two-form, indues Her-mitian inner produts on eah Vi, i = 0, 1, 2, . . . , k, and we get a normon W given by

r2 = ‖(. . . , αi, βi, . . . )‖2 =
k−1
∑

i=1

Tr(α∗
iαi + βiβ

∗
i ). (2.3)The inner produts enables us to make sense of Hermitian adjoints α∗

iand β∗
i and to endow the vetor spae W with a quaternioni strutureby de�ning j(. . . , αi, βi, . . . ) = (. . . ,−β∗

i , α
∗
i , . . . ).The produt H = U(V1) × · · · × U(Vk−1) of unitary groups ats in anatural way on W :

(a1, . . . , ak−1)(. . . , αi, βi, . . . , αk−1, βk−1)

= (. . . , ai+1αia
−1
i , aiβia

−1
i+1, . . . , αk−1a

−1
k−1, ak−1βk−1).



HYPERKÄHLER POTENTIALS 5This ation preserves the quaternioni struture on W , and the hyper-Kähler moment map µ = (µC, µR) is given by
µC = (. . . , αiβi − βi+1αi+1, . . . ),

µR = (. . . , αiα
∗
i − β∗

i βi + βi+1β
∗
i+1 − α∗

i+1αi+1, . . . ).
(2.4)The hyperKähler quotient W///H is homeomorphi to the losure Oof the nilpotent orbit O = SL(n,C)A, whih is a singular algebraivariety. The identi�ation is indued by the map ψ : W → gl(n,C)given by

ψ(. . . , αi, βi, . . . ) = αk−1βk−1. (2.5)If W0 ⊂ W denotes the open set where eah αi is injetive and eah
βi is surjetive, then ψ : W0///H → O is a di�eomorphism. In fat,
ψ is the omplex sympleti moment map for the ation of GL(n,C)on W0///H and so the general theory of moment maps implies that
ψ∗ωO

c agrees with the omplex sympleti struture on W0///H. Notethat j on W ats on O by αk−1βk−1 7→ −β∗
k−1α

∗
k−1 whih agrees withthe real struture X 7→ −X∗ on sl(n,C) de�ning the Lie algebra of theompat group SU(n).2.2. Nilpotent Orbits in Orthogonal and Sympleti Algebras.The above onstrution may be adapted to the remaining lassial Liealgebras so(n,C) and sp(n,C). We start with a nilpotent element Ain the Lie algebra gC with Ak = 0 and Ak−1 6= 0. Let δ be 0, if

gC = so(n,C), or 1, if gC = sp(n,C). We onsider the image �ag
{0} ⇄ (V1, ω1) ⇄ (V2, ω2) ⇄ · · · ⇄ (Vk, ωk) = (Cn, ωk), (2.6)where ωi : Vi × Vi → C are non-degenerate bilinear forms satisfying

ωi(X, Y ) = (−1)k−i+δωi(Y,X).(This implies that dimVi is even if k − i+ δ is odd). We denote by ·†the adjoint with respet to the forms ωi and de�ne Lie groups
Hi = {A ∈ U(Vi) : A†A = IdVi

}.Then Hi is Sp(Vi), if k − i+ δ is odd, or O(Vi), if k − i+ δ is even.Take H = H1×· · ·×Hk−1 and letW be the quaternioni vetor spaeas in formula (2.2). The subspae W+ ⊂W de�ned by the equations
βi = α†

i , i = 1, . . . , k − 1,is a quaternioni vetor spae. The equations (2.4) de�ne a hyperKäh-ler moment map for the ation of H on W+. Using the map ψ of (2.5),the hyperKähler quotientW+///H may be identi�ed with the losure of



6 PIOTR KOBAK AND ANDREW SWANNthe nilpotent orbit HC

k A ⊂ hC

k . Again, this identi�ation is ompatiblewith the omplex-sympleti form ωO
c and the real struture.2.3. HyperKähler Potentials. A real-valued funtion ρ : N → Ron a hyperKähler manifold N is alled a hyperKähler potential if ρis simultaneously a Kähler potential for eah of the Kähler strutures

(ωI , I), (ωJ , J) and (ωK , K). For I, this means that ωI = i∂I∂Iρ, orequivalently
ωI = −1

2
dIdρ.In general, N will not admit a hyperKähler potential even loally.Indeed, the existene of ρ implies that if we set ζ = 1

