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Abstract. We provide combinatorial realizations, according to the usual objects/moves

scheme, of the following three topological categories: (1) pairs (M,v) where M is a 3-manifold

(up to diffeomorphism) and v is a (non-singular vector) field, up to homotopy; here possibly

∂M 6= ∅, and v may be tangent to ∂M , but only in a concave fashion, and homotopy should

preserve tangency type; (2) framed links L in M , up to framed isotopy; (3) triples (M,v,L),

with (M,v) as above and L transversal to v, up to pseudo-Legendrian isotopy (transversality-

preserving simultaneous homotopy of v and isotopy of L). All realizations are based on the

notion of branched standard spine, and build on results previously obtained. Links are

encoded by means of diagrams on branched spines, where the diagram is C1 with respect to

the branching. Several motivations for being interested in combinatorial realizations of the

topological categories considered in this paper are given in the introduction. The encoding of

links is suitable for the comparison of the framed and the pseudo-Legendrian categories, and

some applications are given in connection with contact structures, torsion and finite-order

invariants. An estension of Trace’s notion of winding number of a knot diagram is introduced

and discussed.

Mathematics Subject Classification (1991): 57N10 (primary), 57M25, 57R25 (secondary).

Introduction

This paper describes combinatorial realizations, based on the machinery of branched
standard spines (see Section 1) of the following three topological categories (in which
manifolds and diffeomorphisms are oriented by default):

1. Combed 3-manifolds with concave boundary, that is pairs (M, v), where M is a
compact 3-manifold (possibly with boundary), and v is a nowhere-zero vector field
on M with simple tangency circles of concave type on ∂M , up to diffeomorphism
of M and homotopy of v through fields of the same sort;
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2. Framed links in 3-manifolds, that is pairs (M,L), where M is as above and L is
a framed link in M , up to diffeomorphism of M and framed isotopy of L;

3. Pseudo-Legendrian links in combed 3-manifolds, that is triples (M, v, L), where
(M, v) is as above and L is transversal to v, up to diffeomorphism of M and
‘pseudo-Legendrian isotopy’ of (v, L), i.e. simultaneous homotopy of v and isotopy
of L through pairs (v, L) of the same type.

We will denote these categories respectively by Comb, Fram and PLeg. (Regarding
names, recall that a non-zero vector field up to homotopy is often called a combing,
and that if ξ is an oriented contact structure and L is Legendrian in ξ, then (M, ξ⊥, L)
defines an element of PLeg.) Our realizations are given according to the by now popular
scheme in 3-dimensional topology, namely:

(I) A class of combinatorial objects, each of which can be specified by a finite set
of data, and a surjective reconstruction map which assigns to a combinatorial
object a topological one;

(II) A finite set of local combinatorial moves on objects, finite combinations of which
give the equivalence relation induced by the reconstruction map.

In the definitions of the topological categories given above we have been forced to
include the action of diffeomorphisms, because we use spines, which determine man-
ifolds only up to diffeomorphism. However if a certain manifold M is given we can
restrict to spines embedded in M (rather than abstract ones), and get formally identi-
cal combinatorial realizations of the refined categories where only diffeomorphisms of
M isotopic to the identity are considered. We will mention how to do this in Section 2
for combings, but a similar refinement could easily be stated for framed links and for
pseudo-Legendrian links.

Rather than providing precise statements of our realizations, in this introduction we
give some general background and motivations, starting with Comb. A combinatorial
realization of the subcategory Combcl of Comb given by pairs (M, v) with closed M
was given in [2]. In Section 2 we extend the arguments of [2] to the bounded case,
and we actually refine the results proved there, by showing that some of the moves
previously considered may actually be neglected. The realization of Combcl in [2]
was the basis for the treatment of other refinements of the category of 3-manifolds,
involving spin structures and framings. These realizations proved fruitful in connection
with spin-refined Turaev-Viro invariants (see Section 8.3 in [2]) and G. Kuperberg’s
invariants for combed and framed manifolds, of which a very constructive description
is given in [5]. Our main motivation here comes from [4], where we have developed a
theory of Euler structures with simple boundary and their Reidemeister-Turaev torsion
(see [17], [18], [19]). The surjectivity of the reconstruction map of the realization of
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Comb was used in [4] to construct an explicit canonical H1-equivariant bijection from
the space of smooth Euler structures to the space of combinatorial Euler structures,
and to exhibit a canonical Euler chain for the structure carried by a branched spine.

The subcategory of Fram consisting of framed links in closed manifolds was combi-
natorially realized by Turaev [16] in terms of link diagrams on a given standard spine,
and moves on these diagrams (including the classical framed Reidemeister moves). In
Section 3 we modify the situation considered by Turaev by taking a branched standard
spine of the manifold, and restricting to link diagrams which are C1 with respect to the
branching. On one hand, this allows to simplify the encoding of the framing, because
the field carried by the spine is automatically transverse to the link, while Turaev needs
to add half-twists. On the other hand, some technical complications emerge, because
only C1 moves can be used. Nevertheless, a result formally analogous to Turaev’s turns
out to be true, yielding the presentation of Fram discussed in Section 3. In Section 4
we exploit the fact that if a branched spine defines a global field on a manifold, ac-
cording to the scheme given for Comb, then the link defined by a C1 diagram on the
spine is automatically pseudo-Legendrian with respect to the field. This leads us to
the presentation of PLeg.

Comparing the presentations of Fram and PLeg one notices a rather remarkable
feature: the former is obtained from the latter just by adding the ‘curl’ (first Reide-
meister) move. This fact has two interesting interpretations:

(a) it is a perfect combinatorial analogue of the imitation of a framed isotopy by a
Legendrian isotopy in a contact manifold;

(b) it allows a partial extension of the notion of winding number of a link diagram.

The imitation mentioned in (a) plays a central role in the comparison, due to Fuchs-
Tabachnikov [8] and Tchernov [14] of framed and Legendrian finite-order invariants,
and we believe that our combinatorial realizations could be of some help in the under-
standing of these invariants. In particular, we conjecture that the right environment in
which finite-order invariants should be considered in precisely our category PLeg (we
will provide an exact statement and some evidence in Section 5).

Concerning (b), recall first [15] that if a knot K : S1 → R
3 is transverse to the

constant vertical field ∂/∂z, then its equivalence class up to isotopy transverse to ∂/∂z
is determined by the framed isotopy class and by the ‘winding’ number (the degree
of π ◦K ′, where π is the obvious projection on the horizontal unit circle). Using our
presentations of Fram and Comb we can show that a partial analogue of this fact is
true in any combed manifold with concave boundary, provided one allows a homotopy
of the field simultaneous with the isotopy of the knot. In the general setting, however,
the winding number only exists as a relative object, and we can prove that it leads
to a well-defined invariant only under the assumption that the knot is ‘good.’ The
notion of ‘goodness’ for knots emerged in our study of torsion as a relative invariant
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of pairs of pseudo-Legendrian knots which are framed-isotopic [4]. Many knots are
good: for instance, all knots are good if the ambient manifold is a homology sphere,
and most knots with hyperbolic complement are good. In Section 5 we will give some
applications of the notion of relative winding number, in connection with torsion and
finite-order invariants. In particular we will show the following:

Proposition 0.1. Let M be a homology sphere, let v be a field on M and consider
two pseudo-Legendrian knots in (M, v) which are isotopic as framed knots. Then the
following conditions are pairwise equivalent:

1. the knots are pseudo-Legendrian isotopic;

2. the relative winding number vanishes;

3. the knots have the same Maslov index;

4. the knots cannot be distinguished by the relative torsion invariants of [4];

5. the knots are homotopic as pseudo-Legendrian immersions.

Moreover we will prove that torsion invariants cannot distinguish the pairs of framed-
isotopic Legendrian knots given in [14], which Tchernov shows to be distinguished by
finite-order invariants.

We conclude by giving another perspective of the realization of PLeg. Recall that
PLeg comes as a refinement of Turaev’s presentation of Fram, which was the starting
point of his beautiful theory of 4-dimensional shadows. We believe that the extra
structure given by the branching of the spine, which underlies the presentation of PLeg,
should have 4-dimensional counterparts. Our intuition is that “4-dimensional branched
shadows”, which are not quite defined yet, should correspond to Spinc structures on
4-manifolds and allow to treat their invariants. This intuition is supported by the fact
that in dimension three branched spines indeed are a good framework to treat torsion
of Euler structures (and hence, in particular, Seiberg-Witten invariants of closed 3-
manifolds with Spinc structures, see [18], [19], [12]).

Acknowledgment. Section 5 owes a lot to very useful discussions we had with
Vladimir Tchernov.

1 Branched spines and combings

This section contains many definitions used below and reviews the theory developed
in [2].
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Figure 1: Convex (left) and concave (right) tangency to the boundary.

