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The exterior algebra and ‘Spin’ of an orthogonal

g-module

Dmitri I. Panyushev1

Introduction

Let g be a reductive algebraic Lie algebra over an algebraically closed field k of charac-

teristic zero and G is the corresponding connected and simply connected group.

The symmetric algebra of a (finite-dimensional) g-module V is the algebra of polynomial

functions on the dual space V∗ . Therefore one can study the algebra of symmetric in-

variants using geometry of G-orbits in V ∗ . In case of the exterior algebra, ∧•V, lack of

such geometric picture results by now in absence of general structure theorems for the

algebra of skew-invariants (∧•V)g . One may find in the literature several interesting re-

sults related to skew-symmetric invariants. We only mention Kostant’s computation for

cohomology of the nilradical of a parabolic subalgebra in g [Ko61] and R.Howe’s classifi-

cation of “skew-multiplicity-free” g-modules [Ho95, ch. IV]. But the general situation still

remains unsatisfactory, and developing of Invariant Theory in the skew-symmetric setting

represents an attractive problem.

In this paper, we begin with describing all irreducible orthogonal g-modules such that

(∧•V)g is again an exterior algebra. It is shown that in this case either V ≃ g and hence

g is simple or g⊕V has a structure of simple Z2 -graded Lie algebra, which quickly leads

to a short classification, see Table 1. Obviously, none of the symplectic representations

(with dim V > 2) can have an exterior algebra of skew-invariants. But the situation for

the representations of “general type” is not yet clear.

In case V is orthogonal, a better understanding of the g-module structure of ∧•V can

be achieved through the notion of ‘Spin’ of V. This goes as follows. Let π : g → so(V)

be the corresponding representation. Restricting the spinor representation of so(V) to g

gives us a g-module, which is denoted by Spin(V). The motivation came from Kostant’s

result that Spin(g) is a primary g-module; namely, Spin(g) = 2[rkg/2]Vρ , the highest

weight ρ being the half-sum of the positive roots [Ko61, p. 358]. The main property of

Spin(V) is that, depending on parity of dim V, ∧•V is isomorphic to either Spin(V)⊗2

or 2·Spin(V)⊗2 . It is thus interesting to find the orthogonal g-modules, where Spin(V)

has a simple structure. In general, Spin(V), as element of the representation ring, has

a numerical factor depending on the zero-weight multiplicity. Omitting this factor yields

a g-module, which is called the reduced ‘Spin’ of V and denoted by Spin0(V); e.g.

Spin0(g) = Vρ . In a sense, Spin0(V) behaves better than Spin(V). For, regardless

of parity of dim V, we have ∧•V ≃ 2m(0)·Spin0(V)⊗2 , where m(0) is the zero-weight mul-

tiplicity, and Spin0(V1 ⊕ V2) = Spin0(V1) ⊗ Spin0(V2).
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An orthogonal g-module V is said to be co-primary , if Spin0(V) is irreducible. In sec-

tions 2 and 3, a classification of the co-primary modules is obtained. To this end, we give

a geometric description of some highest weights of Spin0(V). These weights are called

extreme. The assumption that Spin0(V) has a unique extreme weight imposes strong

constraints on the weight structure of V. Using this, one shows that g must be simple

whenever V is an irreducible faithful co-primary g-module, and that any reducible co-

primary module is being obtained by iterating the “direct sum” procedure:

(gi, Vi), i = 1, 2 7→ (g1 ⊕ g2, V1 ⊕ V2).

It is thus sufficient to classify the irreducible co-primary modules. The resulting list

appears to be rather short:

1. g is simple and V ≃ g;

2. g is of type Bn or Cn or F4 , and V is the little adjoint module;

3. g = so(W) and V = {the Cartan component of S2W} ; dim W = 3, 5, 7, . . ..

In case 2, g has roots of two lengths and the g-module whose highest weight is the short

dominant root is called little adjoint (l.a.). Actually, we give a unified proof for the fact

that the l. a. module is co-primary whenever the ratio of root lengths is
√

2. Note that,

for G2 , where this ratio is
√

3, the l. a. module is not co-primary. A true reason why

this is so is that the l. a. module for G2 is not the isotropy representation of a symmetric

space, whereas this is the case for B, C, and F. Furthermore, all representations listed

above are the isotropy representations of symmetric spaces. A curious coincidence in this

regard is the following. Let G̃/G be a symmetric space and g̃ = g⊕V the corresponding

Lie algebra decomposition. Then the g-module V is co-primary if and only if g is non-

homologous to zero in g̃. Another by-product of our classifications is that any co-primary

module has an exterior algebra of skew-invariants.

Having observed that any co-primary representation is a very specific isotropy representa-

tion, one may suggest that Spin0(V) admits a nice description for all symmetric spaces.

This is really the case, and a transparent formulation can be given for the inner involutory

automorphisms. Let g = g0 ⊕ g1 be a Z2 -grading of inner type, i.e., rk g0 = rk g. As the

g0 -module g1 has no zero weight, Spin(g1) = Spin0(g1). Choose a common Cartan sub-

algebra t for g and g0 , and consider the natural inclusion of the Weyl groups W0 ⊂ W .

Although W0 is not necessary a parabolic subgroup of W , each coset wW0 contains a

unique element of minimal length (see 4.1). Let W 0 ⊂ W be the set of such elements.

Then the irreducible constituents of the g0 -module Spin(g1) are parameterized by W 0 .

Namely, Spin(g1) =
⊕

w∈W 0

Vλw
, where λw = w−1ρ−ρ0 is the highest weight, see section 5.

Moreover, the weights λw (w ∈ W 0 ) are distinct and hence Spin(g1) is a multiplicity

free g0 -module. It is worth noting that the above expression for Spin(g1) is equivalent

to an identity for root systems that seem to have not been observed before. Let ∆ be the

root system of (g, t) and let ∆+ = ∆+
0 ⊔ ∆+

1 be the partition of the set of positive roots

corresponding to the sum g = g0 ⊕ g1 . In this situation, one can introduce the “cunning”

parity τ : W → {1,−1} , determined by ∆+
0 . If w ∈ W0 , then τ(w) = (−1)l0(w) , where
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l0(·) is the length in W0 relative to the set of positive roots ∆+
0 . To extend τ to W , one

uses the aforementioned subset W 0 (see section 4). Then the identity reads

∑

w∈W

τ(w)ewρ =
∏

α∈∆+

0

(eα/2 − e−α/2)
∏

µ∈∆+

1

(eµ/2 + e−µ/2) .

For the outer involutory automorphisms, the final description of Spin0(g1) is almost

identical to the previous one, see section 6. However, it requires much more preparations

and its proof uses the classification of involutory automorphisms. Our arguments suggest

that there should exist interesting connections between cohomology of symmetric spaces,

twisted affine Kac–Moody algebras, and Spin(g1).

The description of the highest weights of Spin(g1) (for all involutions!) shows that these

weights are extreme. This also implies the following claim (see sect. 7):

Let Φ( , ) be an invariant bilinear form on g and Φ( , )0 its restriction to g0 . Let

c0 ∈ U(g0) be the Casimir element with respect to Φ( , )0 . Then c0 acts scalarly on

Spin(g1); the value is (ρ, ρ)− (ρ0, ρ0), where ( , ) is the W -invariant bilinear form on t∗

induced by Φ( , ).

A similar result holds for the isotropy representation h → so(m) of non-symmetric space

G/H , if rk h = rk g and one considers the submodule of Spin(m) generated by the

extreme weight vectors.

Recently, B.Kostant obtained a series of nice results for Spin(g) [Ko97]. Since the adjoint

representation is one of the isotropy representations of symmetric spaces, our results for

Spin(g1) suggest that many parts of Kostant’s theory can be generalized to the setting

of arbitrary symmetric spaces.

Main notation. g is a reductive Lie algebra with a fixed triangular decomposition:

g = u+ ⊕ t ⊕ u− . All g-modules are assumed to be finite-dimensional.

∆ (resp. ∆+ ) is the set of roots (resp. positive roots); Π ⊂ ∆+ is the set of simple

roots; Π = {αi}i∈I and ϕi is the fundamental weight corresponding to αi . For simple Lie

algebras, we follow the numeration of the simple roots from [VO88] and [On95].

P – the lattice of integral weights, P+ – the monoid of dominant integral weights.

W = NG(t)/ZG(t) = NG(t)/T – the Weyl group; for β ∈ ∆, sβ is the reflection in W .

PQ = P ⊗Z Q ⊂ t∗ and ( , ) is the W -invariant positive-definite scalar product in PQ

determined by a non-degenerate invariant bilinear form Φ( , ) on g.

If M ⊂ P is any finite set of weights, then |M | =
∑

m∈M m; ρ := 1
2
|∆+| .

If λ ∈ P+ , then Vλ stands for the irreducible g-module with highest weight λ.

Acknowledgements. I would like to thank A.L. Onishchik for conversations about cohomology

of compact homogeneous spaces. I am indebted to B.Kostant for drawing my attention to

Conlon’s paper [Co72]. Part of this work was done while I was visiting Université de Poitiers. I

am grateful to this institution for the great hospitality I enjoyed there.
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1 Orthogonal g-modules with an exterior algebra of skew-

invariants

Let V be a g-module. Study of the algebra (S•V)g of symmetric (or polynomial) invari-

ants is the subject of a rich and well-developed theory. In contrast, little is known about

the algebra (∧•V)g of skew-invariants. The skew-symmetric theory has some parallels to

the symmetric case, and many interesting differences. We begin with two observations.

(1.1) Put n = dim V. Suppose g ⊂ sl(V), e.g. g is semisimple. Then ∧nV is a

trivial g-module. Therefore dim(∧•V)g ≥ 2, ∧iV and ∧n−iV are isomorphic g-modules,

and the Poincaré polynomial of (∧•V)g is symmetric.

(1.2) Let P(V) be the set of all weights of V relative to t ⊂ g and V = ⊕µ∈P(V)V
µ

the weight decomposition. Set m(µ) = dim Vµ . Recall that the character of V is the

element of the group algebra Z[P] defined by ch V =
∑

µ∈P(V) m(µ)eµ . Then, t being an

indeterminate, we have

n∑

i=1

(ch ∧i V)ti =
∏

µ∈P(V)

(1 + teµ)m(µ) .

In particular, ch ∧• V = 2m(0) ∏
µ6=0(1+ eµ)m(µ) . Obviously,

∏
µ6=0(1+ eµ)m(µ) must be the

character of a g-module, say W . Hence 1 ≤ dim(∧•V)g = 2m(0)· dim Wg and therefore

dim(∧•V)g ≥ 2m(0) .

It is natural to first describe g-modules, where the algebra of skew-invariants has a simple

structure.

Definition. The algebra (∧•V)g is said to be free (or an exterior algebra), if there exists

a graded subspace P ⊂ (∧•V)g such that (∧•V)g is the exterior algebra over P .

Suppose g ⊂ sl(V) and (∧•V)g is an exterior algebra. Let P = 〈p1, . . . , pl〉 with deg pi =

di . Then 0 6= p1 ∧ . . . ∧ pl must be an element of ∧nV. Hence
∑

i di = n. It follows

from the definition that all the di ’s must be odd whenever l > 1. However, if l = 1, then

d1 = n is allowed to be even. In other words, all 2-dimensional algebras of skew-invariants

are proclaimed to be exterior.

Example. Let V = g. Then (∧•g)g is free. Here l = rk g and di = 2mi + 1, where

m1, . . . , ml are the exponents of g. A purely algebraic proof of this result was given by

Koszul [Kos50].

From now on, V is an orthogonal g-module, i.e., we are given a representation π : g →
so(V). In particular, g ⊂ sl(V).

