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HALL-LITTLEWOOD VERTEX OPERATORS AND

GENERALIZED KOSTKA POLYNOMIALS

MARK SHIMOZONO AND MIKE ZABROCKI

1. Introduction

Kostka-Folkes polynomials may be considered as coefficients of the formal
power series representing the character of certain graded GL(n)-modules.
These GL(n)-modules are defined by twisting the coordinate ring of the
nullcone by a suitable line bundle [1] and the definition may be generalized
by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n)
by a suitable vector bundle [13]. The resulting polynomials have been called
generalized Kostka polynomials.

Jing defined a vertex operator that generates the Hall-Littlewood sym-
metric function Q[X; q] [6], thereby giving an elegant symmetric function re-
cursion for the Kostka-Foulkes polynomials. Garsia used a variant of Jing’s
vertex operator to derive various new formulas for the Kostka-Foulkes poly-
nomials.

Our point of departure was the observation that the Hall-Littlewood ver-
tex operators can be used to obtain formulas for generalized Kostka poly-
nomials. Our treatment uses Garsia’s plethystic type formulas.

One striking fact is that the Z[q, q−1]-linear span of n-fold compositions
of components of the Hall-Littlewood vertex operators, is isomorphic to
KG×C∗(N ), the GL(n) × C∗-equivariant K-theory of the nullcone. Under
this isomorphism, an n-fold composite operator is sent to the class of the
Euler characteristic of a twisted module. This fact has a generalization for
all the nilpotent conjugacy class closures in gl(n).

These Grothendieck groups were studied in [7]. We derive many explicit
relations among the vertex operators, most of which can be in interpreted as
relations in the Grothendieck groups which arise from certain Koszul com-
plexes. This allows for more explicit proofs of some basis theorems for these
Grothendieck groups that were proved in [7] using geometric arguments.

There is a particularly well-behaved subfamily of the generalized Kostka
polynomials, namely, those that are indexed by a sequence of rectangular
partitions. For this subfamily almost all of the formulas for Kostka-Foulkes
polynomials have generalizations. There are combinatorial formulas involv-
ing Littlewood-Richardson tableaux [11] [10], rigged configurations [8], and
inhomogeneous paths with energy function [12] [10].
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2. Hopf algebra of symmetric functions and plethysm

This section contains standard background material on symmetric func-
tions which can be found in [9]. The possible exception to this is the defini-
tion of the plethystic notation used here.

Let Λ = ΛF be the algebra of symmetric functions over a field F of char-
acteristic zero. Λ may be defined as the polynomial algebra F[p1, p2, . . . ]
where the pk are commuting algebraically independent variables. Let P be

the set of partitions. For λ = (λ1, . . . , λk) ∈ P, write |λ| =
∑k

i=1 λi and
let pλ = pλ1 . . . pλk

denote the power symmetric function. Declaring pk to
have degree k, Λ is endowed with a grading Λ =

⊕
n≥0 Λn where Λn is the

homogeneous component of degree n. Λn has F-basis {pλ | λ ∈ P, |λ| = n}.
Λ may be realized by symmetric series. Let X = (x1, x2, . . . ) be a count-

able set of commuting indeterminates. Denote by F[[X]] the F-algebra of
formal power series in the xi where each xi has degree 1, and Fb[[X]] ⊂ F[[X]]
the subalgebra consisting of series whose monomials are of bounded degree.
Let ΛX ⊂ Fb[[X]] denote the F-subalgebra consisting of the series that are
symmetric in the variables xi. By the universal mapping property of a
polynomial algebra, there is a F-algebra homomorphism Λ → ΛX given by
pk 7→ xk

1 + xk
2 + · · · . This map is in fact a graded F-algebra isomorphism.

There is a scalar product on Λ for which the power symmetric functions
are an orthogonal basis:

〈 pλ , pµ 〉 = δλµzλ

where δλµ is the Kronecker delta, zλ =
∏

i ni(λ)! ini(λ), and ni(λ) is the
number of parts of size i in the partition λ.

We now define notation for plethystic substitution.
Let q ∈ F be a distinguished element that is transcendental over Q. Fix an

element E ∈ Fb[[X]]. Define pk[E] ∈ Fb[[X]] to be the series obtained from
E by replacing q by qk and xi by xk

i for all i ≥ 1. By the universal mapping
property of a polynomial algebra, there is a unique F-algebra homomorphism
Λ → Fb[[X]] such that pk 7→ pk[E]. The image of P ∈ Λ under this map is
denoted P [E].

Switching viewpoints and considering pk[E] for various E, we see di-
rectly from the definitions that E 7→ pk[E] is a Q-algebra homomorphism
Fb[[X]] → Fb[[X]] and ΛX → ΛX given by pk[E ± E′] = pk[E] ± pk[E

′]
and pk[EE′] = pk[E]pk[E

′] for all E,E′ ∈ Fb[[X]]. It is not an F-algebra
homomorphism since it changes the scalar q to qk.

By abuse of notation the variable X will also be used to represent the
formal sum x1 + x2 + x3 + · · · . By definition

pk[X] = pk[x1 + x2 + x3 + · · · ] = xk
1 + xk

2 + xk
3 + · · · .

Example 1. e2 = p2
1/2−p2/2 ∈ Λ. For the expression E = x1 +x2 we have

e2[x1 + x2] = (x1 + x2)
2/2 − (x2

1 + x2
2)/2 = x1x2
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If E = 1
1−q then p1[

1
1−q ] = 1

1−q and p2[
1

1−q ] = 1
1−q2 , so that

e2

[
1

1 − q

]
=

1

2(1 − q)2
−

1

2(1 − q2)
=

q

(1 − q)(1 − q2)

Recall that each E ∈ Fb[[X]] defines an F-algebra homomorphism Λ →
Fb[[X]] such that P 7→ P [E].