Manifolds and fields All the manifolds we will consider are 3-dimensional, oriented,
and compact, with or without boundary. Using the Hauptvermutung, we will somewhat
intermingle the differentiable and piecewise linear viewpoints. Maps will always respect
orientations. All vector fields mentioned in this paper will be non-singular, and they
will be termed just fields for the sake of brevity. A field v on a manifold M is called
traversing if its orbits eventually intersect ∂M transversely in both directions (in other
words, orbits are compact intervals or points). A point where v is tangent to ∂M is
called simple if it appears in a cross-section as in Fig. 1. The field is called concave
if it is tangent to ∂M only in a concave fashion, as shown on the left in the figure.
Given a concave field v on M , the boundary of M naturally splits into the region on
which v points outside M (which we denote by B and call the black region), and the
region on which v points inside (denoted by W and called white). Note that ∂B = ∂W
is a union of circles. The pair (B,W ), which is actually determined by any two of its
elements, is called a boundary pattern on M . (This definition is a simplified version
of that given in [4], because here we do not allow convex tangency.) Starting from
the Poincaré-Hopf theorem one can show that a given boundary pattern P = (B,W )
on M , i.e. a splitting of ∂M into two surfaces with common boundary, arises from a
concave field if and only if χ(W ) = χ(M). See [4].

Standard spines A simple polyhedron P is a finite, connected, purely 2-dimensional
polyhedron with singularity of stable nature (triple lines and points where six non-
singular components meet). Such a P is called standard if all the components of the
natural stratification given by singularity are open cells. Depending on dimension, we
will call the components vertices, edges and regions.

A standard spine of a 3-manifold M with ∂M 6= ∅ is a standard polyhedron P
embedded in Int(M) so that M collapses onto P . Standard spines of oriented 3-
manifolds are characterized among standard polyhedra by the property of carrying
an orientation, defined (see Definition 2.1.1 in [2]) as a “screw-orientation” along the
edges (as in the left-hand-side of Fig. 2), with the obvious compatibility at vertices (as
in the centre of Fig. 2). It is the starting point of the theory of standard spines that
every oriented 3-manifold M with ∂M 6= ∅ has an oriented standard spine, and can be
reconstructed (uniquely up to equivalence) from any of its oriented standard spines.
See [6] for the non-oriented version of this result and [1] or Proposition 2.1.2 in [2]
for the (slight) oriented refinement. We will denote by M(P ) the manifold defined
by P . Note that ∂M(P ) 6= ∅. To recover closed manifolds one considers spines P
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Figure 2: Convention on screw-orientations, compatibility at vertices, and geometric
interpretation of branching.

Figure 3: Two pictures of the Matveev-Piergallini move.

such that ∂M(P ) ∼= S2, and defines M̂(P ) as M(P ) ⊔f D
3 with f : ∂M(P ) → S2

a diffeomorphism. Note that this definition makes sense also when ∂M(P ) has more
than one component, but at least one is a sphere.

Moves for standard spines The fundamental move for standard spines, which
(in both directions) preserves the topological type of the associated manifold, is the
Matveev-Piergallini MP move, see [11], [13] and Fig. 3. Counting the vertices involved
one is naturally led to call the positive MP a “2-to-3” move. The MP-move and its
inverse are actually not sufficient to relate spines of the same manifold, because they
obviously cannot apply to spines with one vertex. However, as soon as one decides to
dismiss these “MP-rigid” spines (not the corresponding manifolds, which have plenty
of other spines), the MP-move does become sufficient [13]. To deal with spines with
one vertex the “0-to-2” move of Fig. 4 (and its inverse) must be added.

Branched spines A branching on a standard polyhedron P is an orientation for
each region of P , such that no edge is induced the same orientation three times. See
the right-hand side of Fig. 2 and Definition 3.1.1 in [2] for the geometric meaning of
this notion. An oriented standard spine P endowed with a branching is shortly named

�� �
�
�
�

Figure 4: Another move on standard spines.
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Figure 5: Manifold and field associated to a branched spine.

branched spine. We will never use specific notations for the extra structures: they will
be considered to be part of P . The following result, proved as Theorem 4.1.9 in [2], is
the starting point of our constructions.

Proposition 1.1. To every branched spine P there corresponds a manifold M(P )
with non-empty boundary and a concave traversing field v(P ) on M(P ). The pair
(M(P ), v(P )) is well-defined up to equivalence, and an embedding i : P → Int(M(P ))
is defined with the property that v(P ) is positively transversal to i(P ).

The topological construction which underlies this proposition is actually quite sim-
ple, and it is illustrated in Fig. 5. Concerning the last assertion of the proposition,
note that the branching allows to define an oriented tangent plane at each point of P .

Non-traversing fields and closed manifolds As noted above, standard spines do
not directly represent closed manifolds, but one can use spines of manifolds bounded
by S2 and cap off this sphere to get a closed manifold, or, viewing things the other way
around, one can remove an open ball from a given closed manifold to get a bounded one.
When one is interested in a manifold equipped with a field, one can try to use branched
spines, but of course one sees that they are inadequate to give a direct description both
when the manifold is closed and when the field is non-traversing. This limitation is
circumvented again by removing a ball, with a proviso on the field on that ball.

Let P be a branched standard spine, and assume that in ∂M(P ) there is only one
component which is diffeomorphic to S2 and is split by the tangency line of v(P ) to
∂M(P ) into two discs. Such a component will be denoted by S2

triv. Now, notice that
S2

triv is also the boundary of the closed 3-ball with constant vertical field, denoted by
B3

triv. This shows that we can cap off S2
triv by attaching a copy of B3

triv, getting a
compact manifold M̂(P ) and a concave field v̂(P ) on M̂(P ). If we denote by P̂(P )
the boundary pattern of v̂(P ) on M̂(P ), we easily see that the pair (M̂(P ), v̂(P )) is
only well-defined up to diffeomorphism of M̂(P ) and homotopy of v̂(P ) through fields
compatible with P̂(P ).
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Figure 6: Sliding-MP-moves.

�� ��
��
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��

Figure 7: Another sliding move.

Standard sliding moves Let P → P ′ be a positive MP-move (so, P ′ has one vertex
and one region more than P ). If P has a branching, all the regions of P ′, except for the
new one, already have an orientation, and it is a fact that the new region can always be
given an orientation (sometimes not a unique one) so to get a branching on P ′. Each of
the moves on branched spines arising like this will be called a branched MP-move, and
it will be called a sliding MP-move if moreover it does not modify the boundary pattern
of the associated concave field. One can actually see that each sliding-MP-move can
be realized within a certain pair (M, v) as a continuous deformation through branched
spines ofM transverse to v, with only one singularity at which the spine is non-standard
but transversality is preserved. This deformation is shown in Fig. 6, and it justifies the
term ‘sliding’ quite clearly. Since in Fig. 6 we are showing portions of spines embedded
in R

3, to give a completely intrinsic description of the moves we should specify in each
portion whether the screw-orientation of the spine is equal or opposite to that induced
by R

3, and whether the upward vertical field is positively or negatively transversal to
the spine. As a result, the complete list of sliding-MP-moves contains 16 different ones,
but the essential physical modifications are only those shown in Fig. 6. From this figure
one also sees quite clearly that if v̂(P ) and v̂(P ′) can be defined then they coincide
(up to homotopy through fields compatible with P̂(P ) = P̂(P ′)). Another move which
obviously has the same property, and will be needed below, is the branched version of
the 0-to-2 move, shown Fig. 7, and called the snake move in the sequel. As above, if
one takes orientations into account, there is another essentially different snake move,
obtained by mirroring Fig. 7. Since also the snake move involves a sliding, we will call
standard sliding move any sliding-MP or snake move.
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2 A calculus for combed manifolds

with concave boundary

In this section we will extend and refine the main results of Chapter 5 of [2]. The
extension consists in passing from the closed to the bounded case, and the refinement
comes from the shortening of the list of moves to be considered. More precisely, we will
show that compact manifolds with concave combings are combinatorially described by
(suitable) branched spines up to certain moves, namely the standard sliding (snake and
sliding-MP) moves shown above. Moreover, we will show that spines which are rigid
with respect to sliding-MP-moves can be dismissed with no harm, and that the sliding-
MP-moves suffice to generate the equivalence on the remaining spines. This implies
that our result is a perfect combed analogue of the Matveev-Piergallini theorem (but
our proof is self-contained).

Definitions and statements We will denote by Comb the set of all pairs (M, v),
where M is a compact oriented manifold and v is a concave field on M , viewed up
to diffeomorphism of M and homotopy of v through concave fields. A class [M, v] ∈
Comb is called a combing on the diffeomorphism class of the manifold M . Note that
the boundary pattern on ∂M evolves isotopically during a homotopy of v, so a pair
(M,P), viewed up to diffeomorphism of M , can be associated to each [M, v] ∈ Comb.
In particular, Comb naturally splits as the disjoint union of subsets Comb([M,P]),
consisting of combings on M compatible with P.

For a technical reason we actually rule out from Comb the set of those classes [M, v]
such that the corresponding boundary pattern contains components of the type S2

triv.
This is actually not a serious restriction, because each S2

triv component can be capped
off by a B3

triv, and the result is well-defined up to homotopy. Note that we do accept
pairs (M, v) with closed M , and pairs in which v has no tangency at all to ∂M .