2
grad ρ then

{ζ, Iζ, Jζ,Kζ} generates an in�nitesimal ation of H∗ ∼= R × Sp(1)suh that
LIζg = 0, LIζI = 0, and LIζJ = 2K,with similar expressions for the ation of Jζ and Kζ , obtained bypermuting (I, J,K) ylially (see [20, 4℄).We need to know how hyperKähler potentials behave with respet tohyperKähler quotients. An indiret proof of a slightly weaker form ofthe following result may be found in [20℄. Beware that the hypothesesgiven in [4℄ are not quite strong enough.Theorem 2.1. Let (N, g, I, J,K) be a hyperKähler manifold admit-ting a hyperKähler potential ρ. Suppose a Lie group H ats freely andproperly on N preserving g, I, J , K and ρ. Suppose also that thereis a hyperKähler moment map µ for the ation of H on N and that

µ is equivariant with respet to the in�nitesimal ation of Sp(1) de�nedby ρ, meaning
LIζµI = 0, LIζµJ = −2µK , et. (2.7)Then the funtion ρ indues a hyperKähler potential on the hyperKählerquotient N///H.Proof. Let i : µ−1(0) →֒ N be the inlusion and write π : µ−1(0) →

Q := N///H for the projetion. The hyperKähler struture on thequotient is de�ned by the relations π∗ωQ
I = i∗ωI , et. In partiular, ateah x ∈ µ−1(0) the tangent spae to the �bre is spanned by the vetor�elds ξV , for V ∈ h and (Txµ

−1(0))
⊥

= {IξV , JξV , KξV : V ∈ h}. Thusif Y ∈ Txµ
−1(0) is orthogonal to eah ξV , then IY , JY and KY lie in

Txµ
−1(0) too.As ρ is invariant under the ation of H , it desends to de�ne afuntion ρQ : Q→ R satisfying π∗ρQ = i∗ρ. This implies π∗dρQ = i∗dρ.



HYPERKÄHLER POTENTIALS 7Now dρ is metri dual to 2ζ , so ζ ommutes with the ation of H , andwe laim that ζ is tangent to µ−1(0).The equivariane ondition (2.7) gives,
2µV

K = −LIζµ
V
J = −Iζ y (ξV y ωJ) = ωK(ξV , ζ),using the J version of (2.1). But now

Lζµ
V
K = ζ y dµV

K = ζ y (ξV y ωK) = ωK(ξV , ζ) = 2µV
K .Thus Lζµ = 2µ and ζ preserves µ−1(0).For V ∈ h, we have

g(ζ, ξV ) = 1
2
dρ(ξV ) = 1

2
LξV

ρ = 0,as ρ is H-invariant. So Iζ is also tangent to µ−1(0). In partiular,
i∗Idρ = Ii∗dρ and we have

π∗(−1
2
dIdρQ) = i∗(−1

2
dIdρ) = i∗ωI = π∗ωQ

I ,so ρQ is a Kähler potential for ωQ
I . Similar omputations apply for

J and K and we have that ρQ is a hyperKähler potential on Q =
N///H.For the �at hyperKähler spaes W and W+ introdued above, thehyperKähler potential is given by the funtion r2 of equation (2.3). AhyperKähler potential on O = W0///H ⊂ sl(n,C) or O = W+

0 ///H ⊂
so(n,C) or sp(n,C) is then given by the restrition of r2 to the zeroset of the hyperKähler moment map.One an now ask whether this hyperKähler potential is any senseunique. In fat, one an answer suh a question for nilpotent orbits ingeneral. The following is an extension of an argument in [5℄.Proposition 2.2. Let G be a ompat semi-simple Lie group and let
σ be the orresponding real struture on gC. Let O ⊂ gC be a nilpotentorbit with the Kirillov-Kostant-Souriau omplex sympleti struture
(I, ωO

c ). Suppose (g, I, J,K) is a hyperKähler struture on O suh that(a) ωJ + iωK = ωO
c , (b) g is invariant under the ompat group Gand () the struture admits a hyperKähler potential suh that for theindued H∗-ation j ∈ H∗ ats as σ|O. Then the hyperKähler strutureis unique.Proof. By averaging with the G-ation we may assume that there is a

G-invariant hyperKähler potential ρ on O. Let ζ = 1
2
grad ρ, as above.Then LζωI = 2ωI and Lζω

O
c = 2ωO

c , so
ωO

c = 1
2
d(ζ y ωO

c ).Note that as ωO
c is a (2, 0)-form, ζ y ωO

c is of type (1, 0).