1. If E = X then P 7→ P [X] yields the above isomorphism Λ ∼= ΛX .
2. If E = 0 then the F-algebra homomorphism ǫ : Λ → F given by

P 7→ P [0] is the counit for Λ; it selects the constant term.
3. If E = x1 + x2 + · · · + xm then P 7→ P [x1 + x2 + · · · + xm] is the

F-algebra epimorphism Λ → F[x1, . . . , xm]Sm onto the F-algebra of
symmetric polynomials in x1 through xm where Sm is the symmetric
group on m letters.

4. If E = X/(q−1) then the map P [X] 7→ P [X/(q−1)] is an F-algebra iso-
morphism Λ → Λ with inverse map P [X] 7→ P [X(q−1)]. In particular
if {fλ} is a basis of Λ then so are {fλ[X(q − 1)]} and {fλ[X/(q − 1)]}.

We now discuss the Hopf algebra structure on Λ. Let Y = y1 + y2 + · · ·
where the yi are another countable set of commuting indeterminates. Let
ΛX;Y denote the F-subalgebra of Fb[[X,Y ]] consisting of the series that are
symmetric in both the xi and the yj. Then there is an isomorphism Λ⊗FΛ →
ΛX;Y given by f ⊗ g 7→ f [X]g[Y ] for f, g ∈ Λ. Letting E = X + Y , the map
P 7→ P [X + Y ] defines an F-algebra homomorphism ∆ : Λ → Λ ⊗ Λ. ∆ is
the comultiplication map for Λ. The maps ∆ and ǫ give Λ the structure of
a coassociative cocommutative Hopf algebra.

There is a scalar product on Λ ⊗ Λ defined by

〈 f1[X]g1[Y ] , f2[X]g2[Y ] 〉ΛX⊗ΛY = 〈 f1 , f2 〉〈 g1 , g2 〉

for all fi, gi ∈ Λ for i = 1, 2 and this relation is then extended by linearity.
With respect to this scalar product on Λ ⊗ Λ, the map ∆ is adjoint to the
multiplication map Λ ⊗ Λ → Λ given by f ⊗ g 7→ fg. That is,

〈 f , gh 〉 = 〈 f [X + Y ] , g[X]h[Y ] 〉(1)

for all f, g, h ∈ Λ.
To deal with the Cauchy kernel it is necessary to work in a completion of

Λ. Let Λ̂ = F[[p1, p2, . . . ]], the F-algebra of formal power series in the pi. The

symmetric realization Λ̂X of Λ̂ is given by the F-subalgebra of symmetric
series in F[[X]]. Given any element E ∈ Fb[[X]] with no constant term and

P ∈ Λ̂, the plethysm P [E] ∈ F[[X]] may be defined by substitution as before.

Define the Cauchy kernel Ω ∈ Λ̂ by

Ω = exp




∑

r≥1

pr/r



 .
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The following formulas are consequences of the definitions:

Ω[zX] =
∏

i

1

1 − zxi
=

∑

k≥0

zkhk[X]

Ω[−zX] =
∏

i

1 − zxi =
∑

k≥0

(−z)kek[X]

Ω[X + Y ] = Ω[X]Ω[Y ]

Ω[X − Y ] = Ω[X]Ω[−Y ] = Ω[X]/Ω[Y ]

Ω[XY ] =
∑

λ∈P

sλ[X]sλ[Y ]

where hk, ek, and sλ are the homogeneous, elementary, and Schur symmetric
functions respectively.

Two bases {aλ} and {bλ} of Λ are dual with respect to the scalar product
if and only if

∑
λ∈P aλ[X]bλ[Y ] = Ω[XY ].

For f ∈ Λ, let f⊥ be the linear operator on Λ that is adjoint to multipli-
cation by f with respect to the scalar product:

〈 f⊥(g) , h 〉 = 〈 g , fh 〉(2)

for all g, h ∈ Λ. This operator is usually referred to as “f-perp” or “skewing
by f.”

The skewing operators and the map ∆ (or equivalently the plethystic map
P 7→ P [X +Y ]) can be expressed in terms of each other. For any f, g, h ∈ Λ,

〈 f⊥(g) , h 〉 = 〈 g[X + Y ] , f [Y ]h[X] 〉(3)

using (2), (1), and the commutativity of multiplication in Λ. Let {aλ} and
{bλ} be dual bases of Λ. Then for every P ∈ Λ,

P [X + Y ] =
∑

λ

(b⊥λ (P ))[X]aλ[Y ].(4)

3. Definition of the operator

Using plethystic substitution we define a family of linear operators on
symmetric functions. Define the formal Laurent series H(Zk) in an ordered
set of variables Zk = (z1, z2, . . . , zk) with coefficients given by operators on
Λ, which acts on P ∈ Λ by

H(Zk)P [X] = P [X − (1 − q)Z∗]Ω[ZX]R(Zk)(5)

where Z∗ =
∑k

i=1 z−1
i , Z =

∑k
i=1 zi and R(Zk) =

∏
1≤i<j≤k 1 − zj/zi. For

v ∈ Zk, define the operator Hq
v by

Hq
vP [X] = H(Zk)P [X]

∣∣∣
zv

.(6)

Remark 2. 1. If k = 1 this is Garsia’s [2] [3] version of Jing’s Hall-
Littlewood vertex operator [6].
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2. At q = 0 this formula reduces to plethystic notation for a repeated
application of the Schur function vertex operator that is due to Bern-
stein [9, p.96, # 29 (d)], [3]. So H0

(v1)H
0
(v2) · · ·H

0
(vk) = H0

v for any

v ∈ Zk. If v is a partition λ = (λ1, . . . , λk) with at most k parts then
H0

λ 1 = sλ[X].
3. When q = 1 and λ is a partition, this formula reduces to multiplication

by the Schur function sλ: Ω[ZX]R(Zk)
∣∣∣
zλ

= sλ[X].