1.3 Lemma. Let V be an irreducible orthogonal g-module with Vg = 0 . Suppose

(∧•V)g is free. Then either (∧4V)g = 0 or dim V = 4 .

Proof. Since (∧1V)g = (∧2V)g = 0, any nonzero element of (∧4V)g is a generator of

(∧•V)g . �
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Let µ : V×V∗ → g∗ ≃ g be the moment mapping associated with the standard symplectic

structure on V × V∗ ≃ T ∗(V). Identifying V and V∗ , one obtains an anti-commutative

bilinear mapping µ̄ : V × V → g. Using the g-invariant symmetric bilinear forms Φ( , )

and ( , )V , one may explicitly define µ̄ by

Φ(µ̄(v1, v2), g) := (v2, g·v1)V ,(1.4)

where v1, v2 ∈ V and g·v1 is a shorthand for π(g)v1 . This µ̄ yields an anti-commutative

multiplication, denoted by [ , ]̃ , in g ⊕ V:

[(g1, v1), (g2, v2)]̃ := ([g1, g2] + µ̄(v1, v2), g1·v2 − g2·v1) .

The following assertion is stated in [Co72, p. 152], in the context of compact group repre-

sentations, as the “Cartan-Kostant theorem”. It is an easy part of Kostant’s characteri-

zation of the isotropy representation of compact homogeneous spaces [loc. cit].

1.5 Proposition. The multiplication [ , ]̃ satisfies the Jacobi identity if and only if

the skew-symmetric g-invariant 4-form on V

(v1, v2, v3, v4)
κ7→ Φ(µ̄(v1, v2), µ̄(v3, v4)) + Φ(µ̄(v2, v3), µ̄(v1, v4)) + Φ(µ̄(v3, v1), µ̄(v2, v4))

is identically equal to zero.

Proof. By bilinearity of [ , ]̃ , it suffices to verify the Jacobi identity for 4 sorts of

triples: (i) (g1, g2, g3), (ii) (g1, g2, v1), (iii) (g1, v1, v2), (iv) (v1, v2, v3),

where gi ∈ g and vi ∈ V. The Jacobi identity is always satisfied for cases (i)–(iii),

because, respectively, g is a Lie algebra, V is a g-module, and µ̄ is a homomorphism of

g-modules. For v1, v2, v3 ∈ V, the identity means that

µ̄(v1, v2)·v3 + µ̄(v2, v3)·v1 + µ̄(v3, v1)·v2 = 0 ∈ V

or

(µ̄(v1, v2)·v3 + µ̄(v2, v3)·v1 + µ̄(v3, v1)·v2, v4)V = 0

for any v4 ∈ V. Using Eq. (1.4), one rewrites the last equality as the condition that

the mapping κ : V⊗4 → k is zero. It is also easily seen that κ is skew-symmetric and

g-invariant. �

1.6 Corollary. If (∧4V)g = 0 , then g ⊕ V, endowed with multiplication [ , ]̃ , is a

Z2 -graded Lie algebra.

Notice that the condition (∧4V)g = 0 is not necessary for g ⊕ V to be a Z2 -graded Lie

algebra. We are going to list all irreducible orthogonal g-modules V such that (∧•V)g is

free.

1.7 Theorem. Let g be semisimple and V a faithful orthogonal irreducible g-module.

Suppose (∧•V)g is free. Then either g is simple and V ≃ g or g̃ := g ⊕ V is a simple

Z2 -graded Lie algebra.

5



Proof. 1. Assume that dim V 6= 4. By Lemma 1.3 and Corollary 1.6, it follows that

[ , ]̃ makes g̃ a Z2 -graded Lie algebra. Let a ⊂ g̃ be an ideal. Then a∩V and a∩ g are

g-stable spaces.

(i) If a ∩ V = V, then a also contains µ̄(V, V) = [V, V]̃ . Since V is faithful, µ̄(V, V)

meets all the simple components of g. Therefore a = g̃ .

(ii) If a ∩ g 6= 0, then, since V is faithful, (a ∩ g)·V 6= 0. That is, a ∩ V 6= 0 and we

are back in part (i).

(iii) If a ∩ V = 0 and a ∩ g = 0, then the g-module a is isomorphic to its projections

to both V and g. Hence prg(a) ≃ a ≃ prV(a) ≃ V. Therefore prg(a) is a a simple

component of g. As V is a faithful g-module, we conclude that g ≃ V and therefore g is

simple in this case. Here g̃ is the sum of two isomorphic ideals, g̃ ≃ a⊕a . The subalgebra

g, which is isomorphic to a , is the diagonal in g̃, and V = {(x,−x) | x ∈ a} .

2. Assume that dim V = 4. Then g ⊂ so4 = so(V). Obviously, so4 ⊕ V ≃ so5 , and one

easily verifies that (∧•V)g is not free for any proper reductive subalgebra g of so4 . �

As is mentioned above, (∧•g)g is free. Thus, all other irreducible orthogonal modules with

free algebra of skew-invariants arise in connection with Z2 -gradings of simple Lie algebras.

If g̃ = g ⊕ V is a simple Z2 -graded Lie algebra, then (∧•V)g is isomorphic to H∗(G̃/G),

the cohomology ring of the symmetric space G̃/G [On95, § 9, n.11]. The cases, where

H∗(G̃/G) is an exterior algebra, are well known, see [On95, § 13,Th. 1]. Note however

that our interpretation of “exterior algebras” is a bit wider. In case dim H∗(G̃/G) = 2,

the generator is allowed to be of even degree. The resulting classification is presented in

Table 1.

Table 1: The irreducible orthogonal representations with free algebra of skew-invariants

g V dim P Poincaré polynomial of (∧•V)g

any simple
Lie algebra g rk g

∏rkg
i=1(1 + t2mi+1)

sp2n (n ≥ 2) Vϕ2
n − 1 (1 + t5)(1 + t9) . . . (1 + t4n−3)

so2n+1 (n ≥ 2) V2ϕ1
n (1 + t5)(1 + t9) . . . (1 + t4n+1)

sl2 V4ϕ 1 1 + t5

son (n ≥ 5) Vϕ1
1 1 + tn

sl2 ⊕ sl2 Vϕ ⊗ Vϕ′ 1 1 + t4

f4 Vϕ1
2 (1 + t9)(1 + t17)

If V is a symplectic g-module, then (∧2V)g 6= 0. Thus, (∧•V)g cannot be free unless

dim V = 2. If V is neither orthogonal nor symplectic, then all known instances of free

algebras of skew-invariants are those with dim(∧•V)g = 2.

6



2 ‘Spin’ of an orthogonal g-module and its properties

Let V be a k-vector space endowed with a non-degenerate quadratic form Q. Denote by

so(V) = soQ(V) the respective orthogonal Lie algebra and by CQ(V) the Clifford algebra

of Q. Let W, W′ be maximal Q-isotropic subspaces of V and W∩W′ = 0. The following

relations are well-known in the theory of Clifford algebras (see e.g. [FH96, § 20.1]) :

(i) CQ(V) ≃ End (∧•W), if dim V is even,

(ii) CQ(V) ≃ End (∧•W) ⊕ End (∧•W′), if dim V is odd.

As ∧•W (or ∧•W′ ) is the underlying space of the spin representation of so(V) (in case

(i) this representation is the sum of two half-spin representations), we shall write Spin(V)

in place of ∧•W . The above relations are thought of as isomorphisms of so(V)-modules.

It is well-known (and easily seen) that CQ(V) has an so(V)-stable filtration such that the

associated graded algebra is isomorphic to the exterior algebra of V. Since in both cases

Spin(V) is a self-dual module, we obtain the following isomorphisms of so(V)-modules:

∧•V ≃ Spin(V) ⊗ Spin(V), if dim V is even,

∧•V ≃ 2(Spin(V) ⊗ Spin(V)), if dim V is odd.
(2.1)

Let g be a reductive Lie algebra and π : g → so(V) an orthogonal representation. Using

π , one may regard Spin(V) as g-module. In this way, we obtain a mapping from the set

of orthogonal g-modules to a set of g-modules: V 7→ Spin(V). Of course, the g-modules

of the form Spin(V) must satisfy some constraints; e.g. dim Spin(V) is a power of 2.

Equations (2.1), which can be treated as isomorphisms of g-modules, suggest that ‘Spin’

could be used for better understanding of g-module structure of the exterior algebra of

an orthogonal module.

The point of departure for our considerations is a simple formula for the character of the

g-module Spin(V). Fix some notation, which applies to arbitrary g-modules (i.e. not

necessarily orthogonal ones). Let P(V) (resp. ∆(V)) denote the set of all (resp. all

nonzero) weights of V. For instance, ∆(g) = ∆. For µ ∈ P(V), Vµ is the corresponding

weight space and m(µ) = dim Vµ . If V = Vλ is irreducible, then the multiplicity is

denoted by mλ(µ). Recall that V is self-dual if and only if ∆(V) = −∆(V) and m(µ) =

m(−µ) for all µ ∈ ∆(V).

Given an orthogonal g-module V, let ∆(V)+ denote an arbitrary subset such that ∆(V) =

∆(V)+ ⊔ (−∆(V)+).

2.2 Lemma. ch Spin(V) = 2[m(0)/2]
∏

µ∈∆(V)+

(eµ/2 + e−µ/2)m(µ) .

Proof. Using (1.2), one obtains ch (∧•V) =
∏

µ∈P(V)

(1 + eµ)m(µ) =

2m(0)
∏

µ∈∆(V)+

[(1 + eµ)(1 + e−µ)]m(µ) = 2m(0)
∏

µ∈∆(V)+

(eµ/2 + e−µ/2)2m(µ) .

Since dim V − m(0) is even, comparing with Eq. (2.1) completes the proof. �
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Roughly speaking, Eq. (2.1) asserts that a “square root” of ∧•V is again a g-module

whenever V is orthogonal. Lemma 2.2 gives a precise form for this. Notice that the

transformation from the proof of Lemma can be performed for any self-dual g-module V.

But the respective “square root” does not yield in general the character of a g-module.

It is convenient to omit the numerical factor in ch Spin(V). The remaining expression is

still the character of a g-module. This module is said to be the reduced Spin of V and

we write Spin0(V) for it:

ch Spin0(V) =
∏

µ∈∆(V)+

(eµ/2 + e−µ/2)m(µ) .(2.3)

Several easy properties of Spin0 are summarized below.

2.4 Proposition. Let V = V(1) and V(2) be orthogonal g-modules. Then

(i) dim Spin0(V) = 2(dim V−m(0))/2 ;

(ii) ∧•V ≃ 2m(0) · Spin0(V)⊗2 ;

(iii) Spin(V) = Spin0(V) if and only if m(0) ≤ 1 ;

(iv) Spin0(V
(1) ⊕ V(2)) ≃ Spin0(V

(1)) ⊗ Spin0(V
(2));

(v) Spin0(V) is a self-dual g-module.

Proof. This immediately follows from (2.1), (2.2), and (2.3). �

2.5 Examples. 1. Our consideration of Spin(V) was motivated by the following

observation of Kostant, see [Ko61, p. 358] and [Ko97].

Suppose V = g and π = ad is the adjoint representation. Then ∧•g ≃ 2rkg(Vρ ⊗ Vρ).

This means that Spin(g) = 2[rkg/2] Vρ and Spin0(g) = Vρ .

2. g = sl2 . We shall write Rd in place of Vdϕ1
. Recall that R2 = g, Rd = SdR1 ,

and Rd is orthogonal if and only if d is even. Let P(R1) = {ε,−ε} . Applying Prop. 2.4,

we obtain Spin0(R2d) = Spin R2d and ch Spin R2d =
∏d

k=1(e
kε + e−kε). It is not hard to

compute this character for small values of d . Here are first few formulas: Spin R2=R1 ,

Spin R4=R3 , Spin R6=R6+R0 , Spin R8=R10+R4 , Spin R10=R15+R9+R5 . It is easily

seen that if Spin R2d = ⊕i∈IRmi
, then Spin R2(d+1) ⊃ ⊕i∈IRmi+d+1 . Therefore the num-

ber of summands is a nondecreasing function of d .

