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Optimal Redeeming Strategy of Stock Loans

Min Dai∗ Zuo Quan Xu†

Abstract

A stock loan is a loan, secured by a stock, which gives the borrower the right to redeem
the stock at any time before or on the loan maturity. The way of dividends distribution has a
significant effect on the pricing of the stock loan and the optimal redeeming strategy adopted by
the borrower. We present the pricing models subject to various ways of dividend distribution.
Since closed-form price formulas are generally not available, we provide a thorough analysis to
examine the optimal redeeming strategy. Numerical results are presented as well.

1 Introduction

Optimal stopping problems in finance have gained growing interests due to their close linkage
with various optimal strategies. A typical and well-known example is the American vanilla option
pricing model which has been been extensively studied in the existing literature. Many researchers
have also considered plenty of more sophisticated models. For example, Gerber and Shiu (1996)
and Broadie and Detemple (1997) analyzed the optimal exercise strategy for American options
on multi-assets, which was further addressed by Villeneuve (1999), Jiang (2002), Detemple et al.
(2003), etc. Cheuk and Vorst (1997), Windcliff et al. (2001), and Dai et al. (2004) investigated
the optimal shouting strategy for shout options. Dai and Kwok (2006) characterized the optimal
exercise strategy for American-style Asian options and lookback options. Hu and Oksendal (1998)
studied the optimal strategy of an investment problem. Other studies along this line include the
pricing of game options, swing options and convertible bonds, and the multiple-stopping problems
in finance, see Kifer (2000), Carmona and Touzi (2003), IBanez (2004), Meinshausen and Hambly
(2004), Dai and Kwok (2005), Dai and Kwok (2008), etc.

In this paper, we take into consideration another optimal stopping problem arising from the
pricing of a financial product: stock loan, which is a contract between a client (borrower) and a
bank (lender). The borrower, who owns one share of a stock, obtains a loan, from the lender with
the share as collateral. The borrower may redeem the stock at any time before or on the loan
maturity by repaying the lender the principal and a predetermined load interest rate, or surrender
the stock instead of repaying the loan. The accumulative dividends may be gained by the borrower
or the lender, subject to the provision of the loan.

A natural pricing problem arises for both the borrower and the lender: given the principal K

and the loan interest rate γ, what is the fair fee charged by the lender (referred to as the price of
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the stock loan)? Moreover, the borrower is facing another problem: what is the optimal redeeming
strategy? Xia and Zhou (2007) initiated the study of the above problems under the Black-Scholes
framework. Assuming that the loan is of infinite maturity and the dividends accrued are gained by
the lender until the borrower redeems the stock, they revealed that the stock loan is essentially an
American call option with a possibly negative interest rate. Moreover, they obtained a closed form
price formula as well as the analytical optimal redeeming strategy. Zhang and Zhou (2009) further
extended it to a regime switching market.

In this paper, we are concerned with finite maturity stock loans with various ways of dividend
distribution. Except for special cases, closed form price formulas are no longer available. As in Xia
and Zhou (2007), the pricing model of a stock loan resembles that of (finite maturity) American
vanilla options if the dividends are gained by the lender before redemption. However, other ways
of dividends distribution may significantly alter the pricing model as well as the optimal redeeming
strategy. In particular, if the accumulative dividends are assumed to be returned to the borrower
on redemption, the pricing model will get one path-dependent variable involved, which leads the
study of the associated redeeming strategy to be challenging. We will provide an analytical method
to analyze the optimal redeeming strategy.

Throughout the paper, we assume that the risk neutral stock price follows a geometric Brow-
nian motion:

dSt = (r − δ) Stdt + σStdWt,

where constants r > 0, δ ≥ 0 and σ > 0 are the riskless interest rate, continuous dividend yield1

of and volatility of the stock, respectively, and {Wt; t > 0} is a standard 1-dimension Brownian
motion on a filtered probability space (S,F , {Ft}t≥0, P) with W0 = 0 almost surely. We denote by
K > 0 the stock loan’s principal, γ the (continuous compounding) loan interest rate, and T > 0
the maturity date. For later use, we let CE(·, ·; r, δ,X) (or PE(·, ·; r, δ,X)) be the price of European
vanilla call (or put) option with riskless rate r, dividend yield δ and strike price X.