4. Hq
λ 1 = sλ for any partition λ = (λ1, . . . , λk) with at most k parts. If

vk < 0 then Hq
v 1 = 0.

This operator possesses the same shifted skew symmetry in its subscript
that Schur functions have. Let Zk

≥ denote the set of dominant integral

weights in Zk, that is, the weakly decreasing sequences in Zk. Let Pk ⊂ Zk
≥

be the set of partitions of length at most k, which are always regarded as
having k parts, some of which may be zero.

Proposition 3. Let v ∈ Zk. Then

Hq
v = −Hq

(v1,v2... ,vi+1−1,vi+1,...,vk).

In particular if vi+1 = vi + 1 then Hq
v = 0.

Proof. Let siZ
k be the sequence Zk with zi and zi+1 exchanged. Then

H(siZ
k) = 1−zi/zi+1

1−zi+1/zi
H(Zk) = − zi

zi+1
H(Zk). The result follows by taking

the coefficient of zv on both sides of this equation. If vi+1 = vi + 1 then
Hq

v = −Hq
v and hence must be zero.

The following corollary shows that for every v ∈ Zk, Hq
v is either zero or

up to sign equal to Hq
ν for some ν ∈ Zk

≥.

Corollary 4. Let v ∈ Zk, σ ∈ Sk, and ρ = ρ(k) = (k − 1, k − 2, . . . , 0).
Then

Hq
v = sign(σ)Hq

σ(v+ρ)−ρ.(7)

In particular, if v + ρ has two equal parts then Hq
v = 0. Otherwise there is a

unique σ ∈ Sk such that σ(v+ρ) is strictly decreasing, so that σ(v+ρ)−ρ ∈
Zk
≥.

4. Another formula for the vertex operator

We derive another formula for the operator Hq
ν , which will be used to

prove a strong linear independence property of the operators. To do this, it
is convenient to introduce some notation for the irreducible rational charac-
ters of GL(k). The polynomial representation ring of GL(k) is isomorphic to
the F-algebra F[z1, z2, . . . , zk]

Sk of symmetric polynomials in the variables zi.
The rational representation ring R(GL(k)) is isomorphic to the F-algebra of
symmetric Laurent polynomials in the variables z1, z2, . . . , zk or equivalently

5



the localization F[z1, . . . , zk]Sk [det[Z]−1] of the algebra of symmetric poly-
nomials obtained by inverting the character det[Z] = z1z2 · · · zk of the deter-
minant module. R(GL(k)) has a distinguished basis {sλ[Z] | λ ∈ Zk

≥} where

sλ[Z] is the character of the irreducible finite-dimensional GL(n)-module V λ

of highest weight λ. Explicitly, if m is an integer such that m ≥ −λk then
sλ[Z] = det[Z]−msλ+(mk)[Z] where mk = (m,m, . . . ,m) ∈ Zk, λ + (mk) is

the vector sum in Zk (which is a partition) and sλ+(mk)[Z] is the Schur poly-

nomial. For v ∈ Zk, define its dual weight v∗ = (−vk,−vk−1, . . . ,−v1). If
λ ∈ Zk

≥ then so is λ∗; it satisfies (V λ)∗ ∼= V λ∗

where V ∗ is the contragredient
dual of V .

Denote by cλ
µν the tensor product multiplicities:

sµ[Z]sν [Z] =
∑

λ∈Zk
≥

cλ
µνsλ[Z]

for λ, µ, ν ∈ Zk
≥. It is well-known that

cλ
µν = dim(V λ∗

⊗ V µ ⊗ V ν)GL(n)(8)

where V G denotes the submodule of V fixed by G. Moreover for any finite-
dimensional G-module,

dim((V ∗)G) = dim(V G).(9)

Let

H(Z)P [X] = P [X − (1 − q)Z∗]Ω[ZX].(10)

Then by (5) and (6),

H(Z) =
∑

ν∈Zk
≥

sν [Z]Hq
ν .(11)

Proposition 5. For ν ∈ Zk
≥,

Hq
ν =

∑

λ,µ∈Pk

cλ
µνsλ[X]sµ[X(q − 1)]⊥.(12)

Proof. Let Y be another set of variables and let H(Z) act on the X variables.
We have

H(Z)Ω[XY ] = Ω[XY ]Ω[(q − 1)Z∗Y ]Ω[XZ]

= Ω[XY ]
∑

ν∈Zk
≥

∑

λ,µ∈Pk

sν [Z]cν
µ∗λsµ[(q − 1)Y ]sλ[X].

6



The tensor product multiplicity can be rewritten using (8) and (9) so that
cν
µ∗λ = cλ

µν . Clearly we have for fixed γ ∈ Pk and ν ∈ Zk
≥

Hq
νsγ [X] = H(Z)Ω[XY ]

∣∣∣
sν [Z]sγ [Y ]

=
∑

λ,µ∈Pk

cλ
µν

〈
sµ[(q − 1)Y ]⊥sγ [Y ],Ω[XY ]sλ[X]

〉

Y

=
∑

λ,µ∈Pk

cλ
µνsλ[X]sµ[(q − 1)X]⊥sγ [X]

It is seen that (12) holds on the Schur basis and hence on Λ.