3. Let W be an arbitrary g-module. We may regard V := W ⊕ W∗ as orthogonal

g-module equipped with the quadratic form Q((w, w∗)) := 〈w|w∗〉 , where (w, w∗) ∈ V

and 〈 | 〉 is the canonical pairing of W and W∗ . Assuming for simplicity that the weights

of W and W∗ are distinct, we see that P(W) can be taken as ∆(V)+ . Therefore

ch Spin(V) =
∏

µ∈P(W)

(eµ/2 + e−µ/2)m(µ) = e−ν
∏

µ∈P(W)

(1 + eµ)m(µ) , where ν =

1
2

∑
µ∈P(W) m(µ)µ . Whence

Spin(W ⊕ W∗) ≃ k−ν ⊗ ∧•W ≃ kν ⊗∧•W∗ ,

8



where k−ν is 1-dimensional g-module with character −ν . Obviously, ν = 0 if and only

if g ⊂ sl(W), e.g. g is semisimple. It is not hard to verify that the above formula for

Spin(W ⊕ W∗) remains true for all W .

Definition. An orthogonal g-module V is said to be co-primary, if Spin0(V) is irre-

ducible.

In this case Spin(V) is a primary g-module. We are going to list all co-primary modules

for the semisimple Lie algebras. At the moment, the following examples of such modules

are known: V = g, g simple; V = R4 , g = sl2 . As a step towards a classification, we

describe another series of co-primary modules.

Let g be a simple Lie algebra having two root lengths. We use subscripts ‘s‘ and ‘l‘ to

mark objects related to short and long roots, respectively. For instance, ∆s is the set of

short roots, ∆ = ∆s ⊔ ∆l , and Πs = Π ∩ ∆s . Set ρs = 1
2
|∆+

s | and ρl = 1
2
|∆+

l | . As usual,

sα ∈ W is the reflection corresponding to α ∈ ∆ and si := sαi
.

2.6 Lemma. ρs =
∑

αi∈Πs
ϕi .

Proof. It is easily seen that si(ρs) =

{
ρs, if αi ∈ Πl

ρs − αi, if αi ∈ Πs
. �

Let θ ∈ ∆+ be the highest root and θs the short dominant root. Recall that ∆l = W ·θ ,

∆s = W ·θs , and ||θ||2/||θs||2 = 2 or 3. If µ ∈ ∆, then µ∨ := 2µ/||µ||2 .

2.7 Lemma. Suppose ||θ||2/||θs||2 = 2 and µ ∈ ∆s . Then (ρ + ρs, µ
∨) is even.

Proof. Let µ =
∑

αi∈Πs
niαi +

∑
αj∈Πl

mjαj . Then µ∨ =
∑

αi∈Πs
niα

∨
i + 2

∑
αj∈Πl

mjα
∨
j .

Therefore (ρ + ρs, µ
∨) = (2ρs + ρl, µ

∨) = (2ρs,
∑

αi∈Πs
niα

∨
i ) + (ρl, 2

∑
αj∈Πl

mjα
∨
j ) =

2(
∑

i ni +
∑

j mj). �

The following assertion can be proved using classification, but we give a unified proof.

2.8 Proposition.

(i) dim Vθs
= (h + 1)mθs

(0), where h is the Coxeter number of g;

(ii) mθs
(0) = #Πs .

Proof. (i) It is clear that P(Vθs
) = {0} ∪ ∆s . Moreover, mθs

(α) = 1 for all α ∈ ∆s .

Applying Freudenthal’s multiplicity formula to mθs
(0), we obtain

(θs + 2ρ, θs)mθs
(0) = 2

∑

α∈∆+

∑

t≥1

mθs
(tα)(tα, α) = 2

∑

α∈∆+
s

mθs
(α)(α, α) = 2

∑

α∈∆+
s

(α, α) .

Whence

(1 + (ρ, θ∨s ))mθs
(0) = #∆s = dim Vθs

− mθs
(0) .

As θ∨s is the highest root in the dual root system ∆∨ , we have (ρ, θ∨s ) = h − 1.
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(ii) By part (i), we have mθs
(0) =

dim Vθs
− mθs

(0)

h
=

#∆s

h
. Let c ∈ W be a Coxeter

element associated with Π. It is known that each orbit of c in ∆ has cardinality h and

contains a unique simple root, see [BOU, ch.VI, § 1, Prop. 33]. Hence #∆s = h(#Πs). �

Some authors call Vθs
the little adjoint module. To a great extent, properties of Vθs

are

similar with properties of g.

2.9 Theorem. Suppose ||θ||2/||θs||2 = 2 . Then ∧•Vθs
≃ 2#Πs · (Vρs

⊗ Vρs
).

Proof. By Proposition 2.8, we have ch Vθs
= #Πs +

∑
α∈∆s

eα . Therefore

ch ∧• Vθs
= 2#Πs

∏

α∈∆s

(1 + eα) = 2#Πs
∏

α∈∆+
s

(eα/2 + e−α/2)2 .

Thus, the statement of theorem is equivalent to that

ch Vρs
=

∏

α∈∆+
s

(eα/2 + e−α/2) = eρs
∏

α∈∆+
s

(1 + e−α).(2.10)

By Weyl’s character formula

ch Vρs
=

∑
w∈W ε(w)ew(ρ+ρs)

∑
w∈W ε(w)ewρ

=

∑
w∈W ε(w)ew(ρ+ρs)

∏
α∈∆+(eα/2 − e−α/2)

.(2.11)

Here ε(w) = (−1)l(w) , where l(w) is the length of w with respect to ∆+ . Take α ∈ ∆+
s .

We are going to prove that 1 + e−α divides ch Vρs
in Z[P]. Since ch Vρs

is W -invariant,

it is enough to consider the case in which α is simple, i.e., α ∈ Πs . Actually, we shall

prove that 1 + e−α divides the numerator in Eq. (2.11). For this, we show how to group

together the summands of the numerator. Let W α = {w ∈ W | w−1α ∈ ∆+} . Then W

is the disjoint union of pairs {sαw, w} (w ∈ W α ). Consider the corresponding pairs of

summands in the numerator of (2.11). Since α ∈ Πs , we have ε(sαw) = −ε(w) and

ε(w)ew(ρ+ρs) + ε(sαw)esαw(ρ+ρs) = ε(w)ew(ρ+ρs)(1 − e−nα) ,

where n = (w(ρ + ρs), α
∨) = (ρ + ρs, (w

−1α)∨). By the definition of W α , n is positive.

The divisibility will follow from the fact that n is even. But this is just Lemma 2.7.

Since Z[P] is factorial and the factors 1 + e−α (α ∈ ∆+
s ) are coprime (see [BOU,

ch.VI, § 3, Lemma 1]), eρs
∏

α∈∆+
s
(1 + e−α) divides ch Vρs

. The quotient is a W -invariant

element of Z[P]. Comparing the maximal terms in both expressions, we see that the

quotient must be equal to 1. �

2.12 Corollary. 1. Spin0(Vθs
) = Vρs

;

2. dim(∧•Vθs
)g = 2#Πs .

2.13 Examples. To realize the scope of Theorem 2.9, we look at all simple Lie algebras

with two root lengths.
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1. g = sp2n . Here θ = 2ϕ1 , θs = ϕ2 , and ρs = ϕ1 + . . . + ϕn−1 . Thus

∧•Vϕ2
= 2n−1·(Vϕ1+...+ϕn−1

)⊗2 and Spin0(Vϕ2
) = Vϕ1+...+ϕn−1

.

2. g = f4 . Here θ = ϕ4 , θs = ϕ1 , and ρs = ϕ1 + ϕ2 . Thus

∧•Vϕ1
= 4(Vϕ1+ϕ2

)⊗2 and Spin0(Vϕ1
) = Vϕ1+ϕ2

.

3. g = so2n+1 . Here θ = ϕ2 , θs = ϕ1 , and ρs = ϕn . In this case Spin0(Vϕ1
) =

Spin(Vϕ1
) = Vϕn

and the formula of Theorem 2.9 is nothing but the second equality

in Eq. (2.1). Hence the theorem also yields another approach to defining ‘Spin’ of an

orthogonal representation.

4. g = g2 . Here ||θ||2/||θs||2 = 3 and Theorem 2.9 does not apply. In this case ρs = θs = ϕ1

and θ = ϕ2 . An explicit (easy) computation with characters shows that

∧•Vϕ1
= 2·(Vϕ1

⊕ I1)⊗2 , i.e., Spin(Vϕ1
) = Vϕ1

⊕ I1. Hence Vθs
is not co-primary.

Here I1 stands for the trivial 1-dimensional module.

(2.14) Another proof of Theorem 2.9. Making use of Weyl’s character formula,

we interpret Eq. (2.10) as Weyl’s denominator identity for the dual root system.

Recall that ∆ = ∆l ⊔ ∆s and we assume that ||θ||2/||θs||2 = 2. The dual root system is

therefore isomorphic to ∆̃ := ∆l⊔2∆s . Here (∆̃)l = 2∆s and (∆̃)s = ∆l . Since W̃ ≃ W ,

Weyl’s denominator identity for ∆̃ reads

∑

w∈W

ε(w)ewρ̃ =
∏

α∈∆̃+

(eα/2 − e−α/2) .

We have ρ̃ = ρ + ρs on the left hand side and

∏

α∈∆+

l

(eα/2 − e−α/2)·
∏

µ∈∆+
s

(eµ − e−µ) =
∏

α∈∆+

(eα/2 − e−α/2)
∏

α∈∆+
s

(eµ/2 + e−µ/2)

on the right hand side. Hence dividing Weyl’s identity by
∏

α∈∆+(eα/2 − e−α/2) yields

ch Vρs
=

∏
µ∈∆+

s
(eµ/2 + e−µ/2).

Remark. The previous argument suggests a proper analogue of (2.10) for the exceptional

Lie algebra g2 . Here the dual root system is isomorphic to ∆̃ := ∆l ⊔ 3∆s and a similar

transformation proves that ch V2ρs
=

∏
µ∈∆+

s
(eµ + 1 + e−µ).

3 Classification of co-primary g-modules

In this section, g is a semisimple Lie algebra and V an orthogonal g-module. From

Eq. (2.3) it is clear that Vg has no affect on Spin0(V). We may therefore assume that

Vg = 0.

3.1 Proposition. Suppose V is co-primary. Then there exist decompositions g =

g1 ⊕ . . . ⊕ gs , V = V1 ⊕ . . . ⊕ Vs such that

11



(i) Each gi is a (semisimple) ideal of g,

(ii) gi acts trivially on Vj (i 6= j ),

(iii) Vi is an irreducible orthogonal co-primary gi -module.

Proof. Assume that V = V1 ⊕ V2 , where V1 and V2 are orthogonal g-modules. It

follows from the assumptions and Proposition 2.4(iv) that the g-module Spin0(V1) ⊗
Spin0(V2) is irreducible. Since both factors are non-trivial, the only possibility for this

is that g = g1 ⊕ g2 , where gi acts trivially on Vj (i 6= j ) and Vi is a co-primary

gi -module (i = 1, 2). Repeating this procedure, we obtain a decomposition satisfying

(i) and (ii), where each Vi is orthogonal co-primary and is not a sum of two proper

orthogonal gi -submodules. Then either Vi is irreducible or Vi = Wi ⊕ W∗
i , where Wi is

already irreducible. In the second case, we have Spin(Vi) ≃ ∧•Wi (see Example 2.5(3)).

