New Solutions of the Einstein-Dirac Equation in Dimension
 $$
n=3 . *
$$

a short announcement by Thomas Friedrich (Berlin)
February 1, 2008

Consider a Riemannian spin manifold of dimension $n \geq 3$ and denote by D the Dirac operator acting on spinor fields. A solution of the Einstein-Dirac equation is a spinor field ψ solving the equations

$$
\text { Ric }-\frac{1}{2} S \cdot g= \pm \frac{1}{4} T_{\psi} \quad, \quad D(\psi)=\lambda \psi
$$

Here S denotes the scalar curvature of the space, λ is a real constant and T_{ψ} is the energy-momentum tensor of the spinor field ψ defined by the formula

$$
T_{\psi}(X, Y)=\left(X \cdot \nabla_{Y} \psi+Y \cdot \nabla_{X} \psi, \psi\right) .
$$

Any weak Killing spinor ψ^{*} (WK-spinor)
$\nabla_{X} \psi^{*}=\frac{n}{2(n-1)} d S(X) \psi^{*}+\frac{2 \lambda}{(n-2) S} \operatorname{Ric}(X) \cdot \psi^{*}-\frac{\lambda}{n-2} X \cdot \psi^{*}+\frac{1}{2(n-1) S} X \cdot d S \cdot \psi^{*}$
yields a solution ψ of the Einstein-Dirac equation after normalization

$$
\psi=\sqrt{\frac{(n-2)|S|}{\left|\lambda \| \psi^{*}\right|^{2}}} \psi^{*} .
$$

In fact, in dimension $n=3$ the Einstein-Dirac equation is essentially equivalent to the weak Killing equation (see [KimF]). Up to now the following 3-dimensional Riemannian manifolds admitting WK-spinors are known:

1. the flat torus T^{3} with a parallel spinor;
2. the sphere S^{3} with a Killing spinor;
3. two non-Einstein Sasakian metrics on the sphere S^{3} admitting WK-spinors. The scalar curvature of these two left-invariant metrics equals $S=1 \pm \sqrt{5}$.

The aim of this short note is to announce the existence of a one-parameter family of left-invariant metrics on S^{3} admitting WK-spinors. This family contains the two nonEinstein Sasakian metrics with WK-spinors on S^{3}, but does not contain the standard sphere S^{3} with Killing spinors. Moreover, any simply-connected, complete Riemannian manifold $X^{3} \neq S^{3}$ with WK-spinors such that the eigenvalues of the Ricci tensor are

[^0]constant is isometric to a space of this one-parameter family.
In order to formulate the result precisely, we fix real parameters $K, L, M \in \mathbb{R}$ and denote by $X^{3}(K, L, M)$ the 3-dimensional, simply-connected and oriented Riemannian manifold defined by the following structure equations:
$$
\omega_{12}=K \sigma^{3} \quad, \quad \omega_{13}=L \sigma^{2} \quad, \quad \omega_{23}=M \sigma^{1}
$$
or, equivalently:
$$
d \sigma^{1}=(L-K) \sigma^{2} \wedge \sigma^{3} \quad, \quad d \sigma^{2}=(M+K) \sigma^{1} \wedge \sigma^{3} \quad, \quad d \sigma^{3}=(L-M) \sigma^{1} \wedge \sigma^{2} .
$$

The 1 -forms $\sigma^{1}, \sigma^{2}, \sigma^{3}$ are the dual forms of an orthonormal frame of vector fields. Using this frame the Ricci tensor of $X^{3}(K, L, M)$ is given by the matrix

$$
\text { Ric }=\left(\begin{array}{ccc}
-2 K L & 0 & 0 \\
0 & 2 K M & 0 \\
0 & 0 & -2 L M
\end{array}\right)
$$

Theorem: Let $X^{3} \neq S^{3}$ be a complete, simply-connected Riemannian manifold such that:
a) the eigenvalues of the Ricci tensor are constant;
b) the scalar curvature $S \neq 0$ does not vanish.