The rest of the paper is organized as follows. In section 2, we consider a relatively simple
case: the dividends are gained by the lender before redemption. In section 3, we assume that the
dividends are reinvested in the stock and will be returned to the borrower on redemption. We will
see that this reduces to a special case in section 2, and the resulting optimal strategy can be linked
to those presented in the subsequent two sections. Section 4 is devoted to the scenario that the
cash dividends are delivered to the borrower immediately, no matter whether the borrower redeems
the stock. It is worth pointing out that the pricing models in Section 2-4 involve one state variable
only and are then relatively easy to analyze. In section 5, we will take into consideration the most
challenging and interesting case: the accumulative cash dividends are delivered to the borrower on
redemption. The pricing model proves to be a two-dimensional parabolic variational inequality.
Section 6 discusses some extensions with conclusive remarks.

1All models can be trivially extended to the discrete dividend payment. On the other hand, the assumption of
continuous dividend payments is true if the collateralized security is foreign currency.
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2 Dividends gained by the lender before redemption

Assume that the dividends are gained by the lender before redemption. Let V1 = V1(S, t) be the
value of the stock loan at time t with stock price S. Then

V1(St, t) = sup
v∈T[t,T ]

Et

[
e−r(v−t)(Sv − Keγv)+

]
.

where Et is the risk neutral expectation conditionally on Ft and T[t,T ] denotes the set of all
{Fs}t6s6T -stopping times with values in [t, T ]. It turns out that V1 satisfies the following vari-
ational inequality [cf. Karatzas and Shreve (1998)]:

{
min

{
−L

r,δ
S V1, V1 −

(
S − Keγt

)}
= 0,

V1(S, T ) =
(
S − KeγT

)+
, (S, t) ∈ Q,

(2.1)

where Q ≡ (0,∞) × [0, T ), and

L
r,δ
S =

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r − δ) S

∂

∂S
− r.

Let us define the redemption region

E1 ≡ {(S, t) ∈ Q : V1(S, t) = S − Keγt}.

The following proposition characterizes the properties of E1.

Proposition 2.1 Assume that the dividends are gained by the lender before redemption.
i) If r ≥ γ and δ = 0, then E1 = ∅. This indicates that early redemption should never

happen. In this scenario the stock loan is equivalent to a European call option with strike price
KeγT , namely, V1(S, t) = CE(S, t; r, 0,KeγT ).

ii) If r ≥ γ and δ > 0, or r < γ, then there is an optimal redeeming boundary S∗
1(t) : [0, T ) →

(0,∞) such that
E1 = {(S, t) ∈ Q : S ≥ S∗

1(t)}.

In addition, e−γtS∗
1(t) is monotonically decreasing with t,

S∗
1(T ) ≡ lim

t→T−
S∗

1(t) =

{
eγT max

(
K, r−γ

δ
K

)
if r ≥ γ and δ > 0,

eγT K if r < γ.
(2.2)

Proof: By similarity reduction

f1(x, t) = e−γtV1(S, t), x = e−γtS,

we get {
min

{
−L

r,δ
x f1, f1 − (x − K)

}
= 0,

f1(x, T ) = (x − K)+ , (x, t) ∈ Q,
(2.3)

where r = r − γ. Then, f1(x, t) can be regarded as the value of an American call option with
riskless rate r that is likely to be non-positive. Hence, part i) is a well-known result when r > 0
and δ = 0.
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When r ≥ 0 and δ > 0, we know from (2.3) [cf. Jiang (2005)] that there is a decreasing
function x∗

1(t) : [0, T ) → (0,+∞), such that

{(x, t) ∈ Q : f1(x, t) = x − K} = {(x, t) ∈ Q : x ≥ x∗
1(t), t ∈ [0, T )} (2.4)

and

x∗
1(T ) ≡ lim

t→T−
x∗

1(t) = max

(
K,

r

δ
K

)
. (2.5)

Using a similar argument as in Jiang (2005), we are able to show that (2.4) and (2.5) are still true
when r < 0. Notice that max

(
K, r

δ
K

)
= K for r < 0, part ii) then follows.

Now we examine the asymptotic behavior of S∗
1(t) as the time to maturity goes to infinity.

