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SOME CYCLIC COVERS OF COMPLEMENTS

OF ARRANGEMENTS

DANIEL C. COHEN† AND PETER ORLIK

Abstract. Motivated by the Milnor fiber of a central arrangement, we study
the cohomology of a family of cyclic covers of the complement of an arbitrary
arrangement. We give an explicit proof of the polynomial periodicity of the Betti
numbers of the members of this family of cyclic covers.

1. Introduction

Let A be a hyperplane arrangement in Cℓ, with complement M(A) = Cℓ \
⋃

H∈A H .
The cohomology of M(A) with coefficients in a local system arises in a number of
applications, both outside and inside arrangement theory. Included among the former
are the Aomoto-Gelfand theory of multivariable hypergeometric integrals [AK, Ge],
and the representation theory of Lie algebras and quantum groups and solutions of the
Knizhnik-Zamolodchikov differential equation in conformal field theory [Va]. This note
is motivated by one of the latter applications, the cohomology of the Milnor fiber of a
central arrangement.

Let C be a central arrangement of hyperplanes in Cℓ+1, an arrangement for which
each hyperplane H ∈ C contains the origin. For each such hyperplane, let αH be a
linear form with kernel H . Then Q = Q(C) =

∏

H∈C αH is a defining polynomial for
the arrangement C, and is homogeneous of degree equal to the cardinality of C. The
complement M(C) = Cℓ+1 \ Q−1(0) may be realized as the total space of the global
Milnor fibration

F (C) −−→ M(C)
Q

−−→ C
∗,

where F (C) = Q−1(1) is the Milnor fiber of Q, see [Mi]. We shall refer to F (C) as the
Milnor fiber of C, and write F = F (C) when the arrangement C is understood.

Suppose that the cardinality of C is n and let (x0, x1, . . . , xℓ) be a choice of coor-
dinates on Cℓ+1. The geometric monodromy, h : F → F of the Milnor fibration is
given by h(x0, . . . , xℓ) = (ξnx0, . . . , ξnxℓ), where ξn = exp(2π i /n). Since h has finite
order n, the algebraic monodromy h∗ : Hq(F ; C) → Hq(F ; C) is diagonalizable and
the eigenvalues of h∗ belong to the set of n-th roots of unity. Denote the cohomology
eigenspace of ξk

n by Hq(F ; C)k and write bq(F )k = dimC Hq(F ; C)k.
It is known [CS1] that these cohomology eigenspaces are isomorphic to the cohomol-

ogy of the complement of a decone of C with coefficients in certain complex rank one
local systems. See Section 2 for a summary of these results, and see [OT] as a general
reference on arrangements. Let A be a decone of C, an affine arrangement in Cℓ, and
denote the rank one local systems arising in the context of the Milnor fiber by Lk,
1 ≤ k ≤ n. Then H∗(F (C); C)k ≃ H∗(M(A);Lk) for each k. Furthermore, the local
systems Lk are rational in the sense of [CO]. The results of this work, in the context

1991 Mathematics Subject Classification. 52B30, 32S55, 57M10, 55N25.
Key words and phrases. hyperplane arrangement, Milnor fibration, cyclic cover, local system,

polynomial periodicity.
†Partially supported by grants LEQSF(1996-99)-RD-A-04 and LEQSF(1999-2002)-RD-A-01

from the Louisiana Board of Regents.

1

http://arXiv.org/abs/math/0001167v2


2 D. COHEN AND P. ORLIK

of the Milnor fiber problem, yield combinatorial bounds

dimC Hq(AC(A), a∧) ≤ dimC Hq(F ; C)k ≤ rankZr
Hq(AZr

(A), ā∧),

where r = n/(k, n) and AR(A) is the Orlik-Solomon algebra of A with coefficients in
the ring R equipped with appropriate differential. See Section 5 for details. The lower
bounds are well known. The upper bounds are new.

The local system Ln is trivial, and thus corresponds to the constant coefficient
cohomology of M(A). This is well understood in terms of the Orlik-Solomon algebra.
While pursuing the remaining cases, we were led to a family of cyclic covers of M(A),
which includes the Milnor fiber F (C). In this note, we show how a number of known
results on the Milnor fiber extend naturally to all members of this family of covers,
and give an explicit and elementary proof of the polynomial periodicity of the Betti
numbers of the members of this family.