Let us denote now by B the set of all branched spines P (up to PL isomorphism)
such that P(P ) contains only one S2

triv. Such a P being given, M̂(P ) and v̂(P ) can be
considered, and the pair (M̂(P ), v̂(P )) gives rise to a well-defined element of Comb,
which we denote by C(P ). The following will be shown below:

Theorem 2.1. The map C : B → Comb is surjective, and the equivalence relation
defined by C on B is generated by sliding-MP-moves and snake moves.

Remark 2.2. The following interpretation of the surjectivity of C is perhaps useful.
Note first that the dynamics of a field, even a concave one, can be very complicated,
whereas the dynamics of a traversing field (in particular, B3

triv) is simple. Surjectivity
of C means that for any (complicated) concave field there exists a sphere S2 which
splits the field into two (simple) pieces: a standard B3

triv and a concave traversing field.
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Actually, a 1-parameter version of this statement also holds (see Remark 2.6): we will
need it to show that the C-equivalence is the same as the sliding equivalence.

As announced, we state now the sliding analogue of the fact that the MP moves
suffice. Let us denote by R the subset of B consisting of the branched spines which
are “rigid” from the point of view of the sliding-MP-moves, i.e. the spines to which
no such move applies. An explicit description of R is given in the proof of the next
result. In the statement we only emphasize the most important consequences of this
description.

Proposition 2.3. (i) For every surface Σ and pattern P on Σ there are at most
two spines P ∈ R such that ∂(M(P )) ∼= (Σ,P).

(ii) If two elements of B \ R are related through sliding-MPmoves and snake moves,
they are also related through sliding-MP-moves only.

(iii) Every P ∈ R is related by a snake move to an element of B \ R.

This proposition shows that in the statement of Theorem 2.1 one may remove R
from B and forget the snake move.

Embedding-refined calculus We spell out in this paragraph the embedding-refined
version of our calculus, which allows to neglect the action of automorphisms. Let a
certain manifold M be given, and consider the set Comb(M) of concave vector fields
on M , up to homotopy. Let B(M) consist of the elements of B which are smoothly
embedded in M as spines of M minus a ball B3

triv. Each element P of B(M) is viewed
up to isotopy in M , and gives rise to a well-defined element CM(P ) of Comb(M).
Moreover sliding-MP-moves and snake moves are well-defined in B(M), because they
can be realized as embedded moves. The embedded analogue of Theorem 2.1 states
that CM : B(M) → Comb(M) is surjective, and the relation it defines is generated
by the embedded moves. The proof of this result is a refinement of the proof of the
general statement, along the lines explained in [2] (4.1.12, 4.1.13, 4.3.5, and 5.2.1.)

Normal sections of a concave field The proof of Theorem 2.1 is an extension
of the argument given in Chapter 5 of [2], and it is based on the following technical
notion, which extends ideas originally due to Ishii [10]. Let v be a concave field on
M . Let B1, . . . , Bk be the black components of the splitting of ∂M , i.e. the regions
on which v points outwards. A normal section for (M, v) is a compact surface Σ with
boundary, embedded in the interior of M , with the following properties:

1. v is transverse to Σ;

2. Σ has exactly k + 1 components Σ0, . . . ,Σk, with Σ0
∼= D2;

10
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Figure 8: The trivial ball.

3. For i > 0, the projection of Bi on Σ along the orbits of −v is well-defined and
yields a diffeomorphism between Bi and a surface B′

i contained in the interior of
Σi, with Σi \B

′
i being a collar on ∂Σi (so B′

i = Σi if ∂Σi = ∅);

4. Each positive half-orbit of v meets either the interior of some Bi (where it stops),
or the interior of some Σi;

5. ∂Σ meets itself generically along v (i.e. each orbit of v meets Σ at most two
consecutive times on ∂Σ, and, if so, transversely);

6. Let PΣ be the union of Σ with all the orbit segments starting on ∂Σ and ending
on Σ. Then Σ, which is a simple polyhedron by the previous point, is actually
standard.

The next two lemmas show that normal sections of (M, v) correspond bijectively
to spines P such that C(P ) = [M, v]. The proof of surjectivity of C and the discussion
of its non-injectivity will be based on these lemmas.

Lemma 2.4. If (M, v), Σ and PΣ are as above, then PΣ can be given a structure of
branched spine such that C([PΣ]) = [M, v].

Proof of 2.4. We orient Σ so that v∩| + Σ (by default M is oriented). Every region of PΣ

contains some open portion of Σ, so it can be oriented accordingly; with the obvious
screw-orientation, this turns PΣ into a branched spine of its regular neighbourhood in
M .

We show that C([PΣ]) = [M, v] by embedding the abstract manifold M(PΣ) in M ,
in such a way that the field carried by PΣ on M(PΣ) ⊂ M is just the restriction of v.
By construction, M \M(PΣ) will consist of a copy of B3

triv, together with a collar on
∂M which can be parameterized as (∂M) × [0, 1] in such a way that v is constant in
the [0, 1]-direction. This easily implies that C([PΣ]) = [M, v] indeed.

We illustrate the embedding of M(PΣ) in M pictorially in one dimension less.
Figure 8 shows how Σ0 gives rise to a B3

triv. In the figure we describe v by dotted lines,
Σ by thick lines, portions of PΣ \ Σ by thin lines, and ∂(M(PΣ)) by a thick dashed

11
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Figure 10: Normal section from a spine.

line. Note also that the portions of PΣ \ Σ have been slightly modified so to become
positively transversal to v, which allows us to represent the branching as usual, i.e. as
a C1 structure on PΣ.

Figure 9 shows the collar based on a component of ∂M . We use the same con-
ventions as in the previous figure, and in addition we represent the black and white
components of ∂M by thick and thin lines respectively. This description concludes the
proof. 2.4

Lemma 2.5. Let [P ] ∈ B and C([P ]) = [M, v] ∈ Comb, with P embedded in (M, v)
according to the geometric description of C. Let Σ be obtained from P as suggested
(in one dimension less) in Fig. 10. Then Σ is a normal section of (M, v), and PΣ is
isomorphic to Σ.

Proof of 2.5. The construction suggested by Fig. 10 is obviously the inverse of the
construction in the proof of Lemma 2.4. 2.5
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The concave combing calculus Using normal sections we can now show the main
result of this section.

Proof of 2.1. We start with the proof of surjectivity. So, let us consider a combed
manifold (M, v), subject to the usual restrictions. By Lemma 2.4 it is natural to try
and construct a normal section for (M, v). Let B1, . . . , Bk be the black regions in ∂M .
Slightly translate each Bi along −v, getting B′

i. Add to each B′
i a small collar normal

to v, getting Σi (if ∂Bi = ∅, we set Σi = B′
i). Select finitely many discs {Dn} disjoint

from each other and from all the Σi’s, such that all positive orbits of v, except for
the small segments between B′

i and Bi, meet (
⋃

i≥1 Σi)∪ (
⋃
Dn) in some interior point.

Connect the Dn’s together by strips transversal to v and disjoint from
⋃

i≥1 Σi, getting
a disc Σ0. Up to a generic small perturbation, the surface Σ =

⋃
i≥0 Σi satisfies all

axioms of a normal section for (M, v), except axiom 6.
Now, even if it is not standard, PΣ can be defined, and the proof of Lemma 2.4

shows that it is a simple branched spine of (M \B3, v). In particular, PΣ is connected
and its singular locus is non-empty. We recall now that in Chapter 4 of [2] we have
considered a set of local moves on simple branched spines, called ‘simple sliding moves’,
which preserve the transversal field (and hence the splitting of the boundary), but
do not require or preserve the cellularity condition. Knowing that PΣ is connected
and S(PΣ) 6= ∅, it is not too hard to see that there exists a sequence of (abstract)
simple sliding moves which turns PΣ into a standard spine (see [2], Section 4.4). If we
physically realize these moves within M , preserving transversality to v, the result is a
standard branched spine P such that C([P ]) = [M, v].

We are left to show that if C([P0]) = C([P1]) then P0 and P1 are related by sliding-
MP-moves and snake moves (‘sliding-equivalent’ for short). By the definition of Comb
and C, using also the above lemmas, there exists a manifold M and a homotopy (vt)
of concave fields on M , such that P0 and P1 are defined by normal sections Σ(0) and
Σ(1) of (M, v0) and (M, v1) respectively.

We prove that P0 and P1 are sliding-equivalent first in the special case where v0 =
v1 = v. The general case will be an easy consequence. For j = 0, 1, let Σ(j) =

⋃
i≥0 Σ

(j)
i .

Proceeding as in the above proof of surjectivity, for each black region Bi of ∂M , we
consider a collared negative translate Σi of Bi. We choose Σi so close to Bi that
Σi ∩ Σ(j) = ∅, and the negative integration of v yields a diffeomorphism from Σi to a
subset of Σ

(j)
i .

