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Abstract

We classify all the pairs of a commutative associative algebra with an identity element and

its finite-dimensional commutative locally-finite derivation subalgebra such that the commuta-

tive associative algebra is derivation-simple with respect to the derivation subalgebra over an

algebraically closed field with characteristic 0. Such pairs are the fundamental ingredients for

constructing generalized simple Lie algebras of Cartan type. Moreover, we determine the iso-

morphic classes of the generalized simple Lie algebras of Witt Type. The structure space of

these algebras is given explicitly.

1 Introduction

Simple Lie algebras of Cartan type are important geometrically-natural infinite-dimensional

Lie algebras in mathematics. The fundamental ingredients of constructing Lie algebras

of Cartan type are the pairs of a polynomial algebra and the derivation subalgebra of the

operators of taking partial derivatives. The abstract definition of generalized Lie alge-

bras of Cartan type by derivations appeared in Kac’s work [Ka1]. However, it is still a

question of how to construct new explicit generalized simple Lie algebras of Cartan type.

Kawamoto [K] constructed new generalized simple Lie algebras of Witt type by the pairs

of the group algebra of an additive subgroup of Fn and the derivation subalgebra of the

grading operators, where n is a positive integer and F is a field with characteristic 0. One

can view the operators of taking partial derivatives of the polynomial algebra in several

11991 Mathematical Subject Classification. Primary 17B 20.
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variables as down-grading operators. Using the pairs of the tensor algebra of the group

algebra of the direct sum of finite number of additive subgroups of F with the polynomial

algebra in several variables, and the derivation subalgebra of the grading operators and

down-grading operators, Osborn [O] constructed new generalized simple Lie algebras of

Cartan type. In [DZ1], the authors generalized Kawamoto’s work by picking out certain

subalgebras. Their construction is also equivalent to generalizing Osborn’s Lie algebras

of Witt type by adding certain diagonal elements of Fn into the group.

Passman [P] proved that the generalized simple Lie algebras of Witt type constructed

from the pairs of a commutative associative algebra with an identity element and its

commutative derivation subalgebra are simple Lie algebras if and only if the commutative

associative algebra is derivation-simple with respect to the derivation subalgebra. In

[X1], the second author of this paper constructed new explicit generalized simple Lie

algebras of Cartan type, based on the pairs of the tensor algebra of the group algebra

of an additive subgroup of Fn with the polynomial algebra in several variables and the

derivation subalgebra of the mixtures of the grading and down-grading operators. The

algebras in [X1] are the most general known explicit examples of generalized simple Lie

algebras of Cartan type. A natural question is how far it is from the generalized simple Lie

algebras of Witt type in [X1] to those abstractly determined by Passman [P]. In this paper,

we shall show that the generalized simple Lie algebras of Witt type determined in [P] are

essentially the same as those explicitly constructed in [X1] under certain locally-finite

conditions. It seems to us that further constructing new generalized simple Lie algebras

of Cartan type that are essentially different from those in [X1] and some extensions in

Chapter 6 of [X2] is extremely difficult. Of course, one can get some new generalized simple

Lie algebras of Cartan type through replacing the commutative associative algebra used in

[X1] by a certain subalgebra of its topological completion. However, such a construction

is not essential from algebraic point of view.

Zhao determined the isomorphic classes of the generalized simple Lie algebras of Witt

type found in [DZ1]. In this paper, we shall determine the isomorphic classes of the

generalized simple Lie algebras of Witt type constructed in [X1], which are more general

than those in [DZ1]. The structure space of the generalized simple Lie algebras of Witt

type constructed in [X1] will be given explicitly.

Below, we shall give a more detailed description of our results. Throughout this paper,

F denotes an algebraically closed field with characteristic 0. All the vector spaces (alge-

bras) without specifying field are assumed over F. We always assume that an associative

algebra has an identity element. Moreover, we denote by Z the ring of integers and by N
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the set of nonnegative integers.

Let A be a commutative associative algebra. A derivation d of A is a linear transfor-

mation on A such that

d(uv) = d(u)v + ud(v) for u, v ∈ A. (1.1)

The space DerA of derivations forms a Lie algebra with respect to the operation:

[d1, d2] = d1d2 − d2d1 for d1, d2 ∈ DerA. (1.2)

For u ∈ A and d ∈ DerA, we define

(ud)(v) = ud(v) for v ∈ A. (1.3)

Since A is a commutative associative algebra, ud is also a derivation. In particular, DerA

is an A-module.

A linear transformation T on a vector space V is called locally-finite if

dim span {Tm(v) | m ∈ N} <∞ (1.4)

for any v ∈ V . A set of linear transformations is called locally-finite if all its elements are

locally-finite.

For a commutative associative algebra A and a derivation subspace D, A is called

derivation-simple with respect to D if there does not exist a subspace I of A such that

I 6= {0},A and

uI, d(I) ⊂ I for u ∈ A, d ∈ D. (1.5)

Moreover, the derivation subspace D is a commutative subalgebra if

d1d2 = d2d1 for d1, d2 ∈ DerA. (1.6)

In this paper, we shall first give in Section 2 a complete classification of the pairs of

a commutative associative algebra A and a finite-dimensional locally-finite commutative

derivation subalgebra D such that A is derivation-simple with respect to D. For such a

pair (A,D) with D 6= {0}, Passman’s Theorem [P] tells us that

W = AD (1.7)

forms a simple Lie algebra, which is called a generalized Lie algebra of Witt type. In

Section 3, we shall determine the isomorphic classes of the generalized simple Lie algebras

of the form (1.7). The structure space will be presented explicitly. From purely Lie

algebra structure point of view, it is enough to consider the Lie algebras of the form (1.7)

with
⋂

d∈D

kerd = F. (1.8)
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2 Derivation-Simple Algebra

In this section, we shall classify the pairs of a commutative associative algebra A and

a finite-dimensional locally-finite commutative derivation subalgebra D such that A is

derivation-simple with respect to D.