2. Milnor Fibration

Recall from the Introduction that C is a central arrangement of n hyperplanes in
C

ℓ+1, with coordinates (x0, x1, . . . , xℓ). Associated with C, we have the defining poly-
nomial Q = Q(C), the complement M(C) = Cℓ+1 \ Q−1(0), and the Milnor fiber
F = F (C) = Q−1(1). The geometric monodromy h : F → F of the Milnor fibration
has order n = |C|. The cyclic group Zn generated by the geometric monodromy h acts
freely on F . This free action gives rise to a regular n-fold covering F → F/(Zn).

Consider the Hopf bundle Cℓ+1 \ {0} → CP
ℓ with projection map (x0, x1, . . . , xℓ) 7→

(x0 : x1 : · · · : xℓ) and fiber C∗. Let p : M(C) → M∗ denote the restriction of this
projection to M , where M∗ = p(M). The restriction p

F
: F → M∗ of the Hopf bundle

to the Milnor fiber is the orbit map of the free action of the geometric monodromy h
on F and we therefore have F/(Zn) ∼= M∗. These spaces and maps fit together with
the Milnor fibration in the following diagram:

Zn −−−−→ F
p

F−−−−→ F/Zn




y





y





y

∼=

C∗ −−−−→ M(C)
p

−−−−→ M∗





y





y

Q

C∗/Zn

∼=
−−−−→ C∗

Note that M∗ is the complement of the projective hypersurface defined by the homo-
geneous polynomial Q. Thus it is the complement of the projective quotient of the
arrangement C. If we designate one of its hyperplanes, H∞, the hyperplane at infinity,
the remaining arrangement is called the decone of C with respect to H∞. We call this
ℓ-arrangementA here and observe that M(A) = M∗ is independent of the choice of H∞

and |A| = n− 1. We shall assume that A contains ℓ linearly independent hyperplanes.
The cohomology groups of the Milnor fiber have been studied extensively, see for

instance [OR, CS1, Ma, CS2, De]. We summarize some known results from [CS1].
Since h has finite order n, the algebraic monodromy h∗ : Hq(F ; C) → Hq(F ; C) is
diagonalizable and the eigenvalues of h∗ belong to the set of n-th roots of unity. De-
note the cohomology eigenspace of ξk

n = exp(2π i k/n) by Hq(F ; C)k, and denote the
characteristic polynomial of h∗ : Hq(F ; C) → Hq(F ; C) by ∆q(t) = det(t · h∗ − id).

Proposition 2.1 ([CS1, 1.1]). Let ξj
n and ξk

n be two n-th roots of unity which generate

the same cyclic subgroup of Zn = 〈ξn〉. Then, for each q, the cohomology eigenspaces

Hq(F ; C)j and Hq(F ; C)k are isomorphic.
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Corollary 2.2. For each q, 0 ≤ q ≤ ℓ, there are nonnegative integers dk,q so that

∆q(t) =
∏

k|n

Φk(t)dk,q ,

where Φk(t) denotes the k-th cyclotomic polynomial.

Theorem 2.3 ([CS1, 1.6]). Define the rank one local system Lk on M(A) by the rep-

resentation τk : π1(M(A)) → C∗ given by γH 7→ ξk
n for each meridian loop γH about

the hyperplane H ∈ A. Then, for each k, 1 ≤ k ≤ n, we have

H∗(F (C); C)k ≃ H∗(M(A);Lk).

In light of this result, it is natural to study the local system on M(A) induced by
the representation given by γH 7→ ξk

m for arbitrary m. In subsequent sections, we focus
on the context in which these local systems arise.

3. Cyclic Covers

The realization of the Milnor fiber of a central arrangement as a cover of the com-
plement of a decone in the previous section motivates the following construction.

Let A be an affine arrangement in Cℓ, with coordinates x = (x1, . . . , xℓ). Associated
with A, we have the defining polynomial f = Q(A), and the complement M(A) =
Cℓ \ f−1(0). For each positive integer m, let gm : C∗ → C∗ denote the cyclic m-fold
covering defined by gm(z) = zm, and let pm : Xm(A) → M(A) denote the pullback of
gm along the map f : M(A) → C

∗, where

Xm(A) = {(x, z) ∈ M(A) × C
∗ | f(x) = zm} .