Step I. For j = 0, 1, there exists a disc Dj such that Dj ∪ (
⋃

i≥1 Σi) is a normal
section of (M, v), and the associated branched spine is sliding-equivalent to Pj. To prove
this, we temporarily drop the index j. We first isotope each Σi, without changing the
associated spine, until it contains Σi, as suggested in Fig. 11.

Note that if ∂Bi = ∅ we automatically have Σi = Σi. Otherwise, we concentrate on
one of the annuli A of which Σi \Σi consists. Note that we cannot just shrink A leaving
the rest of the section unchanged, because we could spoil axiom 4 of the definition of
normal section. To actually shrink A we first need to “insulate” it, toward the positive
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Figure 11: Isotopy of a normal section.

Figure 12: Insulation of an annulus.

direction of v, by adding to the disc Σ0 a strip normal to v. Figure 12 suggests how to
do this.

As we modify Σ0 as suggested, it is clear that we keep having a “quasi-normal”
section, i.e. all axioms except 6 hold. Moreover the corresponding simple branched
spines are obtained from each other by the simple sliding moves already mentioned
above. To conclude we apply, as above, the fact that a simple branched spine can
be transformed via simple sliding moves to a standard one, and the technical result
established in [2], Proposition 4.5.6, according to which standard spines which are
equivalent under simple sliding moves are also sliding-equivalent. This proves Step I.

The conclusion will now follow quite closely the argument in [2], Theorem 5.2.1.
Step II. There exist discs D′

0 and D′
1 such that D′

j ∪ (
⋃

i≥1 Σi) is a normal section
of (M, v) for j = 0, 1, and D0∩D

′
0 = D′

0∩D
′
1 = D′

1∩D1 = ∅. Choosing a metric on M ,
one can construct D′

0 and D′
1 by first taking many very small discs almost orthogonal

to v, and then connecting these discs by strips transversal to v.
Step III. Conclusion in the case v0 = v1. If we connect D0 and D′

0 by a strip
orthogonal to v, we get a bigger disc D̃0 such that D̃0 ∪ (

⋃
i≥1 Σi) is still a normal

section of (M, v). We can actually imagine a dynamical process, in which D0 is first
enlarged to D̃0, and then is reduced to D′

0, as in Fig. 13. If the transformation is chosen
generic enough, at all times axioms 1, 2, 3 and 4 will hold, and axiom 5 will hold at
all but finitely many times. This means that the corresponding branched spines are
related by simple sliding moves. Similarly, we can replace D′

0 first by D′
1 and then by

D1. Using the facts quoted above, the conclusion follows.
We are left to deal with the general case, where (vt) is a non-constant homotopy. It
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Figure 13: Transformation of a disc into a disjoint one.
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Figure 14: Branched spines with one vertex.

is then sufficient to take a partition 0 = t0 < t1 < . . . < tn = 1 of [0, 1], fine enough that
(M, vtk−1

) and (M, vtk) admit a common normal section which gives rise to isomorphic

branched spines. 2.1

Remark 2.6. Along the lines of the previous proof we have established the following
topological fact, whose statement does not involve spines. Let (vt) be a homotopy of
concave fields on M , let B0, B1 ⊂ M be balls with (Bj, vj) ∼= B3

triv and vj traversing
on M \Bj for j = 0, 1. Then there exist another homotopy (v′t) between v0 and v1 and
an isotopy (Bt) with (Bt, vt) ∼= B3

triv and vt traversing on M \Bt for all t.

Sufficiency of the sliding-MP-moves To show Proposition 2.3 we will find it con-
venient to use the graphic representation of branched spines introduced in [2], Section
3.2, but we do not reproduce here the technicalities needed to introduce this represen-
tation.

Proof of 2.3. We start by listing rigid spines. Note first that if a negative sliding-
MP-move applies to a spine then also a positive one does, so we only need to consider
positive rigidity. The spines with one vertex, shown in Fig. 14, are of course rigid.
Using [2], Proposition 3.3.5, one easily checks that ∂(M(P )) is S2

triv for the first two
spines, and S2

triv ⊔ S
2
triv for the other two.

Now we turn to rigid spines with more than one vertex. Rigidity implies that all
edges with distinct endpoints should appear as on the left in Fig. 15. It is not hard
to deduce that rigid spines come in a sequence P rig

1 , P rig
2 , . . . as shown in the rest of

Fig. 15, where P rig
k has 2k vertices, and ∂(M(P rig

k )) is the union of S2
triv together with

k copies of S2
white and k copies of S2

black. This classification proves (i).
To show (ii) we must prove that:

(ii-a) Sequences which contain rigid spines can be replaced by sequences which do not.

(ii-b) If two non-rigid spines are related by one snake move then they are also related
by a sequence of sliding-MP-moves.

15



������ ����

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���� ����
����

����

����

����

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��
��
��
��

Figure 15: Sliding-MP-rigid branched spines.
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Figure 16: The sliding-vertex move.

For (ii-a), we note that the result of a positive snake move is never rigid. So if a
rigid spine P appears in a sequence of moves then P is the result of a negative snake
move µ−1

1 : P1 → P , and a positive snake move µ2 : P → P2 is applied to P . Since
all edges of a spine survive through a snake move, there is a version µ̃2 of µ2 which
applies to P1 and a version µ̃1 of µ1 which applies to P2, and the result P̃ is the same.
So can replace the segment (P1, P, P2) by (P1, P̃ , P2), and now all the spines involved
are non-rigid.

Let us turn to (ii-b). The proof results from three steps, to describe which we
introduce in Figure 16 another move, called sliding-vertex move, whose unbranched
version was already considered in [11] and [13]. Again, taking into account orientations,
there are two versions of the move (for each vertex type), but we will ignore this detail.

Step 1: if v is a vertex of a branched spine P , e is any one of the edges incident
to v, Pv is obtained from P via the sliding-vertex move at v, and Pe is obtained from
P via the snake move on e, then Pv and Pe are related by sliding-MP-moves. This is
proved by an easy case-by-case analysis. It turns out that two MP-moves (a positive
and a negative one) are always sufficient.

Step 2: let v, P and Pv be as above. If P and Pv are related by sliding-MP-moves,
the same is true for P and any spine obtained from P by a snake move. To see this, use
step 1 to successively transform sliding-vertex moves into snake moves and conversely,
until the desired snake move is reached.

Step 3: if P is non-rigid then there exists a vertex v such that P and Pv are
related by MP-moves. The vertex v is chosen to be an endpoint of an edge to which
the positive MP-move applies. The argument is again a long case-by-case one, which
refines in a branched context the argument given by Piergallini in [13]. The sequence
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Figure 17: A portion of C1 link diagram on a branched spine.

always consists of three positive moves followed by a negative one. This concludes the
proof of (ii), whereas (iii) is evident. 2.3

3 A calculus for framed links

We fix in this section a compact manifold M and consider the set Fram(M) of isotopy
classes of framed links in M . Since a link isotopy generically avoids a fixed 3-ball,
Fram(M) and Fram(M̂) are canonically isomorphic when ∂M = S2, so we can restrict
to non-closed M ’s and include the closed case as usual.

Statement Let us fix a branched standard spine P of M . The fact that such a spine
always exists was proved as Theorem 3.4.9 in [2]. We call C1 link diagram on P an
immersion of a disjoint union of circles into P , with generic intersection with S(P )
appearing as in Fig. 17, generic self-intersections (crossings), and the usual under-
over marking at crossings (as shown in the same figure; here ‘under’ and ‘over’ refer
to the field positively transversal to P ). The set of all C1 link diagrams on P will
be denoted by D(P ). An element of D(P ) obviously defines a link. Moreover v(P )
is transversal to this link, so it defines a framing, and we get an (obviously well-
defined) map F(P,M) : D(P ) → Fram(M). Besides isotopy on P through immersions
having the same configuration of crossings and intersections with S(P ), there are several
combinatorial moves which of course do not modify the isotopy class of the framed link
defined by a diagram. We show a list of moves having this property in Fig. 18. For a
reason to be given below, which also explains the apparently weird notation, we call
these moves C1-Turaev moves. As we did when we described the sliding-MP-moves
in Fig. 6, we are showing in Fig. 18 only the essential physical modifications, without
specifying the screw-orientation of the spine and the orientation of its regions.

Theorem 3.1. The map F(P,M) : D(P ) → Fram(M) is surjective, and the equivalence
relation it defines is generated by C1-Turaev moves.

Our argument, after the easy proof of surjectivity, goes along the following lines:
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Figure 18: C1-Turaev moves.

1. We state the analogue of Theorem 3.1 for non-branched spines, due to Turaev [16]
(we include a quick proof for the sake of completeness);

2. We modify Turaev’s result to the case of a branched spine, but allowing non-C1

diagrams;

3. We prove our theorem, showing how to canonically replace each non-C1 diagram
by a C1 one along a sequence of modifications.