We start with constructions of such pairs. Let k1 and k2 be two nonnegative integers

such that

k = k1 + k2 > 0. (2.1)

Let Γ be an additive subgroup of Fk and let F1 be an extension field of F. Suppose that

f(·, ·) : Γ× Γ→ F× = F \ {0} is a map such that

f(α, β)f(α + β, γ) = f(α, β + γ)f(β, γ), f(α, β) = f(β, α), f(α, 0) = 1 (2.2)

for α, β, γ ∈ Γ. Denote by F1[t1, t2, ..., tk1
] the algebra of polynomials in k1 variables over

F1. Let A(k1, k2; Γ, F1, f) be a free F1[t1, t2, ..., tk1
]-module with the basis

{xα | α ∈ Γ}. (2.3)

Viewing A(k1, k2; Γ, F1, f) as a vector space over F, we define an algebraic operation “·”

on A(k1, k2; Γ, F1, f) by

(ζxα) · (ηxβ) = f(α, β)ζηxα+β for ζ, η ∈ F1[t1, t2, ..., tk1
], α, β ∈ Γ. (2.4)

Then (A(k1, k2; Γ, F1, f), ·) forms a commutative associative algebra over F with x0 as the

identity element, which is denoted as 1 for convenience. We refer Subsection 5.4.2 of [X2]

for the details of this algebra. When the context is clear, we shall omit the notion “·” in

any associative algebra product.

We define the linear transformations

{∂t1 , ..., ∂tk1
, ∂∗

1 , ..., ∂
∗

k} (2.5)

on A(k1, k2; Γ, F1, f) by

∂ti(ζxα) = ∂ti(ζ)xα, ∂∗

j (ζxα) = αjζxα (2.6)

for ζ ∈ F1[t1, t2, ..., tk1
], α = (α1, ..., αk) ∈ Γ, where on F1[t1, t2, ..., tk1

], ∂ti are the opera-

tors of taking partial derivative with respect to ti over F1. Then {∂t1 , ..., ∂tk1
, ∂∗

1 , ..., ∂
∗
k} are

mutually commutative derivations of A(k1, k2; Γ, F1, f). The derivations {∂t1 , ..., ∂tk1
} are

called down-grading operators and {∂∗
1 , ..., ∂

∗
k} are called grading operators of the algebra

A(k1, k2; Γ, F1, f). Given m, n ∈ Z with m < n, we shall use the following notion

m, n = {m, m + 1, m + 2, ..., n} (2.7)
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throughout this paper. We also treat m, n = ∅ when m > n.

Choose

{∂̄k1+1, ..., ∂̄k} ⊂
k1

∑

j=1

F1∂tj (2.8)

(cf. (1.3)). We set

∂i = ∂∗
i + ∂ti , ∂k1+j = ∂∗

k1+j + ∂̄j for i ∈ 1, k1, j ∈ 1, k2. (2.9)

Then {∂i | i ∈ 1, k} is a set of derivations. Set

D =
k

∑

i=1

F∂i. (2.10)

Note that D is a finite-dimensional locally-finite commutative derivation subalgebra.

Theorem 2.1. Let A be a commutative associative algebra and let D be a finite-

dimensional locally-finite commutative derivation subalgebra. The algebra A is derivation-

simple with respect to D if and only if the algebra A is isomorphic to the algebra of the

form A(k1, k2; Γ, F1, f) and the derivation subalgebra D of the form (2.10).

Proof. Let us first prove that the algebra A(k1, k2; Γ, F1, f) is derivation-simple with

respect to the derivation subalgebra D in (2.10). Let I be a nonzero D-invariant ideal of

A(k1, k2; Γ, F1, f). For any α = (α1, ..., αk) ∈ Γ, we define

Āα = F1[t1, t2, ..., tk1
]xα. (2.11)

Then

Āα = {u ∈ A(k1, k2; Γ, F1, f) | (∂i − αi)
m(u) = 0 for some m ∈ N; i ∈ 1, k} (2.12)

and

A(k1, k2; Γ, F1, f) =
⊕

α∈Γ

Āα. (2.13)

Thus we have

I =
⊕

α∈Γ

Iα, Iα = Āα

⋂

I. (2.14)

If Iβ 6= {0} for some β ∈ Γ, then {0} 6= x−β(Iβ) ⊂ I0. Thus we always have I0 6= {0}.

Since

∂i|I0
= ∂ti |I0

for j ∈ 1, k1 (2.15)

by (2.9), we have 1 ∈ I. Hence A(k1, k2; Γ, F1, f) · 1 ⊂ I. So I = A(k1, k2; Γ, F1, f). That

is, A(k1, k2; Γ, F1, f) is derivation-simple with respect to D in (2.10).
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Next we assume that A is a commutative associative algebra and D is a finite-

dimensional locally-finite commutative derivation subalgebra such that A is derivation-

simple with respect to D. Denote by D∗ the linear functions from D to F, which forms

a vector space with respect to the addition and scalar multiplication of functions. Since

F is algebraically closed and D is finite-dimensional, commutative and locally-finite, we

have

A =
⊕

α∈D∗

Aα, Aα = {u ∈ A | (d− α(d))m(u) = 0 for d ∈ D and some m ∈ N}. (2.16)

Denote

Γ = {α | Aα 6= {0}}. (2.17)

For any α ∈ D∗ and n ∈ N, we define

A(n)
α = {u ∈ A | (d− α(d))n+1(u) = 0 for d ∈ D}. (2.18)

Then

Aα =

∞
⋃

n=0

A(n)
α (2.19)

and

Aα = {0} ⇐⇒ A(0)
α = {0}. (2.20)

We call a nonzero element in A
(0)
α a root vector.