This family of cyclic covers of M(A) generalizes the Milnor fiber in a number of ways
which we now pursue. First, we have the following.

Proposition 3.1. Let C be a central arrangement of n hyperplanes in Cℓ+1, with defin-

ing polynomial Q = Q(C) and Milnor fiber F (C). If A is a decone of C, then the covering

spaces p
F

: F (C) → M(A) and pn : Xn(A) → M(A) are equivalent.

Proof. The relation between the defining polynomials f of A and Q of C is given by
Q = xn

0 · f(x1/x0, . . . , xn/x0), and F (C) = Q−1(1). Using this, it is readily checked
that the map Xn(A) → F (C) defined by (x1, . . . , xℓ, z) 7→ (1/z, x1/z, . . . , xℓ/z) is a
homeomorphism inducing an equivalence of covering spaces.

The characteristic homomorphism Φ : π1(M(A)) → Zn of the covering p
F

: F (C) →
M(A) was identified in [CS1, 1.2]. It is given by Φ(γH) = gn, where γH is a meridian
loop about the hyperplane H ∈ A and gn is a fixed generator of Zn. A straightforward
generalization of the proof of this fact from [CS1, 1.2] yields

Proposition 3.2. The characteristic homomorphism Φm : π1(M(A)) → Zm of the

covering pm : Xm(A) → M(A) is given by Φm(γH) = gm for a fixed generator gm of

Zm and meridian loops γH about the hyperplanes H of A.

The covering spaces Xm(A) fit together nicely in the sense of the following.

Proposition 3.3. If m = k · r, then the map Cℓ × C∗ → Cℓ × C∗ defined by (x, z) 7→
(x, zr) induces a cyclic r-fold covering pm,k : Xm(A) → Xk(A).

Proof. Let Xk,r(A) → Xk(A) denote the pullback of gr : C∗ → C∗ along the map
Xk(A) → C∗ defined by (x1, . . . , xℓ, z) 7→ z, with

Xk,r(A) = {(x, z, w) ∈ M(A) × C
∗ × C

∗ | f(x) = zk and z = wr}.

It is then readily checked that the map Xm(A) → Xk,r(A) defined by (x, z) 7→ (x, zr, z)
is a homeomorphism compatible with the projection maps.



4 D. COHEN AND P. ORLIK

Remark 3.4. The space Xm(A) admits a self-map hm : Xm(A) → Xm(A) defined
by hm(x, z) = (x, ξ−1

m · z), where ξm = exp(2π i /m). In the case m = n of the
Milnor fiber, the map hn : Xn(A) → Xn(A) corresponds to the geometric monodromy
h : F (C) → F (C) under the equivalence of covering spaces exhibited in the proof
of Proposition 3.1. For arbitrary m, the “monodromy” map hm generates a cyclic
group of order m, which acts freely on Xm(A). The resulting regular m-fold covering
Xm(A) → Xm(A)/〈hm〉 clearly coincides with pm : Xm(A) → M(A). More generally,
for m = k ·r composite, the map hk

m generates a cyclic group of order r, which also acts
freely on Xm(A), and the covers Xm(A) → Xm(A)/〈hk

m〉 and pm,k : Xm(A) → Xk(A)
coincide.

4. Cohomology

We now study the cohomology of the covering spaces Xm(A). Fix a basepoint x0 ∈
M(A). From the Leray-Serre spectral sequence of the fibration pm : Xm(A) → M(A),
we obtain H∗(Xm(A); C) = H∗(M(A);Lm), the cohomology of Xm(A) with trivial C-
coefficients is isomorphic to the cohomology of the base M(A) with coefficients in the
rank m local system Lm with stalk Lm

x = H0(p−1
m (x); C) ≃ Cm. The results presented

in this section are natural generalizations in the context of arrangements of those of
[CS1, Section 1].