Surjectivity Since M and P are fixed, we write F for short. Given a framed link L
in M , we can prove that it is contained in the image of F as follows:

• First, forget the framing and take a generic projection on P , recalling that M \
P ∼= ∂M × (0, 1];

• Next, eliminate non-C1 intersections with S(P ) as shown in Fig. 19 (left).

• Finally, give the resulting projection the right framing by adding the necessary
numbers of curls. (Here we use the fact that two framings on a given knot differ
at most by a finite number of full rotations.)

It may be noted that surjectivity of F is preserved by restriction to the set of
diagrams without crossings. This follows quite easily from the fact that all the regions
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Figure 19: How to remove forbidden intersections with S(P ) and crossings.

Figure 20: Turaev moves.

of P have non-empty boundary, as suggested in Fig. 19 (right). This property will not
be used below.

Turaev moves on standard spines The ideas and results of this paragraph are
due to Turaev [16]. We temporarily allow P to be any standard spine of M , not a
branched one. If each region of P is given an arbitrary transverse orientation, the
definition of a link diagram D makes sense also on P , but D may not define a framing
on the associated link, because the strip which runs along a component of D on P need
not be a cylinder, it may be a Möbius strip. So we attach to each component Di of D
a full or half-integer ai/2, depending on the topology of the strip, and we define the
framing by giving ai positive half-twists to the strip (recall that M is oriented). By
diagram on P we will actually mean one such pair ({Di}, {ai/2}).

We call Turaev moves those shown in Fig. 20, together with the RII and RIII already
shown above. In Fig. 20, for RI′ and TIII, the local orientation must be that of R

3.
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Figure 21: Projection of a strip.

Theorem 3.2. Every isotopy class of framed link in M is defined by some diagram on
P , and two diagrams define the same class if and only if they are obtained from each
other by a sequence of Turaev moves.

Proof of 3.2. Recall that a framed link can be thought of as an embedded cylinder.
Moreover M projects onto P , and the projection of a cylinder generically appears as
in Fig. 21. Such a projection easily defines a diagram, the half-integers being sums
of ±1/2’s corresponding to the bends of the projection. Moreover, the elementary
catastrophes along an isotopy of a projection translate into the moves of Fig. 20, or
simple combinations of them. 3.2

Turaev moves on branched spines Going back to the case where P is branched,
we can still apply Theorem 3.2, but now the list of moves becomes slightly longer, if
we want to take the branching into account.

Proposition 3.3. If P is a branched spine then any Turaev move for a diagram on
P can be expressed as a combination (including inverses) of the moves RI′, RII, RIII,
TI′ , TI′′, TII′, TIV′, TV′ shown above, together with the moves TI′′′ , TII′′, TIII′, TIV′′, TV′′

shown in Fig. 22

Proof of 3.3. The branching can be interpreted as a loss of symmetry of a spine, so
each of Turaev’s moves, when viewed as a move on a branched spine, generates many
different ones according to the position of the diagram with respect to the branching.
The result is a list much longer than that given in the statement, but one can show
that all the moves omitted from the statement are generated by the moves included.
Two examples are provided in Figg. 23 and 24. 3.3

C1 moves We can now conclude the proof of Theorem 3.1 (surjectivity having been
shown above). We are left to show that if D and D′ are C1-diagrams on P which define
the same framed link, then they are related by a sequence of C1 Turaev moves. By
Theorem 3.2 and Proposition 3.3, there exists a sequence D = D0 → D1 → · · · →
Dn−1 → Dn = D′ where each move Di−i → Di is one of those listed in Proposition 3.3.
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Figure 22: Non-C1 Turaev moves on branched spines.

Figure 23: A sequence of moves TI′′ , TIII′ and TI′′′ generating a branched version of TIII

omitted from the statement.

Figure 24: Another generation of moves, involving TI′ , TV′′ and TI′′′ .
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In particular the Di’s with 0 < i < n can be non-C1 and can have a non-zero half-
integer attached to them. We will now show how to construct a modified sequence
D = D̃0 → D̃1 → · · · → D̃n−1 → D̃n with the following properties:

1. each D̃i is a C1 diagram with number 0 attached;

2. each D̃i is obtained from D̃i−1 by a sequence of C1 Turaev moves;

3. each D̃i differs from Di for the presence of some extra curls; in particular each
component D̃

(j)
i of D̃i has a natural companion D

(j)
i inDi, with the property that,

as unframed knots, the knots associated to D̃
(j)
i and D

(j)
i are both contained in

a solid torus T
(j)
i and parallel to the core of the torus;

4. the framed knots associated to D̃
(j)
i and D

(j)
i are framed-isotopic within T (j).

Requirement 4 is the crucial technical point of our proof. To verify that the requirement
is stronger than just framed isotopy, note that in D2 × S1 the framings on the core
{0} × S1 are parameterized by the integers, but, when D2 × S1 is mirrored in its
boundary to get S2 × S1, only two inequivalent framings remain (corresponding to
even and odd integers).

We assume for a moment the sequence D̃i to exist, and we show how to conclude.
The transformation from D to D̃n is made with C1 Turaev moves, so we only need
to compare D̃n and D′ = Dn, which by assumption differ for some curls. Using C1

Turaev moves we can easily make all these curls slide until they are consecutive on the
diagram. We recall now that there are four local pictures for a curl, depending on its
local contributions ± to the framing and to the winding number [15]. Assumption 4 now
implies that the algebraic sum of local contributions to the framing vanishes. Therefore
we can cancel the curls in pairs, either by moves RI′ (when the local contributions to
the winding number are the same), or by a combination of moves RII and RIII (when
the contributions cancel). This shows the conclusion.

We are left to define the sequence D̃i. The idea is simply not to perform the moves
which change the half-integer or introduce cusps, and show that the sequence of moves
can be followed anyway. While doing this we need to keep track of the portions where
the new diagram D̃i differs from Di, which we do by marking a neighbourhood of the
portion as a shadowed box.

The moves which change the colour or introduce cusps are RI′ (in both directions),
TI′′′ , TIII′, and TV′′ , and we show in Figg. 25 and 26 what we replace them with. For
move RI′ it has been necessary to be more specific because, in the original definition
of the move, two different ones were actually defined at the same time.

To show that {D̃i} can indeed be constructed we must now show that after perform-
ing the construction up to some level k we can still still follow the rest of the sequence
and go on with the replacements of Figg. 25 and 26. By construction D̃k differs from
Dk only within some shadowed boxes. We denote by µk the move Dk → Dk+1 and
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Figure 25: The moves RI (left), and the C1 moves replacing them (right).

Figure 26: Replacement of the other non-C1 moves TI′′′ , TIII′ and TV′′ by C1 moves.
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explain how to lift it to a move on D̃k. First, note that a shadowed box lying within a
region of P and containing a curl does not interfere with µk whatever its type (but it
may be necessary to add some RII’s and RIII’s to replace isotopy supported within the
region).

We fix now our attention on a shadowed box B which lies on S(P ) and contains a
smoothed cusp, and examine the various instances for µk with respect to B. If µk is
of type R±1

II , R±1
III , T±1

I′ , T±1
I′′ T±1

II′ , or T±1
IV′ , then it obviously does not interfere with B,

so we can just perform µk on D̃k. If µk is one of the moves R±1
I , TI′′′ , TIII′ or TV′′ then

again it does not interfere with B, and we can perform the appropriate replacement
from Figg. 25 or 26, getting a move from D̃k to D̃k+1. If µk is a move of type T±1

II′′ or
T±1

IV′′ then it may interfere with B. However, since it does not create or destroy cusps,

µk can be translated on D̃k as a combination of moves which do not involve cusps, i.e.
allowed from the statement. We are only left to deal with the case where µk is one
of the moves T−1

I′′′ , T−1
III′ or T−1

V′′ which destroy cusps. By construction the cusp(s) to

be destroyed still appear in D̃k as smoothed cusps within shadowed boxes, so we can
destroy them also from D̃k by means of allowed moves.

The crucial properties 3 and 4 hold by construction, and the conclusion eventually
follows. 3.1

4 A calculus for pseudo-Legendrian links

in combed manifolds

We will deal in this section with the set PLeg of equivalence classes of triples (M, v, L)
already described in the introduction. Its combinatorial counterpart will be given by
the set

L = {(P,D) : P ∈ B, D ∈ D(P )}

where B is as in Section 2 and D(P ) is as in Section 3. The reconstruction map
(P,D) 7→ L(P,D) is here defined by noting that D defines a link transversal to v(P )
in M(P ), and hence also a link transversal to v̂(P ) in M̂(P ). According to what we
stated after Proposition 2.3 we will actually drop from B the sliding-MP-rigid spines,
and ignore the snake move.

