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A CHARACTERIZATION OF SEMIAMPLENESS AND

CONTRACTIONS OF RELATIVE CURVES

STEFAN SCHRÖER

Revised version

Abstract. I give a cohomological characterization of semiample line bun-
dles. The result is a generalization of both the Fujita–Zariski Theorem on
semiampleness and the Grothendieck–Serre Criterion for ampleness. As an
application of the Fujita–Zariski Theorem I characterize contractible curves in
1-dimensional families.

Introduction

The Fujita–Zariski Theorem asserts that a line bundle L that is ample on its base
locus is semiample. Semiampleness means that a multiple L⊗n, n > 0 is globally
generated. For discrete base locus the result goes back to Zariski ([17], Thm. 6.2),
and the general form is due to Fujita ([3], Thm. 1.10). This note contains two
applications of the Fujita–Zariski Theorem.

The first section contains a generalization of both the Fujita–Zariski Theorem
and the cohomological criterion for ampleness due to Grothendieck–Serre. The
result is the following characterization: A line bundle L is semiample if and only if
the modules H1(X, I ⊗SymL) are finitely generated over the ring Γ(X, SymL) for
every coherent ideal I ⊂ OB. Here B ⊂ X is the stable base locus of L. This gives
a positive answer to Fujita’s question ([3], 1.16) whether it is possible to weaken
the assumption in the Fujita–Zariski Theorem.

In the second section I generalize results of Piene [14] and Emsalem [2]. They
used the Fujita–Zariski Theorem to obtain sufficient conditions for contractions in
normal arithmetic surfaces. Our result is a characterization of contractible curves in
1-dimensional families over local noetherian rings in terms of complementary closed
subsets. This also sheds some light on the noncontractible curve constructed by
Bosch, Lütkebohmert, and Raynaud ([1], chap. 6.7). For proper normal algebraic
surfaces, similar results appear in [15].

1. Characterization of semiampleness

Throughout this section, R is a noetherian ring, X is a proper R-scheme, and
L is an invertible OX -module. According to the Grothendieck–Serre Criterion ([5],
Prop. 2.6.1) L is ample if and only if for each coherent OX -module F there is an
integer n0 > 0 so that H1(X,F ⊗L⊗n) = 0 for all n > n0. Let me reformulate this
in terms of graded modules. For a coherent OX -module F , set

Hp
∗ (F ,L) = Hp(X,F ⊗ SymL) =

⊕

n≥0

Hp(X,F ⊗ L⊗n).
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This is a graded module over the graded ring Γ∗(L) = Γ(X, SymL). The Gro-
thendieck–Serre Criterion takes the form: L is ample if and only if the modules
H1

∗ (F ,L) are finitely generated over the ring Γ0(L) = Γ(OX) for all coherent OX -
modules F . In this form it generalizes to the semiample case. Following Fujita [3],
we define the stable base locus B ⊂ X of L to be the intersection of the base loci
of L⊗n for all n > 0. We regard it as a closed subscheme with reduced scheme
structure.

Theorem 1.1. Let B ⊂ X be the stable base locus of L. Then the following are

equivalent:

(i) The invertible sheaf L is semiample.

(ii) The modules H
p
∗ (F ,L) are finitely generated over the ring Γ∗(L) for each

coherent OX-module F and all integers p ≥ 0.
(iii) The modules H1

∗ (I,L) are finitely generated over the ring Γ∗(L) for each

coherent ideal I ⊂ OB .

Proof. The implication (i)⇒(ii) is well known, and (ii)⇒(iii) is trivial. To prove
(iii)⇒(i) we assume that L is not semiample. According to the Fujita–Zariski
Theorem the restriction LB is not ample. By the Grothendieck–Serre Criterion
there is a coherent ideal I ⊂ OB with H1(X, I ⊗ L⊗n) 6= 0 for infinitely many
n > 0. Thus H1

∗ (I,L) is not finitely generated over Γ0(L). Since B ⊂ X is
the stable base locus, the maps Γ(X,L⊗n) → Γ(B,L⊗n

B ) vanish for all n > 0.
Consequently, the irrelevant ideal Γ+(L) ⊂ Γ∗(L) annihilates H1

∗ (I,L), which is
therefore not finitely generated over Γ∗(L).