Proposition 4.1 (cf. [CS1, 1.3–1.5]). Let T ∈ GL(m, C) be the cyclic permutation

matrix of order m defined by T (~ei) = ~ei+1 for 1 ≤ i ≤ n − 1 and T (~en) = ~e1, where

{~ei} is the standard basis for Cm. Note that T is diagonalizable with eigenvalues ξk
m,

1 ≤ k ≤ m.

1. The local system Lm is induced by the representation τm : π1(M(A),x0) →
GL(m, C) given by τm(γH) = T for each meridian γH .

2. The local system Lm decomposes into a direct sum, Lm =
⊕m

k=1 L
m
k of rank one

local systems. For each k, the local system Lm
k is induced by the representation

τm
k : π1(M(A),x0) → C∗ defined by τm

k (γH) = ξk
m.

3. We have H∗(Xm(A); C) =
⊕m

k=1 H∗(M(A);Lm
k ).

The above result provides one decomposition of the cohomology H∗(Xm(A); C).
Another is given by the monodromy maps hm : Xm(A) → Xm(A) of Remark 3.4.
Since hm has finite order m, the induced map h∗

m : Hq(Xm(A); C) → Hq(Xm(A); C) is
diagonalizable, with eigenvalues among the m-th roots of unity. Denote the cohomology

eigenspace of ξk
m by Hq(Xm(A); C)k, and let ∆

(m)
q (t) = det(t · h∗

m − id) denote the
characteristic polynomial of h∗

m : Hq(Xm(A); C) → Hq(Xm(A); C). We then have the
following generalizations of Theorem 2.3, Proposition 2.1, and Corollary 2.2.

Proposition 4.2 (cf. [CS1, 1.6]). For each k, 1 ≤ k ≤ m, we have

H∗(Xm(A); C)k ≃ H∗(M(A);Lm
k )

Proposition 4.3 (cf. [CS1, 1.1]). Let ξj
m and ξk

m be two m-th roots of unity which

generate the same cyclic subgroup of Zm = 〈ξm〉. Then the cohomology eigenspaces

H∗(Xm(A); C)j and H∗(Xm(A); C)k are isomorphic.

Corollary 4.4. If ξj
m and ξk

m are m-th roots of unity which generate the same cyclic

subgroup of Zm = 〈ξm〉, then H∗(M(A);Lm
j ) ≃ H∗(M(A);Lm

k ).

Corollary 4.5. For each q, 0 ≤ q ≤ ℓ, there are nonnegative integers d
(m)
k,q so that

∆(m)
q (t) =

∏

k|n

Φk(t)d
(m)
k,q ,

where Φk(t) denotes the k-th cyclotomic polynomial.
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We relate the cohomology of the spaces Xm(A) for various m using these results.

Theorem 4.6. If k divides m, then the cohomology H∗(Xk(A); C) is a direct summand

of H∗(Xm(A); C).

Proof. From Proposition 4.1, we have H∗(Xm(A); C) =
⊕m

q=1 H∗(M(A);Lm
q ), where

the local system Lm
q is induced by the representation τm

q given by γH 7→ ξq
m. Writing

m = k · r, we see that the representations τk
p , 1 ≤ p ≤ k, are among the m represen-

tations τm
q , 1 ≤ q ≤ m. In other words,

⊕k

p=1 H∗(M(A);Lk
p) = H∗(Xk(A); C) is a

direct summand of H∗(Xm(A); C).

Remark 4.7. This result may be interpreted in terms of the intermediate coverings
pm,k : Xm(A) → Xk(A) of Proposition 3.3 as follows. One can check that the pro-
jection pm,k commutes with the monodromy maps, pm,k ◦ hm = hk ◦ pm,k. Con-
sequently, the induced map p∗m,k : H∗(Xk(A); C) → H∗(Xm(A); C) preserves the
eigenspaces of h∗

k. Using Proposition 4.2 and the above theorem, one can show that

p∗m,k maps H∗(Xk(A); C) =
⊕k

p=1 H∗(M(A);Lk
p) isomorphically to the summand

⊕k

p=1 H∗(M(A);Lkr
pr) of H∗(Xm(A); C).