Proposition 2.2 Assume r ≥ γ and δ > 0, or r < γ. Let S∗
1(t) be as given in part ii) of Proposition

2.1. Then
S∗

1,∞ ≡ lim
T→+∞

S∗
1(t) = eγtx∗

1,∞, (2.6)

where

x∗
1,∞ =

{ α+

α+−1K, if δ > 0, or δ = 0 and r < γ − 1
2σ2

+∞, if δ = 0 and γ − 1
2σ2 ≤ r < γ

(2.7)

and

α+ =
−

(
r − γ − δ − 1

2σ2
)

+

√(
r − γ − δ + 1

2σ2
)2

+ 2δσ2

σ2
. (2.8)

To prove the above proposition, we only need to consider a perpetual stock loan and S∗
1,∞

is the corresponding optimal redeeming boundary. This has been done by Xia and Zhou (2007)
in terms of a probabilistic approach. We would like to provide a simple PDE argument which is
placed in Appendix. It is worth pointing out that the explicit solution of x∗

1,∞ is nothing but the
optimal exercise boundary of a perpetual American call option when r ≥ γ and δ > 0.

3 Reinvested dividends returned to the borrower on redemption

Assume that the dividends are immediately re-invested in the stock and will be returned to the
borrower on redemption. The intrinsic value (i.e. the redemption payoff) of the stock loan at time
t becomes (

eδtSt − Keγt
)+

, t ∈ [0, T ].

Let V2 = V2(S, t) be the price function of the stock loan. Then

V2(St, t) = sup
v∈T[t,T ]

Et

[
e−r(v−t)(eδvSv − Keγv)+

]
. (3.1)

Denote V̂2(Ŝt, t) = V2(St, t), where

Ŝt ≡ eδtSt = S0 exp

{(
r −

σ2

2

)
t + σWt

}
.

4



Then we can rewrite (3.1) as

V̂2(Ŝt, t) = sup
v∈T[t,T ]

Et

[
e−r(v−t)(Ŝv − Keγv)+

]
, (3.2)

satisfying 



min
{
−L

r,0
bS

V̂2, V̂2 −
(
Ŝ − Keγt

)}
= 0,

V̂2(S, T ) =
(
Ŝ − KeγT

)+
, (Ŝ, t) ∈ Q.

(3.3)

As a result, the stock loan can be regarded as the one written on the non-dividend paying stock Ŝ,
which has been studied in Section 2.

For later use, we define the redemption region associated with V̂2 as

Ê2 =
{(

Ŝ, t
)
∈ Q : V̂2(Ŝ, t) = Ŝ − Keγt

}
. (3.4)

Later we will see that Ê2 has a close link with the redemption regions addressed in subsequence
two sections. By Proposition 2.1, Ê2 = ∅ when r ≥ γ, and if r < γ, then there is a monotonically
decreasing function Ŝ∗

2(t) : [0, T ) → (0,∞) such that

Ê2 =
{(

Ŝ, t
)
∈ Q : Ŝ ≥ Ŝ∗

2(t), t ∈ [0, T )
}

, (3.5)

Ŝ∗
2(T ) ≡ limt→T− Ŝ∗

2(t) = K, and

Ŝ∗
2,∞ ≡ lim

T→+∞
Ŝ∗

2(t) is finite if r < γ −
1

2
σ2, and infinite if γ −

1

2
σ2 ≤ r < γ. (3.6)

4 Dividends always delivered to the borrower

Assume that the dividends are always delivered to the borrower during the lifetime of the stock
loan. The intrinsic value of the stock loan becomes

(
St − Keγt

)+
+

∫ t

0
δer(t−u)Sudu, t ∈ [0, T ]. (4.1)

By introducing a path-dependent variable

It =

∫ t

0
δer(t−u)Sudu, (4.2)

the value of the stock loan can be expressed as

V3(St, It, t) = sup
v∈T[t,T ]

Et

(
e−r(v−t)

[
(Sv − Keγv)+ + Iv

])

= It + sup
v∈T[t,T ]

Et

(
e−r(v−t)

[
(Sv − Keγv)+

]
+

∫ v

t

δe−r(u−t)Sudu

)
.
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Observe that V3(St, It, t)−It is independent of It. Then we can write H(S, t) ≡ V3(S, I, t)−I,

which satisfies {
min

{
−L

r,δ
S H − δS,H −

(
S − Keγt

)}
= 0,

H(S, T ) =
(
S − KeγT

)+
, (S, t) ∈ Q.

(4.3)

Here H(S, t) can be regarded as the value of the stock loan excluding the accumulative dividends.
Compared with (2.1) in Section 2, (4.3) has a source term δS due to the dividends delivered.

Now we define the redemption region

E3 ≡ {(S, t) ∈ Q : H(S, t) = S − Keγt}.

We proceed with a lemma.

Lemma 4.1 Let V̂2(·, ·) and Ê2 be as given in (3.2) and (3.4) respectively. Then

V̂2(S, t) ≤ H(S, t) and E3 ⊂ Ê2.