8 PIOTR KOBAK AND ANDREW SWANNHowever, as O is nilpotent, the form ωO
c is exat in Dolbeault oho-mology: ωO

c = dθ, with θX([X,A]) = 〈X,A〉, whih is holomorphi and
GC-invariant. Therefore θ− 1

2
ζ yωO

c is losed. But H1(O,C) = 0, as fornilpotent orbits have �nite fundamental groups. So θ − 1
2
ζ y ωO

c = df ,for some funtion f : O → C.Now df is of type (1, 0) and holomorphi. It is also G-invariant, as ζommutes with G. Therefore we may average f over the ation of G toget a G-invariant holomorphi funtion f̃ satisfying df̃ = θ − 1
2
ζ y ωO

c .However, suh a funtion is GC-invariant and GC ats transitively on O,so f̃ is onstant and ζ yωO
c = 2θ. Therefore, the (1, 0)-part of ζ agreeswith the (1, 0) part of the Euler vetor �eld on O. As both these vetor�elds preserve I, we have that ζ equals the Euler vetor �eld.We now have that the quotient of O by the C∗-ation generated by

ζ and Iζ is the projetivised orbit P(O) with θ as its omplex-ontatstruture and with real struture σ. By [21℄, P(O) is the twistor spaeof a unique quaternion-Kähler manifold M of positive salar urva-ture and O is the assoiated hyperKähler manifold U(M). Thus thehyperKähler struture is uniquely determined.3. Nilpotent Orbits with Diagrams of Length TwoAssume that gC is a lassial omplex simple Lie algebra and O ⊂ gCis an orbit of a rank k nilpotent matrixX ∈ O ⊂ sl(n,C) whih satis�es
X2 = 0. Then X has Jordan type (2k, 1n−2k). Suh orbits are preiselythose that arise from diagrams of length two:

{0} ⇄ C
k

α

⇄
β

C
n.It follows from �2.1 that there exist α : C2 → Cn and β : Cn → C2,suh that X = αβ, with

βα = 0 and ββ∗ = α∗α. (3.1)When g = su(n) this is the full set of equations for O. If g is either
o(n) or sp(n), then we have additionally

β = α†. (3.2)In all ases rankα = rankβ = rankX = k, so α is injetive and β issurjetive.We shall use the above equations to alulate the hyperKähler po-tential ρ on O. From Theorem 2.1 we know that ρ is the restrition ofthe radial funtion r2. By (2.3) we have
ρ = Tr(α∗α+ ββ∗) = 2 Trα∗α = 2 TrΛ, (3.3)



HYPERKÄHLER POTENTIALS 9where Λ = α∗α = ββ∗. Sine Λ is self-adjoint, there exists an orthonor-mal basis {e1, . . . , ek} for C
k in whih Λ is diagonal,

Λ = diag(λ1, λ2, . . . , λk).Thus ρ = 2(λ1 + · · · + λk).Note that
〈β∗ei, β

∗ej〉 = 〈ββ∗ei, ej〉 = 〈Λei, ej〉 = λiδij .In partiular, ‖β∗ei‖2 = λi. But β∗ is injetive, so λi > 0 and
{β∗e1, . . . , β

∗ek} is an orthogonal basis for Im β∗.Now onsider the matrix X∗X. On Im β∗, we have X∗X = Λ2, sine
X∗Xβ∗ei = β∗α∗αββ∗ei = β∗Λ2ei = λi

2β∗ei.On the other hand, (Im β∗)⊥ = ker β and X = αβ, so X∗X vanisheson (Im β∗)⊥. As a result X∗X has eigenvalues λ1
2, . . . , λk

2. Writing
SpecX∗X = {µ1, . . . , µr} with µi distint and of multipliity ki we getTheorem 3.1. Let O be the adjoint orbit of a non-zero nilpotent ma-trix X in a omplex lassial Lie algebra, and assume that X2 = 0.Then the hyperKähler potential for the anonial hyperKähler metrion O is given by the formula