These results also show that, to determine the cohomology of Xm(A), it suffices to
compute H∗(M(A);Lk

1) for divisors k of m. Proposition 4.2 and Corollary 4.4 yield

Theorem 4.8. The Betti numbers of the space Xm(A) are given by

bq(Xm(A)) = dimC Hq(Xm(A); C) =
∑

k|m

φ(k) · bq(L
k
1),

where φ is the Euler phi function and bq(L
k
1) = dimC Hq(M(A);Lk

1).

The summand H∗(M(A);L1
1) of H∗(Xm(A); C) corresponds to the constant coef-

ficient cohomology of M(A). This is well understood in terms of the Orlik-Solomon
algebra defined next.

5. Orlik-Solomon Algebra

Let A = A(A) be the Orlik-Solomon algebra of A generated by the 1-dimensional
classes aH , H ∈ A. It is the quotient of the exterior algebra generated by these classes
by a homogeneous ideal, hence a finite dimensional graded C-algebra. There is an iso-
morphism of graded algebras H∗(M(A); C) ≃ A(A). In particular, dimAq(A) = bq(A)
where bq(A) = dimHq(M(A); C) denotes the q-th Betti number of M(A) with trivial
local coefficients C. The absolute value of the Euler characteristic of the complement
is a combinatorial invariant:

β(A) = (−1)ℓ

ℓ
∑

q=0

(−1)qbq(A) = |χ(M(A))|.(1)

Let λ = {λH | H ∈ A} be a collection of complex weights. Define a differential Aq →
Aq+1 by multiplication by aλ =

∑

H∈A λH aH . This provides a complex (A•, aλ∧).
Associated to λ, we have a rank one representation ρ : π1(M(A)) → C

∗ given by
γH 7→ tH = exp(2π i λH) for any meridian loop γH about the hyperplane H ∈ A, and
a corresponding rank one local system L on M(A). Note that ρ and L are unchanged
if we replace the weights λ with λ + m, where m = {mH | H ∈ A} is a collection of
integers. The following inequalities are well known, see [CO].

Proposition 5.1. For all λ and all q we have

sup
m∈Z|A|

dimC Hq(A•, aλ+m∧) ≤ dimC Hq(M(A);L) ≤ dimC Hq(M(A); C).
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For the local systems arising in the context of the covers Xm(A), the weights are
rational. Suppose λH = kH/N for all H , with integers kH and N , and assume without
loss that the g.c.d. of the kH is prime to N . In this case there are better upper bounds.
The Orlik-Solomon ideal is defined by integral linear combinations of the generators,
hence the algebra may be defined over any commutative ring R, denoted AR(A). Write
AQ = AQ(A). Left-multiplication by the element aλ =

∑

λHaH ∈ A1
Q induces a

differential on the Orlik-Solomon algebra, and we denote the resulting complex by
(A•

Q, aλ∧). Similarly, associated to the element ak = Naλ =
∑

kHaH , we have the

complex (A•
Q, ak∧). We showed in [CO] that the complexes (A•

Q, aλ∧) and (A•
Q, ak∧)

are chain equivalent. The coefficients of ak are integers, so we consider the Orlik-
Solomon algebra with integer coefficients and the associated complex (A•

Z, ak∧). Let
(A•

N , āk∧) be the reduction of (A•
Z, ak∧) mod N , where AN = AZN

denotes the Orlik-
Solomon algebra with coefficients in the ring ZN and āk = ak mod N .

Theorem 5.2 ([CO, 4.5]). Let λ = k/N be a system of rational weights, and let L be

the associated rational local system on the complement M of A. Then, for each q,

dimC Hq(M(A);L) ≤ rankZN
Hq(A•

N , āk∧).

There are examples in [CO] which show that the inequality can be strict.

6. Polynomial Periodicity

We continue the study of the cohomology of the spaces Xm(A). We first investi-
gate the implications of a well known vanishing theorem of Schechtman, Terao, and
Varchenko in this context. We then establish the polynomial periodicity of the Betti
numbers of this family of spaces.

An edge of A is a nonempty intersection of hyperplanes and L(A) is the set of
edges. Given Y ∈ L(A), let AY = {H ∈ A | Y ⊂ H}. Define the weight of Y by
λY =

∑

H∈AY
λH . Call Y ∈ L(A) dense if β((AY )0) > 0 where (AY )0 is a decone of

AY . The projective closure, A∞, of A adds the infinite hyperplane, H∞, with weight
−

∑

H∈A λH . Recall that A ⊂ Cℓ contains ℓ linearly independent hyperplanes.