It is easily seen that the gi -module ∧•Wi is never primary, i.e., Spin0(Vi) can not be

irreducible here. �

Whenever (g, V) admits a decomposition satisfying conditions (i) and (ii) of the Propo-

sition, this will be denoted by (g, V) = (g1, V1) ⊕ . . . ⊕ (gs, Vs).

Notice that if each Vi is irreducible, then all the summands in the above decomposition

are uniquely determined.

3.2 Lemma. If Vλ is an irreducible co-primary g-module, then mλ(0) 6= 0 .

Proof. If mλ(0) = 0, then ∧•Vλ ≃ Spin0(Vλ)
⊗2 , see 2.4(ii). Since dim(∧•Vλ)

g ≥ 2,

the Schur lemma shows that Spin0(Vλ) cannot be irreducible. �

It follows from the above two assertions that P(V) lies in the root lattice whenever V is

co-primary.

Let us present an explicit way for finding some irreducible constituents of Spin0(V).

To write an expression for ch Spin0(V) in (2.3), we exploited an arbitrary ‘half’ ∆(V)+

of ∆(V). However a clever choice of ∆(V)+ will provide us with a maximal term in

ch Spin0(V) and hence with a highest weight. Take ν ∈ P+ such that (ν, µ) 6= 0 for all

µ ∈ ∆(V). Put ∆(V)+
ν = {µ ∈ ∆(V) | (µ, ν) > 0} . A subset of such form is said to be a

dominant half of ∆(V). Set Λν := 1
2

∑
µ m(µ)µ , where µ ranges over ∆(V)+

ν .

3.3 Lemma. Λν is a highest weight of Spin0(V).

Proof. We show that Λν is dominant and it is a maximal element in P(Spin0(V)).

Note that the first part is not tautological. We exploit formula 2.3 with ∆(V)+
ν :

ch Spin0(V) =
∏

µ∈∆(V)+ν

(eµ/2 + e−µ/2)m(µ) .

This shows that eΛν occurs in ch Spin0(V) with coefficient 1, (ν, Λν) = max
µ∈P(Spin0(V))

(ν, µ),

and Λν is the unique element of P(Spin0(V)), where the maximal value is attained. Let
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Λ′
ν be the dominant representative in W ·Λν . Then Λ′

ν ∈ P(Spin0(V)) and Λ′
ν − Λν =

∑
αi∈Π niαi with ni ≥ 0. Therefore (ν, Λ′

ν) ≥ (ν, Λν) and hence Λ′
ν = Λν . �

(3.4) The highest weights of Spin0(V) of the form Λν are said to be extreme. It is easy to

describe all dominant halfs of ∆(V) and hence all extreme weights of Spin0(V). Consider

the Weyl chamber C := Q+P+ ⊂ PQ and its interior Co . Let Hµ denote the hyperplane

in PQ orthogonal to µ ∈ P . Recall that Co is the connected component2 of PQ \∪γ∈∆Hγ ,

containing dominant weights. Then the hyperplanes Hµ (µ ∈ ∆(V)) cut C in smaller

chambers. When ν varies inside of such a ‘small’ chamber the corresponding extreme

weight does not change. We thus obtain a bijection

{extreme weights of Spin(V)} ↔ {connected components of Co \
⋃

µ∈∆(V)

Hµ} .

In particular, Spin0(V) has a unique extreme weight if and only if ∆(V) has a unique

dominant half if and only if none of the hyperplanes Hµ cuts Co .

3.5 Lemma. Suppose ∆(V) lies in the root lattice. Then:

none of the hyperplanes Hµ (µ ∈ ∆(V)) cuts Co ⇐⇒ ∆(V) ⊂ ∪α∈∆Zα .

Proof. “⇐” This is obvious.

“⇒” Assume that M := ∆(V) \ ∪α∈∆Zα 6= ∅ . Let µ ∈ M ∩ P+ be an element closest

to 0. Write µ as sum of positive roots with positive integral coefficients µ =
∑d

i=1 kiγi

(γi 6= γj ) and so that
∑

i ki is minimal over all such presentations. Then γi + γj is not a

root, i.e., (γi, γj) ≥ 0. Therefore (µ, γ1) > 0 and hence µ−γ1 ∈ ∆(V). As ||µ−γ1|| < ||µ|| ,
we obtain µ − γ1 ∈ ∪α∈∆+Nα . Thus, k1 = 1, d = 2 and, by symmetry, µ = γ1 + γ2 .

Since (γ1, γ2) ≥ 0 and γ1 + γ2 is not a multiple of a root, it is easily seen that (γ1,−γ2)

is a basis of the root system ∆ ∩ (Qγ1 + Qγ2). Therefore (γ1,−γ2) is W -conjugate to a

pair of simple roots (αi, αj) (see [BOU, ch.VI, § 1,Prop. 24]). Thus, αi − αj ∈ ∆(V) and

Hαi−αj
cuts Co . �

3.6 Proposition. Let V be a co-primary faithful irreducible g-module. Then

∆(V) ⊂ ∪α∈∆Zα and g is simple.

Proof. By Lemma 3.2, ∆(V) lies in the root lattice. Therefore the first claim readily

follows from (3.4) and Lemma 3.5. Assume that g = g1 ⊕ g2 is a sum of two ideals. Then

V = V1 ⊗ V2 , where Vi is a non-trivial gi -module. Obviously, if µi ∈ ∆(Vi) (i = 1, 2),

then µ1 + µ2 ∈ ∆(V) and it is not a multiple of a root of g. �

Now, we are ready to state a classification.

3.7 Theorem. (i) Let g be semisimple and V a faithful orthogonal g-module with

Vg = 0 . Suppose V is co-primary. Then

(g, V) = (g1, V1) ⊕ . . . ⊕ (gs, Vs) ,
2Strictly speaking, use of the term “connected component” is correct only for the real vector space

PR .
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where each gi is simple and Vi is irreducible and co-primary. Each weight of V is a

multiple of a root of g.

(ii) If g is simple and V = Vλ is irreducible and co-primary, then the pair (g, λ) is one of

the following:

(a) g is any and λ = θ .

(b) g ∈ {so2n+1, sp2n, f4} and λ = θs .

(c) g = so2n+1 , λ = 2θs = 2ϕ1 (n ≥ 2).

(d) g = sl2 , λ = 4ϕ1 .

Proof. (i) By Proposition 3.1, such a decomposition with irreducible and co-primary

summands Vi exists. The other assertions are proved in Proposition 3.6.

(ii) By part (i), we have λ ∈ {kθ, kθs | k ∈ N} .

Let rk g = 1. It follows from Example 2.5(2) that the only co-primary sl2 -modules

are sl2 = R2 and R4 .

Let rk g ≥ 2. Consider the following possibilities.

• λ = 2θ . Take αi ∈ Π such that (αi, θ) 6= 0. Then 2θ − αi is a weight of V2θ , which is

not a multiple of a root. Thus, V2θ is not co-primary.

• g = sp2n or f4 and λ = 2θs . If αi is the unique simple root such that (αi, θs) 6= 0, then

2θs − αi ∈ ∆(V2θs
) is not a multiple of a root.

• g = so2n+1 and λ = 3θs = 3ϕ1 . Here 3ϕ1 − α1 is not proportional to a root.

• g = g2 . We have already shown in Example 2.13(4) that Vθs
is not co-primary.

Obviously, if Vkλ is not co-primary, then the same holds for any m ≥ k . Thus, comparing

with results of section 2, we see that the only unclear case is ii(c). Our proof that this

module is co-primary is similar to the first proof of Theorem 2.9. It will be given in the

next proposition, where we also compute the reduced Spin of V2θs
. �

3.8 Proposition. Let g = so2n+1 . Then

1. Spin0(V2ϕ1
) = Vρ+2ϕn

;

2. ∧•V2ϕ1
= 2n·(Vρ+2ϕn

)⊗2 .

Proof. First, we describe the weight structure of the g-module V2ϕ1
. This is easy,

since V2ϕ1
is the Cartan (highest) component in S2Vϕ1

. Here P(V2ϕ1
) = {0}∪∆∪ 2∆s .

Hence ∆(V)+ = ∆+∪2∆+
s . The non-zero weights are of multiplicity 1, and m2ϕ1

(0) = n.

Therefore, making use of Eq. (2.3), we obtain

ch Spin0(V2ϕ1
)=

∏

α∈∆+

(eα/2 +e−α/2)
∏

α∈∆+
s

(eα +e−α)=eρ+2ϕn
∏

α∈∆+

(1+e−α)
∏

α∈∆+
s

(1+e−2α) =

= eρ+2ϕn
∏

α∈∆+

l

(1 + e−α)
∏

α∈∆+
s

(1 + e−α + e−2α + e−3α) .

On the other hand,

ch Vρ+2ϕn
=

∑
w∈W ε(w)ew(ρ+ρ+2ϕn)

∏
α∈∆+(eα/2 − e−α/2)

.(3.9)
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Since ch Spin0(V2ϕ1
) and ch Vρ+2ϕn

have the same maximal term eρ+2ϕn , it suffices to

prove that each factor in the last expression for ch Spin0(V2ϕ1
) divides ch Vρ+2ϕn

, i.e.,

the numerator in Eq. (3.9).

The same procedure, as in the proof of Theorem 2.9, reduces the problem to proving

that, for any w ∈ W α ,

(w(2ρ + 2ϕn), α
∨)

{
is even , if α ∈ Πl

is divisible by 4 , if α ∈ Πs
.

That is, we need actually to verify that (w(ρ + ϕn), α∨) is even whenever α is short. As

ϕn = ρs for our g, this is just Lemma 2.7.

2. This is a formal consequence of part 1, see Proposition 2.4. �

Having obtained the list of all irreducible co-primary modules in Theorem 3.7(ii), it is

worth looking it through again in order to find out common features and latent regulari-

ties for the representations in question.

First, item (ii)d in (3.7) can be thought of as starting point for the series in (ii)c. In-

deed, V2ϕ1
is the Cartan component in S2Vϕ1

and Vϕ1
is the tautological module for

so2n+1 (n ≥ 2), whereas sl2 -module R4 is the Cartan component in S2R2 and R2 is the

tautological module for so3 . Thus, the list consists of three groups of representations:

1. (g, Vθ = g);

2. (g, Vθs
), where g is of type B , C, or F;

3. g = so(W) and V = S2
0 (W), where dim W = 3, 5, 7, . . .

The second (more interesting) observation is that, for all items (g, V) in the list, g → so(V)

is the isotropy representation of an irreducible symmetric space. In other words, g̃ := g⊕V

has a structure of irreducible Z2 -graded semisimple Lie algebra. More precisely, g̃ is

simple for items 2 and 3, and g̃ ≃ g ⊕ g for item 1. Furthermore, it follows from the

well-known classification of symmetric spaces that items 1–3 correspond exactly to the

cases, where g is non-homologous to zero3 in g̃ . The class of homogeneous spaces G̃/G

(not necessarily symmetric ones) such that G̃, G are connected and g is non-homologous

to zero in g̃ has many nice descriptions. We refer the reader to [On95, § 13, n.2] for a

thorough treatment in the context of homogeneous spaces of compact Lie groups. In

the symmetric case, yet another characterization is that this happens if and only if g is

determined by a diagram involutory automorphism of g̃ . An explicit description of the

diagram automorphisms of simple Lie algebras is found in [Ka90, § 7.9, 7.10]. The third

observation is that any irreducible co-primary module occurs in Table 1 in section 1, i.e.,

it has a free algebra of skew-invariants.

These observations give us some hope that the reduced Spin of the isotropy represen-

tation of an arbitrary symmetric spaces might have some interesting properties. This is

really the case and we turn to such considerations in the following sections.