ρ(X) = 2
∑

µi∈Spec(X∗X)

kiµi
1/2 (3.4)Remark 3.2. The above formula an be obtained from (3.3) by expli-itly solving (3.1) and (3.2) for a given nilpotent elementX. For exampleonsider orbits in sl(n,C). Then X is U(n)-onjugate to

M =

(

0 A
0 0

)

, (3.5)where A = diag(a1, . . . , ak) with ai real and positive. To see thisnote that X∗X determines a set of orthonormal eigenvetors e1, . . . , ekwith positive eigenvalues µ1, . . . , µk. Moreover, 〈Xei, Xej〉 = µiδij, so
µi

−1/2Xei, i = 1, . . . , k are also orthonormal. Sine X2 = 0 it followsthat
0 =

〈

X2ei, Xej

〉

= 〈Xei, X
∗Xej〉 = µj 〈Xei, ej〉 .In e�et the vetors

e1, . . . ek, µ1
−1/2Xe1, . . . , µk

−1/2Xekform an orthonormal set. Complete this to an orthonormal basis in
Cn. In this basis X has the required form, with ai = µi

1/2.



10 PIOTR KOBAK AND ANDREW SWANNType sl(n,C) so(n,C) sp(n,C)Cohomogeneity 1 (21n−2) (221n−4) (212n−2)Cohomogeneity 2 (221n−4) (31n−3), (241n−8) (2212n−4)Table 1. Nilpotent orbits of low ohomogeneity in las-sial Lie algebrasIt follows that X is SU(n)-onjugate to λM for some λ satisfying
λλ = 1. The moment map equations (3.1) are now solved by

α = λ

(

A1/2

0

) and β = λ
(

0 A1/2
)

,where A1/2 = diag(a
1/2
1 , . . . a

1/2
k ). In partiular A = α∗α = ββ∗. Wehave Spec(XX∗) = Spec(A2) = {a1

2, . . . , ak
2} and, by (3.4)

ρ(X) = 2
k
∑

i=1

|ai|.This agrees with the formula obtained in [3℄. There Biquard & Gaudu-hon showed that this formula gives a Kähler potential for a hyper-Kähler struture on the nilpotent orbit. This was done by onsideringthe orbit in sl(n,C) as a limit of semi-simple orbits. However, we havenow shown that the Biquard-Gauduhon Kähler potential is in fat ahyperKähler potential.4. HyperKähler Potentials for Low CohomogeneityOrbitsIn the simplest ase O is a minimal nilpotent orbit in a lassial Liealgebra. Suh orbit arises from a length two diagram. Its Jordan typeis given in Table 1. Minimal orbits are ohomogeneity one so any twoelementsX,X ′ ∈ O are onjugate if and only if ‖X‖ = ‖X ′‖. It followsthat for all X ∈ O the matrix X∗X has only one non-zero eigenvalue,say λ, with multipliity κ. Then, by (3.4) ρ = 2κλ1/2, so ρ2 = 4κ2λ.But TrX∗X = κλ, so
ρ2 = 4κTrX∗X, where κ =

{

1 for sl(n,C), sp(n,C),
2 for so(n,C). (4.1)



HYPERKÄHLER POTENTIALS 11One �nds the multipliity κ simply by alulating X∗X where X isthe blok matrix ( A 0
0 0 ) with A = ( 0 0

1 0 ) for sl(n,C) and sp(n,C), and
A =

(

0 1 0
−1 0 i
0 −i 0

) for so(n,C).In fat the potential on a minimal nilpotent orbit in any omplexsimple Lie algebra is equal to ‖X‖ =
√

TrX∗X, up to a onstantmultiplier, see for example [15℄.It is known that, with one exeption, the next-to-minimal orbitsin omplex semi-simple Lie algebras are preisely the ohomogeneity-two orbits [7℄. The exeption is the next-to-minimal nilpotent orbitin sl(3,C) whih has ohomogeneity 4. This ase was dealt with in[10℄ while in [13℄ hyperKähler potentials for ohomogeneity-two nilpo-tent orbits were alulated: the latter were expressed in terms of twoinvariants η1(X) := −K(X, σX) and η2(X) := η1([X, σX]), where Kdenotes the Killing form. In our situation it will be more onvenient touse the following two invariants (whih in fat are multiples of η1 and
η2):

c1(X) = TrXX∗,

c2(X) = Tr Y Y ∗, where Y = [X,X∗].Theorem 4.1. Let O be a ohomogeneity-two nilpotent orbit in a las-sial Lie algebra. Then the hyperKähler potential for O is given by theformula
ρ2 = 4κc1 + 4κ