For any root vector u, Au is a D-invariant ideal of A. Thus Au = A. In particular,

vu = 1A for some v ∈ A. So any root vector is always invertible. For u ∈ A
(0)
α with α ∈ Γ

and d ∈ D, we have

0 = d(1) = d(uu−1) = d(u)u−1+ud(u−1) = α(d)uu−1+ud(u−1) = α(d)+ud(u−1), (2.21)

which implies

d(u−1) = ud(u−1)u−1 = −α(d)u−1. (2.22)

Hence −α ∈ Γ. By (1.1), we have

A(0)
α · A

(0)
β ⊂ A

(0)
α+β for α, β ∈ Γ. (2.23)

Expression (2.23) and the invertibility of root vectors implies

A(0)
α · A

(0)
β = A

(0)
α+β for α, β ∈ Γ. (2.24)

In particular, we obtain

α + β ∈ Γ for α, β ∈ Γ. (2.25)
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Thus Γ is an additive subgroup of D∗.

Set

F1 = A
(0)
0 . (2.26)

Then F1 is an extension field of F by the invertibility of root vectors and (2.24). Suppose

A0 6= F1. Note that for u ∈ A
(m)
α and v ∈ A

(n)
β , we have

(d−(α+β)(d))m+n+1(uv) =

m+n+1
∑

i=0

(m+n+1
i )(d−α(d))i(u)(d−β(d))m+n+1−i(v) = 0, (2.27)

that is, uv ∈ A
(m+n)
α+β . So

A(m)
α · A

(n)
β ⊂ A

(m+n)
α+β for α, β ∈ Γ, m, n ∈ N. (2.28)

In particular,

F1A
(m)
α = A(m)

α for α ∈ Γ, m ∈ N. (2.29)

Hence each A
(m)
α is a vector space over F1.

For any v ∈ A
(1)
0 , D(v) ⊂ F1 and

D(v) = {0} ⇐⇒ v ∈ F1. (2.30)

Set

H = F1D (2.31)

(cf. (1.3)). Expression (2.30) implies that A
(1)
0 /F1 is isomorphic to a subspace of the

space HomF1
(H, F1) over F1. By linear algebra, there exist subsets

{∂1, ..., ∂k1
} ⊂ D, {t1, t2, ..., tk1

} ⊂ A
(1)
0 (2.32)

such that

A
(1)
0 = F1 +

k1
∑

i=1

F1ti, ∂i(tj) = δi,j for i, j ∈ 1, k1. (2.33)

We write

H1 =

k1
∑

i=1

F1∂i, H2 = {d ∈ H | d(A
(1)
0 ) = {0}}. (2.34)

Then we have

H = H1 ⊕H2. (2.35)

Set

Ā0 =
∑

ni∈N;i∈1,k1

F1t
n1

1 tn2

2 · · · t
nk1

k1
⊂ A0. (2.36)
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Then Ā0 forms a subalgebra of A and is isomorphic to F1[t1, ..., tk1
] when we view ti as

variables by the second equation in (2.33). Moreover, A
(1)
0 ⊂ Ā0 by the first equation in

(2.33). Suppose A
(m)
0 ⊂ Ā0 for some 1 ≤ m ∈ N. Note that

H2(Ā0) = {0} (2.37)

by (1.1) and (2.34).

By (2.18),

d(A(m+1)
0 ) ⊂ A(m)

0 ⊂ Ā0 for d ∈ H. (2.38)

For any u ∈ A(m+1)
0 , there exists u1 ∈ Ā0 such that

∂1(u) = ∂1(u1) (2.39)

by the derivation property of a polynomial algebra. Similarly, we can find u2, ..., uk1
∈ Ā0

such that

∂i(u−
i

∑

j=1

uj) = 0, ∂1(ui) = · · · = ∂i−1(ui) = 0 for i ∈ 2, k1 (2.40)

by induction on i. Thus we have

∂i(u−
k1

∑

j=1

uj) = 0 for i ∈ 1, k1. (2.41)

For any d ∈ H2, we have

d2(u−
k1

∑

j=1

uj) ∈ d(A
(m)
0 ) ⊂ d(Ā0) = {0} (2.42)

by (2.37) and (2.38). Hence

u−
k1

∑

j=1

uj ∈ A
(1)
0 (2.43)

by (2.18), (2.41) and (2.42). By the second equation (2.34), we get

d(u−
k1

∑

j=1

uj) = 0 for d ∈ H2. (2.44)

Expressions (2.41) and (2.44) imply

u−
k1

∑

j=1

uj ∈ F1, (2.45)

that is, u ∈ Ā0. Therefore, A
(m+1)
0 ⊂ Ā0. By induction on m, we obtain

A0 = Ā0. (2.46)
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The case A0 = F1 can be viewed as in the general case A0 = F1[t1, ..., tk1
] with k1 = 0.