Proof: First we prove V̂2(S, t) ≤ H(S, t). Compared with (3.3), (4.3) can be rewritten as

{
min

{
−L

r,0
S H − δS

(
1 − ∂H

∂S

)
,H −

(
S − Keγt

)}
= 0,

H(S, T ) =
(
S − KeγT

)+
, (S, t) ∈ Q.

So, by the maximum principle [cf. Friedman (1988)], it suffices to show ∂H
∂S

≤ 1 or

∂

∂S
(H − S) ≤ 0. (4.4)

Notice {
min

{
−L

r,δ
S (H − S) , (H − S) + Keγt

}
= 0,

H(S, T ) − S = max(−S,−KeγT ), (S, t) ∈ Q.

Again applying the maximum principle gives (4.4), then V̂2(S, t) ≤ H(S, t) follows.
Now let us show E3 ⊂ Ê2. For any (S, t) ∈ E3, we have

S − Keγt ≤ V̂2(S, t) ≤ H(S, t) = S − Keγt,

which implies V̂2(S, t) = S − Keγt, i.e., (S, t) ∈ Ê2. This completes the proof.

The following proposition characterizes the shape of E3.

Proposition 4.2 Assume δ > 0 and the dividends are always delivered to the borrower during the
lifetime of the stock loan.

i) If r ≥ γ, then E3 = ∅. That is, early redemption should never happen. In addition, we have

H(S, t) = CE(S, t; r, δ,KeγT ) + (1 − e−δ(T−t))S, (4.5)

ii) If r < γ, then there is an optimal redeeming boundary S∗
3(t) : [0, T ) → (0,+∞) such that

E3 = {(S, t) ∈ Q : S ≥ S∗
3(t)}.
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In addition, e−γtS∗
3(t) is monotonically decreasing in t,

S∗
3(T ) ≡ lim

t→T−
S∗

3(t) = eγT K,

and
S∗

3(t) ≥ Ŝ∗
2(t), (4.6)

where Ŝ∗
2(t) is as given in (3.5).

Proof: First, by an arbitrage argument, it is not hard to get

H(S, t) ≥ CE(S, t; r, δ,KeγT ) + (1 − e−δ(T−t))S, (4.7)

where the right hand side is the price of the corresponding stock loan without early redemption
right. Since CE(S, t; r, δ,KeγT ) > Se−δ(T−t) − KeγT e−r(T−t) [see, for example, Hull (2003)], it
follows

H(S, t) ≥ S − KeγT e−r(T−t)

> S − Keγt, for r ≥ γ and t < T,

which implies part i).
To show part ii), as before, we make a transformation: f3(x, t) = e−γtH(S, t), x = e−γtS. It

follows {
min

{
−L

r,δ
x f3 − δx, f3 − (x − K)

}
= 0,

f3(x, T ) = (x − K)+ , (x, t) ∈ Q.
(4.8)

By (4.4), we have ∂
∂x

(f3 − x) ≤ 0, from which we infer that there is a single-value function x∗
3(t) :

[0, T ) → (0,+∞) ∪ +∞ such that

{(x, t) ∈ Q : f3(x, t) = x − K} = {(x, t) ∈ Q : x ≥ x∗
3(t)}.

Since
−Lr,δ

x (x − K) − δx = −rK > 0, for r < γ,

using a similar analysis as in Brezis and Friedman (1976) or Dai et al. (2004), we can deduce
f3(x, t) − (x −K) has a compact support for all t. This indicates x∗(t) < +∞ for all t. So, we can
take S∗

3(t) = eγtx∗
3(t). (4.6) is a corollary of Lemma 4.1.

Apparently
∂f3

∂t
≤ 0, (4.9)

which yields the monotonicity of x∗
3(t). It remains to show x∗

3(T ) ≡ limt→T− x∗
3(t) = K. The

argument is standard and is stated as follows. Obviously x∗
3(t) ≥ K. If x∗

3(T ) > K, we would have
for x̃ ∈ (K,x∗

3(T )) ,

∂f3

∂t

∣∣∣∣
(ex,T )

=

[
−

1

2
σ2x2 ∂2

∂x2
− (r − δ) x

∂

∂x
+ r

]
(x − K) − δx

∣∣∣∣
x=ex

= −rK > 0,

which is in contradiction with (4.9). This completes the proof.
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Now we analyze the asymptotic behavior of S∗
3(t) as the time to maturity goes to infinity.