Sommese [16] introduced a quantitative version of semiampleness: Let k ≥ 0
be an integer; a semiample invertible sheaf L is called k-ample if the fibers of
the canonical morphism f : X → ProjΓ∗(L) have dimension ≤ k. For example,
0-ampleness means ampleness.

Theorem 1.2. Let L be a semiample invertible OX-module. Then L is k-ample if

and only if the modules Hk+1
∗ (F ,L) are finitely generated over the ground ring R

for all coherent OX-modules F .

Proof. Set Y = ProjΓ∗(L) and let f : X → Y be the corresponding contraction.
Suppose L is k-ample. Choose n0 > 0 so that L⊗n0 = f∗(M) for some ample
invertible OY -module M. Put G = F ⊗ (L ⊕ L⊗2 ⊕ . . . ⊕ L⊗n0). Choose m0 > 0
with Hp(Y, Rqf∗(G)⊗M⊗m) = 0 for p > 0, q ≤ k +1, and m > m0. Consequently,
the edge map Hk+1(X,G ⊗ L⊗mn0) → H0(Y, Rk+1f∗(G) ⊗ M⊗m) in the spectral
sequence

Hp(Y, Rqf∗(G) ⊗M⊗m) =⇒ Hp+q(X,G ⊗ L⊗mn0)

is injective for m > m0. The fibers of f : X → Y are at most k-dimensional, so
Rk+1f∗(G) = 0. Thus Hk+1(X,F ⊗ Ln) = 0 for all n > n0m0.

Conversely, assume that the condition holds. Seeking a contradiction we suppose
that some fiber of f : X → Y has dimension > k. Using [13] we find a coherent
OX -module F with Rk+1f∗(F) 6= 0. Replacing L by a suitable multiple, we have
L = f∗(M) for some ample invertible OY -module M. Passing to a higher multiple
if necessary, Hp(Y, Rqf∗(F) ⊗M⊗n) = 0 holds for p > 0, q ≤ k, and n > 0. Then
the edge map Hk+1

∗ (X,F ⊗ L⊗n) → H0
∗ (Y, Rk+1f∗(F) ⊗ M⊗n) is surjective for

n > 0. Choose a global section s ∈ Γ(Y,M⊗n) for some n > 0 so that the open
subset Ys ⊂ Y contains the set of associated points for Rk+1f∗(F). Then s ∈ Γ∗(M)
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is not a zero divisor for H0
∗ (Rk+1f∗(F),M). It follows that H0

∗ (Rk+1f∗(F),M) is
nonzero for infinitely many degrees. Consequently, the same holds for Hk+1

∗ (F ,L),
which is therefore not finitely generated over R.

Remark 1.3. For a vector bundle E , it might happen that OP(E)(1) is semiample,
whereas Symn(E) fails to be globally generated for all n > 0. For example, let k

be an algebraically closed field of characteristic p > 0, and X be a smooth proper
curve of genus g > p− 1 so that the absolute Frobenius FrX : H1(OX) → H1(OX)
is zero. For an example see [11], p. 348, ex. 2.14. Let D ⊂ X be a divisor of degree
1. According to the commutative diagram

H0(OX) −−−−→ H0(OD) −−−−→ H1(OX(−D)) −−−−→ H1(OX)

Fr∗
X





y

Fr∗
X





y

Fr∗
X





y





y

Fr∗
X

=0

H0(OX) −−−−→ H0(OpD) −−−−→ H1(OX(−pD)) −−−−→ H1(OX),

the p-linear map Fr∗X : H1(OX(−D)) → H1(OX(−pD)) is not injective. Hence
there is a nontrivial extension

0 −→ OX −→ E −→ OX(D) −→ 0

whose Frobenius pull back Fr∗X(E) splits. The surjection E → OX(D) gives a section
A ⊂ P(E) representing OP(E)(1) with A2 = 1 ([11], Prop. 2.6, p. 371). The Fujita–
Zariski Theorem implies that OP(E)(1) is semiample, and we obtain a birational
contraction P(E) → Y . It is easy to see that the exceptional set is an integral curve
R ⊂ P(E) which has degree p on the ruling. Hence P(E) → Y does not restrict
to closed embeddings on the fibers of P(E) → X . Consequently, Symn(E) is not
globally generated at any point x ∈ X .