5. Linear independence

The full strength of the following result is required later, when we work
with operators on Λ that are infinite linear combinations of the Hq

ν .

Proposition 6. Let {cν ∈ F | ν ∈ Zk
≥, |ν| = d} be an arbitrary collection

of scalars. Then the map F =
∑

ν∈Zk
≥

,|ν|=d cνHq
ν is a well-defined linear

operator on Λ. Moreover this operator is 0 if and only if cν = 0 for all

ν ∈ Zk
≥ with |ν| = d.

Proof. Any infinite linear combination of operators of the form sλ[X]sµ[X(q−
1)]⊥ with |λ| = |µ|+d is well-defined because its action on any given element
of the basis {sλ[X/(q − 1)]} has only finitely many nonzero summands.

The operator F =
∑

ν∈Zk
≥

,|ν|=d cνHq
ν is well-defined because for fixed par-

titions λ and µ, sλ[X]sµ[X(q − 1)]⊥ appears in the formula given in Propo-

sition 5 for only finitely many Hq
ν , namely for those such that cλ

µν 6= 0.

For γ ∈ Zk
≥, set α(γ) ∈ Pk to be the partition with α(γ)i = max(γi, 0)

and β(γ) ∈ Pk be the partition defined by β(γ)i = −min(γk+1−i, 0).
By Proposition 5, for τ ∈ Pk,

Hq
γ(sτ [X/(q − 1)]) =

∑

λ,µ∈Pk

cλ
µγsλ[X]sµ[X(q − 1)]⊥(sτ [X/(q − 1)]).(13)

The Littlewood Richardson rule implies that the coefficient cλ
µγ = 0 unless

µ ⊇ β(γ). Since {sµ[X(q − 1)]} and {sτ [X/(q − 1)]} are dual bases, we
calculate that Hq

γ(sτ [X/(q − 1)]) = 0 if |τ | ≤ |β(γ)| and τ 6= β(γ), and
Hq

γ(sβ(γ)[X/(q − 1)]) = sα(γ)[X].
It follows now that F = 0 if and only if cγ = 0 for all γ. For if all of the

coefficients are not zero, then γ is chosen such that cγ is non-zero and |β(γ)|
is a minimum. We see then that

F (sβ(γ)[X/(q − 1)]) =
∑

β(ν)=β(γ)

cνsα(ν)[X] 6= 0(14)

7



6. Connection with generalized Kostka polynomials

Next it is shown that the operators Hq
ν have the same relation to the gen-

eralized Kostka polynomials of [13] that the components of Garsia’s modified
Hall-Littlewood vertex operator has to the Kostka-Foulkes polynomials.

Let us recall the definition of the generalized Kostka polynomials. Let
η = (η1, η2, . . . , ηt) be a sequence of positive integers summing to n. Let

Rootsη = {(i, j) | 1 ≤ i ≤ η1 + · · · + ηk < j ≤ n for some k }

be the set of strictly upper block triangular positions in an n × n matrix
with diagonal block sizes given by η. Let Z be the sequence of variables z1

through zn. Define the formal power series Bη[Z; q] by

Bη[Z; q] =
∏

(i,j)∈Rootsη

1

1 − qzi/zj
.

Let J be the antisymmetrizer J =
∑

σ∈Sn
sign(σ)σ. Define the linear oper-

ator π : F[z±1 , . . . , z±n ] → R(GL(n)) given by π(f) = J(zρ)−1J(zρf).
Let γ ∈ Zn. Define the generating series

Hη,γ [Z; q] = π (zγBη[Z; q]) .

Since {sλ[Z] | λ ∈ Zn
≥} is a basis of R(GL(n)), define Kλγη(q) ∈ Z[[q]] by

Hη,γ [Z; q] =
∑

λ∈Zn
≥

sλ[Z]Kλγη(q).

It is shown in [13] that Kλγη(q) ∈ Z[q].
By developing the product of geometric series in Bη[Z; q] and using the

shifted skew symmetry of the index for irreducible characters

sv[Z] = sign(σ)sσ(v+ρ)−ρ[Z]

for v ∈ Zn and σ ∈ Sn, one obtains the following expression [13]:

Kλγη(q) =
∑

σ∈Sn

sign(σ)
∑

m:Rootsη→N

wt(m)=σ(λ+ρ)−(γ+ρ)

q|m|(15)

where ǫ1 through ǫn is the standard basis of Zn, |m| =
∑

(i,j)∈Rootsη
m(i, j),

and wt(m) =
∑

(i,j)∈Rootsη
m(i, j)(ǫi − ǫj).

Given η and γ, write γ = (γ(1), γ(2), . . . , γ(t)) with γ(i) ∈ Zηi and assume
that γ(i) ∈ Z

ηi

≥ .

Proposition 7.