For any α ∈ Γ, we take 0 6= u ∈ A
(0)
α and have

u−1Aα ⊂ A0, uA0 ⊂ Aα (2.47)

by (2.22) and (2.28). Hence

uA0 = Aα. (2.48)

In particular, we have

A(0)
α = F1u (2.49)

is one-dimensional over F1. Choose

x0 = 1, 0 6= xα ∈ A(0)
α for 0 6= α ∈ Γ. (2.50)

By (2.24) and (2.49), we have

xαxβ = f(α, β)xα+β with f(α, β) ∈ F1 for α, β ∈ Γ. (2.51)

Moreover, the first equation (2.50), the commutativity and associativity of A imply (2.2).

Furthermore, (2.48) and (2.49) imply

A =
∑

α∈Γ

A0x
α. (2.52)

Observe that {∂1, ..., ∂k1
} is an F-linearly independent subset of D by (2.33). Extend

it to an F-basis {∂1, ..., ∂k} of D. Identifying

α←→ (α(∂1), ..., α(∂k)) for α ∈ Γ, (2.53)

we can view Γ as an additive subgroup of Fk. Moreover, by (2.31)-(2.37) and (2.46), we

have

∂j |A0
∈ (

k1
∑

i=1

F1∂i)|A0
for j ∈ k1 + 1, k. (2.54)

Therefore, the algebra A is isomorphic to the algebra A(k1, k2; Γ, F1, f) with k2 = k − k1

and D is of the form (2.10) by (2.52). This completes the proof of Theorem 2.1.

3 Generalized Simple Lie Algebras of Witt Type

In this section, we shall determine the structure space of the generalized simple Lie alge-

bras of Witt type constructed in [X1]; namely, the isomorphic classes of the Lie algebra

W of the form (3.1) with

F1 = F (3.2)
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for different k1, k2 and Γ. First we need to rewrite W in a more compact form. Since F is

algebraically closed, the algebra A(k1, k2; Γ, F, f) is isomorphic to the semi-group algebra

A(k1, k2; Γ, F, 1). For convenience, we shall give the new settings.

For any positive integer n, an additive subgroup G of Fn is called nondegenerate if G

contains an F-basis of Fn. Let ℓ1, ℓ2 and ℓ3 be three nonnegative integers such that

ℓ = ℓ1 + ℓ2 + ℓ3 > 0. (3.3)

Take any nondegenerate additive subgroup Γ of Fℓ2+ℓ3 and Γ = {0} when ℓ2 + ℓ3 = 0.

Denote by F[t1, t2, ..., tℓ1+ℓ2] the algebra of polynomials in ℓ1 + ℓ2 variables over F. Let

A(ℓ1, ℓ2, ℓ3; Γ) be a free F[t1, t2, ..., tℓ1+ℓ2 ]-module with the basis

{xα | α ∈ Γ}. (3.4)

Viewing A(ℓ1, ℓ2, ℓ3; Γ) as a vector space over F, we define a commutative associative

algebraic operation “·” on A(ℓ1, ℓ2, ℓ3; Γ) by

(ζxα) · (ηxβ) = ζηxα+β for ζ, η ∈ F[t1, t2, ..., tℓ1+ℓ2], α, β ∈ Γ. (3.5)

Note that x0 is the identity element, which is denoted as 1 for convenience. When the

context is clear, we shall omit the notion “·” in any associative algebra product.

We define the linear transformations

{∂t1 , ..., ∂tℓ1+ℓ2
, ∂∗

1 , ..., ∂
∗
ℓ2+ℓ3
} (3.6)

on A(ℓ1, ℓ2, ℓ3; Γ) by

∂ti(ζxα) = ∂ti(ζ)xα, ∂∗

j (ζxα) = αjζxα (3.7)

for ζ ∈ F[t1, t2, ..., tℓ1+ℓ2 ] and α = (α1, ..., αℓ2+ℓ3) ∈ Γ, where on F[t1, t2, ..., tℓ1+ℓ2], ∂ti are

operators of taking partial derivative with respect to ti. Then {∂t1 , ..., ∂tℓ1+ℓ2
, ∂∗

1 , ..., ∂
∗
ℓ2+ℓ3
}

are mutually commutative derivations of A(ℓ1, ℓ2, ℓ3; Γ). We set

∂i = ∂ti , ∂ℓ1+j = ∂∗

j + ∂tℓ1+j
, ∂ℓ1+ℓ2+l = ∂∗

ℓ2+l (3.8)

for i ∈ 1, ℓ1, j ∈ 1, ℓ2 and l ∈ 1, ℓ3. Then {∂i | i ∈ 1, ℓ} is an F-linearly independent set

of derivations. Set

D =

ℓ
∑

i=1

F∂i (3.9)

and

W(ℓ1, ℓ2, ℓ3; Γ) = A(ℓ1, ℓ2, ℓ3; Γ)D. (3.10)
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Then W(ℓ1, ℓ2, ℓ3; Γ) is a standard form of the generalized simple Lie algebras of Witt

type constructed in [X1]. Moreover, the Lie algebras found in [DZ1] are of the form

W(ℓ1, 0, ℓ3; Γ). In fact, we can rewrite the Lie algebra W in (3.1) under the condition

(3.2) as W(ℓ1, ℓ2, ℓ3; Γ) by considering the maximal F-linearly independent subset of the

set

{{αi | (α1, ..., αk) ∈ Γ} | i ∈ 1, k} (3.11)

of k sequences and changing variables in F[t1, ..., tk1
] (cf. (2.1), (3.2)).