√

2c12 − κc2where κ = 1 for sl(n,C) and sp(n,C), and κ = 2 for so(n,C).In the proof we shall onsider the three lasses of orbits whih havelength two diagrams, and postpone the length three ase to �5.Proof. We use the notation of Remark 3.2. Sine O is a ohomogeneity-two orbit, X∗X has at most two di�erent eigenvalues. By onsideringa matrix de�ned in (3.5), with a1, a2 arbitrary, and a3 = · · · = ak = 0one �nds that for a generi element X in nilpotent orbits O(2,1n−k) ⊂
sl(n,C), and O(2,12n−k) ⊂ sp(n,C) we have Spec(X∗X) = {µ1, µ2}where the eigenvalues µ1, µ2 have multipliities κ = k1 = k2 = 1.An element X of O(24,1n−8) ⊂ so(n,C) has, by Lemma 4.2 below,eigenvalues with even multipliities. But X∗X has rank 4 so again
Spec(X∗X) = {µ1, µ2}, this time with multipliities κ = k1 = k2 = 2.This an be veri�ed by a diret alulation: a typial matrix in thisorbit is onjugate to the matrix obtained by taking X as in (3.5) with
a1 = −ak, a2 = −ak−1 arbitrary, and a3 = · · · = ak−2 = 0; note that



12 PIOTR KOBAK AND ANDREW SWANNthis is possible if we take the quadrati form whih de�nes so(n,C) tobe 1
2
(x1xn + x2xn−1 + · · ·+ xnx1), f. �5.2.From (3.4) we have ρ = 2κ(µ1

1/2 + µ2
1/2). The invariants ci are notdi�ult to ompute in terms of µ1 and µ2:

c1 = TrXX∗ = κ(µ1 + µ2),and, sine X2 = 0, we have
c2 = Tr([X,X∗][X,X∗]∗) = Tr(XX∗ −X∗X)2 = 2 Tr(X∗X)2

= 2κ(µ1
2 + µ2

2).Thus
ρ = 2κ(µ1

1/2 + µ2
1/2),

c1 = κ(µ1 + µ2) and c2 = 2κ(µ1
2 + µ2

2)whih leads to the required formula for length two orbits.There is only one ohomogeneity 2 orbit with diagram of lengthgreater than two, for proof in this ase see �5.1.The above proof used the following lemma:Lemma 4.2. If X ∈ so(n,C) then the non-zero eigenvalues for X∗Xhave even multipliities.Proof. We onsider Cn with the standard quadrati and Hermitianforms, so that so(n,C) onsists of skew-symmetri matries, and X∗ =

X
T. Let J denote the R-linear automorphism of C

n, de�ned by theformula
Jv = X∗v.Suppose λ is a non-zero eigenvalue of X∗X and that v is a orre-sponding eigenvetor. Now XT = −X, so X∗ = −X, and we get

X∗XJv = X∗XX∗v = X∗X∗Xv= λX∗v = λJv,sine the eigenvalues of X∗X are real. Thus Jv is also a λ-eigenvetorof X∗X.Note that J2v = X∗X∗v = −X∗Xv = −λv. It follows that v and
Jv are linearly independent. We onlude that λ-eigenvetors with
λ 6= 0 ome in pairs v, Jv whih span J-invariant two-dimensional
λ-eigenspaes.



HYPERKÄHLER POTENTIALS 135. Orbits with Diagrams of Length ThreeThe hyperKähler potential alulations for orbits that orrespond todiagrams of length three an be quite involved, and the result is knownonly in few speial ases. One of the early results is the alulation ofthe hyperKähler potential for the generi orbit O(3) ⊂ sl(3,C), givenin [10℄. The formula
ρ(X) = 2

√

(a2/3 + c2/3)3 + b2, where X =





0 a b
0 0 c
0 0 0



was derived from moment map equation (2.4) for O(3). This seemsto be the most e�ient formula; the attempts to write the potentialfor this orbit in another language, for example in terms of Lie algebrainvariants, yield muh more ompliated results. Note, however, thatthe regular orbit in sl(3,C) is a three-to-one quotient of the minimalorbit in gC