2. Contractions of relative curves

Throughout this section, R is a local noetherian ring, and X is a proper R-
scheme with 1-dimensional closed fiber X0 ⊂ X . Then all fibers of the structure
morphism X → Spec(R) are at most 1-dimensional. For example, X could be a
flat family of curves.

A Stein factor of X is a proper R-scheme Y together with a proper morphism
f : X → Y so that OY → f∗(OX) is bijective (compare [12], sec. 5). Our objective
is to describe the set of all Stein factors for a given X .

Let Ci, i ∈ I be the finite collection of all 1-dimensional integral components of
the closed fiber X0. A subset J ⊂ I yields a subcurve C =

⋃

i∈J Ci. We call such
a curve C ⊂ X contractible if there is a Stein factor f : X → Y so that f(Ci) is a
closed point if and only if i ∈ J . According to [5], Theorem 5.4.1, a Stein factor
is determined up to isomorphism by its restriction f0 : X0 → Y0. The task now is
to determine the contractible curves C ⊂ X . It follows from [14] and [2] that all
curves C ⊂ X are contractible provided that the ground ring R is henselian. In
particular this holds if R is complete. On the other hand, a noncontractible curve
is discussed in [1], chapter 6.7.

We seek to describe contractible curves C ⊂ X in terms of complementary
closed subsets D ⊂ X . We need a definition: Suppose D ⊂ X is a closed subset
of codimension ≤ 1. Let R ⊂ R∧ be the completion with respect to the maximal
ideal, X ′ the normalization of X ⊗R R∧, and C′

i, C
′, D′ ⊂ X ′ the preimages of
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Ci, C, D ⊂ X , respectively. Let h : X ′ → Z ′ be the contraction of all C′
i ⊂ X ′

0

disjoint from C′. We call D persistent if h(D′) ⊂ Z ′ has codimension ≤ 1.

Example 2.1. Suppose R is a discrete valuation ring with residue field k and frac-
tion field K. Let X be the proper R-scheme obtained from X ′ = P

1
R by identifying

the closed points 0,∞ ∈ P
1
k. Then the closure D ⊂ X of the point 0 ∈ P

1
K is not

persistent.

Theorem 2.2. Suppose J ⊂ I is a subset so that the curve C =
⋃

i∈J Ci is con-

nected. Then C ⊂ X0 is contractible if and only if there is a persistent closed

subset D ⊂ X of codimension ≤ 1 disjoint from C and intersecting each irreducible

component Ci ⊂ X0 with i 6∈ J .

Proof. Assume that C is contractible. The corresponding contraction f : X → Y

maps C to a single point. Let V ⊂ Y be an affine open neighborhood of f(C). Set
U = f−1(V ) and D = X−U . Clearly D∩C = ∅. Furthermore, D∩Ci 6= ∅ for i 6∈ J ;
otherwise f(Ci) would be a proper curve contained in the affine scheme V , which
is absurd. Let X ′, Y ′ be the normalizations of X ⊗R R∧, Y ⊗R R∧, respectively.
The induced morphism f ′ : X ′ → Y ′ is the contraction of the preimage C′ ⊂ X ′

of C. The preimage V ′ ⊂ Y ′ of V is affine, so Y − V is of codimension ≤ 1 ([10]
II, 2.2.6). Hence the preimage D′ ⊂ X ′ of D is of codimension ≤ 1. Obviously,
the same holds if we contract the preimages C′

i ⊂ X ′ of Ci disjoint from C′. Thus
D ⊂ X is of codimension ≤ 1 and persistent.

Conversely, assume the existence of such a subset D ⊂ X . Set U = X − D. We
claim that the affine hull Uaff = Spec Γ(U,OX) is of finite type over R and that the
canonical morphism U → Uaff is proper.

Suppose this for a moment. Then U → Uaff contracts C and is a local isomor-
phism near each x ∈ U0 −C. Choose for each x ∈ X0 −C an affine open neighbor-
hood Ux ⊂ X of x disjoint to the exceptional set of U → Uaff. Then Ux∩U → Uaff is
an open embedding. It is easy to see that the schemes Ux

⋃

Ux∩U Uaff, x ∈ X0 − C

and Uaff form an open cover of a proper R-scheme Y . The induced morphism
f : X → Y is the desired contraction.