By virtue of (3.6) and (4.6), we immediately obtain that S∗
3(t) → +∞ as T → +∞ in the case of

γ − 1
2σ2 ≤ r < γ. We will show that it is also true for r < γ − σ2

2 . Again, we need to study the
corresponding perpetual stock loan. Denote H∞(S) = limT→+∞ H(S, t). We assert

H∞(S) = S. (4.10)

Indeed, from (4.7), we have
H(S, t) ≥ S − Se−δ(T−t),

which yields H∞(S) ≥ S by letting T → ∞. The converse inequality is apparent. So, we get (4.10),
which implies that one should never redeem the perpetual stock loan. We summarize the above
result as follows:

Proposition 4.3 Assume δ > 0 and the dividends are always delivered to the borrower during the
lifetime of the stock loan. Then the perpetual stock loan is equivalent to the stock, i.e., H∞(S) ≡
limT→+∞ H(S, t) = S. In addition,

S∗
3,∞ ≡ lim

T→+∞
S∗

3(t) = +∞, for r < γ,

where S∗
3(t) is the optimal redeeming boundary in part ii) of Proposition 4.2.

5 Dividends returned to the borrower on redemption

In this section, we assume that the accumulative dividends will be returned to the borrower on
redemption. In contrast to (4.1), the intrinsic value of the stock loan is now

(
St − Keγt +

∫ t

0
δer(t−u)Sudu

)+

, t ∈ [0, T ].

Again we introduce the path-dependent variable It as given in (4.2), then the value of the
stock loan can be expressed as

V4(St, It, t) = sup
v∈T[t,T ]

Et

[
e−r(v−t)(Sv − Keγv + Iv)

+
]
.

Note that
dIt = (δSt + rIt) dt.

It follows that V4(S, I, t) satisfies

{
min

{
−L

r,δ
S V4 − (δS + rI) ∂V4

∂I
, V4 −

(
S + I − Keγt

)}
= 0,

V4(S, I, T ) =
(
S + I − KeγT

)+
, (S, I, t) ∈ Ω,

(5.1)

where Ω = (0,+∞) × (0,+∞) × [0, T ). (5.1) is analogous to the pricing model for Asian options
and the existence of (strong) solution can be proved using a similar argument as in Pascucci (2008).
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We emphasize that (5.1) is indeed a two-dimensional time-dependent problem and does not permit
dimension reduction.

As before, we define the redemption region by

E4 =
{
(S, I, t) ∈ Ω : V4(S, I, t) = S + I − Keγt

}
.

Apparently V4(S, I, t) ≤ V3(S, I, t) = H(S, t) + I, from which we immediately get

{(S, I, t) ∈ Ω : (S, t) ∈ E3} ⊂ E4.

The following lemma presents a stronger result which plays an important role in analysis of the
shape of E4:

Lemma 5.1 Let V̂2(·, ·) and Ê2 be as defined in (3.2) and (3.4) respectively. Then we have

V4(S, I, t) ≤ V̂2(S + I, t) (5.2)

and thus {
(S, I, t) ∈ Ω : (S + I, t) ∈ Ê2

}
⊂ E4. (5.3)

Proof: We only need to prove V4(S, I, t) ≤ V̂2(S + I, t). Let us adopt y ≡ S + I as a new state
variable in place of S, and denote

U(y, I, t) = V4(S, I, t),

which satisfies
{

min
{
−LU,U −

(
y − Keγt

)}
= 0,

U(y, I, T ) =
(
y − KeγT

)+
, (y, I, t) ∈ Ωy,

where Ωy ≡ {(y, I, t) : 0 < I < y < +∞, 0 ≤ t < T},

L =
∂

∂t
+ (δy + (r − δ) I)

∂

∂I
+

1

2
σ2 (y − I)2

∂2

∂y2
+ ry

∂

∂y
− r.

Note that (3.3) can be rewritten as

{
min

{
−LV̂2 −

1
2σ2

[
y2 − (y − I)2

]
∂2 bV2
∂y2 , V̂2 −

(
y − Keγt

)}
= 0,

V̂2(y, T ) =
(
y − KeγT

)+
, (y, I, t) ∈ Ωy.

Due to the convexity of
(
y − Keγt

)+
in y, we can deduce ∂2 bV2

∂y2 ≥ 0, then

1

2
σ2

[
y2 − (y − I)2

] ∂2V̂2

∂y2
≥ 0, for any y > I > 0, t ∈ [0, T ).

Applying the maximum principle then gives

U(y, I, t) ≤ V̂2(y, t),
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which is desired.