3this means that the canonical map of homology spaces H∗(g) → H∗(g̃) is injective.
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4 Some auxiliary results

In this section, we prove an auxiliary result on Weyl groups and recall some standard

facts on involutions of simple Lie algebras.

Let W be the Weyl corresponding to a reduced root system ∆ with a set of positive roots

∆+ . Let w 7→ l(w) be the length function on W determined by ∆+ . Recall that l can be

defined as l(w) = #{α ∈ ∆+ | w(α) ∈ ∆−} . Consider an arbitrary subset ∆0 ⊂ ∆ which

is a root system in its own right, but is not necessarily closed in ∆. That is, it is allowed

that α + β ∈ ∆ \ ∆0 for some α, β ∈ ∆0 . It is easily seen that such a phenomenon can

only occur if ∆ has roots of different length. As a sample of such non-closed subset, we

mention ∆0 = ∆s . Nevertheless, W0 , the Weyl group of ∆0 , is always identified with a

subgroup of W . Clearly, ∆+
0 := ∆0 ∩ ∆+ can be taken as set of positive roots for ∆0 .

4.1 Proposition. 1. Any coset wW0 ⊂ W contains a unique representative of

minimal length. Denoting by W 0 the set of minimal length representatives, we have

W 0 = {w ∈ W | w(∆+
0 ) ⊂ ∆+} .

2. The mapping W 0 × W0 → W ((wo, wo) 7→ wo(w
o)−1 ) is a bijection.

Proof. 1. Set W ′ = {w ∈ W | w(∆+
0 ) ⊂ ∆+} . Then W 0 ⊂ W ′ . Indeed, assume that

w ∈ W 0 and w(β) ∈ ∆− for some β ∈ ∆+
0 . Then wsβ(β) ∈ ∆+ and it follows from

[BGG, 2.3] that l(wsβ) < l(w). But this contradicts the fact that w ∈ W0 . Obviously,

each coset contains elements of minimal length and hence elements from W ′ . Assume

that u, v ∈ W ′ ∩ vW0 . Then u = vw for some w ∈ W0 . If w 6= e, then w(β) ∈ ∆−
0 for

some β ∈ ∆+
0 . Whence u(β) = v(w(β)) ∈ ∆− , which contradicts the assumption. Thus,

each coset contains a unique element of W ′ , W 0 = W ′ , and we are done.

2. Obvious. �

Remark. If ∆0 is generated by a part of the basis Π ⊂ ∆+ (i.e., ∆0 ∩ Π is a basis of

∆0 ), then W0 is a parabolic subgroup of W . In this case the Proposition is well known

and, moreover, the relation l(wow0) = l(wo)+ l(wo) holds, see e.g. [Hu95, 1.10]. However

this relation does not hold in general.

For wo ∈ W0 , let l0(wo) denote the length of wo in W0 . That is, l0(wo) = #{µ ∈
∆+

0 | wo(µ) ∈ ∆−
0 } . If W0 is a parabolic subgroup, then l0(wo) = l(wo), but in general

we have only “≤”. The usual determinant or parity for the elements of W is defined by

ε(w) = (−1)l(w) . Making use of the above bijection, one may introduce a parity depending

on ∆0 . By Prop. 4.1(2), each element w ∈ W has a unique presentation w = wo(w
o)−1 ,

where wo ∈ W0 and wo ∈ W 0 . Set l0(w) := l0(wo) and τ(w) := (−1)l0(w) . So, if w = wo ,

then τ(wo) is nothing but the usual parity on W0 , which will be denoted by ε0(wo).

Therefore one may say that τ is the extension of the parity ε0 to W determined by the

‘section’ W 0 . The function w ∈ W 7→ τ(w) ∈ {1,−1} is said to be the cunning parity

on W , determined by ∆+
0 (or W0 ). It is convenient to give an expression for l0(w), and

hence for τ(w), where wo is not explicitly mentioned.
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4.2 Lemma. l0(w) = #{α ∈ ∆− | w(α) ∈ ∆+
0 } .

Proof. Let w = wo(w
o)−1 , as above. Consider the subsets

M1 = {α ∈ ∆− | w(α) ∈ ∆+
0 } and M2 = {µ ∈ ∆− | wo(µ) ∈ ∆+

0 } .

Since ∆0 is W0 -stable, M2 ⊂ ∆−
0 and therefore l0(wo) = #M2 . By Prop. 4.1(1), we have

(wo)−1M1 ∩ ∆+
0 = ∅ . Since wo((w

o)−1M1) ⊂ ∆+
0 , we see that (wo)

−1M1 ⊂ ∆−
0 . Thus

(wo)−1M1 ⊂ M2 . Similarly, one proves the opposite containment. Thus, l0(w) = #M2 =

#M1 , and we are done. �

(4.3) Classes of involutory automorphisms. Here g is a simple Lie algebra.

Given an involutory automorphism Θ of g, consider the Z2 -grading g = g0 ⊕ g1 , where

gi = {x ∈ g | Θ(x) = (−1)ix} . The reductive subalgebra g0 is called symmetric. The

involutory automorphisms fall into three classes:

a) rk g = rk g0 and g0 is semisimple;

b) rk g = rk g0 and g0 has 1-dimensional centre;

c) rk g > rk g0 .

In cases a) and b), Θ is inner and, accordingly, both g0 and the Z2 -grading are said to be

of inner type. It is well known that the g0 -module g1 is irreducible in cases a) and c), and

is the sum of two dual submodules in case b). However, g1 is orthogonal in all three cases

and one may consider the g0 -module Spin(g1). An important feature of this situation is

that all nonzero weights of g1 are of multiplicity 1. This is clear in the equal rank cases,

and can also be proved for c). An invariant theoretic proof of this uses Lemma 3.4 in

[Ka80] and the fact that the linear group G0 → GL(g1) is visible.

5 Spin(g1) for the inner involutory automorphisms

In this section, g is simple and g0 is a symmetric subalgebra of inner type. Retain for g

the previous notation such as t, ∆, ∆+ , ρ, C , etc. Since rk g = rk g0 , we may assume

that t is a Cartan subalgebra in both g and g0 . Let ∆0 be the root system of (g0, t)

and ∆1 the set of weights of the g0 -module g1 . Then ∆ = ∆0 ⊔ ∆1 and ∆0 is a closed

subset of ∆. We regard ∆+
0 := ∆+ ∩ ∆0 as set of positive roots for g0 . Note also that

∆1 contains a distinguished ‘half’ ∆+
1 = ∆+ ∩ ∆1 . Then Prop. 4.1 applies to the Weyl

groups W0 ⊂ W and one obtains the “minimal length” subset W 0 ⊂ W .

Our aim is to describe the g0 -module Spin0(g1). As g1 has no zero weight, we have

Spin(g1) = Spin0(g1). As a first step, we find all extreme weights of Spin(g1). Recall from

(3.3), (3.4) that each dominant half of ∆1 determines an extreme weight for Spin(g1).

According to that discussion, one has to take the dominant chamber C0 for g0 and cut

it up by the hyperplanes orthogonal to the roots of ∆1 . Clearly, each small chamber is

isomorphic to C . Since there are #W chambers for g and #W0 chambers for g0 , we

obtain the partition of C0 in #(W/W0) small chambers. Then any weight inside of a
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small chamber determines a dominant half of ∆1 and an extreme weight. In the following

proposition we give a formula for these extreme weights.

5.1 Proposition.

1. The set of hyperplanes Hµ (µ ∈ ∆1 ) cuts C0 in #(W/W0) small chambers;

2. The collection of (g0 -dominant) weights w−1ρ (w ∈ W 0 ) contains representatives of

all small chambers in C0 .

3. The extreme weight of Spin(g1) corresponding to w−1ρ is λw := w−1ρ − ρ0 .

Proof. 1. This is proved in the previous paragraph.

2 & 3. If α ∈ ∆+
0 and w ∈ W 0 , then wα ∈ ∆+ , see Prop. 4.1(1). Therefore w−1ρ is

g0 -dominant. Since the number of these weights is #(W/W0), as required, it suffices to

verify that the corresponding dominant halfs are different.

By definition, the dominant half of ∆1 associated with w−1ρ is

(∆1)
+
w = {µ ∈ ∆1 | (w−1ρ, µ) > 0} = {µ ∈ ∆1 | wµ ∈ ∆+} .

Because all weight multiplicities in g1 are equal to 1, the corresponding extreme weight

is λw := 1
2
|(∆1)

+
w−1ρ| . Set Mw = {µ ∈ ∆+

1 | wµ ∈ ∆+} and Mw = ∆+
1 \ Mw . Then

∆+ = ∆+
0 ⊔ Mw ⊔ Mw and

ρ = ρ0 + 1
2
|Mw| + 1

2
|Mw| .

Since w ∈ W 0 , we obtain

w−1ρ = ρ0 + 1
2
|Mw| − 1

2
|Mw| .

Note also that |(∆1)
+
w | = |Mw|− |Mw| . Whence λw = w−1ρ−ρ0 . Thus, we have obtained

the required number of different extreme weights. �

In the remainder of the section, notation Vλ refers to a g0 -module.

5.2 Theorem. Let g = g0 ⊕ g1 be a Z2 -grading of inner type. Then

Spin0(g1) = Spin(g1) =
⊕

w∈W 0

Vλw
.

Proof. It follows from the preceding exposition that
⊕

w∈W 0

Vλw
⊂ Spin0(g1) = Spin(g1) .

Since Spin(g1) is self-dual, dim(Spin(g1)
⊗2)g0 is greater than or equal to the number of

irreducible summands of Spin(g1). Therefore the desired equality is equivalent to that

dim(Spin(g1)
⊗2)g0 = #W 0 . Recall the main property of ‘Spin’ in our situation:

∧•g1 ≃ Spin(g1)
⊗2 .

Hence the question about g0 -invariants is being translated in the setting of exterior alge-

bras. Assuming that k = C, we can exploit de Rham cohomology with complex coeffi-

cients. It is well known that (∧•g1)
g0 is isomorphic to H∗(G/G0), the cohomology ring of
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the symmetric space G/G0 [On95, §9 n.11], and that dim H∗(G/G0) = #(W/W0) [On95,

§13 n.3]. This completes the proof. �

5.3 Example. Let Θ be a ‘Hermitian’ involutory automorphism, i.e., g0 has a 1-

dimensional centre and g1 ≃ W ⊕ W∗ , where W is a faithful irreducible g0 -module.

This is just case 4.3(b). Then ∆(W) = P(W) = ∆+
1 and, according to Example 2.5(3),

Spin(g1) ≃ kρ1
⊗ ∧•W∗ , where ρ1 = 1

2
|∆+

1 | . It then follows from Theorem 5.2 that

∧•W∗ = k−ρ1
⊗ Spin(g1) =

⊕

w∈W 0

Vwρ−ρ .

Or, equivalently, {ρ − wρ | w ∈ W 0} is the set of all highest weights for the g0 -module

∧•W . This result was obtained by Kostant (see [Ko61, 8.2]) as application of his results on

the cohomology of the nilpotent radical of a parabolic subalgebra of g. In this situation,

W is the Abelian nilpotent radical of the parabolic subalgebra g0 ⊕ W . So, the concept

of ‘Spin’ and Theorem 5.2 yield another generalization of Kostant’s result.

Purists may condemn the above proof of Theorem 5.2, since it invokes the cohomology

theory of compact Lie groups over C. Fortunately, there exists also a rather simple and

purely algebraic proof. We shall show that the equality in 5.2 is equivalent to an identity

in Z[P], which is a variation of the Weyl denominator formula. Recall from section 4 the

cunning parity τ(w) for w ∈ W , determined by W0 .