It remains to verify the claim. Let R ⊂ R∧ be the completion. According to
[9], VIII Corollary 3.4, the scheme Uaff is of finite type if and only if Uaff ⊗R R∧

is of finite type. Furthermore, U → Uaff is proper if and only if if is proper after
tensoring with R∧ ([9], VIII Cor. 4.8). Since Uaff ⊗R R∧ = (U ⊗R R∧)aff by [8],
Proposition 21.12.2, it suffices to prove the claim under the additional assumption
that R is complete.

Now each curve in X0 is contractible. Observe that the contraction of C does
not change Uaff, so we can as well assume that C is empty. Now our goal is to prove
that U is affine. Since R is complete, hence universally japanese, the normalization
X ′ → X is finite. Using Chevalley’s Theorem ([4], Thm. 6.7.1), we reduce the
problem to the case that X is normal. Now the irreducible components of X are
the connected components. Treating them separately we may assume that X is
connected. Contracting the curves Ci contained in D we can assume that D0 is
finite and intersects each Ci. If D = X or D = ∅ there is nothing to prove. Assume
that D ⊂ X is of codimension 1, in other words a Weil divisor. The problem is
that it might not be Cartier. To overcome this, consider the graded quasicoherent
OX -algebra R =

⊕

n≥0 OX(nD). The graded subalgebra R′ ⊂ R generated by

R1 = OX(D) is of finite type over OX . Set X ′ = Proj (R′) and let g : X ′ → X
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be the structure morphism. Then g is projective and OX′(1) is a g-very ample
invertible OX′ -module. The canonical maps D : OX(nD) → OX((n + 1)D) induce
a homomorphism R′ → R′ of degree one, hence a section s : OX′ → OX′(1). It
follows from the definition of homogeneous spectra that s is bijective over U and
vanishes on g−1(D). Thus the corresponding Cartier divisor D′ ⊂ X ′ representing
OX′(1) has support g−1(D).

Let A ⊂ X ′
0 be a closed integral subscheme of dimension n > 0. If g(A) ⊂ X0

is a curve, then A is not contained in D′ but intersects D′. Hence D′ · A > 0. If
g(A) ⊂ X is a point, then OA(1) is ample, so (D′)n ·A > 0. By the Nakai criterion
for ampleness we conclude that OX′(1) is ample on its base locus. Now the Fujita–
Zariski Theorem tells us that OX′(1) is semiample. It follows that U ≃ X ′ − D′ is
affine. This finishes the proof.

Let us consider the special case that the total space X is a normal surface.
Replacing R by Γ(X,OX), we are in the following situation: Either R is a discrete
valuation ring, such that X → Spec(R) is a flat deformation of X0. Or R is a local
normal 2-dimensional ring, hence X → Spec(R) is the birational contraction of X0.
In either case we call a Weil divisor H ∈ Z1(X) horizontal if it is a sum of prime
divisors not supported by X0.

Suppose J ⊂ I is a subset with C =
⋃

i∈J Ci connected. Let V ⊂ X0 be the
union of all Ci disjoint from C.

Corollary 2.3. Notation as above. Then C ⊂ X0 is contractible if and only if there

is a horizontal Weil divisor H ⊂ X disjoint from C with the following property:

For each Ci, i 6∈ J , either H intersects Ci, or H intersects a connected component

V ′ ⊂ V with V ′ ∩ Ci 6= ∅.

Proof. Suppose C ⊂ X0 is contractible. Let D ⊂ X be a persistent Weil divisor
as in Theorem 2.2. Then its horizontal part H ⊂ D satisfies the above conditions.
Conversely, assume there is a horizontal Weil divisor H ⊂ X as above. It follows
that D = H + V is a persistent Weil divisor disjoint from C intersecting each Ci

with i 6∈ J . Thus C ⊂ X0 is contractible.
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[6] A. Grothendieck: Éléments de géométrie algébrique IV: Étuede locale des schémas et de
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