Theorem 6.1 ([STV, 4.3]). Call the local system L nonresonant if λY 6∈ Z≥0 for every

dense edge Y ∈ L(A∞). In this case

Hq(M(A);L) = 0 for q 6= ℓ, and dimC Hℓ(M(A);L) = β(A).

Recall the decomposition H∗(Xm(A); C) =
⊕m

q=1 H∗(M(A);Lm
q ) of the cohomology

of Xm(A) from Proposition 4.1. By Theorem 4.8, it suffices to consider the case q = 1.
In the notation of the previous section, the local system Lm

1 arises from the rational
and equal weights λH = 1/m for all H ∈ A. The projective closure, A∞, of A is the
projective quotient of the cone C of A. Assign the weight −|A|/m to H∞.

Proposition 6.2. If either (i) m > |A|, or (ii) |(A∞)Y | is relatively prime to m for

every dense edge Y ∈ L(A∞), then the local system Lm
1 is nonresonant.

Proof. If Y ⊂ H∞, then λY < 0. Otherwise, we have λY = |AY |/m, which cannot be
a positive integer in either case (i) or (ii).

Call a positive integer k nonresonant if k satisfies either of the hypotheses of Propo-

sition 6.2. Recall the factorization, ∆
(m)
q (t) =

∏

k|m Φk(t)d
(m)
k,q , of the characteristic

polynomial of the monodromy h∗
m : Hq(Xm(A); C) → Hq(Xm(A); C) provided by

Corollary 4.5. The results of Section 4 and this section provide the following informa-

tion concerning the exponents d
(m)
k,q arising in this factorization.

Proposition 6.3. For every m, we have d
(m)
1,q = bq(A) for all q. If k is nonresonant,

then d
(m)
k,q = 0 if q < ℓ and d

(m)
k,ℓ = β(A).
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Proof. The first statement follows from Proposition 4.2 and the fact that L1
1 is the

trivial local system. The second statement follows from Proposition 6.2.

Proposition 6.2 also facilitates an elementary and explicit proof of the polynomial
periodicity of the Betti numbers of the family of covering spaces Xm(A). We refer
to Sarnak and Adams [SA, Ad] for results along these lines in greater generality, and
to Hironaka [H1, H2] and Sakuma [Sk] for related results on branched covers of sur-
faces and links. A sequence {am}m∈N is said to be polynomial periodic if there are
polynomials p1(x), . . . , pN (x) ∈ Z[x] so that am = pi(m) whenever m ≡ i mod N .

Theorem 6.4. For each q, 0 ≤ q ≤ ℓ, the sequence, {bq(Xm(A))}m∈N, of Betti num-

bers of the cyclic covers Xm(A) of the complement M(A) is polynomial periodic.

Proof. First note that b0(Xm(A)) = 1 for all m.
Let N =

∏

p prime pe be the product of all prime powers pe for which the exponent

e is maximal so that pe ≤ |A|. Evidently, N is the smallest positive integer for which
k|N for all k ≤ |A|. Note also that if m ≡ i mod N , then

{k ∈ N | 1 ≤ k ≤ |A| and k|m} = {k ∈ N | 1 ≤ k ≤ |A| and k|i}.(2)

For 1 ≤ q ≤ ℓ − 1 and 1 ≤ i ≤ N , define constant polynomials pq,i = bq(Xi(A)).
From Theorem 4.8, we have pq,i =

∑

k|i φ(k) · bq(L
k
1). Similarly, if m ≡ i mod N , then

bq(Xm(A)) =
∑

k|m φ(k) · bq(L
k
1), and by Proposition 6.2, the sum is over all k ≤ |A|.

Thus, polynomial periodicity of the Betti numbers bq(Xm(A)) for 1 ≤ q ≤ ℓ−1 follows
from the relation between such divisors of m and i noted in (2) above.

The polynomial periodicity of the top Betti number bℓ(Xm(A)) may be established
by an Euler characteristic argument as follows. We have χ(Xm(A)) = m · χ(M(A)).
This, together with (1), yields

bℓ(Xm(A)) = m · β(A) + (−1)ℓ+1

[

1 +

ℓ−1
∑

q=1

(−1)qbq(Xm(A))

]

.