5.4 Theorem. Let ∆ = ∆0 ⊔∆1 be the partition corresponding to a Z2 -grading of g

of inner type. Then
∑

w∈W

τ(w)ewρ =
∏

α∈∆+

0

(eα/2 − e−α/2)
∏

µ∈∆+

1

(eµ/2 + e−µ/2) .

Proof. The fact that ∆0 and ∆1 originate from an inner involutory automorphism can

alternatively be stated as follows:

(∗) if α ∈ ∆i , β ∈ ∆j , and α + β ∈ ∆, then α + β ∈ ∆i+j ,

where, of course, i, j ∈ Z/2Z. Let Q ⊂ P be the root lattice. For Z[Q], with basis eα

(α ∈ Q), one has a version of Weyl’s denominator identity:

∑

w∈W

ε(w)ewρ−ρ =
∏

α∈∆+

(1 − e−α) .

Consider the second copy of Z[Q], with basis qα (α ∈ Q), and the equality in Z[Q]⊗Z[Q]:

∑

w∈W

ε(w)qwρ−ρewρ−ρ =
∏

α∈∆+

(1 − q−αe−α) .(5.5)

Take the specialization of this identity such that qα →
{

1, α ∈ ∆0

−1, α ∈ ∆1
. It has to be verified

that one obtains a well-defined homomorphism (Q, +) → {1,−1} ≃ Z/2Z. In other

words, if ν =
∑

i∈I µi is a sum of roots then the number of summands lying in ∆1 should
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have the same parity for all such presentations. Indeed, assume that
∑

i∈I µi =
∑

j∈J βj .

We argue by induction on #I+#J . Since (
∑

i∈I µi,
∑

j∈J βj) > 0, there exist i0, j0 such

that (µi0, βj0) > 0. Hence µi0 − βj0 is a root and
∑

i∈I\{i0} µi + (µi0 − βj0) =
∑

j∈J\{j0} βj .

We conclude by applying the inductive hypothesis to this equality and using (∗).
Thus, the specialization is well-defined and we obtain

∏

α∈∆+

0

(1− e−α)
∏

µ∈∆+

1

(1 + e−µ) at the

right hand side of Eq. (5.5). It is easily seen that wρ − ρ = −|∆(w)| , where ∆(w) =

{α ∈ ∆+ | w−1α ∈ ∆−} = ∆+ ∩ w(∆−). Therefore qwρ−ρ specializes to (−1)n , where

n = #(∆+
1 ∩ w∆−). Recall that ε(w) = (−1)l(w) and l(w) = #(∆+ ∩ w∆−). Thus the

resulting sign on the left hand side is (−1)#(∆0∩w∆−) , which is just τ(w) by Lemma 4.2.

This completes the proof of the theorem. �

(5.6) Another proof of theorem 5.2. By Weyl’s character formula for g0 -

modules and Prop. 5.1(3),

ch Vλw
=

∑
w̃∈W0

ε0(w̃)ew̃(ρ0+λw)

∏
α∈∆+

0
(eα/2 − e−α/2)

=

∑
w̃∈W0

ε0(w̃)ew̃w−1ρ

∏
α∈∆+

0
(eα/2 − e−α/2)

.

Hence

ch
( ⊕

w∈W 0

Vλw

)
=

∑
w∈W 0

∑
w̃∈W0

ε0(w̃)ew̃w−1ρ

∏
α∈∆+

0
(eα/2 − e−α/2)

.

By the very definition of τ(w) (see section 4) and Prop. 4.1(2), it follows that the numer-

ator is equal to
∑

w∈W τ(w)ewρ . Whence, by Theorem 5.4,

ch
( ⊕

w∈W 0

Vλw

)
=

∏

µ∈∆+

1

(eµ/2 + e−µ/2) = ch Spin(g1) .

5.7 Examples. 1. g = so2n+1 , g0 = so2n . Here g1 ≃ Vϕ1
is the tautological so2n -

module and #(W/W0) = 2. Let {ε1, . . . , εn} be the standard basis of t∗ so that ∆ =

{±εi ± εj, ±εi | 1 ≤ i, j ≤ n, i 6= j} . Here ∆+
0 = {εi ± εj (i < j), εi} and ∆0 = ∆l .

Then W 0 = {id, wn} , where wn(εi) = εi (i ≤ n − 1) and wn(εn) = −εn . Since ∆1 =

∆(Vϕ1
) = {±ε1, . . . ,±εn} , the corresponding dominant halfs are (∆1)

+
id = {ε1, . . . , εn}

and (∆1)
+
wn

= {ε1, . . . , εn−1,−εn} , and the corresponding extreme weights are ϕn and

ϕn−1 . Thus, Spin(Vϕ1
) = Vϕn−1

⊕ Vϕn
and ∧•Vϕ1

= (Vϕn−1
⊕ Vϕn

)⊗2 . Notice that the

last equality is nothing but the first equality in Eq. (2.1).

2. g = f4 , g0 = so9 . Here g1 ≃ Vϕ4
and #(W/W0) = 3. In the standard notation for f4 ,

we have ∆+ = {εi ± εj (i<j), εi,
1
2
(ε1 ± ε2 ± ε3 ± ε4)} . Then ∆+

0 = ∆+
l ⊔ {ε1, ε2, ε3, ε4} .

An explicit computation shows that W 0 = {id, w′, w′′} , where

w′ :





ε1 7→ 1
2
(ε1 + ε2 + ε3 + ε4)

ε2 7→ 1
2
(ε1 + ε2 − ε3 − ε4)

ε3 7→ 1
2
(ε1 − ε2 + ε3 − ε4)

ε4 7→ 1
2
(ε1 − ε2 − ε3 + ε4)

and w′′ :





ε1 7→ 1
2
(ε1 + ε2 + ε3 − ε4)

ε2 7→ 1
2
(ε1 + ε2 − ε3 + ε4)

ε3 7→ 1
2
(ε1 − ε2 + ε3 + ε4)

ε4 7→ 1
2
(ε1 − ε2 − ε3 − ε4)

.

(One may notice that any w ∈ W 0 must preserve (∆0)
+
l = ∆+

l , ∆l being the root system
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of type D4 . Hence w takes ε2 − ε3 to itself and permutes somehow ε1 − ε2, ε3 − ε4 , and

ε3 + ε4 .) Whence

λid = ρ − ρ0 = 2ε1 ,

λw′ = (w′)−1ρ − ρ0 = ε1 + ε2 + ε3 ,

λw′′ = (w′′)−1ρ − ρ0 = (3ε1 + ε2 + ε3 + ε4)/2.

Thus

Spin(Vϕ4
) = V2ϕ1

⊕ Vϕ3
⊕ Vϕ1+ϕ4

.

6 Spin(g1) for the outer involutory automorphisms

In this section g is simple and Θ is outer. Since rk g0 < rk g, there is no clear relation

between roots and Weyl groups of the two algebras, and the approach of section 5 seems to

fail completely. Yet, it appears to be possible to describe Spin(g1) in a similar fashion, but

with some complications. Another price is that we have to exploit case-by-case arguments

several times.

(6.1) Associated diagram involutory automorphism of g. By a result of

Steinberg, Θ keeps stable a Borel subalgebra and a Cartan subalgebra in it. Therefore

we may (and shall) assume that Θt = t and Θu+ = u+ . Then Θ also preserves ∆+

and Π, as subsets of t∗ . In particular, Θ induces an involution of the Dynkin diagram.

Associated with this involution, one has the specific involutory automorphism of g, which

is called the diagram involutory automorphism and denoted by Θ. Roughly speaking, Θ

performs the same involution on Π, as Θ, and transforms ‘well’ the Chevalley generators

of g4. We are going to compare properties of the Z2 -gradings

g = g0 ⊕ g1 and g = g0 ⊕ g1

arising from Θ and Θ. By construction, Θ|t = Θ|t . Therefore Θ and Θ act identically

on ∆+ and t0 := tΘ is a Cartan subalgebra for both g0 and g0 . Let us organize notation

for roots and weights of the symmetric subalgebras in question:

• ∆0 (resp. ∆0 ) is the root system of g0 (resp. g0 ) relative to t0 ;

• ∆1 (resp. ∆1 ) is the set of non-zero weights of the g0 -module g1 (resp. g0 -module

g1 ) relative to t0 .

Since all these sets are defined with respect to a common Cartan subalgebra, ∆0 ∪ ∆1 =

∆0∪∆1 and, more precisely, the totality of weights occurring in {∆0, ∆1} is the same as in

{∆0, ∆1} . Because t0 contains regular elements of g (see e.g. [Ka90, 8.1(b)]), none of the

roots of g vanishes on t0 . Therefore the above totality of weights consists of all restricted

roots. Moreover, since the non-zero weights of t0 in g1 (or g1 ) are of multiplicity 1,

#∆ = #∆0 + #∆1 = #∆0 + #∆1 .
4Explicit formulas for the diagram automorphisms of all simple Lie algebras are written in [Ka90,

§ 7.9,7.10].
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Warning. Unlike section 5, elements of ∆0 and ∆1 have not much in common with roots

of g. Actually, we do not need ∆ in this section.

The next assertion follows from the classification.

Fact. The fixed point subalgebra of an outer involutory automorphism always has roots

of different length, with ||long||2/||short||2 = 2.

This applies to both g0 and g0 and, as in section 2, we use the subscripts ‘s’ and ‘l’ to

denote the objects related to short and long roots in ∆0 and ∆0 . A close look to the

classification list reveals important features of this situation.

(6.2) Suppose Θ 6= Θ. Then





g0 is simple and g1 is the little adjoint module for g0;

∆1 = (∆0)s;

∆0 ⊂ ∆0 and (∆0)s = (∆0)s.

In fact, there are 7 series of outer involutory automorphisms of simple Lie algebras. They

form three pairs (Θ, Θ) and one “isolated” diagram involutory automorphism, where (6.2)

is not satisfied. The relevant data for all these series are presented in Table 2.

Table 2: The outer involutory automorphisms

Θ Θ

g g0 g1 g0 g1 #W0/W0

sl2n so2n V2ϕ1
sp2n Vϕ2

2

s02n+2m+2 so2n+1 ⊕ so2m+1 Vϕ1
⊗ V′

ϕ1
so2n+2m+1 Vϕ1

(
n+m

m

)

e6 sp8 Vϕ4
f4 Vϕ1

3

sl2n+1 — — so2n+1 V2ϕ1
—

It follows from (6.2) that ∆0 ∪∆1 = ∆0 . Thus, everything lies in ∆0 . Therefore a choice

of the set of positive roots ∆+
0

determines ∆+
1

, ∆+
0 , and ∆+

1 as well. Of course, we choose

∆+
0

so that it is the image of ∆+ under the projection t∗ → (t0)
∗ .

Then {∆+
0 , ∆+

1 } and {∆+
0
, ∆+

1
} are two presentations for the totality of all restricted

positive roots of g. Set ρi = 1
2
|∆+

i | and ρı = 1
2
|∆+

ı | (i = 0, 1). Recall that ρ = 1
2
|∆+|

and therefore Θρ = ρ. That is, ρ ∈ (t∗)Θ ≃ t∗0 . It then follows from the above discussion

that

ρ = ρ0 + ρ1 = ρ0 + ρ1 = ρ0 + (ρ0)s .(6.3)

Let W0 and W0 be the Weyl groups of g0 and g0 , respectively. Although ∆0 ⊂ ∆0 ,

g0 is not a subalgebra of g0 (if Θ 6= Θ). In other words, ∆0 is a non-closed subset of

∆0 . Nevertheless, Prop. 4.1 applies to W0 ⊂ W0 and one obtains the subset W ′ ⊂ W0

consisting of the elements of minimal length in the cosets {wW0} . Equivalently, W ′ =

{w ∈ W0 | w(∆+
0 ) ⊂ ∆+

0
} . Below, we consider the Weyl chambers C0 and C0 , and the

hyperplanes Hµ (µ ∈ ∆1 ). They are regarded as subsets of the rational span of ∆0 in

t∗0 .
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6.4 Proposition.