2 , the potential in question is proportional to the invariant√
c1 on gC

2 .In this setion we shall onsider nilpotent orbits in so(n,C) whihhave a single Jordan blok of size three. For nilpotent orbits in so(n,C)the Jordan bloks of even size ome in pairs, so these orbits have Jordantype (3, 22k, 1n−4k−3) and the orresponding diagram is
{0} ⇄ C ⇄ C

2k+2
⇄ C

nWe may assume that the orthogonal strutures ω1 on C and ω3 on
C

n, f. formula (2.6), are the standard quadrati forms. In partiular
so(n,C) onsists of skew-symmetri matries.By �2.2, the orbit O(3,22k) ⊂ so(n,C) is a hyperKähler quotient

H
(2k+2)(n+1)///(Sp(k,C) × Z2)and O(22k+2) ⊂ so(n + 1,C) is H(2k+2)(n+1)///Sp(k,C). This indiatesthat there is a Z2-quotient map O(22k+2) → O(3,22k). Moreover, thehyperKähler potentials on O(22k+2) and on O(3,22k) are restritions ofthe radial funtion r2 on H(2k+2)(n+1), so they are preserved by thequotient map.Now O(22k+2) is given by a diagram of length two, so one an use The-orem 3.1 to alulate the potential for O(22k+2), and hene for O(3,22k).By making the inverse to the two-to-one quotient map expliit onegets an algorithmi method of alulating the hyperKähler potentialon O(3,22k). This is shown in the following tehnial lemma.Lemma 5.1. Let X ∈ O(3,22k) and denote by x ∈ Cn the (unique upto sign) vetor suh that X2 = xxT. Then the hyperKähler potential ρ



14 PIOTR KOBAK AND ANDREW SWANNon O(3,22k) is given by the formula
ρ(X) = 2

∑

µi∈Spec(X′X′∗)

kiµi
1/2 where X ′ =

(

X x
−xT 0

)

.Proof. We begin by writing down the diagram for O(3,22k):
{0} ⇄ V1

α1

⇄
β1

V2

α2

⇄
β2

V3, with V1 = C, V2 = C
2k+2, V3 = C

n,and the orresponding moment map equations
β1α1 = 0, (5.1)

α1β1 = β2α2, (5.2)
β1β1

∗ = α1
∗α1, (5.3)

α1α1
∗ + β2β2

∗ = β1
∗β1 + α2

∗α2. (5.4)We also have
βi = αi

†, and X = α2β2.Consider now the diagram
{0} ⇄ V2

α

⇄
β
V1 ⊕ V3.The moment map equations are

βα = 0, (5.5)
ββ∗ = α∗α (5.6)and it is easy to see that the map

(α1, α2) 7→ α = α†
1 ⊕ α2transforms the solutions of (5.1)�(5.4) into solutions of (5.5)�(5.6). Toverify this simply write α and β in blok-matrix form:

α =

(

α2

β1

)

, β = α† =
(

β2 −α1

)

.Then it is lear that (5.2) is equivalent to (5.5) and (5.3) to (5.6). Theremaining two equations (5.1) and (5.3) are O(1,C) = Z2 moment mapequations and are trivially satis�ed.Note that if (α1, β1, α2, β2) solves (5.1)�(5.4) then so does (−α1,−β1,
α2, β2). This orresponds to

α =

(

α2

−β1

)

, β = α† =
(

β2 α1

)

.



HYPERKÄHLER POTENTIALS 15A solution (α1, β1, α2, β2) represents an element X = β2α2 ∈ O(22k+2)while the lifts X ′
± are given by

X ′
± = αβ =

(

α2β ∓α2α1

±β1β2 0

)De�ne x = α2α1(1). With our onventions (ω1 and ω3 are the identitymatries) the dagger operator ats on maps C → C
n as the transpose,so β1β2 = (α2α1)

† = xT. Also,
X2 = (α2β2)

2 = α2β2α2β2

= α2α1β1β2 = xxTwhere the penultimate equality follows from (5.2). This shows that X ′is of the required form. Finally, note that
r′