Denote by Mm×n the set of m× n matrices with entries in F and by GLm the group

of invertible m×m matrices. Set

Gℓ2,ℓ3 =

{(

A 0ℓ2×ℓ3

B C

)

| A ∈ GLℓ2 , B ∈Mℓ2×ℓ3 , C ∈ GLℓ3

}

, (3.12)

where 0ℓ2×ℓ3 is the ℓ2× ℓ3 matrix whose entries are zero. Then Gℓ2,ℓ3 forms a subgroup of

GLℓ2+ℓ3. Define an action of Gℓ2,ℓ3 on Fℓ2+ℓ3 by

g(α) = αg−1 (matrix multiplication) for α ∈ F
ℓ2+ℓ3 , g ∈ Gℓ2,ℓ3 . (3.13)

For any nondegenerate additive subgroup Υ of F
ℓ2+ℓ3 and g ∈ Gℓ2,ℓ2, the set

g(Υ) = {g(α) | α ∈ Υ} (3.14)

also forms a nondegenerate additive subgroup of Fℓ2+ℓ3 . Let

Ωℓ2+ℓ3 = the set of nondegenerate additive subgroups of F
ℓ2+ℓ3. (3.15)

We have an action of Gℓ2,ℓ3 on Ωℓ2+ℓ3 by (3.14). Define the moduli space

Mℓ2,ℓ3 = Ωℓ2+ℓ3/Gℓ2,ℓ3, (3.16)

which is the set of Gℓ2,ℓ3-orbits in Ωℓ2+ℓ3 .

Theorem 3.1. The Lie algebras W(ℓ1, ℓ2, ℓ3; Γ) and W(ℓ′1, ℓ
′
2, ℓ

′
3; Γ

′) are isomorphic

if and only if (ℓ1, ℓ2, ℓ3) = (ℓ′1, ℓ
′
2, ℓ

′
3) and there exists an element g ∈ Gℓ2,ℓ3 such that

g(Γ) = Γ′. In particular, there exists a one-to-one correspondence between the set of

isomorphic classes of the Lie algebras of the form (3.10) and the following set:

SW = {(ℓ1, ℓ2, ℓ3, ̟) | (0, 0, 0) 6= (ℓ1, ℓ2, ℓ3) ∈ N
3, ̟ ∈Mℓ2,ℓ3}. (3.17)

In other words, the set SW is the structure space of the generalized simple Lie algebras

of Witt type in the form (3.10).
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Proof. For convenience of proof, we redenote

(A′,D′, ∂′

i, t
′

j) ≡ (A,D, ∂i, tj) involved in W(ℓ′1, ℓ
′

2, ℓ
′

3; Γ
′). (3.18)

First, we assume (ℓ1, ℓ2, ℓ3) = (ℓ′1, ℓ
′
2, ℓ

′
3) and there exists an element g ∈ Gℓ2,ℓ3 such that

g(Γ) = Γ′. We write

g =

(

A 0ℓ2×ℓ3

B C

)

with A ∈ GLℓ2 , B ∈Mℓ2×ℓ3, C ∈ GLℓ3 . (3.19)

By (3.13), we have

Γ = {α′g | α′ ∈ Γ′}. (3.20)

Moreover, we set







∂̃′
ℓ1+1
...

∂̃′
ℓ






= g−1







∂′
ℓ1+1
...
∂′

ℓ






, (t̃′ℓ1+1, ..., t̃

′

ℓ1+ℓ2
) = (t′ℓ1+1, ..., t

′

ℓ1+ℓ2
)A (3.21)

as matrix multiplications. For convenience, we let

∂̃′
i = ∂′

i, t̃′i = t′i for i ∈ 1, ℓ1. (3.22)

Now we define a linear map σ from W(ℓ1, ℓ2, ℓ3; Γ) to W(ℓ1, ℓ2, ℓ3; Γ
′) by

σ(

ℓ1+ℓ2
∏

i=1

tmi

i xα∂j) =

ℓ1+ℓ2
∏

i=1

(t̃′i)
mixg(α)∂̃′

j (3.23)

for (m1, ..., mℓ1+ℓ2) ∈ Nℓ1+ℓ2, α ∈ Γ and j ∈ 1, ℓ. It is straightforward to verify that σ is

a Lie algebra isomorphism.

Next we assume that

σ :W(ℓ1, ℓ2, ℓ3; Γ)→W(ℓ′1, ℓ
′

2, ℓ
′

3; Γ
′) (3.24)

is a Lie algebra isomorphism. We simply denote

W =W(ℓ1, ℓ2, ℓ3; Γ), W ′ =W(ℓ′1, ℓ
′
2, ℓ

′
3; Γ

′) (3.25)

for convenience. Note that the adjoint operators

{add | d ∈ D}, {add′ | d
′ ∈ D′} are locally-finite. (3.26)

Suppose that ℓ = ℓ′ = 1. If Γ 6= {0}, we can prove that any element in W whose

adjoint operator is locally-finite is in F∂1 by picking a well-order on F as an additive

group (note F = C is the most interesting case). The same statement holds for (Γ′, W ′).
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A transformation T of a vector space V is called locally-nilpotent if for any v ∈ V , there

exists a positive integer m such that Tm(v) = 0. Observe that ad∂1
is locally-nilpotent if

and only if adσ(∂1) is. Thus Γ = {0} if and only if Γ′ = {0}. If Γ = Γ′ = {0}, we are done.