We would like to give a financial interpretation to (5.2). V̂2(·, ·) and V4(·, ·, ·) represent the
prices for the stock loans respectively with reinvested dividends and with cash dividends, both of
which will be returned to the borrowers on redemption. In the risk-neutral world, the return rate of
reinvested dividends is the same as that of cash dividends. Since we can regard the combination of
the dividends and the stock as an imaginary underlying asset (i.e. y), the cash dividends essentially
decrease the volatility of the underlying asset, which leads to a lower price of the corresponding
stock loan.

5.1 The case of r ≥ γ

Now let us investigate the case of r ≥ γ.

Proposition 5.2 Assume δ > 0 and the dividends are gained by the borrower on redemption.
i) If r > γ, then E3 = ∅. That is, early redemption should never happen.
ii) If r = γ, then it is optimal to hold the option before expiry.

Proof: We adopt an arbitrage argument. If the borrower redeems the loan at time t < T, then he
or she will get

one stock St + cash It − Keγt,

which amounts to at expiry

ST + IT − Keγter(T−t) < ST + IT − KeγT (5.4)

≤
(
ST + IT − KeγT

)+
,

This indicates that early redemption is not optimal. Part i) then follows.
To prove part ii), the argument is similar and the unique difference lies in that “<” in (5.4)

should be replaced by “= ”.

It is worth distinguishing two statements of part i) and ii) in Proposition 5.2. For the latter
case, early redemption may be optimal on some occasions. For example, when I ≥ Kert and r = γ,

it is not hard to show that V4(S, I, t) = S + I − Kert, which implies that the redemption at any
time is optimal.

Owing to Proposition 5.2, (5.1) is reduced to a linear problem:
{

−L
r,δ
S V4 − (δS + rI) ∂V4

∂I
= 0,

V4(S, I, T ) =
(
S + I − KeγT

)+
, (S, I, t) ∈ Ω.

5.2 The case of r < γ

By Lemma 5.1 and the properties of Ê2, we know that E4 is always non-empty when r < γ.

Furthermore, we have

Proposition 5.3 Assume δ > 0 and the dividends are gained by the borrower on redemption. If
r < γ, then {(S, I, t) ∈ Ω : I ≥ Keγt} ⊂ E4.

10



Proof: Given (St, It, t) ∈ Ω with It ≥ Keγt, we claim that the loan should be redeemed immediately
at time t. Indeed, if it is redeemed at time t, then we have a payoff: stock St+ non-negative cash
It − Keγt, which becomes at a later time t′ ∈ (t, T ]

stock St′ + cash It′ − Keγter(t′−t) >
(
St′ + It′ − Keγt′

)+
if r < γ.

This implies the conclusion.

We stress that Proposition 5.2 and Lemma 5.3 only rely on the no-arbitrage principle, and
therefore are independent of the geometric Brownian motion assumption of stock price. Such a
remark also applies to some of previous results.

Denote Ω̂ = {(S, I, t) ∈ Ω : I < Keγt}. Due to (5.3), we only need to study

Ê4 ≡ E4 ∩ Ω̂.

Proposition 5.4 Assume that the dividends are gained by the borrower on redemption and r < γ.

Then, there is an optimal redeeming boundary S∗
4(I, t) : (0,Keγt) × [0, T ) → (0,∞) such that

Ê4 = {(S, I, t) ∈ Ω̂ : S ≥ S∗
4(I, t)}.

Moreover, e−γtS∗
4(I, t) is monotonically decreasing in I and t,

S∗
4(I, T ) ≡ lim

t→T
S∗

4(I, t) = eγT K − I, for all I,

and
S∗

4(I, t) ≤ Ŝ∗
2(t) − I, for all t, (5.5)

where Ŝ∗
2(t) is as given in (3.5). In particular, S∗

4(0, t) ≡ limI→0 S∗
4(I, t) ≤ Ŝ∗

2(t), for all t.

Proof: Since (S + I − Keγt)+ is convex in S, we infer that V4(S, I, t) is also convex in S, namely

V4(aS1 + (1 − a)S2, I, t) ≤ aV4(S1, I, t) + (1 − a) V4 (S2, I, t) .

which implies the convexity of Ê4 in S. On other hand, due to Lemma 5.1, we have (S, I, t) ∈ Ê4

for S > Ŝ∗
2(t) − I. This indicates the existence of S∗

4(I, t) and S∗
4(I, t) ≤ Ŝ∗

2(t) − I.