If for a fixed P we consider the effect on L(P,D) of the C1-Turaev moves on D,
we see that the class of L(P,D) is in general modified by the first Reidemeister move
RI′ of Fig. 18 (see also Section 5), but not by the other moves, which we will therefore
call pseudo-Legendrian Turaev moves. Other moves which obviously do not change
L(P,D) up to equivalence are the sliding-MP-moves on P which do not involve D
(these moves permit to follow D along the modification of P , so they are well-defined
for pairs). It is not hard to see that before performing a sliding-MP-move on P it is
always possible to modify D by pseudo-Legendrian Turaev moves to a diagram which

24



is not involved in the sliding-MP-move, and the diagram after the sliding-MP-move
is well-defined up to pseudo-Legendrian Turaev moves. For this reason we will freely
speak of sliding-MP-moves also for pairs. The following will be established below.

Theorem 4.1. The map L : L → PLeg is surjective, and the equivalence relation
defined by L is generated by pseudo-Legendrian Turaev moves and sliding-MP-moves.

Fixed-spine statement Recall from the definition that the map L of the statement
of Theorem 4.1 involves the passage from P to (M(P ), v(P )) and then to (M̂(P ), v̂(P )).
As already pointed out, this is necessary if one wants to be able to deal with non-
traversing fields. However, if one happens to have a concave traversing field, one
can directly encode this field by a spine, without first removing a ball, and one can
investigate how isotopy of links transversal to the field reflects on link diagrams on the
spine. The following is shown below:

Proposition 4.2. Let P be a branched spine. Fix a representative of (M(P ), v(P ))
and an embedding of P in M(P ) transversal to v(P ). Then every link transversal to
v(P ) is represented by a C1 diagram on P . Moreover two C1 diagrams define the same
link up to isotopy through links transversal to v(P ) if and only if they are related by
pseudo-Legendrian Turaev moves.

From fixed to variable spine We show in this paragraph how to deduce Theo-
rem 4.1 from Proposition 4.2. First of all, to prove surjectivity, we consider a triple
(M, v, L) representing an element of PLeg. Using a normal section as in Proposition 2.4,
we can obtain a spine P ∈ B which encodes the equivalence class of (M, v) in the sense
of Theorem 2.1. Moreover P comes with an embedding in M transversal to v. Now,
a neighbourhood of P can be identified to M(P ) and its complement is isomorphic to
B3

triv. Using the flow generated by v in this ball we can now isotope L through links
transversal to v to a link which lies in M(P ), and the first assertion of Proposition 4.2
implies that L is represented by a diagram D on P . Summing up, we see that (M, v, L)
is represented by (P,D), and surjectivity of L is proved.

To conclude we must now show that two pairs (P0, D0) and (P1, D1) are equivalent
via pseudo-Legendrian Turaev moves when L(P0, D0) = L(P1, D1). Spelling out the
relation of pseudo-Legendrian isotopy, which defines PLeg, we assume that P0 and P1

embed in the same manifold M and that there exist a field homotopy (vt)t∈[0,1] and a
link isotopy (Lt)t∈[0,1] on M such that:

1. for i = 0, 1, the link Li is the one defined by Di, and the field vi is positively
transversal to Pi and restricts to B3

triv on the complement of Pi;

2. Lt is transversal to vt for all t.
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Figure 27: The annulus A.

Given t ∈ [0, 1], we note that for |t− s| ≪ 1 the link Ls is transversal to vt, and that a
branched spine for vt (in the sense repeatedly used above) is a branched spine also for
vs. So we can subdivide [0, 1] into subintervals [ti−1, ti] so that:

1. Lti−1
is isotopic to Lti through links transversal to vti ;

2. vti has a spine Pti which is also a spine for vti−1
.

Now let Dti be a diagram for Lti on Pti . Since both Pti−1
and Pti are spines for vti , we

can transform Pti−1
into Pti via sliding-MP-moves. Using pseudo-Legendrian Turaev

moves we can now follow Dti−1
along this sequence of moves, getting a diagram D′

ti
on

Pti . Since the sequence of sliding-MP-moves can be realized in M so that each spine
of the sequence is a branched spine for vti , we deduce that the link defined by D′

ti
is

isotopic to Lti−1
, and hence to Lti , through links transversal to vti . Proposition 4.2 now

implies that D′
ti

and Dti are related by pseudo-Legendrian Turaev moves on Pti . This
shows that (Pti , Dti) is obtained from (Pti−1

, Dti−1
) via the moves of the statement, and

the conclusion follows by iteration. 4.1

Fixed-spine proof We will establish now Proposition 4.2, writing just M and v for
M(P ) and v(P ). For the sake of simplicity we will assume that v is tangent to ∂M
along only one curve (denoted by γ), but our arguments extends almost verbatim to
the general case of more than one curve.

We fix in M an annulus A which connects γ to S(P ) as shown in a cross-section
in Fig. 27. Note that A is almost but not quite embedded: it has double point at the
vertices of P . Since we will only need to consider A locally and away from vertices
of P , this fact will not disturb us. We choose coordinates (ρ, θ) ∈ [0, 1] × [0, 2π] on
A, where ρ = 0 corresponds to S(P ) and ρ = 1 to γ. Near A we can also define a
coordinate z ∈ [−ε, ε] by integrating v.

Now let L be transversal to v, and assume by general position that L intersects A
only at points with 0 < ρ < 1, that no two such intersections have the same coordinate
θ, and that at all the intersections the tangent direction to L has non-zero components
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Figure 28: Types of points in L ∩A.

Figure 29: Projection onto P .

in all three coordinates ρ, θ, z. Depending on the sign of these components, we can
divide the points of L ∩ A into four types, shown in Fig. 28 (L is dashed when it lies
over A and dotted when it lies under A). We consider now the projection π of M \ A
onto P along the orbits of v, as shown in Fig. 29. Of course L \A locally projects to a
C1-strand on P , and by general position we can assume that π(L \ A) locally appears
as a C1-diagram. We are only left to extend the diagram at the points of L∩A, which
we do locally in Fig. 30. The top part of this figure actually refers to a simplified
situation, because other strands of L already projected on P may locally interfere.
We show at the bottom of the same figure in one example how to deal with this fact.
The resulting diagram of course represents L, and we have proved the first assertion
in Proposition 4.2. To prove the second assertion we must now examine an isotopy of
L through links transversal to v, and hence examine first-order violations of genericity
of L with respect to A and π. All the elementary accidents which do not involve A of
course correspond to pseudo-Legendrian Turaev moves. We are left to deal with the
following accidents:

1. L intersects A at a point of S(P ) ⊂ ∂A;

2. at a point of L ∩ A, the tangent direction to L has vanishing ρ-coordinate;

3. similarly, with the θ-coordinate;
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Figure 30: Completion of the diagram at points of L ∩ A.

4. similarly, with the z-coordinate.

In Fig. 31 we show the situation just before and just after each of these accidents,
and we analyze the corresponding transformations of the diagrams constructed as in
Fig. 30. In all cases one easily sees that indeed the transformation is generated by
pseudo-Legendrian Turaev moves: the number of moves needed is respectively one,
zero (isotopy within regions), three and two. By simplicity in Fig. 31 we have ignored
the possible interference of other strands of L projected on P , but the conclusion is
valid anyway (some Reidemeister moves must be added in the general case). 4.2

5 Applications and speculations

In this section we will discuss some consequences of the calculi described above, and
mention some natural questions and problems which we put forward for further inves-
tigation. The section is split into two subsections.

5.1 Winding number, torsion, and finite-order invariants

In this section we employ our realizations of Fram and PLeg in connection with winding
number, Maslov index, torsion, and finite-order invariants of pseudo-Legendrian knots.

Relative winding number We spell out in this paragraph the analogue of Trace’s
result [15] on knot diagrams in R

3. We confine ourselves to knots for the sake of
simplicity, but essentially the same holds for links.

Proposition 5.1. Let (v0, K0) and (v1, K1) be pseudo-Legendrian pairs in a manifold
M , whereK0 andK1 are oriented knots. Assume that v0 and v1 are homotopic relatively
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Figure 31: Elementary accidents involving A along an isotopy of L.
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Figure 32: A positive and a negative double curl (here the field points upwards and
the orientation is consistent with the orientation of 3-space).

Figure 33: Replacing a non-pseudo-Legendrian move.

to ∂M , and that K0 and K1 are isotopic as oriented framed knots. Then, up to pseudo-
Legendrian isotopy on (v1, K1), we can assume that v1 = v0 and that K1 differs from
K0 only within a region of (M, v0) isomorphic to (R3, ∂/∂z), where K0 is a straight
horizontal line and K1 has either some positive or some negative double curls (shown
in Fig. 32).