Defining linear polynomials pℓ,i(x) = β(A) · x + (−1)ℓ+1
[

1 +
∑ℓ−1

q=1(−1)qpq,i

]

for each

i, 1 ≤ i ≤ N , we have bℓ(Xm(A)) = pℓ,i(m) if m ≡ i mod N .

Remark 6.5. The polynomial periodicity of the Betti numbers of more general classes
of covers of a finite CW-complex are established in [SA, Ad]. Noteworthy in the above
proof are the explicit identifications of the “period” N and the polynomials pq,i(x) for
the cyclic covers Xm(A), see the concluding remarks in [H1].

A generating function for the Betti numbers bq(Xm(A)) is given by the following
zeta function, suggested by A. Adem. For each q, 0 ≤ q ≤ ℓ, define

ζA,q(s) =

∞
∑

m=1

bq(Xm(A))

ms
.(3)

Theorem 6.6. We have

ζA,q(s) = ζ(s) ·





∑

k≤|A|

φ(k) · bq(L
k
1)

ks
+ δq,ℓ · β(A)

∑

k>|A|

φ(k)

ks





where ζ(s) is the classical Riemann zeta function and δq,ℓ is the Kronecker delta.

Proof. From Theorem 4.8, we have bq(Xm(A)) =
∑

k|m φ(k) · bq(L
k
1). If k > |A|, we

have bq(L
k
1) = 0 for q < ℓ and bℓ(L

k
1) = β(A) by Proposition 6.2. A calculation using

these observations yields the result.
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7. Bounds and Examples

The results of Sections 4 and 6 show that, to determine the cohomology of Xm(A),
it suffices to compute H∗(M(A);Lk

1) for those divisors k of m for which k < |A| and
hypothesis (ii) of Proposition 6.2 fails. Combining the results of Proposition 5.1 and
Theorem 5.2, we have combinatorial bounds on the local system Betti numbers,

sup
m∈Z|A|

dimC Hq(A•, aλ+m∧) ≤ bq(L
k
1) ≤ rankZk

Hq(A•
Zk

, ā1∧),(4)

where k · λ = 1 and a1 =
∑

H∈A aH . Evidently, if the two extreme non-negative

integers in the above inequalities are equal, then bq(L
k
1) is determined. In particular,

if rankZk
Hq(A•

Zk
, ā1∧) = 0, we have bq(L

k
1) = 0 as well. We conclude with several

examples which illustrate the utility of these bounds.

Example 7.1. Let C be a realization of the MacLane (83) configuration, with defining
polynomial Q(C) = xy(y−x)z(z−x−ξ2

3y)(z+ξ3y)(z−x)(z+ξ2
3x+ξ3y), and let A be a

decone of C. The Poincaré polynomial of A is P (A, t) = 1+7t+13t2, and β(A) = 7. A
calculation in the Orlik-Solomon algebra of A reveals that Hq(A•

Zk
, ā1∧) = 0 for q 6= 2

and all k > 1. Thus, P (Xm(A), t) = 1 + 7t + (6 + 7m)t2 for all m. In particular, for
m = 8 = |C|, the Poincaré polynomial of the Milnor fiber of the MacLane arrangement
is P (F (C), t) = 1 + 7t + 62t2.

Example 7.2. Let A be the Selberg arrangement in C2, with defining polynomial
Q(A) = xy(x − y)(x − 1)(y − 1). The Poincaré polynomial of A is given by P (A, t) =
∑

q≥0 bq(A)tq = 1+5t+6t2, and we have β(A) = 2, see (1). The dense edges of A∞ all
have cardinality 3, so by Proposition 6.2, if k > 5 or k is prime to 3, the local system
Lk

1 on M(A) is nonresonant. Thus if (m, 3) = 1, the Poincaré polynomial of the cover
Xm(A) is P (Xm(A), t) = 1 + 5t + (4 + 2m)t2.