Hq

γ(1)H
q

γ(2) · · ·H
q

γ(t) =
∑

λ∈Zn
≥

Kλ,γ,η(q)H
q
λ.(16)

Proof. Let Zn be the entire set of n variables z1 through zn. Break this
set into t collections of successive variables such that the i-th collection
Z(i) has size ηi for 1 ≤ i ≤ t. We have the relation H(Uk)H(V ℓ) =

8



Ω[qU∗V ]H(Uk, V ℓ), which is verified by showing it holds when evaluated
on an arbitrary P ∈ Λ:

H(Uk)H(V ℓ)P [X] = P [X − (1 − q)(U∗ + V ∗)]Ω[UX]

Ω[V (X − (1 − q)U∗)]R(Uk)R(V ℓ)

= P [X − (1 − q)(U∗ + V ∗)]Ω[(U + V )X]

Ω[qU∗V ]R(Uk, V ℓ)

It follows that

H(Z(1))H(Z(2)) · · ·H(Z(t)) = H(Zn)
∏

1≤i<j≤t

Ω[q(Z(i))∗Z(j)](17)

Observe that Hq

γ(1)H
q

γ(2) · · ·H
q

γ(t) is the coefficient of zγ on the left hand side

of (17). The coefficient of zγ on the right hand side is
∑

m q|m|Hq
γ+wt(m)

where m runs over the functions m : Rootsη → N. By Proposition 6 the
operators Hq

λ are independent for λ ∈ Zn
≥. Hence we may take the coefficient

of Hq
λ on both sides. Using Corollary 4 the right hand side becomes precisely

the the expression (15) of Kλγη(q).

If γ is such that γ(i) ∈ Pηi , define the symmetric function

H(γ(1),...,γ(t))[X; q] = Hq

γ(1)H
q

γ(2) · · ·H
q

γ(t) 1.(18)

Then

H(γ(1),...,γ(t))[X; q] =
∑

λ∈Pn

Kλγη(q)sλ[X](19)

which is a finite sum, unlike the expansion (16) which is an infinite sum. At
q = 1 this is the expansion of the product of Schur functions sγ(1) · · · sγ(t) in
the Schur basis.

We have shown that the coefficients of the expansions of Hη,γ [Z; q] in
terms of irreducible characters, and Hq

γ(1) . . . Hq

γ(t) in terms of the Hq
λ for

λ ∈ Zn
≥, are the same. Consequently, at least on the level of characters, the

questions of [7] regarding a certain Grothendieck ring of graded modules,
can be translated into questions regarding the span of the above operators.

7. Spaces of vertex operators and commutation relations

By manipulating the order of the variables we may derive several sorts of
explicit commutation relations. These are applied to prove basis theorems
for spaces of our operators. Let G(k, n) denote the Z[q]-span of operators of
the form Hq

µHq
ν where µ ∈ Zk and ν ∈ Zn, and G≥(k, n) the Z[q]-span of such

operators with the concatenated weight dominant, that is, (µ, ν) ∈ Zk+n
≥ .

The following are vertex operator analogues of results proven in [7] for
Grothendieck groups. Our proofs have the advantage of being explicit and
working over Z[q] instead of Z[q, q−1]. Moreover our relations among vertex
operators can be lifted to relations in the Grothendieck groups.
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Theorem 8. G(k, n) = G≥(k, n).

Theorem 9. If k > n then G(k, n) ⊂ G(k − 1, n + 1) and G(n, k) ⊂ G(n +
1, k − 1).

Theorem 10. G(k, n) = G(n, k).

Consider the following generating function equation that follows easily
from manipulating the operators on an arbitrary symmetric function.

H(Uk, V ℓ)H(W mZn)Ω[−q(U∗W + V ∗W + V ∗Z)]

= H(Uk,W m)H(V ℓ, Zn)Ω[−q(U∗V + W ∗V + W ∗Z)](−1)ℓm
m∏

i=1

wℓ
i

ℓ∏

i=1

v−m
i

(20)

Setting ℓ = m = 1 in this formula gives enough relations to prove Theorem
8. For brevity of notation, define |αβ = |α| − |β|. If µ, ν ∈ Zn

≥ then we will

say that ν/µ is a vertical strip, and denote this by ν/µ ∈ V, provided that
νi − µi ∈ {0, 1} for all 1 ≤ i ≤ n.

Lemma 11. For all a, b ∈ Z and µ ∈ Zk
≥ and ν ∈ Zn

≥,

∑

α/µ∈V

∑

ν/β∈V

(−q)|
α
µ+|ν

β(Hq
(α,a+|ν

β
)H

q
(b−|αµ ,β) − qHq

(α,a+|ν
β
+1)H

q
(b−|αµ−1,β)) =

∑

α/µ∈V

∑

ν/β∈V

(−q)|
α
µ+|ν

β(qHq
(α,b+|ν

β
)H

q
(a−|αµ ,β) − Hq

(α,b+|ν
β
−1)H

q
(a−|αµ+1,β))

(21)

Proof. From equation (20),

H(Uk, v)H(w,Zn)Ω[−q(U∗w + v∗w + v∗Z)]

=H(Uk, w)H(v, Zn)Ω[−q(U∗v + w∗v + w∗Z)](−w/v)

The desired identity is obtained by taking the coefficient of uµvawbzν .

Note that if b = a + 1, then (21) reduces significantly to the following
identity.

∑

α/µ∈V

∑

ν/β∈V

(−q)|
α
µ+|ν

βHq
(α,a+|ν

β
)H

q
(a+1−|αµ ,β)

=
∑

α/µ∈V

∑

ν/β∈V

q(−q)|
α
µ+|ν

βHq
(α,a+|ν

β
+1)H

q
(a−|αµ ,β)(22)

Relations (21) and (22) suffice to prove Theorem 8. Before giving the
proof an example is helpful.

10



Example 12. We wish to show that Hq
(22)H

q
(41) is a linear combination of

Hq
αHq

β with α, β ∈ Z2 such that (α, β) is dominant.