Proof of 5.1. Choose branched spines P0 and P1 of v0 and v1 according to Proposi-
tion 2.4, and use Proposition 4.2 to represent K0 and K1 on P0 and P1 respectively
by C1-diagrams D0 and D1. Since v0 and v1 are homotopic, a sequence of sliding-MP
moves connects P1 to P0. Following D1 along this sequence of moves we get a pseudo-
Legendrian isotopy, so we can assume that v1 = v0 and P1 = P0. Now D0 and D1

define on P0 framed-isotopic oriented knots, so by Theorem 3.1 they are related by
C1-Turaev moves. If along the sequence of moves there is no RI′ , we deduce pseudo-
Legendrian equivalence of K0 and K1. If however there is some RI′ , we replace it by a
pseudo-Legendrian move as shown in Fig. 33. One easily sees that this replacement can
be done consistently along the sequence of moves. The result is a pseudo-Legendrian
isotopy between D1 and a diagram which differs from D0 only for some double curls.
These double curls can of course be slid to be consecutive. Now, it is precisely the
content of [15] that up to moves RII and RIII there are only the types of double curls
shown in Fig. 32, and that a positive and a negative double curl cancel out. 5.1

Under the assumptions of the previous proposition one may be tempted to define
a relative winding number w(K1, K0) as the (algebraic) number of double curls by
which the diagram of K1 differs from the diagram of K0. This number is however not
well-defined in general, as one easily sees in S2 × S1 with vector field parallel to the
S1-factor, because in this case a double curl on a diagram contained in R

2 = S2 \ {∞}
can always be removed by isotoping the diagram through ∞. This seems to suggest
that not w(K1, K0), but maybe w(K1, K0) · [µK0

] ∈ H1(E(K0); Z) is well-defined, where
E(K0) is the exterior of K0 and µK0

is the meridian. We will show this fact under the
additional assumption that K0 is ‘good’ (see [4] and below for explanations).
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Torsion invariants and good knots In [4] we have defined the Reidemeister-
Turaev torsion of an Euler structure with simple boundary, and we have applied this
notion to define the torsion of pseudo-Legendrian knots. As an absolute invariant
torsion contains a sort of lift of the classical Alexander invariant. We will discuss in
this paragraph the information carried by torsion as a relative invariant of two pseudo-
Legendrian framed-isotopic knots K0, K1 in the same concave combed manifold (M, v).
We recall from [4] that this information is most easily expressed when K0 has the prop-
erty of being good. Goodness depends only on the isotopy class of K0 as a framed knot,
and it means that a certain quotient of the mapping class group of E(K0) acts trivially
on the space of Euler structures on E(K0). We omit the precise definition here, but we
recall that many knots indeed are good (for instance, all are good if M is a homology
sphere, and most hyperbolic knots are good).

When K0 is good, the information carried by torsion as a relative invariant depends
only on α(v|E(K0)

, f(v|E(K1)
) ∈ H1(E(K0); Z), where f ∈ Diff0(M) maps K1 to K0 as

framed knots, and α is the first obstruction for two vector fields to be homotopic relative
to the boundary. So the next result means that for good knots the relative winding
number gives a well-defined invariant, and all the information torsion can capture is
contained in the relative winding number. The statement involves all the assumptions
and notations of the present and previous paragraph.

Proposition 5.2. α(v|E(K0)
, f(v|E(K1)

) = w(K1, K0) · [µK0
] ∈ H1(E(K0); Z).

Proof of 5.2. We note first that w(K1, K0) and [µK0
] depend on the choice of an

orientation on K0, but their product does not, so the statement makes sense. For
the proof, note that by goodness we can just assume that K0 and K1 differ as in the
statement of Proposition 5.1, and that f is supported on a neighbourhood of the region
where K0 and K1 differ. The conclusion then follows directly from Proposition 2.17
of [4]. 5.2

Even if we have not discussed finite-order invariants yet, we note here that Propo-
sition 5.2 implies that torsion is a weaker invariant than the finite-order ones for Leg-
endrian knots in a given homotopy class of Legendrian immersions. To our knowledge
the only known examples of framed-isotopic knots distinguished by such invariants are
those due to Tchernov [14], and we believe that they are all good (at least, they cer-
tainly are good when the ambient manifold is S2 × S1). Now one sees that in all of
Tchernov examples w(K1, K0) · [µK0

] = 0, so torsion definitely cannot distinguish. On
the other hand, the definition of torsion does not require fixing a homotopy class of
Legendrian immersions, so torsion and finite-order invariants are in some sense com-
plementary.

We will state in the rest of this paragraph some interesting consequences of Propo-
sition 5.2, always assuming the knots involved to be good. For simplicity, as in Propo-
sition 5.2, we stick to knots transverse to a given field v on a given M , but we remind
that the relation of pseudo-Legendrian isotopy also involves a homotopy of v.
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Corollary 5.3. Under the same assumptions as in Proposition 5.2, suppose further-
more that [µK0

] has infinite order in H1(E(K0); Z), so w(K1, K0) ∈ Z is well-defined.
Then the following facts are pairwise equivalent:

1. w(K1, K0) = 0;

2. K0 and K1 have trivial relative torsion invariants;

3. K0 and K1 are pseudo-Legendrian isotopic.

Proof of 5.3. Equivalence of (1) and (3) follows from the definition of w(K1, K0). Im-
plication (1)⇒(2) follows from Proposition 5.2, and the opposite implication follows by
taking the torsion associated to a representation ϕ of H1(E(K0); Z) such that ϕ([µK0

])
has infinite order (see [4] for details). 5.3

If M is a homology sphere and K is a pseudo-Legendrian knot in (M, v) we have
shown in [4] that the rotation number rotv(K), also called Maslov index, can be defined
just as in the case where K is Legendrian in a contact structure. Now:

Lemma 5.4. If M is a homology sphere, K0 and K1 are pseudo-Legendrian in (M, v)
and framed isotopic, then w(K1, K0) = 1

2
(rotv(K1) − rotv(K0)).

(Concerning the statement, note that rotv(K1) − rotv(K0) must be even if K0 and
K1 are framed-isotopic, otherwise one of {K0, K1} would lift to a closed path in a
spin structure on M , and the other one would not: a contradiction. A proof is easily
obtained by isotoping K1 as stated in Proposition 5.1.)

Lemma 5.4 gives another proof of the fact that w(K1, K0) ∈ Z can be defined when
M is a homology sphere. Moreover, it could be used to show goodness of knots in a
homology sphere by a more direct argument than that given in [4]. We conclude this
paragraph by showing the result stated in the introduction and asking a question which
naturally arises from it.

Proof of 0.1. Equivalence of (1) and (2) comes from Corollary 5.3. Equivalence of (2)
and (3) comes from Lemma 5.4. Equivalence of (3) and (4) follows from Corollary5.3
and the fact that the first homology group of the complement of a knot in M is infinite
cyclic and generated by a meridian. Equivalence of (3) and (5) is an application of
Gromov’s h-principle (see [14]). 0.1

Question 5.5. Let (M, v) be an arbitrary combed manifold, let K0 and K1 be pseudo-
Legendrian in (M, v) and framed-isotopic, and assume that they are homotopic through
pseudo-Legendrian immersions. Does this imply that w(K1, K0) · [µK0

] = 0? (We do
not think that the opposite implication can be true in general, in particular when [µK0

]
has finite order.)
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Absolute winding number We concentrate in this paragraph on fields v such that
E(v⊥) = 0, where E denotes the Euler class and the choice of the metric is of course im-
material. Condition E(v⊥) = 0 is equivalent to the existence of another non-vanishing
field x always transversal to v. Since the ambient manifold is oriented, this is also
equivalent to the fact that v extends to a framing (v, x, y), i.e. a global trivialization
of the tangent bundle to M . Assume now that K is an oriented knot transversal to
v. Then, taking the projection of the tangent vector to K on the unit sphere of the
(x, y)-plane, and computing the degree, we can define a rotation number rot(v,x)(K).

Remark 5.6. rot(v,x)(K) is invariant under simultaneous homotopy (vt, xt) and iso-
topy (Kt) such that xt and vt are transversal to vt for all t. Moreover rot(v,x)(K) is
independent of x when M is a homology sphere, and it equals the Maslov index already
discussed above.

Assume now that K0 and K1 are both transversal to v. Within the proof of Propo-
sition 5.1 we have shown that K1 can be isotoped through knots transversal to v to a
knots which differs from K0 by double curls only.

Remark 5.7. rot(v,x)(K1)−rot(v,x)(K0) is independent of x and equals twice the num-
ber of double curls by which K0 and K1 differ, up to isotopy transversal to v.

The previous remark shows that the relative winding number is well-defined (with-
out any assumption on the knots) if one restricts to knots transversal to a given v
with E(v⊥) = 0, and one views the knots up to isotopy transversal to v (as opposed to
pseudo-Legendrian isotopy, which involves also a homotopy of v). More on the differ-
ence between transversal isotopy and pesudo-Legendrian isotopy will be said below.

Remark 5.8. Combining the previous two remarks one gets yet another proof that
the relative winding number is well-defined in Z up to pseudo-Legendrian isotopy in a
homology sphere.