2
= Trαα∗ + Tr β∗β

= Trα2α
∗
2 + Tr β∗

2β2 + Trα1α
∗
1 + Tr β∗

1β1 = r2whih shows diretly, that the two-to-one map respets the hyperKählerpotentials.We shall apply the above lemma to determine the hyperKähler po-tential on O(3,22k) in a few simple ases. The �rst ompletes the proofof Theorem 4.1.5.1. O(3,1n−3) in so(n,C). As in Lemma 5.1 de�ne
X ′ =

(

X x
−xT 0

)

.Then X ′ lies in the minimal nilpotent orbit N22,1n−3 ⊂ so(n+ 1,C), sothe potential is given by (4.1). We have
X ′∗ =

(

X∗ −x
x∗ 0

)

,and
ρ2 = 4κTrX ′X ′∗ = 4κ(TrXX∗ + 2 ‖x‖2). (5.7)Putting Y = [X,X∗] we get
c2 := TrY Y ∗

= Tr(XX∗ −X∗X)(XX∗ −X∗X)

= 2 Tr(XX∗)2 − 2 TrX2X∗2

= 2 Tr(XX∗)2 − 2 ‖x‖4sine X = xxT.



16 PIOTR KOBAK AND ANDREW SWANNWe know that rankX = 2 so X∗X has at most two non-zero eigen-values. It follows from Lemma 4.2 that it has a unique non-zero doubleeigenvalue, whih we denote by λ. Then, in a suitable basis,
XX∗ = diag(λ, λ, 0, . . . , 0),so c2 = 4λ2 − 2 ‖x‖4 = c1

2 − 2 ‖x‖4, sine c1 = TrXX∗ = 2λ. Thisimplies that ‖x‖2 =
√

(c21 − c2)/2. Thus
ρ2 = 4κ(c1 + 2 ‖x‖2) = 4κc1 + 4κ

√

2c21 − 2c2whih ends the proof of Theorem 4.1.5.2. O(3,22,1n−7) in so(n,C). For this orbitX ′X ′∗ has two double eigen-values, Spec(X ′X ′∗) = {λ1, λ2}, so the omputation of (5.7) yields
λ1 + λ2 and not ρ2:

2(λ1 + λ2) = TrX ′X ′∗ = TrXX∗ + 2 ‖x‖2 = c1 + 2 ‖x‖2 (5.8)Moreover, by Theorem 3.1,
ρ2 = 4(λ1 + λ2 + 2

√

λ1λ2)so one needs to alulate the produt of eigenvalues. This an bedone by alulating Tr(X ′X ′∗)2 but then it is neessary to determineinvariants like ‖Xx‖2. The most straightforward approah is to takea generi nilpotent element X, augment it to get X ′, and �nd theeigenvalues of X ′.To simplify the alulations we an use the ation of the ompatgroup SO(n) on O to put X in a anonial form. This is ahieved byusing the Beauville bundle [1℄. We shall brie�y outline this approahhere; it is explained in more detail in [13, Setion 4℄.Consider e ∈ O ⊂ gC and hoose f, h ∈ gC so that e, f, h is an
sl(2,C)-triple. Then use the adh-eigenspaes gC(i) to de�ne the alge-bras

p =
⊕

i>0

gC(i), n =
⊕

i>2

gC(i).It turns out that p is a paraboli algebra and it does not depend onthe hoie of f, h. This gives what is sometimes referred to as theanonial �bration O → F where F = GC/P is a �ag manifold with
P the normaliser of p. Moreover, O is an open dense subset of theBeauville bundle

N(O) = GC ×P n,the anonial �bration being the restrition to O of the Beauville bun-dle �bration.



HYPERKÄHLER POTENTIALS 17Choose a �ag v ∈ F . Sine F is G-homogeneous any element e ∈ Oan be moved by the ation of the ompat group G into the Beauvillebundle �bre N(O)v. It is enough to alulate the hyperKähler potential
ρ for nilpotent elements e ∈ O ∩N(O)v.We now alulate the hyperKähler potential on O(3,22,1n−7). First,assume that the quadrati form on Cn is given by the anti-diagonalmatrix (S)ij with Sij = δi,n+1−j. Then so(n,C) onsists of matriesthat are skew-symmetri about the anti-diagonal. The advantage ofthis hoie for the quadrati form is that nilpotent matries in so(n,C)are SO(n,C)-onjugate to matries onsisting of Jordan bloks. In oursituation we an arrange for the size three blok to be in the middlewith the size two bloks plaed symmetrially about the anti-diagonal:

e =
(

J2 0
J3

0 −J2

) with J2 = ( 0 1
0 0 ) , J3 =

(

0 1 0
0 0 −1
0 0 0

)