Assume that Γ 6= {0} and Γ′ 6= {0}. By locally-finiteness,

σ∂1 = λ∂′

1 for some 0 6= λ ∈ F. (3.27)

Note Γ, Γ′ ⊂ F in this case. Moreover,

Fxα∂1 = {u ∈ W | [∂1, u] = αu}, Fxα′

∂′

1 = {v ∈ W | [∂′

1, v] = α′v} (3.28)

for α ∈ Γ and α′ ∈ Γ′. Since

ασ(xα∂1) = σ([∂1, x
α∂1])

= [σ(∂1), σ(xα∂1)]

= λ[∂′

1, σ(xα∂1)], (3.29)

we have

σ(xα∂1) = f(α)xλ−1α∂′

1, f(α) ∈ F for α ∈ Γ. (3.30)

Hence

Γ′ = λ−1Γ. (3.31)

Since ad∂1
is semi-simple if and only ad∂′

1
is, we have

(ℓ1, ℓ2) = (ℓ′1, ℓ
′

2). (3.32)

Therefore, the theorem holds.

Next we assume ℓ, ℓ′ > 1. Set

Xα = Fxα, X ′

α′ = Fxα′

, X =
∑

α∈Γ

Xα, X ′ =
∑

α′∈Γ′

X ′

α′ . (3.33)

Then X is the group algebra of Γ and X ′ is the group algebra of Γ′. Since D is locally-

finite on A, so is adD on W. This implies that adσ(D) is locally-finite on W ′. Moreover,

σ(D) is a commutative subalgebra of W ′. For any d1, d2 ∈ D and v ∈ A′, we have

[σ(d1), vσ(d2)] = σ(d1)(v)σ(d2). (3.34)

Hence σ(D) is locally-finite on A′. For i ∈ 1, ℓ1, ∂i is locally-nilpotent on A. Naturally,

ad∂i
is locally-nilpotent onW, which implies the locally-nilpotency of adσ(∂i) onW ′. Thus

σ(∂i) is locally-nilpotent on A′. By these facts, we have

A′ =
⊕

β∈Fℓ2+ℓ3

Āβ (3.35)
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with

Āβ = {v ∈ A′ | (σ(∂ℓ1+j)− βj)
m(v) = 0 for j ∈ 1, ℓ2 + ℓ3 and some m ∈ N}, (3.36)

where we have written β = (β1, ..., βℓ2+ℓ3). Furthermore, we let

X̄β = {v ∈ A′ | σ(∂i)(v) = 0, σ(∂ℓ1+j)(v) = βjv for i ∈ 1, ℓ1, j ∈ 1, ℓ2 + ℓ3} (3.37)

for β = (β1, ..., βℓ2+ℓ3) ∈ Fℓ2+ℓ3. Obviously,

Āβ 6= {0} ⇐⇒ X̄β 6= {0}. (3.38)

Set

Γ̄ = {β ∈ F
ℓ2+ℓ3 | X̄β 6= {0}}. (3.39)

Let α = (α1, ..., αℓ2+ℓ3) ∈ Γ̄ and let 0 6= z ∈ X̄α. For any ∂ ∈ D, we have

zσ(∂) = σ(w) for some w ∈ W. (3.40)

Note

0 = [σ(∂i), zσ(∂)] = σ([∂i, w]) for i ∈ 1, ℓ1 (3.41)

and

αjσ(w) = αjzσ(∂) = [σ(∂ℓ1+j), zσ(∂)] = σ([∂ℓ1+j , w]) (3.42)

for j ∈ 1, ℓ2 + ℓ3. Hence

[∂i, w] = 0, [∂ℓ1+j, w] = αjw for i ∈ 1, ℓ1, j ∈ 1, ℓ2 + ℓ3. (3.43)

Observe that

xβD = {u ∈ W | [∂i, u] = 0, [∂ℓ1+j , u] = βju for i ∈ 1, ℓ1, j ∈ 1, ℓ2 + ℓ3} (3.44)

for any β = (β1, ..., βℓ2+ℓ3) ∈ Γ and any root ofW with respect to adD is in Γ. Thus α ∈ Γ

and

w ∈ xαD. (3.45)

So we obtain

Γ̄ ⊂ Γ. (3.46)

Moreover, we can write

zσ(∂) = σ(xατz(∂)) with τz(∂) ∈ D. (3.47)
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Hence we get an injective linear transformation τz on D because A′ does not have zero

divisors. Since D is finite-dimensional, τz is a linear automorphism. When α = 0, we get

0 6= z ∈ F by (3.47). Therefore

X̄0 = F. (3.48)

Suppose Γ 6= {0}. Then the elements of adD are not all locally-nilpotent. So are

those of adσ(D). Assume that Γ̄ = {0}. Then σ(D) is locally-nilpotent. Since adσ(D) is

locally-finite, we can choose ∂ ∈ D and d ∈ W ′ such that

[σ(∂), d] = d. (3.49)

Since d 6= 0, there exists v ∈ A′ such that

d(v) 6= 0. (3.50)

On the other hand, there exists a positive integer m such that

σ(∂)m(v) = 0. (3.51)

Note that

(σ(∂)− 1)m+1(d(v)) =
m+1
∑

j=0

(m+1
j )(adσ(∂) − 1)j(d)σ(∂)m+1−j(v) = 0, (3.52)

which contradicts the local nilpotency of σ(∂). Thus Γ̄ 6= {0}.