If X^{3} admits a WK-spinor, then X^{3} is isometric to $X^{3}(K, L, M)$ and the parameters are a solution of the equation

$$
\begin{equation*}
-K^{2} L(L-M)^{2} M+L^{3} M^{3}+K L^{2} M^{2}(M-L)+K^{3}(L-M)(L+M)^{2}=0 \tag{*}
\end{equation*}
$$

Conversely, any space $X^{3}(K, L, M)$ such that $(K, L, M) \neq(0,0,0)$ is a solution of $(*)$ admits two WK-spinors for one and only one WK-number λ. With respect to the fixed orientation of $X^{3}(K, L, M)$ we have the two cases:

$$
\begin{array}{ll}
\lambda=+\frac{S}{2 \sqrt{2}} \sqrt{\frac{S}{S^{2}-\mid \text { Ric }\left.\right|^{2}}} & \text { if }-K<M \\
\lambda=-\frac{S}{2 \sqrt{2}} \sqrt{\frac{S}{S^{2}-\mid \text { Ric }\left.\right|^{2}}} & \text { if } M<-K
\end{array}
$$

The spaces $X^{3}(K, L, M)$ are isometric to S^{3} equipped with a left-invariant metric.

Remark: If the parameters $K=M$ coincide, the solution of the equation $(*)$ is given by

$$
L=\frac{1}{4} K(1-\sqrt{5}) \quad, \quad L=\frac{1}{4} K(1+\sqrt{5})
$$

and we obtain the Ricci tensors

$$
\text { Ric }=\left(\begin{array}{ccc}
\frac{1}{2} K^{2}(\sqrt{5}-1) & 0 & 0 \\
0 & 2 K^{2} & 0 \\
0 & 0 & \frac{1}{2} K^{2}(\sqrt{5}-1)
\end{array}\right)
$$

or

$$
\text { Ric }=\left(\begin{array}{ccc}
-\frac{1}{2} K^{2}(1+\sqrt{5}) & 0 & 0 \\
0 & 2 K^{2} & 0 \\
0 & 0 & -\frac{1}{2} K^{2}(1+\sqrt{5})
\end{array}\right) .
$$

The non-Einstein-Sasakian metrics on S^{3} occur for the parameter $K=1$ (see [KimF$]$).
Remark: Using the standard basis of the Lie algebra $\mathfrak{s o}(3)$ we can write the leftinvariant metric of the space $X^{3}(K, L, M)$ in the following way:

$$
\left(\begin{array}{ccc}
\frac{1}{|M-L||K+M|} & 0 & 0 \\
0 & \frac{1}{|K-L \| M-L|} & 0 \\
0 & 0 & \frac{1}{|K-L| K+M \mid}
\end{array}\right)
$$

The equation $(*)$ is a homogeneous equation of order six. The transformation $(K, L, M) \rightarrow(\mu K, \mu L, \mu M)$ corresponds to a homothety of the metric. Therefore up to a homothety - the moduli space of solutions is a subset of the real projective space $\mathbb{P}^{2}(\mathbb{R})$ given by the equation $(*)$. This subset is a configuration of six curves in $\mathbb{P}^{2}(\mathbb{R})$ connecting the three points $[K: L: M]=[1: 0: 0],[0: 1: 0],[0: 0: 1]$, corresponding to flat metrics.

In particular, we have constructed two paths of solutions of the Einstein-Dirac equation deforming the non-Einstein Sasakian metrics on S^{3}.

The proof of the Theorem as well as the complete computations will be published in a furthercoming paper of the author (see $[F]$).

References

[KimF] E.C. Kim and Th. Friedrich, The Einstein-Dirac equation on Riemannian spin manifolds, Journ. Geom. Phys. 33 (2000), 128-172.
[F] Th. Friedrich, New solutions of the Einstein-Dirac equation in dimension $n=3$, to appear.

[^0]: *Supported by the SFB 288 and the Graduiertenkolleg "Geometrie und Nichtlineare Analysis" of the DFG.