1. The set of hyperplanes Hµ (µ ∈ ∆1 ) cuts C0 in #(W0/W0) small chambers;

2. The collection of (g0 -dominant) weights w−1ρ0 (w ∈ W ′ ) contains representatives of

all small chambers in C0 .

3. The extreme weight of Spin0(g1) corresponding to w−1ρ0 is λw := w−1(ρ0 +ρ1)−ρ0 =

w−1ρ − ρ0 .

Proof. To a great extent, the proof is parallel to the proof of Prop. 5.1.

1. The union ∆0 ∪ ∆1 coincides with ∆0 . Therefore each small chamber is isomorphic

to C0 . Comparing the total number of chambers, we see that C0 splits into #(W0/W0)

small chambers.

2 & 3. By the definition of W ′ , it follows that w−1ρ0 is g0 -dominant. So, we have

the required number of dominant weights and it suffices to verify that the corresponding

extreme weights of Spin0(g1) are different.

Given w ∈ W ′ , the dominant half of ∆1 associated with w−1ρ0 is

(∆1)
+
w := {µ ∈ ∆1 | (w−1ρ0, µ) > 0} = {µ ∈ ∆1 | wµ ∈ ∆+

0
}

and the corresponding extreme weight is λw := 1
2
|(∆1)

+
w | .

Set Mw = {µ ∈ ∆+
1 | wµ ∈ ∆+

0
} and Mw = ∆+

1 \ Mw . Then

ρ0 + ρ1 = ρ0 + ρ1 = ρ0 + 1
2
|Mw| + 1

2
|Mw| .

Since w ∈ W ′ , we have

w−1(ρ0 + ρ1) = ρ0 + 1
2
|Mw| − 1

2
|Mw| .

Noting that |(∆1)
+
w | = |Mw| − |Mw| , we obtain λw = w−1(ρ0 + ρ1)− ρ0 . Obviously, these

weights are different, and we are done. �

In the next theorem, Vλ denotes a g0 -module.

6.5 Theorem. Let g = g0 ⊕ g1 be a Z2 -grading of outer type and g = g0 ⊕ g1 the

associated diagram Z2 -grading. Let W ′ be the set of representatives of minimal length

for W0/W0 . Then

Spin0(g1) =
⊕

w∈W ′ Vλw
.

Proof. First, note that if Θ is a diagram involutory automorphism, then W0 = W0 .

Here the theorem claims that Spin0(g1) is irreducible, with highest weight (ρ0)s . This

was already demonstrated in Theorem 2.9 and Prop. 3.8. In the general case, we proceed

as follows.

By Prop. 6.4,
⊕

w∈W ′ Vλw
⊂ Spin0(g1), and the equality will follow from the fact that

dim(Spin0(g1)
⊗2)g0 = #W ′ . As in the proof of Theorem 5.2, a crucial step in the next

argument is of “cohomological” nature. Since t0 contains regular elements, dim(g1)
t0 =
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dim t − dim t0 , i.e., the multiplicity of the zero weight in g1 is equal to rk g − rk g0 . By

Prop. 2.4(ii),

∧•g1 ≃ 2rkg−rkg0 ·Spin0(g1)
⊗2

and hence

dim(∧•g1)
g0 = 2rkg−rkg0 · dim(Spin0(g1)

⊗2)g0 .

At the rest of the proof, k = C. Inspecting the list of the symmetric spaces of outer type

and their cohomology rings over C (see e.g. [Ta62, § 4]) yields the equality

dim H∗(G/G0) = 2rkg−rkg0 ·#(W0/W0) .

Since (∧•g1)
g0 ≃ H∗(G/G0), we are done. �

The following proof, although also being not free of case-by-case arguments, does not

appeal to C.

(6.6) Another proof of Theorem 6.5. Arguing as in (5.6) and using Prop. 6.4(3),

we obtain

ch
( ⊕

w∈W ′

Vλw

)
=

∑

w∈W ′

∑
w̃∈W0

ε0(w̃)ew̃(ρ0+λw)

∏
α∈∆+

0
(eα/2 − e−α/2)

=(6.7)

=

∑
w∈W ′

∑
w̃∈W0

ε0(w̃)ew̃w−1ρ

∏
α∈∆+

0
(eα/2 − e−α/2)

=

∑
w∈W

0
τ(w)ewρ

∏
α∈∆+

0
(eα/2 − e−α/2)

.

Here τ(w) is the cunning parity for w ∈ W0 , relative to the subgroup W0 . To get another

expression for the numerator, we exploit the following observation concerning the pairs

(g0, g0) in Table 2. Although ∆0 is not closed in ∆0 , the dual root system ∆̃0 is closed in

∆̃0 and, moreover, it is a “symmetric” subset. That is, the partition ∆̃0 = ∆̃0 ⊔ (∆̃0 \ ∆̃0)

arises from an inner involutory automorphism of the “dual” Lie algebra. (E.g. the

pair (C4,F4) inverts in (B4,F4 ).) Here ∆̃0 = (∆0)l ⊔ 2(∆0)s . Recall from (6.2) that

∆1 = (∆0)s = (∆0)s . This means in particular that ∆0 \ ∆0 consists of long roots and

these are exactly the roots constituting (∆1)l . Hence ∆̃0 \ ∆̃0 = (∆1)l . After these

preparations, write out the identity from Theorem 5.4 for the partition ∆̃0 = ∆̃0 ⊔ (∆1)l :

∑

w∈W
0

τ(w)ewρ̃ =
∏

α∈∆̃+

0

(eα/2 − e−α/2)
∏

µ∈(∆+

1
)l

(eµ/2 + e−µ/2).(6.8)

Here ρ̃ := 1
2
|∆̃+

0
| = 1

2
|(∆+

0
)l| + |(∆+

0
)s| = (ρ0)l + 2(ρ0)s = ρ0 + (ρ0)s = ρ (see Eq. 6.3).

Transforming the first factor on the right hand side of Eq. (6.8) yields

∏

α∈∆̃+

0

(eα/2 − e−α/2) =
∏

α∈(∆+

0
)s

(eα − e−α)
∏

β∈(∆+

0
)l

(eβ/2 − e−β/2) =

=
∏

α∈(∆+

0
)s

(eα/2 − e−α/2)(eα/2 + e−α/2)
∏

β∈(∆+

0
)l

(eβ/2 − e−β/2) =
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=
∏

α∈∆+

0

(eα/2 − e−α/2)
∏

µ∈(∆+

0
)s

(eµ/2 + e−µ/2).

Since (∆+
0 )s = (∆+

1 )s , the whole expression on the right hand side of Eq. (6.8) is equal to

∏

α∈∆+

0

(eα/2 − e−α/2)
∏

α∈∆+

1

(eµ/2 + e−µ/2).

Substituting this expression for
∑

w∈W
0
τ(w)ewρ in Eq. (6.7), we obtain

ch
( ⊕

w∈W ′

Vλw

)
=

∏

α∈∆+

1

(eµ/2 + e−µ/2) = ch Spin(g1). q.e.d.

(6.9) Connexion with cohomology of symmetric spaces. Using classical

structure results on H∗(G/G0) (see e.g. [On95, ch.3]), one may notice some interesting

coincidences.

1. Recall that the image of the canonical map η : H∗(G/G0) → H∗(G) is generated

by primitive elements. Actually, there exists a subalgebra of H∗(G/G0) that is mapped

isomorphically onto Im (η). It is called Samelson and denoted by Sam(G/G0). There

exists also another subalgebra of H∗(G/G0), which is called characteristic and denoted

by 0H
∗(G/G0). It is the zero component for a natural grading in H∗(G/G0). Then

H∗(G/G0) ≃ Sam(G/G0) ⊗ 0H
∗(G/G0). This holds not only for the symmetric spaces

but for a wider class of formal homogeneous spaces, see [loc. cit., § 12,Th.2]. A gen-

eral fact for the formal homogeneous spaces is that dimSam(G/G0) = 2rkg−rkg0 . Hence

dim Spin0(g1) = dim 0H
∗(G/G0), which suggests that Spin0(g1) might somehow be re-

lated to the characteristic subalgebra of H∗(G/G0).

2. Note that H∗(G/G0) = 0H
∗(G/G0) if and only if Θ is inner, and H∗(G/G0) =

Sam(G/G0) if and only if Θ is a diagram involutory automorphism. In the mixed

case, the associated diagram involutory automorphism Θ seems to yield a splitting for

H∗(G/G0). Namely, one has dim Sam(G/G0) = dim H∗(G/G0) and dim 0H
∗(G/G0) =

dim H∗(G̃0/G̃0), where G̃0 and G̃0 are the groups corresponding to the dual root systems

∆̃0 and ∆̃0 . Moreover, these two pairs of graded algebras have equal Poincaré polynomi-

als and it is likely that they are naturally isomorphic. I think that a better understanding

of this situation as well as elimination of the case-by-case arguments in section 6 can be

achieved through application of the theory of twisted affine Kac–Moody algebras.

3. In the above exposition, Θ has appeared as deus ex machina. But the Kac-Moody the-

ory provides some explanation for this. Namely, the outer automorphism Θ determines

the twisted affine Kac-Moody algebra L̂(g, Θ, 2) = L̂(g) [Ka90, ch. 8]. Next, L̂(g) has the

standard Z-grading associated with the special vertex of the Dynkin diagram of L̂(g). If

g 6= so2n+1 , this Z-grading determines another outer automorphism of g, which is just

Θ.

6.10 Examples. 1. g = sl2n , g0 = so2n . Then g1 ≃ V2ϕ1
. As indicated in Table 2,

g0 = sp2n and therefore #(W0/W0) = 2. Here ∆0 = {±εi ± εj | 1 ≤ i, j ≤ n, i 6= j}
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and ∆0 = {±εi ± εj,±2εi} . This example is a kind of outer version of Exam-

ple 5.7(1). Indeed, taking the “dual” Lie algebras for (g0, g0) yields the symmetric

pair considered there. In our case, ∆1 = ∆0 and W ′ = {id, wn} , where wn(εi) = εi

(i ≤ n − 1) and wn(εn) = −εn . Therefore (∆1)
+
id = ∆+

0
= ∆+

0 ∪ {2ε1, . . . , 2εn} and

(∆1)
+
wn

= ∆+
0 ∪ {2ε1, . . . , 2εn−1,−2εn} . Hence the extreme weights are ρ0 + 2ϕn and

ρ0 + 2ϕn−1 . Thus, Spin0(V2ϕ1
) = Vρ0+2ϕn−1

⊕ Vρ+2ϕn
and, because m2ϕ1

(0) = n − 1,

∧•V2ϕ1
= 2n−1·(Vρ+2ϕn−1

⊕ Vρ+2ϕn
)⊗2 .

2. g = e6 , g0 = sp8 . Then g1 ≃ Vϕ4
. As indicated in Table 2, g0 = f4 and hence

#(W0/W0) = 3. This is the outer version of Example 5.7(2). Here ∆0 = {±εi ±
εj,±εi, (±ε1±ε2±ε3±ε4)/2 | 1 ≤ i, j ≤ 4, i 6= j} and ∆0 = (∆0)s∪{±ε1±ε2, ±ε3±ε4} .