If k = 3, one can check that dimC Hq(A•, aλ+m∧) = rankZ3 Hq(A•
Z3

, ā1∧) = 1,

where 3λ = 1 and m = (. . . mH . . . ) ∈ Z5 satisfies mH = −1 if H = {x − y = 0}
and mH = 0 otherwise. Consequently, b1(L

3
1) = 1 as well, and if 3 divides m, we have

P (Xm(A), t) = 1 + 7t + (6 + 2m)t2. It follows that the zeta function ζA,1(s) of (3) is
given by ζA,1(s) = ζ(s) · [5 + 2 · 3−s].

Since the Selberg arrangement is a decone of the braid arrangement B of rank
three, the cover X6(A) is homeomorphic to the Milnor fiber F (B), and P (F (B), t) =
1+7t+18t2, as is well known. For further calculations along these lines, see [CS2, De].

Example 7.3. Let C be the Hessian configuration, with defining polynomial Q(C) =

x1x2x3

∏

i,j=0,1,2(x1 + ξi
3x2 + ξj

3x3), and let A be a decone of C with Orlik-Solomon

algebra A. The Poincaré polynomial of A is P (A, t) = 1 + 11t + 28t2, and β(A) = 18.
One can check that Hq(A•

Zk
, ā1∧) = 0 for q 6= 2 if k 6= 2, 4, and that, if k = 2, 4,

rankZk
Hq(A•

Zk
, ā1∧) =











2 if q = 1,

20 if q = 2,

0 otherwise.

So b1(L
k
1) = 0 and b2(L

k
1) = 18 if k 6= 2, 4, while b1(L

k
1) ≤ 2 and b2(L

k
1) ≤ 20 if k = 2, 4.

Concerning the lower bound of (4), it is known that the resonance variety R1(C) of
the Hessian arrangement has a non-local three-dimensional component S ⊂ C12, see
[CS3, 5.8], [Li, 3.3]. For λ ∈ S, we have dimC H1(A•(C), aλ∧) = 2, see [Fa, 3.12]. For
an appropriate ordering of the hyperplanes of C, this component has basis

~e5 + ~e7 + ~e12 − ~e1 − ~e2 − ~e3, ~e4 + ~e9 + ~e11 − ~e1 − ~e2 − ~e3, ~e6 + ~e8 + ~e10 − ~e1 − ~e2 − ~e3.

Using this basis, one can show that, for aλ = 1
k
a1 ∈ C12, there exists m ∈ Z12 so that

λ + m ∈ S if and only if k = 2, 4. Thus, supm∈Z12 dimC H1(A•(C), aλ+m∧) = 2 for
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these k. A standard argument then shows that supm∈Z11 dimC H1(A•(A), aλ+m∧) = 2
for aλ = 1

k
a1 ∈ C11 as well. Consequently, the inequalities in the upper bounds on

bq(L
k
1) noted above are in fact equalities. It follows that the zeta function ζA,1(s) is

given by ζA,1(s) = ζ(s) · [11 + 2 · 2−s + 4 · 4−s].
These calculations determine the Betti numbers of the cover Xm(A) for any m,

as well as the dimensions of the eigenspaces of the maps h∗
m : H∗(Xm(A); C) →

H∗(Xm(A); C). In particular, for m = 12 = |C|, the Poincaré polynomial of the Milnor
fiber of the Hessian arrangement is P (F (C), t) = 1+17t+232t2, and the characteristic

polynomials ∆q(t) = ∆
(12)
q of the algebraic monodromy are

∆0(t) = t − 1, ∆1(t) = (t − 1)9(t4 − 1)2, and ∆2(t) = (t − 1)8(t4 − 1)2(t12 − 1)18.

Example 7.4. Let A be the Ceva(3) arrangement in C3, with defining polynomial
Q(A) = (x3 − y3)(x3 − z3)(y3 − z3). It is known that dimC H1(A•, aλ∧) ≤ 1 for all
λ. In the case k = 3, is is also known that b1(L

3
1) = rankZ3 H1(A•

Z3
, ā1∧) = 2. This

example is discussed in detail in [Fa, 4.5], [Li, 3.3], [CS3, 6.2], and [CO, 3.5 and 4.7].
As illustrated by this arrangement, the lower bound of (4) may be strict. On the

other hand, we know of no example where the upper bound of (4) is strict.
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