Hq
(22)H

q
(41) − qHq

(23)H
q
(40) − qHq

(32)H
q
(31) + q2Hq

(33)H
q
(30)

− qHq
(23)H

q
(31) + q2Hq

(24)H
q
(30) + q2Hq

(33)H
q
(21) − q3Hq

(34)H
q
(20) =

qHq
(24)H

q
(21) − q2Hq

(25)H
q
(20) − q2Hq

(34)H
q
(11) + q3Hq

(35)H
q
(10)

− Hq
(23)H

q
(31) + qHq

(24)H
q
(30) + qHq

(33)H
q
(21) − q2Hq

(34)H
q
(20)

By Corollary 4 many terms vanish and others cancel with each other.
The terms Hq

(23)H
q
(40), Hq

(23)H
q
(31), Hq

(34)H
q
(20), and Hq

(34)H
q
(11) are all zero.

The terms q2Hq
(24)H

q
(30) and q2Hq

(33)H
q
(30) cancel and so do qHq

(24)H
q
(21) and

qHq
(33)H

q
(21). When this relation is reduced and Hq

(22)H
q
(41) is expressed alone

on the left hand side of the equation we have

Hq
(22)H

q
(41) = qHq

(32)H
q
(31) − q2Hq

(33)H
q
(21) + q2Hq

(43)H
q
(20)

− q3Hq
(44)H

q
(10) − qHq

(33)H
q
(30)

On the right hand side of this equation, only Hq
(32)H

q
(31) does not have the

property that the concatenated indexing weights are dominant. We apply
relation (22) to this operator:

Hq
(32)H

q
(31) − qHq

(33)H
q
(30) − qHq

(42)H
q
(21) + q2Hq

(43)H
q
(20) =

qHq
(33)H

q
(21) − q2Hq

(34)H
q
(20) − q2Hq

(43)H
q
(11) + q3Hq

(44)H
q
(10)

Therefore

Hq
(22)H

q
(41) = (q2 − q)Hq

(33)H
q
(30) + q2Hq

(42)H
q
(21) − q3Hq

(43)H
q
(11)

+ (q2 − q3)Hq
(43)H

q
(20) + (q4 − q3)Hq

(44)H
q
(10)

We now give the proof of Theorem 8.

Proof. It is enough to show that if (µ, a) ∈ Zk
≥ and (b, ν) ∈ Zn

≥ then

Hq
(µ,a)H

q
(b,ν) ∈ G≥(k, n).

If b = a + 1 then in the relation (22) the only term that is not indexed

by weights such that (α, β) ∈ Zk+n
≥ , is Hq

(µ,a)H
q
(a+1,ν), and hence it is in

G≥(k, n).
Otherwise assume that b > a+1. All of the terms of the equation (21) are

of the form Hq
(α,a+|ν

β
)H

q
(b−|αµ ,β), Hq

(α,a+|ν
β
+1)H

q
(b−|αµ−1,β), Hq

(α,b+|ν
β
)H

q
(a−|αµ ,β), or

Hq
(α,b+|ν

β
−1)H

q
(a−|αµ+1,β). Let Hq

(θ,c)H
q
(d,γ) be one of these terms after it has

been rewritten using Corollary 4 so that (θ, c) ∈ Zk
≥ and (d, γ) ∈ Zn

≥.

Consider Hq
(θ,c)H

q
(d,γ) of the first form since the others follow from essen-

tially the same remark. We verify that d − c < b − a (unless Hq
(θ,c)H

q
(d,γ) =

11



Hq
(µ,a)H

q
(a+1,ν)) and hence by induction the theorem is true since if d− c ≤ 0

then (θ, c, d, γ) ∈ Zk+n
≥ . By definition,

c = min
1≤i≤k−1

{
a + |νβ, αi + (k − i)

}

d = max
1≤i≤n−1

{
b − |αµ, βi − i

}

We note that

c ≥ min
1≤i≤k−1

{
a + |νβ , µi + (k − i)

}
≥ min

{
a + |νβ, a + 1

}

and hence c ≥ a with equality if and only if |νβ = 0. Similarly

d ≤ max
1≤i≤n−1

{
b − |αµ, νi − i

}
≤ max

{
b − |αµ, b − i

}

and so d ≤ b with equality if and only if |αµ = 0.

The generalization of this statement, that Hq

γ(1)H
q

γ(2) · · ·H
q

γ(t) with γ(i) ∈

Zηi is in the Z[q] span of the operators Hq

α(1)H
q

α(2) · · ·H
q

α(t) with α(i) ∈ Zηi

and (α(1), α(2), . . . , α(t)) a dominant weight, is conjectured to be true [7],
but does not seem to follow easily from these relations.

By setting ℓ = 1 and m = 0 in (20), we immediately obtain another
relation among the operators which gives us another basis theorem.

Lemma 13. For all a ∈ Z, µ ∈ Zk
≥, and ν ∈ Zn

≥,
∑

β∈Zn
≥

ν/β∈V

(−q)|
ν
βHq

(µ,a+|ν
β
)H

q
β =

∑

α∈Zk
≥

α/µ∈V

(−q)|
α
µHq

αHq
(a−|αµ ,ν).(23)

Proof. From equation (20),

H(Uk, v)H(Zn)Ω[−qv∗Z] = H(Uk)H(v, Zn)Ω[−qvU∗](24)

The stated identity is obtained by taking the coefficient of uµvazν .

Before proving Theorem 9 we give an example.

Example 14. We wish to write the composition of operators Hq
(53)H

q
(2) as

a linear combination of operators Hq
αHq

β with α ∈ Z1 and β ∈ Z2.