The standard set of simple roots for ∆0 is α′
1 = 1

2
(ε1−ε2−ε3−ε4), α′

2 = ε4 , α′
3 = ε3−ε4 ,

α′
4 = ε2 − ε4 . The roots for sp8 have non standard presentation, but it is not hard to

find that the simple roots in ∆+
0
∩ ∆0 are α1 = ε2 , α2 = 1

2
(ε1 − ε2 − ε3 − ε4), α3 = ε4 ,

α4 = ε3 − ε4 . Therefore the fundamental weights for sp8 are ϕ1 = 1
2
(ε1 + ε2), ϕ2 = ε1 ,

ϕ3 = ε1 + 1
2
(ε3 + ε4), ϕ4 = ε1 + ε3 .

Then an explicit verification shows that W ′ = {id, w′, w′′} , where w′, w′′ are permutations

of {ε1, ε2, ε3, ε4} determined by the cycles (23) and (432), respectively. (E.g. w′′(ε4) = ε3 .)

The direct computation of the extreme weights gives:

λid = ρ0 + ρ1 − ρ0 = 1
2
(9ε1 + 5ε2 + ε3 + ε4) = 5ϕ1 + ϕ2 + ϕ3 ,

λw′ = (w′)−1(ρ0 + ρ1)− ρ0 = 1
2
(9ε1 + 3ε2 + 3ε3 + ε4) = 3ϕ1 + ϕ2 + ϕ3 + ϕ4 = ρ0 + 2ϕ1 ,

λw′′ = (w′′)−1(ρ0 + ρ1) − ρ0 = 1
2
(9ε1 + ε2 + 3ε3 + 3ε4) = ϕ1 + ϕ2 + 3ϕ3 .

Whence

Spin0(Vϕ4
) = V5ϕ1+ϕ2+ϕ3

⊕ Vϕ1+ϕ2+3ϕ3
⊕ Vρ0+2ϕ1

and

∧•Vϕ4
= 4 (V5ϕ1+ϕ2+ϕ3

⊕ Vϕ1+ϕ2+3ϕ3
⊕ Vρ0+2ϕ1

)⊗2 .

7 Decomposably-generated ‘Spin’ modules and a Casimir ele-

ment

Recall that we have given a geometric description of the extreme weights of Spin-

representations in (3.4).

Definition. Given an orthogonal g-module V, the g-submodule of Spin0(V) generated

by the extreme weight vectors is denoted by Spindg
0 (V); Spin0(V) is called decomposably-

generated , if it is equal to Spindg
0 (V), i.e., if all its highest weights are extreme.

Since the extreme weights are of multiplicity 1, “decomposably-generated” implies “mul-

tiplicity free”. As a consequence of previous development, we have

7.1 Proposition. Let g = g0 ⊕ g1 be a Z2 -graded semisimple Lie algebra. Then the

g0 -module Spin0(g1) is decomposably-generated (and multiplicity free).
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Proof. The problem immediately reduces to the case in which g is an irreducible Z2 -

graded algebra. Then either g is simple or g ≃ h⊕ h, where h is simple and Θ(h1, h2) =

(h2, h1). In the second case, g0 ≃ h is the diagonal in g, and g1 ≃ g0 as g0 -module. Here

the conclusion follows by Kostant’s result, see Example 2.5(1). In the first case, for g0 of

inner type, use Prop. 5.1(3) and Theorem 5.2; for g0 of outer type, use Prop. 6.4(3) and

Theorem 6.5. �

An explanation of the term “decomposably-generated” comes from Example 2.5(3). If

V = W⊕W∗ , then Spin(V) ≃ k−ν ⊗∧•W and each extreme weight vector is represented

by a decomposable vector in the exterior algebra.

I think that the property of being “decomposably-generated” characterizes the represen-

tations of the form Spin0(g1), i.e.,

7.2 Conjecture. Let V be an orthogonal g-module. Then Spin0(V) is decomposab-

ly-generated if and only if g̃ := g ⊕ V is a Z2 -graded semisimple Lie algebra.

The conjecture will be proved in a particular case. Until the end of the section, the

following situation is being considered: g is semisimple, h is a reductive subalgebra of

g, and m := h⊥ ⊂ g. Then m is an orthogonal h-module and g = h ⊕ m is a vector

space sum. Clearly, this decomposition is a Z2 -grading if and only if [m, m] ⊂ h. The

representation h → so(m) is the isotropy representation of the affine homogeneous space

G/H . Our aim is to study Spin0(m) and Spindg
0 (m) in the equal rank case. That is, it is

assumed from now on that rk h = rk g and, more precisely, t ⊂ h. Then ∆+ = ∆+
h ⊔∆+

m ,

m has no zero weight and ∧•m ≃ (Spin0(m))⊗2 . Denoting by Wh the Weyl group of (h, t),

one may consider the minimal length “section” W h for W → W/Wh and the cunning

parity τ : W → {1,−1} , determined by ∆+
h . The proof of Prop. 5.1 applies in the present

situation as well. This yields exactly #W h extreme weights of Spin0(m). Hence

dim(∧•m)h = dim(Spin0(m)⊗2)h ≥ #W h .

For w ∈ W h , the corresponding extreme weight is λw = w−1ρ − ρh , where ρh = 1
2
|∆+

h | .
Therefore, arguing as in (5.6), we obtain

ch (Spindg
0 (m)) = ch

( ⊕

w∈W h

Vλw

)
=

∑
w∈W τ(w)ewρ

∏
α∈∆+

h
(eα/2 − e−α/2)

.

Recall that ch Spin0(m) =
∏

µ∈∆+
m

(eµ/2 + e−µ/2). On the other hand, dim H∗(G/H) =

#W h [On95, § 13,Th. 2] and H∗(G/H) can be computed via the complex of G-invariant

exterior forms on G/H , i.e., the complex ((∧•(g/h)∗)h, d), where d is the usual Lie algebra

coboundary operator. We shall identify the h-modules (g/h)∗ and m. Having compared

the previous expressions, we obtain

7.3 Proposition. Let h ⊂ g be a reductive subalgebra of maximal rank and h →
so(m) the isotropy representation. Then the following conditions are equivalent:

(i) d is trivial on (∧•m)h ;
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(ii) dim(∧•m)h = #W h ;

(iii) Spin0(m) = Spindg
0 (m);

(iv)
∑

w∈W τ(w)ewρ =
∏

α∈∆+

h
(eα/2 − e−α/2)

∏
µ∈∆+

m
(eµ/2 + e−µ/2). �

Thus, conjecture 7.2 claims that neither of these conditions holds unless G/H is symmet-

ric.

7.4 Theorem. Let h be a reductive subalgebra of g, with rk h = rk g, and m := h⊥ .

Suppose [m, m] 6⊂ h; then d is non-trivial on (∧•m)h . More precisely, d((∧3m)h) 6= 0 .

Proof. For any x ∈ g, let xh and xm denote its components in h and m, respectively.

Given x, y ∈ m, consider the decomposition [x, y] = [x, y]h + [x, y]m . We regard [ , ]m as

mapping from m × m to m, and likewise for [ , ]h . By assumption, [ , ]m 6≡ 0. On the

other hand, applying construction from section 1 (see (1.4) and around) to h and m in

place of g and V, we see that [x, y]h = µ̄(x, y) for any x, y ∈ m.

Define the 3-form Ψ : ∧3m → k by Ψ(x, y, z) = Φ([x, y], z). Obviously, Ψ is h-

invariant. The assumption [m, m] 6⊂ h precisely means that Ψ 6≡ 0. We shall prove

dΨ 6= 0. To compute dΨ, we regard Ψ as h-invariant 3-form on g, orthogonal to h, and

use the standard formula for d . The resulting expression is

dΨ(x, y, z, u) = 2
(
Φ([x, y]m, [z, u]m) + Φ([y, z]m, [x, u]m) + Φ([z, x]m, [y, u]m)

)
.

Since [x, y] = µ̄(x, y) + [x, y]m , h is orthogonal to m, and

([x, y], [z, u]) + ([y, z], [x, u]) + ([z, x], [y, u]) = 0 (because of the Jacobi identity), we have

dΨ(x, y, z, u) = −2
(
Φ(µ̄(x, y), µ̄(z, u)) + Φ(µ̄(y, z), µ̄(x, u)) + Φ(µ̄(z, x), µ̄(y, u))

)
.

In the notation of Prop. 1.5, for h and m in place of g and V, this means that dΨ = −2κ.

Assume that κ = 0. Then h⊕m equipped with the modified multiplication [ , ]̃ becomes

a Z2 -graded Lie algebra (see Prop. 1.5). Clearly, the multiplication does change only for

pairs of elements in m: [m1, m2]̃ := [m1, m2]h , whereas the structure of Lie algebra on

h and the h-module structure on m remain undisturbed. Let g̃ denote the Lie algebra

with modified multiplication and Θ the corresponding involutory automorphism of g̃ .

It is easily seen that g̃ is semisimple (use the proof of Theorem 1.7) and Θ is inner

(because t ⊂ h remains a Cartan subalgebra in g̃). For the symmetric space G̃/H , we

have H3(G̃/H) = (∧3m)h 6= 0. But Hodd(·) = 0 for the symmetric spaces of inner type

[On95, § 13, n.3]. This contradiction proves κ = dΨ 6= 0. �

7.5 Corollary. Conjecture 7.2 is true for the isotropy representations of affine homo-

geneous spaces G/H with rk g = rk h. �

Remark. Theorem 7.4 is true even if rk h < rk g and some mild conditions are satisfied

(e.g. g is simple). However this has no immediate relation to Conjecture 7.2.

For a reductive Lie algebra h, the Casimir element in U(h) is determined by the choice
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of an invariant bilinear form on h. If h is not simple, then the choice is essentially non

unique. But for the isotropy representations one has a preferred choice of the bilinear

form. In the above setting, let Φ( , )h be the restriction of Φ( , ) to h. Notice that even

if h is semisimple and we begin with the Killing form on g, thenΦ( , )h is not necessarily

proportional to the Killing form on h. Let ch ∈ U(h) be the Casimir element with respect

to Φ( , )h . Recall that the W -invariant scalar product on PQ is determined by Φ( , ).

7.6 Proposition. Suppose rk h = rk g. Then the Casimir element ch acts scalarly on

Spindg
0 (m). Its eigenvalue is equal to (ρ, ρ) − (ρh, ρh).

Proof. As is indicated above, Spindg
0 (m) = ⊕w∈W hVλw

and λw = w−1ρ−ρh . Therefore

the eigenvalue of ch on Vλw
is (λw +2ρh, λw) = (w−1ρ, w−1ρ)−(ρh, ρh) = (ρ, ρ)−(ρh, ρh).

�

7.7 Theorem. Let g = g0 ⊕ g1 be a Z2 -graded semisimple Lie algebra. Define the

Casimir element c0 for g0 using the restriction of Φ( , ) to g0 . Then c0 acts on Spin0(g1)

scalarly, with value (ρ, ρ) − (ρ0, ρ0).

Proof. 1. If Θ is inner, then rk g0 = rk g; we conclude by Propositions 7.1, 7.6.

2. If Θ is outer, some accuracy is needed, since rk g0 < rk g. We use notation and

information from section 6. Since Spin0(g1) = Spindg
0 (g1) = ⊕w∈W ′Vλw

and λw = w−1ρ−
ρ0 , the value of c0 on Vλw

is equal to (w−1ρ, w−1ρ)− (ρ0, ρ0). Here W ′ ⊂ W0 , where W0

is the Weyl group of g0 . Recall that t0 = tΘ is a Cartan subalgebra for both g0 and g0 .

As t0 contains regular elements of t, we have NG
0
(t0) ⊂ NG(t). Furthermore, since G0 is

connected and t0 is Cartan, we have G0 ∩ T = T0 . Therefore W0 = NG
0
(t0)/T0 can be

identified with a subgroup of W = NG(t)/T . Hence (w−1ρ, w−1ρ) = (ρ, ρ). �
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