Using the similarity reduction V4(S, I, t) = e−γtf4(x,A, t), x = e−γtS and A = e−γtI, we get
{

min
{
−L

r,δ
x f4 − (δx + rA) ∂f4

∂A
, f4 − (x + A − K)

}
= 0,

f4(x,A, T ) = (x + A − K)+ , (x,A, t) ∈ Ω.
(5.6)

Let x∗
4(A, t) ≡ e−γtS∗

4(I, t). It suffices to show that x∗
4(A, t) is monotonically decreasing in A and

t, and
x∗

4(A,T ) ≡ lim
t→T

x∗
4(A, t) = K − A, for all A. (5.7)

By the maximum principle, it is not hard to get

∂f4

∂t
≤ 0,

and
∂

∂A
[f4 − (x + A − K)] =

∂f4

∂A
− 1 ≤ 0,

which implies the monotonicity of x∗
4(A, t) in A and t. Using a similar argument as in Proposition

4.2, we are able to obtain (5.7).
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6 Numerical examples

In this section we present numerical results to verify our theoretical results. Let us first look at
the pricing models in Section 2-4 which belong to standard one-dimensional parabolic variational
inequalities. They can be numerically solved using many sophisticated numerical methods such
as the projected SOR [cf. Wilmott et al. (1993)], the recursive integration method [cf. Huang
et al. (1996)] and the penalty approach [cf. Forsyth and Vetzal (2002)]. We simply make use of
the binomial tree method [cf. Hull (2003)] which is easy to implement. The default data used are
r − γ = −0.04, δ = 0.03, γ = 0.1 and K = 0.7. Figure 1 and Figure 2 plot the optimal redeeming
boundaries against the time to maturity τ = T − t with σ = 0.4 and with σ = 0.15, respectively.
Here x∗

1 (·) = e−γtS∗
1(t), x∗

2 (·) = e−γtŜ∗
2(t) and x∗

3 (·) = e−γtS∗
3(t). Observe that x∗

1 ≤ x∗
2 ≤ x∗

3,

and these boundaries are monotonically increasing in τ (so, decreasing in t). Since r < γ, we can
see that all boundaries go to x = K ≡ 0.7 at τ → 0. Theoretical results indicate that x∗

1 (·) has
an asymptotic line (x = 1.97 for Figure 1 and x = 0.82 for Figure 2) while x∗

3 (·) does not as τ

→ +∞, which can be seen from the figures. In addition, x∗
2 (·) has an asymptotic line (x = 0.97)

as τ → +∞ in Figure 2 due to r < γ − σ2

2 , whereas not in Figure 1 (γ − σ2

2 ≤ r < γ). This is also
consistent with our theoretical analysis.
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τ≡ T−t 

Figure 1: Optimal redeeming boundaries (Parameters: r − γ = −0.04, δ = 0.03, σ = 0.4 and
K = 0.7.)
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Figure 2: Optimal redeeming boundaries (Parameters: r − γ = 0.06, δ = 0.03, σ = 0.15 and
K = 0.7.)

Now let us move on to the case in Section 5, where the pricing model, resembling that of American-
style Asian options, is a degenerate parabolic variational inequality. We then employ the forward
shooting grid method [cf. Barraquand and Pudet (1996)], which is widely used to deal with this
type of degenerate problems. Figure 3 shows the optimal redeeming boundary x∗

4(·, ·) in x-A-τ
plane, where x = e−γtS, A = e−γtI and τ = T − t. The data used are r − γ = −0.04, δ = 0.03,
σ = 0.4 and K = 0.7. Time snapshots of the boundary are depicted in Figure 4. It can be seen
that the boundary, as a function of A and τ, is decreasing in A, increasing in τ (i.e. decreasing in
t). At maturity the boundary is a straight line x+ A = K ≡ 0.7. Nevertheless, theoretical analysis
indicates that x∗

4(·, τ) ≤ x∗
2(τ). Figure 1 shows that approximately x∗

2 equals 1.35 when τ = 1, and
1.9 when τ = 3. It can be observed from Figure 4 that x∗

4 is indeed bounded from above by x∗
2 (·).

All these verify Proposition 5.4.

Figure 3: Optimal redeeming boundary x∗
4(A, τ) ≡ e−γtS∗

4(I, t) (Parameters: r − γ = −0.04,
δ = 0.03, σ = 0.4 and K = 0.7)
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Figure 4: Time snapshots of x∗
4(·, ·) (Parameters: r − γ = −0.04, δ = 0.03, σ = 0.4 and K = 0.7)

7 Conclusion and extensions

In the Black-Schole framework, we formulate the pricing of stock loans as an optimal stopping
problem, or equivalently, a variational inequality. Since closed-form price formulas are generally
not available, we provide an analytic approach to analyze the optimal redeeming strategy. It turns
out that the way of dividends distribution significantly alters the pricing model and the optimal
redeeming strategy. Numerical results are presented as well.