For any θ = (θ1, ..., θℓ2+ℓ3) ∈ Γ and ∂ =
∑ℓ

i=1 ai∂i ∈ D (cf. (3.3)), we define

θ(∂) =

ℓ2+ℓ3
∑

i=1

aℓ1+iθi. (3.53)

Pick any 0 6= α ∈ Γ̄ and 0 6= z ∈ X̄α. We have (3.47). Let 0 6= β ∈ Γ. Set

γ = β − α. (3.54)

Since ℓ > 1, we can choose 0 6= ∂ ∈ D such that

γ(∂) = 0. (3.55)

Moreover, we can pick d ∈ D \ Fτz(∂) such that

α(d) 6= 0. (3.56)

Then we have

[σ(xγd), zσ(∂)] = σ(xγd)(z)σ(∂) + z[σ(xγd), σ(∂)]

= σ(xγd)(z)σ(∂) + zσ([xγd, ∂])

= σ(xγd)(z)σ(∂)− γ(∂)zσ(xγd)

= σ(xγd)(z)σ(∂), (3.57)
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by (3.55) and

[σ(xγd), σ(xατz(∂))] = σ([xγd, xατz(∂)])

= σ(xβ(α(d)τz(∂)− γ(τz(∂))d))

6= 0 (3.58)

by (3.56). Thus (3.47), (3.57) and (3.58) imply

0 6= σ(xγd)(z) ∈ X̄β. (3.59)

Hence β ∈ Γ̄. By (3.46), we obtain

Γ̄ = Γ. (3.60)

Now we want to prove that any nonzero element in X̄α is invertible for α ∈ Γ. Let

0 6= z ∈ X̄α. Pick any 0 6= z′ ∈ X̄−α and ∂ ∈ D such that α(∂) 6= 0. Since τz and τz′ are

invertible, we have

zσ(τ−1
z (∂)) = σ(xα∂), z′σ(τ−1

z′ (∂)) = σ(x−α∂). (3.61)

Moreover,

[z′σ(τ−1
z′ (∂)), zσ(τ−1

z (∂))] = zz′(α(τ−1
z′ (∂))σ(τ−1

z (∂)) + α(τ−1
z (∂))σ(τ−1

z′ (∂))), (3.62)

[σ(x−α∂), σ(xα∂)] = σ([x−α∂, xα∂]) = 2α(∂)σ(∂). (3.63)

Hence

zz′(α(τ−1
z′ (∂))σ(τ−1

z (∂)) + α(τ−1
z (∂))σ(τ−1

z′ (∂))) = 2α(∂)σ(∂) 6= 0 (3.64)

by (3.61)-(3.63). Thus

0 6= zz′ ∈ F. (3.65)

This also shows

dim X̄α = 1 for α ∈ Γ (3.66)

by (3.48). Furthermore, (3.35)-(3.37) imply

A′ = X̄Ā0. (3.67)

Observe that

(
⋃

α∈Γ

X̄α) \ {0} = the set of all invertible elements in A′ (3.68)

by (3.65)-(3.67). On the other hand,

the set of all invertible elements in A′ = (
⋃

α∈Γ′

X ′

α) \ {0} (3.69)
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(cf. (3.33)) because A′ = A(ℓ′1, ℓ
′
2, ℓ

′
3; Γ

′). Hence there exists a bijective map ι : Γ → Γ′

such that

X̄α = X ′
ι(α) for α ∈ Γ. (3.70)

In particular,

X̄ = X ′. (3.71)

Note that (3.71) implies

Ā0 = F[t′1, t
′
2, ..., t

′

ℓ′
1
+ℓ′

2
]. (3.72)

Set

A0,1 =

ℓ1+ℓ2
∑

i=1

Fti, Ā
(1)
0 = {v ∈ Ā0 | σ(D)(v) ⊂ F}. (3.73)

By the proof of Theorem 2.1 and the construction of A′ = A(ℓ′1, ℓ
′
2, ℓ

′
3; Γ

′), we have

dim(Ā
(1)
0 /F) = the transcendental degree of Ā0 over F = ℓ′1 + ℓ′2. (3.74)

For any z ∈ Ā
(1)
0 , we have

zσ(∂1) = σ(w) for some w ∈ W. (3.75)

Note

σ(∂)(z)σ(∂1) = [σ(∂), zσ(∂1)] = σ([∂, w]) for ∂ ∈ D. (3.76)

Since σ(∂)(z) ∈ F, we obtain

[∂, w] = σ(∂)(z)∂1 for ∂ ∈ D. (3.77)

Since

A0,1D +D = {u ∈ W | [D, u] ⊂ D} (3.78)

by the construction ofW =W(ℓ1, ℓ3, ℓ3; Γ), there exists a unique ν(z) ∈ A0,1 and ρ(z) ∈ D

such that

w = ν(z)∂1 + ρ(z) and ν(z) = 0⇐⇒ σ(D)(z) = {0} ⇐⇒ z ∈ F. (3.79)

Thus the map

z + F 7→ ν(z) (3.80)

define an injective linear map from Ā
(1)
0 /F to A0,1. So

ℓ′1 + ℓ′2 = dim(Ā
(1)
0 /F) ≤ dimA0,1 = ℓ1 + ℓ2 (3.81)

by (3.74). Exchanging positions of W and W ′, we can prove ℓ1 + ℓ2 ≤ ℓ′1 + ℓ′2. Therefore,

ℓ1 + ℓ2 = ℓ′1 + ℓ′2. (3.82)
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Denote

∂̂i = σ(∂ℓ1+i)|X̄ , ∂̃j = ∂′

ℓ′
1
+j |X̄ for i ∈ 1, ℓ2 + ℓ3, j ∈ 1, ℓ′2 + ℓ′3. (3.83)