Hq
(53)H

q
(2) − qHq

(54)H
q
(1) = Hq

(5)H
q
(32) − qHq

(6)H
q
(21)

Hq
(54)H

q
(1) − qHq

(55)H
q
(0) = Hq

(5)H
q
(41) − qHq

(6)H
q
(31)

Hq
(55)H

q
(0) = Hq

(5)H
q
(50) − qHq

(6)H
q
(40)

Making repeated substitutions, we have the relation

Hq
(53)H

q
(2) = q2Hq

(5)H
q
(50) − q3Hq

(6)H
q
(40) + qHq

(5)H
q
(41)

− q2Hq
(6)H

q
(31) + Hq

(5)H
q
(32) − qHq

(6)H
q
(21)

12



We now give the proof of Theorem 9.

Proof. We prove that if k > n then G(k, n) ⊂ G(k − 1, n + 1) as the other
part is proven in the same manner. It is enough to show that if k > n,
(µ, a) ∈ Zk

≥ and ν ∈ Zn
≥ then

Hq
(µ,a)H

q
ν ∈ G≥(k − 1, n + 1)

We use (23) with k−1 and n. The proof proceeds by induction on µ1−a. If
µ1 − a = 0, then there is exactly one term on the left hand side of equation
(23), namely Hq

(µ,a)H
q
ν . The right hand side is a Z[q]-linear combination of

Hq
γHq

ρ with γ ∈ Zk−1 and ρ ∈ Zn+1.
If µ1 − a > 0 then the left hand side is a linear combination of operators

of the form Hq
(γ,c)H

q
β with γ1 = µ1 and

c = min
1≤i≤k−1

{
a + |νβ, µi + (k − i)

}

≥ min
1≤i≤k−1

{
a + |νβ, a + (k − i)

}
.

It follows that c ≥ a with equality if and only if ν = β. The right hand side
of this equation is again an element of G(k − 1, n + 1).

Finally we prove Theorem 10.

Proof. We shall prove G(k+ℓ, k) ⊆ G(k, k+ℓ) for k, ℓ > 0, the other inclusion
being similar. Consider (20) with m = 0 and n = k so U = Uk, V = V ℓ,
Z = Zk:

H(U, V )H(Z)Ω[−qV ∗Z] = H(U)H(V,Z)Ω[−qU∗V ].(25)

Take the coefficient of uαvβzγ in this equation, where (α, β) ∈ Zk+ℓ
≥ and γ ∈

Zk
≥. The entire right hand side consists of terms in G(k, k + ℓ). Expanding

the expression Ω[−qV ∗Z] =
∏

(1 − qzi/vj), the left hand side is in the set

Hq
α,βHq

γ + Z[q]
∑

β′,γ′

Hq
α,β′H

q
γ′

where β′ ∈ Zℓ such that β′
j ≤ βj + k for all 1 ≤ j ≤ ℓ and |β′| > |β|.

Rewriting a typical term Hq
α,β′ by Corollary 4, one obtains either 0 or up

to sign Hq
α′,β′′ , say. This means α′

1 + (k + ℓ − 1) is the largest part of the

weight (α, β′) + ρ(k+ℓ). Now α1 ≥ βj for all 1 ≤ j ≤ ℓ by the dominance of
(α, β), so

α1 + k + ℓ − 1 ≥ βj + k + ℓ − 1 ≥ β′
j + ℓ − 1

≥ β′
j + ℓ − j.

It follows that α′
1 = α1, (α′, β′′) ∈ Zk+ℓ

≥ and |α′| + |β′′| > |α| + |β|. There

are only finitely many elements of Zk+ℓ
≥ with these properties, so the terms

Hq
(α′,β′′)H

q
γ′ can again be rewritten in the same way, and the process termi-

nates.
13



8. Recovering identities via commutation relations

The commutation relations in the previous section may be used to recover
some identities among the operators Hq

ν that correspond to known identities
among generalized Kostka polynomials.

Proposition 15. For a ∈ Z and positive integers k and n,

Hq
(an)H

q
(ak)

= Hq
(ak)

Hq
(an)(26)

Proof. In the proof of Theorem 10, take α = (ak), β = (aℓ), and γ = (ak).
The proof shows there is only one term on either side of the identity coming
from (25), which agrees with (26) when n = k + ℓ.

Proposition 16.

Hq
(ak)

Hq
((a+1)k)

= qkHq
((a+1)k)

Hq
(ak)

.(27)

Proof. When Lemma 13 is applied with µ = (ak−1), a, and ν = ((a + 1)k),
there are no surviving terms on the right and exactly two on the left, indexed
by β = ν = ((a + 1)k) and β = (ak). Applying Corollary 4 to the term with
β = (ak) the desired identity is obtained.

Proposition 17. For all a ∈ Z and k ≥ 1,

Hq
(ak)

Hq
(ak)

= Hq
(ak+1)

Hq
(ak−1)

+ qkHq
((a+1)k)

Hq
((a−1)k)

.(28)

Proof. Apply Lemma 13 with n = k − 1, µ = (ak), and ν = (ak−1). On the
left side one has the single nonvanishing term Hq

(ak+1)
Hq

(ak−1)
corresponding

to the summand β = ν = (ak−1). The right side has two nonvanishing
terms indexed by α = µ = (ak) and α = µ + (1k) = ((a + 1)k). The first
of these terms is Hq

(ak)
Hq

(ak)
. The second is (−q)kHq

((a+1)k)
Hq

(a−k,ak−1)
. But

Hq
(a−k,ak−1)

= (−1)k−1Hq
((a−1)k)

by Corollary 4.