.(For simpliity we write everything for O(3,22), the formulæ are identialin other ases.)Moreover, we an hoose the maximal torus to onsist of the diagonalmatries diag(a1, a2, . . . ,−a2,−a1). Then we have an sl(2,C)-triple
e, f, h with e as above and h = diag(1, 1, 2, 0 − 2,−1,−1). To makematters simpler we use the Weyl group to rearrange the diagonal matrix
h, so take h′ = diag(2, 1, 1, 0,−1,−1,−2). It is enough to work out the
adh′ eigenspaes that have eigenvalues > 2 to see that a typial elementof the Beauville bundle �bre has the following form

Y =

( a b 0 0
0 v 0 00 0 0 −v −b
0 0 0 −a0 0 )

.(To be preise the (1, 6) and (6, 1) entries in the matrix have weight3 and thus belong to the Beauville bundle �bre, but one an assumethey vanish by using the ation of the stabiliser SO(2)SO(2)Sp(1).)The aim is now to apply Lemma 5.1 but we need to go bak to thestandard basis, where the quadrati form is diagonal. To diagonalisethe quadrati form S onsider the matrix Q written in a blok form:
Q = 1√

2

(

13 0 −i13

0
√

2 0
13 0 i13

)

,where 13 is the 3 × 3 identity matrix. Then QTSQ = 1, so X =
Q−1Y Q = Q∗Y Q is skew-symmetri. Lemma 5.1, applied to X, gives
x = 1√

2
(ai, 0, . . . , 0, ai)T, and a diret alulation yields

λ1λ2 = 2|a|2|v|2.



18 PIOTR KOBAK AND ANDREW SWANNLet us introdue a new invariant
c21 = c1(X

2) = TrXXX∗X∗ =
∥

∥X2
∥

∥

2
.A simple alulation shows that

c1
2 − c2 − 2c21 = 8|a|2|v|2 = 4λ1λ2.By ombining this with (5.8) we get the following formula:Proposition 5.2. The hyperKähler potential ρ for the anonial hy-perKähler struture on the nilpotent orbit O(3,22) ⊂ so(n,C) is given bythe formula

ρ2 = 8c1 + 16
√
c21 + 16

√

c12 − c2 − 2c21.Note the similarity of this formula to that in Theorem 4.1: for lengthtwo diagrams c21 = 0 while in the ohomogeneity two situation (theorbit O(3,1n−3) in so(n,C)) the invariant c21 is a ombination of c1 and
c2.5.3. O(3,24,1n−11) in so(n,C). Finally, we shall only indiate here howthe matters tend to ompliate if one tries to proeed in the samemanner and alulate the hyperKähler potential for O(3,24,1n−11). Westart with the same strategy as in the previous setion (again, it isenough to analyse the ase of O(3,24)).Here we take the semi-simple element

h′ = diag(2, 1, 1, 1, 1, 0,−1,−1,−1,−1,−2).Taking into aount the ation of the stabiliser SO(2)SO(2)Sp(2), atypial element of the �bre of the Beauville bundle an be written as
Y =









a b 0 0 0 0
0 v1 −w2 w3 0 0
0 v2 w1 0 −w3 00 0 v3 0 −w1 w2 0
0 0 −v3 −v2 −v1 −b
0 0 0 0 0 −a0 0 





As before, set X = Q∗Y Q and then x = 1√
2
(ai, 0, . . . , 0, ai)T. Calula-tions now beome omplex enough and the authors used Maple.The result an be desribed as follows. Denote v = (v1, v2, v3)

T and
w = (w1, w2, w3)

T. Also, write ζ = vTw =
∑

viwi. Then the hyper-Kähler potential ρ for the anonial hyperKähler metri on O(3,24,1n−11)is given by the formula
ρ = 2(λ1

1/2 + λ2
1/2 + λ3

1/2)



HYPERKÄHLER POTENTIALS 19where λi are the roots of the ubi z3 − pz2 + qz − r with
p = 2|a|2 + |b|2 + |v|2 + |w|2 = c1 + |a|2

q = |ζ |2 + |b|2|w|2 + 2|a|2(|v|2 + |w|2)
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