To conclude the paper, we briefly discuss some possible extensions of the pricing models.
Without loss of generality, we assume that the dividends are gained by the lender and let V = V (S, t)
be the price function of the stock loan.

7.1 Amortized loan

Assume that the loan is amortized. Let C be the amortized rate defined as follows:

∫ T

0
Ceγ(T−t)dt = KeγT ,

which yields C = γ
1−e−γT K. At time t, the amount to be repaid is

Keγt −

∫ t

0
Ceγ(t−u)du =

C

γ

(
1 − e−γ(T−t)

)
.

So, the early redemption payoff is St−
C
γ

(
1 − e−γ(T−t)

)
, t ∈ [0, T ). Then the pricing model becomes

{
min

{
−L

r,δ
S V + C, V −

[
S − C

γ

(
1 − e−γ(T−t)

)]}
= 0,

V (S, T ) = S, (S, t) ∈ Q.
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7.2 Withdrawal feature

The withdrawal feature aims to protect the lender from the extremely downside risk of the collat-
eralized stock. It allows the lender to withdrawal the loan at any time by requesting the borrower
to redeem the stock with the price L, where L < K. This implies

V (S, t) ≤ L.

Like the pricing of game options, the model is described as a double obstacle problem [cf. Kiefr
(2000), Dai and Kwok (2005)] :

{
max

{
min

{
−L

r,δ
S V, V −

(
S − Keγt

)}
, V − L

}
= 0,

V (S, T ) = min
{
(S − KeγT )+, L

}
, (S, t) ∈ Q.

7.3 Renewal feature

If we assume that the borrower has right to renew the loan, this will lead to multiple stopping
problems. See, for example, Carmona and Touzi (2003), IBanez (2004), Meinshausen and Hambly
(2004) and Dai and Kwok (2008). From the point of view of PDEs, the pricing model is described
by a series of variational inequalities [cf. Dai and Kwok (2008)]. We refer interested readers to the
references.
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Appendix: The proof of Proposition 2.2

Applying the maximum principle, it is easy to see that the solution to problem (2.3) possesses
the following properties:

0 ≤ f(x, t) ≤ 1 and 0 ≤
∂f

∂x
≤ 1. (A-1)

Denote f∞(x) = lim(T−t)→+∞ f(x, t). Then f∞(x) satisfies the stationary counterpart of
(2.3), which is equivalent to a free boundary problem:

−
1

2
σ2x2 ∂2f∞

∂x2
− (r − δ) x

∂f∞

∂x
+ rf∞ = 0, x ≤ x∗

∞ (A-2)

f∞(x∗
∞) = x − K, and f

′

∞(x∗
∞) = 1. (A-3)

Here x∗
∞ is the free boundary to be determined. Due to (A-1), we are only concerned with the

solution to (A-2)-(A-3) under the restrictions

0 ≤ f∞(x) ≤ x and 0 ≤ f
′

∞(x) ≤ 1. (A-4)

As is well-known, the general solution to equation (A-2) is

f∞(x) = C1x
α+ + C2x

α− ,

where C1 and C2 are to be determined, and α+ (as given in (2.8)) and α− = 1− 2(r−γ−δ)
σ2 −α+ are

two roots of the algebraic equation σ2

2 α2 + (r − δ − σ2

2 )α − r = 0. Let us first assume δ > 0. It is
easy to check that α− < 1 < α+, which yields C2 = 0 or

f∞(x) = C1x
α+ . (A-5)

Otherwise we would have f
′

∞(x) = C1α1x
α+−1 + C2α2x

α−−1 → ∞ as x → 0, which contradicts
(A-4).

From (A-5), we can make use of (A-3) to get

C1 =
1

α+

(
α+ − 1

α+K

)α1−1

and x∗
∞ =

α+

α+ − 1
K (A-6)

for δ > 0. To deal with the case of δ = 0, we let δ go to 0 in (A-6). It is easy to see that if r+ 1
2σ2 ≥ 0

and δ → 0, then α+ → 1, which yields x∗
∞ = +∞. If r + 1

2σ2 < 0 and δ → 0, then α+ > 1 and the
expression of x∗

∞ is the same as in (A-6). The proof is complete.
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