This identity can be viewed as the trace of a short exact sequence that re-
solves the ideal of a nilpotent conjugacy class closure over the coordinate ring
of a minimally larger one [7]. The version of this identity for the fermionic
form of generalized Kostka polynomials appears in [10]. This q-character
identity is put in a more general context in [5].

9. Generalization of Garsia-Procesi defining recurrence for

Kostka-Foulkes polynomials

Manipulations of the definition allow us to derive commutation relations
between the Hq

ν and the operators e⊥k . As a consequence we obtain a gener-
alization of a defining recurrence for the Kostka-Foulkes polynomials given
in [4].

Let E(u) be the generating function of operators on Λ defined by

E(u)P [X] = P [X − u].(29)

14



By (4) we have

P [X − u] =
∑

λ∈P

s⊥λ (P )[X]sλ[−u] =
∑

k≥0

e⊥k (P )[X](−u)k.

In other words

e⊥k P [X] = (−1)kP [X − u]
∣∣∣
uk

.(30)

The commutation relation of H(Zn) and E(u) is:

E(u)H(Zn)P [X] = E(u)P [X − (1 − q)Z∗]Ω[XZ]R(Zn)

= P [X − u − (1 − q)Z∗]Ω[(X − u)Z]R(Zn)

= Ω[−uZ]H(Zn)E(u)P [X]

Taking the coefficient of (−u)kzλ on both sides of this equation we obtain
the following relation.

Proposition 18. Let λ ∈ Zn
≥. Then

e⊥k Hq
λ =

∑

β∈Zn
≥

λ/β∈V

Hq
βe⊥k−|λ|+|β|

Let η = (η1, η2, . . . , ηt) be a fixed sequence of positive integers summing

to n. For any weight γ ∈ Zn, write γ(1) ∈ Zη1 for the first η1 parts of γ,
γ(2) ∈ Zη2 for the next η2 parts of γ, etc.

Proposition 19. Let k be a fixed positive integer, η = (η1, η2, . . . , ηt) a

sequence of positive integers summing to n, α ∈ Zn
≥, and γ ∈ Zn such that

γ(i) ∈ Z
ηi

≥ for all i and |γ| − |α| = k. Then

∑

ν∈Zn

|γ|−|ν|=k

ν(i)∈Z
ηi
≥

γ(i)/ν(i)∈V

Kα,ν,η(q) =
∑

λ∈Zn
≥

|λ|−|α|=k
λ/α∈V

Kλ,γ,η(q)

Proof. Let η and γ be as above. For the moment assume that the entries of
γ are positive. Apply e⊥k to (16) and apply Proposition 18 to both sides to

commute e⊥k to the right of the H operators:

∑

ν∈Zn

ν(i)∈Z
ηi
≥

γ(i)/ν(i)∈V

Hq

ν(1)H
q

ν(2) · · ·H
q

ν(t)e
⊥
k−|γ|+|ν| =

∑

λ∈Zn
≥

∑

β∈Zn
≥

λ/β∈V

Kλ,ν,η(q)H
q
βe⊥k−|λ|+|β|.

Since γ has positive parts, all the ν have nonnegative parts. Expanding the
left hand side using (16) and applying the resulting operators to 1 ∈ Λ, we

15



obtain
∑

ν∈Zn

|γ|−|ν|=k

ν(i)∈Z
ηi
≥

γ(i)/ν(i)∈V

∑

µ∈Zn
≥

Kµ,ν,η(q)H
q
µ 1 =

∑

λ∈Zn
≥

∑

β∈Zn
≥

|λ|−|β|=k
λ/β∈V

Kλ,ν,η(q)H
q
β 1.

Assume for the moment that α has nonnegative parts. For such α, Hq
α 1 =

sα[X]. Taking the coefficient of sα[X] on both sides, we obtain the desired
relation.

The statement is true in general since Kλ−(an),γ−(an),η(q) = Kλ,γ,η(q) for
all integers a.

The recurrence for the Kostka-Foulkes polynomials given in [4] is recov-
ered by setting η = (1n) in Proposition 19, as Hq

(m) in our notation is Hm in

theirs. In the case η = (1n) the situation is particularly nice; the nondom-
inant operators can be made dominant using the relation Hq

(m)H
q
(m+1) =

qHq
(m+1)H

q
(m). For general η the identities needed to rewrite the nondom-

inant terms as dominant ones, can get complicated and produce negative
signs.

10. Jing’s operators

We give corresponding constructions for Jing’s Hall-Littlewood vertex op-
erators [6] [9, Ex. III.5.8]. Define

B(Zk)P [X] = P [X − Z∗]Ω[XZ(1 − q)]

B(Zk)P [X] = P [X − Z∗]Ω[XZ(1 − q)]R(Zk)

Bq
ν = B(Zk)

∣∣∣
zν

for ν ∈ Zk. The generating series of operators B(z) (for a single vari-
able z) and B(Zk) defined here, coincide with the operators B(z) and
B(z1, z2, . . . , zk) in the notation of [9, Ex. III.5.8]. B(z) in our notation
is the operator H(z) in Jing’s [6]. However the operators Bν themselves are
not studied by Jing or Macdonald.

Let F be the plethystic operator FP [X] = P [X(1 − q)], with inverse
operator F−1P [X] = P [X/(1 − q)]. Then it is not hard to show that

B(Zk) = F ◦ H(Zk) ◦ F−1.(31)

This gives the following analogue of (16) for B(Zk).

Bq

γ(1)B
q

γ(2) · · ·B
q

γ(t) =
∑

λ∈Zn
≥

Kλ,γ,η(q)B
q
λ.(32)
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