Write

σ(∂ℓ1+i) =

ℓ′
1

∑

j=1

ai,j∂
′

j +

ℓ′
2
+ℓ′

3
∑

l=1

bi,l∂
′

ℓ′
1
+l for i ∈ 1, ℓ2 + ℓ3, (3.84)

where

ai,j , bi,l ∈ A
′ for i ∈ 1, ℓ2 + ℓ3, j ∈ 1, ℓ′1, l ∈ 1, ℓ′2 + ℓ′3. (3.85)

Since

∂′

j |X̄ = 0 for j ∈ 1, ℓ′1, (3.86)

we have

∂̂i =

ℓ′2+ℓ′3
∑

l=1

bi,l∂̃l for i ∈ 1, ℓ2 + ℓ3. (3.87)

Since Γ′ is a nondegenerate additive subgroup of Fℓ′
2
+ℓ′

3 , there exists a basis Fℓ′
2
+ℓ′

3 :

{β1, ..., βℓ′2+ℓ′3} ⊂ Γ′. (3.88)

Writing

βi = (βi
1, ..., β

i
ℓ′
2
+ℓ′

3
) for i ∈ 1, ℓ′2 + ℓ′3, (3.89)

we get an invertible matrix

Ψ =









β1
1 , ..., β

ℓ′
2
+ℓ′

3

1
...

...
...

β1
ℓ′
2
+ℓ′

3

, ..., β
ℓ′
2
+ℓ′

3

ℓ′
2
+ℓ′

3









. (3.90)

Write

ι−1(βi) = (αi
1, ..., α

i
ℓ2+ℓ3

) ∈ Γ for i ∈ 1, ℓ′2 + ℓ′3. (3.91)

Note

αj
ix

βj

= ∂̂i(x
βj

) =

ℓ′
2
+ℓ′

3
∑

l=1

bi,l∂̃l(x
βj

) = (

ℓ′
2
+ℓ′

3
∑

l=1

bi,lβ
j
l )x

βj

, (3.92)

equivalently,

αj
i =

ℓ′
2
+ℓ′

3
∑

l=1

bi,lβ
j
l (3.93)

for i ∈ 1, ℓ2 + ℓ3 and j ∈ 1, ℓ′2 + ℓ′3. Thus

(α1
i , ..., α

ℓ′
2
+ℓ′

3

i ) = (bi,1, ..., bi,ℓ′
2
+ℓ′

3
)Ψ for i ∈ 1, ℓ2 + ℓ3. (3.94)
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In particular,

(bi,1, ..., bi,ℓ′
2
+ℓ′

3
) = (α1

i , ..., α
ℓ′
2
+ℓ′

3

i )Ψ−1 ∈ F
ℓ′
2
+ℓ′

3 for i ∈ 1, ℓ2 + ℓ3. (3.95)

Since {∂̂1, ..., ∂̂ℓ2+ℓ3} is linearly independent due to the nondegeneracy of Γ̄ = Γ and

{∂̃1, ..., ∂̃ℓ′
2
+ℓ′

3
} is linearly independent because of the nondegeneracy of Γ′, we have

ℓ2 + ℓ3 ≤ ℓ′2 + ℓ′3 (3.96)

by (3.87) and (3.95). Exchanging positions of W and W ′, we can prove ℓ′2 + ℓ′3 ≤ ℓ2 + ℓ3.

Hence we have

ℓ2 + ℓ3 = ℓ′2 + ℓ′3. (3.97)

Thus the matrix

B = (bi,j)(ℓ2+ℓ3)×(ℓ2+ℓ3) (3.98)

is nondegenerate.

Observe that

σ(∂ℓ1+ℓ2+i) is semi-simple because adσ(∂ℓ1+ℓ2+i) is (3.99)

for i ∈ 1, ℓ3. Thus

0 = σ(∂ℓ1+ℓ2+i)(t
′

ℓ′
1
+j) = bℓ2+i,j for i ∈ 1, ℓ3, j ∈ 1, ℓ′2 (3.100)

by (3.72) and (3.84). So

∂̂ℓ2+i =

ℓ′3
∑

j=1

bℓ2+i,ℓ′
2
+j ∂̃ℓ′

2
+j for i ∈ 1, ℓ3. (3.101)

The above expression implies ℓ3 ≤ ℓ′3. Exchanging positions ofW andW ′, we can similarly

prove ℓ′3 ≤ ℓ3. Thus

ℓ3 = ℓ′3. (3.102)

Therefore, we obtain

(ℓ1, ℓ2, ℓ3) = (ℓ′1, ℓ
′

2, ℓ
′

3) (3.103)

by (3.82), (3.97) and (3.102).

Let α = (α1, ..., αℓ2+ℓ3) ∈ Γ. Denote β = (β1, ..., βℓ2+ℓ3) = ι(α). We have

αix
β = σ(∂ℓ1+i)(x

β) = (

ℓ2+ℓ3
∑

j=1

bi,j∂
′

ℓ1+j)(x
β) = (

ℓ2+ℓ3
∑

j=1

bi,jβj)(x
β), (3.104)

equivalently

αi =

ℓ2+ℓ3
∑

j=1

bi,jβj (3.105)

19



for i ∈ 1, ℓ2 + ℓ3. Hence we get

ι(α) = β = α(Bt)−1, (3.106)

where Bt is the transpose of B. By (3.95) and (3.100), we have Bt ∈ Gℓ2,ℓ3 (cf. (3.12)).

Denoting g = Bt, we get

Γ′ = g(Γ) (3.107)

by (3.13) and (3.106). This completes the proof of Theorem 3.1.
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