Finite-order invariants We formally state and motivate in this paragraph the con-
jecture announced in the introduction. Let ξ be an oriented contact structure on M
(which we assume to be closed by simplicity), and let v be a field positively transversal
to ξ. Consider the spaces Leg(M, ξ), PLegweak(M, v) and Fram(M) of ξ-Legendrian, v-
transverse, and framed knots in M , with the appropriate equivalence relations (namely
ξ-Legendrian, pseudo-Legendrian, and framed isotopy). Enlarge these spaces by allow-
ing immersions of S1 rather than embeddings, and take path-connected components l, p

and f, with l ⊂ p ⊂ f. (Concerning PLeg, note that a path is a family (Kt, vt)t∈[0,1] with
v0 = v1 = v.) Given an Abelian group A one can define, using the customary Vassiliev-
Goussarov skein relations, the spaces V n

l (A), V n
p (A) and V n

f (A) of A-valued order-n
invariants under Legendrian, pseudo-Legendrian and framed isotopy respectively. Since
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a Legendrian isotopy is pseudo-Legendrian, and a pseudo-Legendrian isotopy is framed,
using restrictions we get a commutative diagram of homomorphisms:

V n
f (A)

φn

f,p
−→ V n

p (A)

φn

f,l
ց ↓φn

p,l

V n
l (A).

Tchernov’s arguments [14] imply that all three φ’s are always injective, and our conjec-
ture is that φn

p,l is always an isomorphism. By [14] again, the conjecture is equivalent
to showing that every finite-order Legendrian invariant is automatically invariant also
under pseudo-Legendrian isotopy. The generalized Fuchs-Tabachnikov theorem (see [8]
and [14]) states that φn

f,l is an isomorphism in many cases (e.g. if M is a homology

sphere), so φn
p,l is also an isomorphism in these cases. Tchernov has provided the only

known examples in which φn
f,l is not an isomorphisms, namely he has exhibited ele-

ments of V n
l (A) which do not lift to V n

f (A). Our impression is that these elements

do lift to V n
p (A), which would imply that φn

p,l is indeed an isomorphism in all known
cases. Truthness of our conjecture would imply that Legendrian finite-order invariants
are only sensitive to the homotopy class of a contact structure, and in particular that
they cannot capture tightness.

5.2 Pseudo-Legendrian vs. Legendrian knots

After the work of Eliashberg [7], we know that on a closed manifold an overtwisted
contact structure is determined up to isotopy by its homotopy class as a plane field. We
discuss in this section the extent to which this fact extends in presence of a pseudo-
Legendrian link. We start with an open question which arises from the results of
Section 4 and will lead us to the connection with overtwisted contact structures.

Fixed vs. variable spine for pseudo-Legendrian links We will adopt in this
paragraph the viewpoint which allows to dismiss automorphisms of manifolds, fixing
M and considering spines and moves embedded in M , as explained after the statement
of Proposition 2.3.

Theorems 2.1 and 4.1 and Proposition 4.2 leave the following question open: given
an embedded spine P ⊂ M representing a concave combing on M , what intrinsic
topological object is represented by C1-diagrams on P up to pseudo-Legendrian Turaev
moves? Let us introduce some notation to formalize the situation. We denote by
DPLeg(P ) the set of equivalence classes of C1-diagrams on P up to pseudo-Legendrian
Turaev moves. We also fix a representative v of the combing carried by P (so, v is
positively transversal to P and restricts to B3

triv on the complement of P ). We consider
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now the set of links in M transversal to v, and we denote by PLegweak(M, v) the
quotient space under the relation of existence of a pseudo-Legendrian isotopy, i.e. a
path (Lt, vt)t∈[0,1] as usual, with v0 = v1 = v. We also denote by PLegstrong(M, v) the
(bigger) quotient obtained by forcing (vt) to be constant. So PLegstrong(M, v) is just
the set of equivalence classes of links transversal to v. Using Proposition 4.2 one sees
that the operation of turning a diagram into a link defines a bijection

ψstrong : DPLeg(P ) → PLegstrong(M, v).

(This is not quite the content of Proposition 4.2, because here (M, v) is (M̂(P ), v̂(P ))
rather that (M(P ), v(P )), but a link isotopy can be modified to avoid a B3

triv, and the
conclusion follows.)

Bijectivity of ψstrong is significant if one imagines to have started with the pair
(M, v), and to have constructed P from a normal section of v, as in Proposition 2.4. It
is however less significant if one assumes only P to be given from the beginning, because
in this case v is actually well-defined only up to homotopy, and fixing a representative
looks artificial. The natural map to consider is in this case

ψweak : DPLeg(P ) → PLegweak(M, v),

obtained by composition with the projection PLegstrong(M, v) → PLegweak(M, v). This
map is of course surjective, and one can ask whether it is injective or not. Some remarks
are in order:

1. Theorem 4.1 implies that if ψweak(D) = ψweak(D′) then there exists a circular
sequence P = P0 → P1 → · · · → Pn = P of sliding-MP-moves and diagrams
Di, D

′
i ∈ D(Pi) with D0 = D, D′

n = D′, Di → D′
i a pseudo-Legendrian Turaev

move, and Di+1 the companion of D′
i through Pi → Pi+1. Checking the injectiv-

ity of ψweak corresponds to the (purely combinatorial) question whether such a
sequence (Pi, Di) can be replaced by one with constant Pi.

2. Using Theorem 2.1 and the fact that C1 diagrams can be followed through sliding-
MP-moves, one sees quite easily that injectivity of ψweak actually depends only
on the combing carried by P , not on P itself.

3. Injectivity of ψweak is equivalent to injectivity of the projection PLegstrong(M, v) →
PLegweak(M, v), a purely topological question. Injectivity of this projection may
appear very unlikely at first sight, since it basically corresponds to the fact that
a homotopy can be replaced by an isotopy. However one can remark that injec-
tivity of projection depends only on the homotopy class of v, rather than v itself,
so one can assume that v is transversal to an overtwisted contact structure. For
overtwisted structures, after the work of Eliashberg [7], it is indeed true that ho-
motopy implies isotopy, but the presence of the link of course somewhat modifies
the situation. We will expound this theme in the next paragraph.
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Overtwisted structures and overtwisted knot complements We fix in this
paragraph an overtwisted contact structure ξ on M (which we assume to be closed by
simplicity) and a field v positively transversal to ξ. We will denote by Leg(M, ξ) the
space of Legendrian links in (M, ξ) up to Legendrian isotopy. In [4], having also in
mind the facts mentioned in the previous paragraph, we put forward the question of
whether the natural map

Leg(M, ξ) → PLegweak(M, v)

is a bijection. A fact implying that this map is not injective in some cases was recently
communicated to us by E. Giroux [9]. He was able to construct triples (M, ξ,K) where
ξ is overtwisted, K is ξ-Legendrian, and ξ|M\K is tight. Let us apply a Lutz twist away
fromK to get a new structure ξ′ such that ξ′ is homotopic to ξ as a plane field onM , and
ξ′|M\K is overtwisted. Using Eliashberg’s classification [7] we consider ϕ ∈ Diff0(M)
such that ξ′ = ϕ∗(ξ), and define K ′ = ϕ(K). By construction K and K ′ have the same
image in PLegweak(M, v), but of course they are inequivalent in Leg(M, ξ).

To avoid the phenomenon discovered by Giroux we consider in Leg(M, ξ) the subset
LegOT(M, ξ) given by links whose complement is overtwisted. We start by showing:

Proposition 5.9. The natural map LegOT(M, ξ) → PLegweak(M, v) is surjective.

Proof of 5.9. Let L be transversal to v, and fix a metric on M . Let η be a positive
contact structure near L with η = v⊥ on K (such an η is unique up to isomorphism).
Extend η to any plane field homotopic to v⊥ (and hence to ξ) on M . So η is a plane
distribution which has a contact zone, and L lies in this contact zone. The technique of
Eliashberg [7] now allows to homotope η away from its contact zone to an overtwisted
contact structure ξ′. The resulting ξ′ is now isotopic to ξ, again by Eliashberg’s result.
If ϕ ∈ Diff0(M) and ξ′ = ϕ∗(ξ) we define L′ = ϕ(L). By construction (L′, v) is
pseudo-Legendrian isotopic to (L, v), and surjectivity is proved. 5.9

We cannot presently state whether the map LegOT(M, ξ) → PLegweak(M, v) is
injective or not in general. We only give a partial argument (based on the techniques of
Eliashberg again), and mention where the difficulty arises. Assume that L0 and L1 are
ξ-Legendrian with overtwisted complements and define equivalent pseudo-Legendrian
links. Then there exists a continuous family (Lt, ξt)t∈[0,1], where ξ0 = ξ1 = ξ but ξt
is only a plane field for t 6= 0, 1. Eliashberg’s contactization methods for homotopies,
together with the uniqueness of contact structures in the neighbourhood of Legendrian
links, should in our opinion allow to replace such a (ξt)t∈[0,1] by another one in which
each ξt is a contact structure (and still contains Lt as a Legendrian link). Applying
Gray’s theorem we get an isotopy (ϕt)t∈[0,1] such that ξt = ϕ∗

t (ξ0). Setting L̃t = ϕt(Lt)
we get a Legendrian isotopy between L0 and ϕ1(L1). The question whether ϕ1(L1) is
automatically Legendrian isotopic to L1, at least for some classes of manifolds, now
depends on the analysis of the group Aut(M, ξ) ∩ Diff0(M), which we leave unsettled
for the time being.
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